
 

- 1 - 

Windows Vista 64bits and unexported kernel 
symbols.    

Matthieu Suiche, Senior Security Fanatics!  
<matt@msuiche.net>  

http://www.msuiche.net  

January 1, 2007   

Abstract: For the first Microsoft Windows Vista Beta, several articles have been published, 
talking about miscellaneous subjects like IT or more specifically Operating System Security 
(e.g. Matthew Conover[1]). There are numerous conflicts between ISV and Microsoft about 
unexported native symbols like the IDT, SDT and some MSRs on x64 Windows version.   

However, while the Windows Vista Beta 2 beta testing, Joanna Rutkowska[2] showed these 
initiatives will not make Microsoft Windows more secure. Further, the October 25 2006, an 
Anti-Virus vendor called Authentium[3] announced publicly that Patchguard protection has 
been subverted.   

Actually, Microsoft Windows Vista RTM (Release to Manufacturing) has been released but 
the problem for AV vendors still exists. Even if companies have told to Microsoft that 
building a standalone symbols importer is an easy task. AV Companies have announced to 
Microsoft that the decision to make these symbols as exportable won t make it easier for 
Rootkit s authors to access to privileged areas.   

Introduction: Windows Vista x64 uses very different internal schemes compared to the x86 
version. If someone reversed the x86 kernel and wanted to reverse the x64 kernel, thinking 
that he will find the same data at the same address, then he is wrong. Further, there are some 
innovations in x64 reversing like the x64 calling convention. The reader needs to know these 
specificities whether he doesn t want to get stopped because of a lack of understanding with 
pushed arguments.   

This paper is covering a quick analysis of the main parts of the Microsoft Vista kernel loader 
to explain how it s possible to get a hand on the main native system structures, like software 
interruption address, SSDT address and syscall MSRs.   

Prerequisites: Deprived of access to documentation and source code, we analysed Windows 
Vista x64 RTM version using an external disassembler, and the latest Debugging Tools for 
Windows (x64) to have a CPL 0 debugger compatible with Microsoft Windows Vista x64. 
Some knowledge of x64 assembly is needed like news operands, registers and calling 
convention. Of course, a fluent assembly understanding is necessary there. 
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I. System Interruptions  

Our story start in the KiSystemStartup() which the prototypes seemed to be :  

VOID KiSystemStartup( 
                     PLOADER_PARAMETER_BLOCK pKeLoaderBlock);  

KiSystemStartup:  
                 sub     rsp, 38h 
                 mov     [rsp+38h+shadow], r15 
                 mov     r15, rsp 
                 mov     cs:KeLoaderBlock, rcx 
                 mov     rdx, [rcx+38h] 
                 lea     rax, KPCR 
                 test    rdx, rdx 
                 cmovz   rdx, rax 
                 mov     [rcx+38h], rdx  ; PKPCR 
                 sub     rdx, 180h  

As can you see the argument pKeLoaderBlock is stored into the exportable variable 
KeLoaderBlock located in the ALMOSTRO section. 
For reminding the LOADER_PARAMETER_BLOCK structure is:   

typedef struct _LOADER_PARAMETER_BLOC { 
LIST_ENTRY                    LoadOrderListHead;          // +0x000 
LIST_ENTRY                    MemoryDescriptorListHead    // +0x010 
LIST_ENTRY                    BootDriverListHead;         // +0x020 
UCHAR                         KernelStack;                // +0x030 
PULONG64                      Prcb;                       // +0x038 
UCHAR                         Process;                    // +0x040 
UCHAR                         Thread;                     // +0x048 
USHORT                        RegistryLength;             // +0x050 
PVOID                         RegistryBase;               // +0x052 
PCONFIGURATION_COMPONENT_DATA ConfigurationRoot;          // +0x060 
PUCHAR                        ArcBootDeviceName;          // +0x068 
PUCHAR                        ArcHalDeviceName;           // +0x070 
PUCHAR                        NtBootPathName;             // +0x078 
PUCHAR                        NtHalPathName;              // +0x080 
PUCHAR                        LoadOptions;                // +0x088 
PNLS_DATA_BLOCK               NlsData;                    // +0x090 
PARC_DISK_INFORMATION         ArcDiskInformation;         // +0x098 
PVOID                         OemFontFile;                // +0x0a0 
PSETUP_LOADER_BLOCK           SetupLoaderBlock;           // +0x0a8 
PLOADER_PARAMETER_EXTENSION   Extension;                  // +0x0b0 
} LOADER_PARAMETER_BLOC, *PLOADER_PARAMETER_BLOC;  

The beginning of the function just fixes the PKPCR value to KeLoaderBlock.Prcb.  

                 mov     [rdx+18h], rdx  ; PKPCR-0x180 
                 mov     [rdx+20h], r10  ; PKPCR 
                 mov     r8, cr0 
                 mov     [rdx+1C0h], r8  ; CR0 
                 mov     r8, cr2 
                 mov     [rdx+1C8h], r8  ; CR2 
                 mov     r8, cr3 
                 mov     [rdx+1D0h], r8  ; CR3 
                 mov     r8, cr4 
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                 mov     [rdx+1D8h], r8  ; CR4 
                 sgdt    qword ptr [rdx+216h] 
                 mov     r8, [rdx+218h] 
                 mov     [rdx], r8 
                 sidt    qword ptr [rdx+226h] 
                 mov     r9, [rdx+228h] 
                 mov     [rdx+38h], r9 
                 str     word ptr [rdx+230h] 
                 sldt    word ptr [rdx+232h] 
                 mov     dword ptr [rdx+180h], 1F80h 
                 ldmxcsr dword ptr [rdx+180h]  

These following registers/tables values are stored into the structure pointer by rdx. 
- CR  (=Control Registers) 
- TR  (=Task Register) 
- GDT (=Global Descriptor Table) 
- IDT (=Interrupt Descriptor Table) 
- LDT (=Local Descriptor Table)  

                 mov     eax, edx 
                 shr     rdx, 32 
                 mov     ecx, 0C0000101h ; GS_BASE 
                 wrmsr 
                 mov     ecx, 0C0000102h ; KERNEL_GS_BASE 
                 wrmsr  

The RDX register is going to be stored in a MSR identified by GS_BASE and 
KERNEL_GS_BASE constants.  

Some instructions later, the function KiInitializeBootStructures() is called. His prototype 
seemed to be like the following:  

VOID KiInitializeBootStructures( 
                      PLOADER_PARAMETER_BLOCK pKeLoaderBlock);   

After reading the function we see that mapped IDT Base address is obtained in 2 lines of 
code:  

                 mov     rsi, gs:18h 
[...] 
                 mov     pMmIdtEntry, [rsi+38h]  

In fact, these 2 lines of code represents a 13 lines tricks of internal structure initialization:  

                 mov     cs:KeLoaderBlock, rcx 
                 mov     rdx, [rcx+38h] 
                 lea     rax, KPCR 
                 test    rdx, rdx 
                 cmovz   rdx, rax 
                 mov     [rcx+38h], rdx  ; PKPCR 
                 mov     r10, rdx 
                 sub     rdx, 180h 
                 mov     [rdx+18h], rdx                               
                 mov     [rdx+20h], r10  ; PKPCR 
[...] 
                 sidt    qword ptr [rdx+226h] 
                 mov     r9, [rdx+228h] 
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                 mov     [rdx+38h], r9  

Where rdx+0x18, is a pointer to gs:[0x18] and rdx+0x38 a pointer to the mapped Idt.  

Note: We see that in theory gs:[0x18] should be equal to GS_BASE so gs:[0x38] 
should point to mapped IDT.  

All of the following lines are used to copy System Interrupt to mapped memory. Here, the 
copy procedure is initialized.  

                 lea     r11, (KxUnexpectedInterrupt0+1) 
                 xor     r10d, r10d 
                 lea     r12, (KiInterruptInitTable+8) 
                 lea     r9, KxUnexpectedInterrupt0 
                 lea     r8, [pMmIdtEntry+4] 
                 sub     r11, pMmIdtEntry  

The most interesting line here is the R12 initialization. Whether we check this offset we will 
see:  

KiInterruptInitTable dq 0 
                     dq offset KiDivideErrorFault       ;  DIVIDE_ERROR 
                     dq 1                  
                     dq offset KiDebugTrapOrFault       ;  SINGLE_STEP  
                     dq 30002h                  
                     dq offset KiNmiInterrupt           ;  NMI_INTERRUPT 
                     dq 303h                  
                     dq offset KiBreakpointTrap         ;  BREAKPOINT 
                     dq 304h                  
                     dq offset KiOverflowTrap           ;  OVERFLOW 
                     dq 5                  
                     dq offset KiBoundFault             ;  BOUND          
                     dq 6                  
                     dq offset KiInvalidOpcodeFault     ;  INVALID_OPCODE                
                     dq 7                  
                     dq offset KiNpxNotAvailableFault   ;  NPX_NOT_AVAILABLE                
                     dq 10008h                  
                     dq offset KiDoubleFaultAbort       ;  DOUBLE_FAULT             
                     dq 9                  
                     dq offset KiNpxSegmentOverrunAbort ;  NPX_SEGMENT_OVERRUN              
                     dq 0Ah                  
                     dq offset KiInvalidTssFault        ;  INVALID_TSS          
                     dq 0Bh                  
                     dq offset KiSegmentNotPresentFault ;  SEGMENT_NOT_PRESENT                
                     dq 0Ch                  
                     dq offset KiStackFault             ;  STACK     
                     dq 0Dh                  
                     dq offset KiGeneralProtectionFault ;  GENERAL_PROTECTION                
                     dq 0Eh                  
                     dq offset KiPageFault              ;  PAGE    
                     dq 10h                  
                     dq offset KiFloatingErrorFault     ;  FLOATING_ERROR        
                     dq 11h                  
                     dq offset KiAlignmentFault         ;  ALIGNMENT      
                     dq 20012h                  
                     dq offset KiMcheckAbort            ;  MACHINE_CHECK       
                     dq 13h                  
                     dq offset KiXmmException           ;  XMM_EXCEPTION 
                     dq 1Fh                  
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                     dq offset KiApcInterrupt           ;  APC      
                     dq 32Ch                  
                     dq offset KiRaiseAssertion         ;  RAISE_ASSERTION         
                     dq 32Dh                  
                     dq offset KiDebugServiceTrap      ; DEBUG_SERVICE             
                     dq 2Fh                  
                     dq offset KiDpcInterrupt          ; DPC        
                     dq 0E1h                  
                     dq offset KiIpiInterrupt          ; IPI        
                     dq 2 dup(0)  

Doesn t it seem so interesting? After a short looking on the copy routine we can rebuild a 
theoretical structure for these raw interruptions entries.  

typedef struct _KIDT_RAW_SOFTWARE_INTERRUPT_ENTRY64  { 
    UCHAR       InterruptId;             // +0x00 
    UCHAR       Unknow01;                // +0x01 
    UCHAR       Unknow02;                // +0x02 
    UCHAR       Reserved03;              // +0x03 
    ULONG       Reserved04;              // +0x04 
    PULONG64    InterruptionOffset;      // +0x05 
} KIDT_RAW_SOFTWARE_INTERRUPT_ENTRY64, *PKIDT_RAW_SOFTWARE_INTERRUPT_ENTRY64;   

As you see the pointer to PKIDT_RAW_SOFTWARE_INTERRUPT_ENTRY64 allows us to get all 
protected-mode exceptions and interrupts detailed in the Intel Manual Volume 3[4].  

For remaining the way to access to this in-raw structure is this one: 
The way to access to the KiServiceTable is the following:  

KiSystemStartup() 
    => call KiInitializeBootStructures () 
        -> lea     r12, (KiInterruptInitTable+8)    

Comparing memory interrupt address with their adjusted address is more effective than a 
basic checking between kernel address base and kernel base limit.  
Imagine if an attacker wanted to interchange an IDT entry? It could affect the correct system 
operation.   

For 32bits architecture a proof of concept is available without documentation using 
PhysicalMemory trick that I ve written one year ago.  
This tool I called IDTGuard [5]

 

has been released on 10 December 2006.  A paper about 
32bits Windows System Protection should be published soon.           



 

- 6 - 

II. Syscall / Sysret  

To call a native function Windows uses ntdll.dll to switch from CPL3 to CPL0. This switch is 
done by the SYSCALL opcode. Metasploit published a full listing for system call table index, 
available here [6].   

After referring into the Intel instructions handbook [7], we note these following notes:  

    SYSCALL  Fast System Call 
    SYSRET  Return From Fast System Call  

    SYSCALL saves the RIP of the instruction following SYSCALL to RCX and 
    loads a new RIP from the IA32_LSTAR (64bit mode). Upon return, SYSRET 
    copies the value saved in RCX to the RIP.  

    The CS of the SYSCALL target has a privilege level of 0. 
    The CS of the SYSRET target has a privilege level of 3. 
      

For remaining a ntdll s function switcher looks like:  

Ntxxxxxxxxxxxxx proc near   
mov     r10, rcx ; Ntxxxxxxxxxxxxx   
mov     eax, FunctionIndex   
syscall   
retn 

Ntxxxxxxxxxxxxx endp  

First, we notice the kernel function identifier is stored into the 32bits register: eax. 
Secondly, the ntdll s function executes the SYSCALL opcode to switch into CPL0.  

Some rootkits would rather hook the SYSCALL opcode than patching the System Service 
Descriptor Table.  

On a 64bits system there are two important MSRs (=Model Specific Registers) which are 
initialized, 0xC0000082 and 0xC0000083.   

Let s take a look at the structures and constants declaration.  

#define LSTAR   0xC0000082 
#define CSTAR   0xC0000083  

// 
// Syscall64 
// 
typedef struct _KLSTAR { 
    ULONGLONG   TargetRIP4PM64Callers; 
} KLSTAR;  

// 
// Syscall32 
// 
typedef struct _KCSTAR { 
    ULONGLONG   TargetRIP4CMCallers; 
} KLSTAR;  
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These two MSRs are configured by the KiInitializeBootStructures() function. If we look some 
lines after the IDT copy memory routine we can see the following part of code:  

                 lea     rax, KiSystemCall32 
                 mov     ecx, 0C0000083h 
                 mov     rdx, rax        ; CSTAR 
                 shr     rdx, 20h 
                 wrmsr     

                 lea     rax, KiSystemCall64 
                 mov     ecx, 0C0000082h ; LSTAR 
                 mov     rdx, rax 
                 shr     rdx, 20h 
                 wrmsr  

As you can see function names are very explicit and are very easy to locate with a signature 
which looks like:  

48 8D 05 XX XX XX XX  lea    rax, 0XXXXXXXXXXXXXXXXh 
B9 YY 00 00 C0        mov    ecx, 0C00000YYh  
48 8B D0              mov    rdx, rax 
48 C1 EA 20           shr    rdx, 20h 
0F 30                 wrmsr  

Only 5 bytes differ on 21bytes. But if we build a double signature there are 8 differing bytes 
on 42bytes.  
Cause of LSTAR and CSTAR constant and WRMSR opcode, this part of code is very easy to be 
located.                           
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III. System Service Descriptor Table  

The KeServiceDescriptorTable pointer isn t exported on Windows Vista 64bits even if it s 
still to be on the 32bits version.   

The similar points with previous version of Windows are that this pointer still being present in 
the ALMOSTRO section and KiServiceTable array still be in the .text section.  

We have to look for these opcodes in the KiInitSystem function in the INIT section:  

                 lea     rax, qword_1401C7120 
                 mov     cs:qword_1401C7128, rax 
                 mov     cs:qword_1401C7120, rax 
                 lea     rax, KiServiceTable 
                 mov     cs: KeServiceDescriptorTable, rax 
                 mov     eax, dword ptr cs:KiServiceLimit 
                 mov     cs:KiSwapEvent, 1 
                 mov     cs:dword_1401F9990, eax 
                 lea     rax, KiArgumentTable 
                 lea     rax, KiServiceTable 
                 mov     cs:KeServiceDescriptorTable, rax  

There are several variables initialized into the KiInitSystem function, then find the pointer 
toward KiServiceTable could seem very delicate. Further, the KiInitSystem function 
isn t an exported function.   

That s why using a 64bits LDE (=Length Disassembler Engine) or an open source 
disassembler [8] would be rather than a basic print code searching cause of these notes.  
With counting instructions and opcode identification we could make a theoretical way to the 

lea     rax, KiServiceTable .  

The way to access to the KiServiceTable is the following:  

KiSystemStartup() 
    => call KiInitializeKernel()  
        => call KiInitSystem() 
            -> lea     rax, KiServiceTable 
            -> mov     cs:KeServiceDescriptorTable, rax   

Like for the IDT, get an access in-raw to the table is complex but not impossible. The main 
point of this access is the organization to use correctly a standalone disassembler to rebuild a 
virtual path to these variables.  

For instance, you have to count the number of instructions x between the calling and the 
beginning of the function. Then, on another kernel binary file, you read x instructions and 
compare the current one with a call, if wrong compare the instruction at the position x+n 
and x-n , for n a little number. Additionally, look for pushed arguments into registers and 
stack. Inside the function we can consider more information about instructions scheme.  
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Here, we look for this instruction s prototype lea reg64, [imm64] if we run a scan inside the 
function it will return numerous results. The ingenuity behind this idea is to use a basic 
isomorphs trick, comparing a personal signature with the compiled code.                                                  
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Conclusion:  

In this paper, we cover how to realize a kind of standalone Patchguard for 64bits 
architecture to check main targeted structures of rootkits.  
The specificity of this paper is its 64bits oriented architecture and the improvement of 
authenticity trick compared to x86 existing tools like SVV (System Virginity Verifier) which 
are not allowed to restore interrupts or MSRs by their original values.                                                       
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