

- 1 -

Windows Vista 64bits and unexported kernel
symbols.

Matthieu Suiche, Senior Security Fanatics!
<matt@msuiche.net>

http://www.msuiche.net

January 1, 2007

Abstract: For the first Microsoft Windows Vista Beta, several articles have been published,
talking about miscellaneous subjects like IT or more specifically Operating System Security
(e.g. Matthew Conover[1]). There are numerous conflicts between ISV and Microsoft about
unexported native symbols like the IDT, SDT and some MSRs on x64 Windows version.

However, while the Windows Vista Beta 2 beta testing, Joanna Rutkowska[2] showed these
initiatives will not make Microsoft Windows more secure. Further, the October 25 2006, an
Anti-Virus vendor called Authentium[3] announced publicly that Patchguard protection has
been subverted.

Actually, Microsoft Windows Vista RTM (Release to Manufacturing) has been released but
the problem for AV vendors still exists. Even if companies have told to Microsoft that
building a standalone symbols importer is an easy task. AV Companies have announced to
Microsoft that the decision to make these symbols as exportable won t make it easier for
Rootkit s authors to access to privileged areas.

Introduction: Windows Vista x64 uses very different internal schemes compared to the x86
version. If someone reversed the x86 kernel and wanted to reverse the x64 kernel, thinking
that he will find the same data at the same address, then he is wrong. Further, there are some
innovations in x64 reversing like the x64 calling convention. The reader needs to know these
specificities whether he doesn t want to get stopped because of a lack of understanding with
pushed arguments.

This paper is covering a quick analysis of the main parts of the Microsoft Vista kernel loader
to explain how it s possible to get a hand on the main native system structures, like software
interruption address, SSDT address and syscall MSRs.

Prerequisites: Deprived of access to documentation and source code, we analysed Windows
Vista x64 RTM version using an external disassembler, and the latest Debugging Tools for
Windows (x64) to have a CPL 0 debugger compatible with Microsoft Windows Vista x64.
Some knowledge of x64 assembly is needed like news operands, registers and calling
convention. Of course, a fluent assembly understanding is necessary there.

http://www.msuiche.net

- 2 -

I. System Interruptions

Our story start in the KiSystemStartup() which the prototypes seemed to be :

VOID KiSystemStartup(
 PLOADER_PARAMETER_BLOCK pKeLoaderBlock);

KiSystemStartup:
 sub rsp, 38h
 mov [rsp+38h+shadow], r15
 mov r15, rsp
 mov cs:KeLoaderBlock, rcx
 mov rdx, [rcx+38h]
 lea rax, KPCR
 test rdx, rdx
 cmovz rdx, rax
 mov [rcx+38h], rdx ; PKPCR
 sub rdx, 180h

As can you see the argument pKeLoaderBlock is stored into the exportable variable
KeLoaderBlock located in the ALMOSTRO section.
For reminding the LOADER_PARAMETER_BLOCK structure is:

typedef struct _LOADER_PARAMETER_BLOC {
LIST_ENTRY LoadOrderListHead; // +0x000
LIST_ENTRY MemoryDescriptorListHead // +0x010
LIST_ENTRY BootDriverListHead; // +0x020
UCHAR KernelStack; // +0x030
PULONG64 Prcb; // +0x038
UCHAR Process; // +0x040
UCHAR Thread; // +0x048
USHORT RegistryLength; // +0x050
PVOID RegistryBase; // +0x052
PCONFIGURATION_COMPONENT_DATA ConfigurationRoot; // +0x060
PUCHAR ArcBootDeviceName; // +0x068
PUCHAR ArcHalDeviceName; // +0x070
PUCHAR NtBootPathName; // +0x078
PUCHAR NtHalPathName; // +0x080
PUCHAR LoadOptions; // +0x088
PNLS_DATA_BLOCK NlsData; // +0x090
PARC_DISK_INFORMATION ArcDiskInformation; // +0x098
PVOID OemFontFile; // +0x0a0
PSETUP_LOADER_BLOCK SetupLoaderBlock; // +0x0a8
PLOADER_PARAMETER_EXTENSION Extension; // +0x0b0
} LOADER_PARAMETER_BLOC, *PLOADER_PARAMETER_BLOC;

The beginning of the function just fixes the PKPCR value to KeLoaderBlock.Prcb.

 mov [rdx+18h], rdx ; PKPCR-0x180
 mov [rdx+20h], r10 ; PKPCR
 mov r8, cr0
 mov [rdx+1C0h], r8 ; CR0
 mov r8, cr2
 mov [rdx+1C8h], r8 ; CR2
 mov r8, cr3
 mov [rdx+1D0h], r8 ; CR3
 mov r8, cr4

- 3 -

 mov [rdx+1D8h], r8 ; CR4
 sgdt qword ptr [rdx+216h]
 mov r8, [rdx+218h]
 mov [rdx], r8
 sidt qword ptr [rdx+226h]
 mov r9, [rdx+228h]
 mov [rdx+38h], r9
 str word ptr [rdx+230h]
 sldt word ptr [rdx+232h]
 mov dword ptr [rdx+180h], 1F80h
 ldmxcsr dword ptr [rdx+180h]

These following registers/tables values are stored into the structure pointer by rdx.
- CR (=Control Registers)
- TR (=Task Register)
- GDT (=Global Descriptor Table)
- IDT (=Interrupt Descriptor Table)
- LDT (=Local Descriptor Table)

 mov eax, edx
 shr rdx, 32
 mov ecx, 0C0000101h ; GS_BASE
 wrmsr
 mov ecx, 0C0000102h ; KERNEL_GS_BASE
 wrmsr

The RDX register is going to be stored in a MSR identified by GS_BASE and
KERNEL_GS_BASE constants.

Some instructions later, the function KiInitializeBootStructures() is called. His prototype
seemed to be like the following:

VOID KiInitializeBootStructures(
 PLOADER_PARAMETER_BLOCK pKeLoaderBlock);

After reading the function we see that mapped IDT Base address is obtained in 2 lines of
code:

 mov rsi, gs:18h
[...]
 mov pMmIdtEntry, [rsi+38h]

In fact, these 2 lines of code represents a 13 lines tricks of internal structure initialization:

 mov cs:KeLoaderBlock, rcx
 mov rdx, [rcx+38h]
 lea rax, KPCR
 test rdx, rdx
 cmovz rdx, rax
 mov [rcx+38h], rdx ; PKPCR
 mov r10, rdx
 sub rdx, 180h
 mov [rdx+18h], rdx
 mov [rdx+20h], r10 ; PKPCR
[...]
 sidt qword ptr [rdx+226h]
 mov r9, [rdx+228h]

- 4 -

 mov [rdx+38h], r9

Where rdx+0x18, is a pointer to gs:[0x18] and rdx+0x38 a pointer to the mapped Idt.

Note: We see that in theory gs:[0x18] should be equal to GS_BASE so gs:[0x38]
should point to mapped IDT.

All of the following lines are used to copy System Interrupt to mapped memory. Here, the
copy procedure is initialized.

 lea r11, (KxUnexpectedInterrupt0+1)
 xor r10d, r10d
 lea r12, (KiInterruptInitTable+8)
 lea r9, KxUnexpectedInterrupt0
 lea r8, [pMmIdtEntry+4]
 sub r11, pMmIdtEntry

The most interesting line here is the R12 initialization. Whether we check this offset we will
see:

KiInterruptInitTable dq 0
 dq offset KiDivideErrorFault ; DIVIDE_ERROR
 dq 1
 dq offset KiDebugTrapOrFault ; SINGLE_STEP
 dq 30002h
 dq offset KiNmiInterrupt ; NMI_INTERRUPT
 dq 303h
 dq offset KiBreakpointTrap ; BREAKPOINT
 dq 304h
 dq offset KiOverflowTrap ; OVERFLOW
 dq 5
 dq offset KiBoundFault ; BOUND
 dq 6
 dq offset KiInvalidOpcodeFault ; INVALID_OPCODE
 dq 7
 dq offset KiNpxNotAvailableFault ; NPX_NOT_AVAILABLE
 dq 10008h
 dq offset KiDoubleFaultAbort ; DOUBLE_FAULT
 dq 9
 dq offset KiNpxSegmentOverrunAbort ; NPX_SEGMENT_OVERRUN
 dq 0Ah
 dq offset KiInvalidTssFault ; INVALID_TSS
 dq 0Bh
 dq offset KiSegmentNotPresentFault ; SEGMENT_NOT_PRESENT
 dq 0Ch
 dq offset KiStackFault ; STACK
 dq 0Dh
 dq offset KiGeneralProtectionFault ; GENERAL_PROTECTION
 dq 0Eh
 dq offset KiPageFault ; PAGE
 dq 10h
 dq offset KiFloatingErrorFault ; FLOATING_ERROR
 dq 11h
 dq offset KiAlignmentFault ; ALIGNMENT
 dq 20012h
 dq offset KiMcheckAbort ; MACHINE_CHECK
 dq 13h
 dq offset KiXmmException ; XMM_EXCEPTION
 dq 1Fh

- 5 -

 dq offset KiApcInterrupt ; APC
 dq 32Ch
 dq offset KiRaiseAssertion ; RAISE_ASSERTION
 dq 32Dh
 dq offset KiDebugServiceTrap ; DEBUG_SERVICE
 dq 2Fh
 dq offset KiDpcInterrupt ; DPC
 dq 0E1h
 dq offset KiIpiInterrupt ; IPI
 dq 2 dup(0)

Doesn t it seem so interesting? After a short looking on the copy routine we can rebuild a
theoretical structure for these raw interruptions entries.

typedef struct _KIDT_RAW_SOFTWARE_INTERRUPT_ENTRY64 {
 UCHAR InterruptId; // +0x00
 UCHAR Unknow01; // +0x01
 UCHAR Unknow02; // +0x02
 UCHAR Reserved03; // +0x03
 ULONG Reserved04; // +0x04
 PULONG64 InterruptionOffset; // +0x05
} KIDT_RAW_SOFTWARE_INTERRUPT_ENTRY64, *PKIDT_RAW_SOFTWARE_INTERRUPT_ENTRY64;

As you see the pointer to PKIDT_RAW_SOFTWARE_INTERRUPT_ENTRY64 allows us to get all
protected-mode exceptions and interrupts detailed in the Intel Manual Volume 3[4].

For remaining the way to access to this in-raw structure is this one:
The way to access to the KiServiceTable is the following:

KiSystemStartup()
 => call KiInitializeBootStructures ()
 -> lea r12, (KiInterruptInitTable+8)

Comparing memory interrupt address with their adjusted address is more effective than a
basic checking between kernel address base and kernel base limit.
Imagine if an attacker wanted to interchange an IDT entry? It could affect the correct system
operation.

For 32bits architecture a proof of concept is available without documentation using
PhysicalMemory trick that I ve written one year ago.
This tool I called IDTGuard [5]

has been released on 10 December 2006. A paper about
32bits Windows System Protection should be published soon.

- 6 -

II. Syscall / Sysret

To call a native function Windows uses ntdll.dll to switch from CPL3 to CPL0. This switch is
done by the SYSCALL opcode. Metasploit published a full listing for system call table index,
available here [6].

After referring into the Intel instructions handbook [7], we note these following notes:

 SYSCALL Fast System Call
 SYSRET Return From Fast System Call

 SYSCALL saves the RIP of the instruction following SYSCALL to RCX and
 loads a new RIP from the IA32_LSTAR (64bit mode). Upon return, SYSRET
 copies the value saved in RCX to the RIP.

 The CS of the SYSCALL target has a privilege level of 0.
 The CS of the SYSRET target has a privilege level of 3.

For remaining a ntdll s function switcher looks like:

Ntxxxxxxxxxxxxx proc near
mov r10, rcx ; Ntxxxxxxxxxxxxx
mov eax, FunctionIndex
syscall
retn

Ntxxxxxxxxxxxxx endp

First, we notice the kernel function identifier is stored into the 32bits register: eax.
Secondly, the ntdll s function executes the SYSCALL opcode to switch into CPL0.

Some rootkits would rather hook the SYSCALL opcode than patching the System Service
Descriptor Table.

On a 64bits system there are two important MSRs (=Model Specific Registers) which are
initialized, 0xC0000082 and 0xC0000083.

Let s take a look at the structures and constants declaration.

#define LSTAR 0xC0000082
#define CSTAR 0xC0000083

//
// Syscall64
//
typedef struct _KLSTAR {
 ULONGLONG TargetRIP4PM64Callers;
} KLSTAR;

//
// Syscall32
//
typedef struct _KCSTAR {
 ULONGLONG TargetRIP4CMCallers;
} KLSTAR;

- 7 -

These two MSRs are configured by the KiInitializeBootStructures() function. If we look some
lines after the IDT copy memory routine we can see the following part of code:

 lea rax, KiSystemCall32
 mov ecx, 0C0000083h
 mov rdx, rax ; CSTAR
 shr rdx, 20h
 wrmsr

 lea rax, KiSystemCall64
 mov ecx, 0C0000082h ; LSTAR
 mov rdx, rax
 shr rdx, 20h
 wrmsr

As you can see function names are very explicit and are very easy to locate with a signature
which looks like:

48 8D 05 XX XX XX XX lea rax, 0XXXXXXXXXXXXXXXXh
B9 YY 00 00 C0 mov ecx, 0C00000YYh
48 8B D0 mov rdx, rax
48 C1 EA 20 shr rdx, 20h
0F 30 wrmsr

Only 5 bytes differ on 21bytes. But if we build a double signature there are 8 differing bytes
on 42bytes.
Cause of LSTAR and CSTAR constant and WRMSR opcode, this part of code is very easy to be
located.

- 8 -

III. System Service Descriptor Table

The KeServiceDescriptorTable pointer isn t exported on Windows Vista 64bits even if it s
still to be on the 32bits version.

The similar points with previous version of Windows are that this pointer still being present in
the ALMOSTRO section and KiServiceTable array still be in the .text section.

We have to look for these opcodes in the KiInitSystem function in the INIT section:

 lea rax, qword_1401C7120
 mov cs:qword_1401C7128, rax
 mov cs:qword_1401C7120, rax
 lea rax, KiServiceTable
 mov cs: KeServiceDescriptorTable, rax
 mov eax, dword ptr cs:KiServiceLimit
 mov cs:KiSwapEvent, 1
 mov cs:dword_1401F9990, eax
 lea rax, KiArgumentTable
 lea rax, KiServiceTable
 mov cs:KeServiceDescriptorTable, rax

There are several variables initialized into the KiInitSystem function, then find the pointer
toward KiServiceTable could seem very delicate. Further, the KiInitSystem function
isn t an exported function.

That s why using a 64bits LDE (=Length Disassembler Engine) or an open source
disassembler [8] would be rather than a basic print code searching cause of these notes.
With counting instructions and opcode identification we could make a theoretical way to the

lea rax, KiServiceTable .

The way to access to the KiServiceTable is the following:

KiSystemStartup()
 => call KiInitializeKernel()
 => call KiInitSystem()
 -> lea rax, KiServiceTable
 -> mov cs:KeServiceDescriptorTable, rax

Like for the IDT, get an access in-raw to the table is complex but not impossible. The main
point of this access is the organization to use correctly a standalone disassembler to rebuild a
virtual path to these variables.

For instance, you have to count the number of instructions x between the calling and the
beginning of the function. Then, on another kernel binary file, you read x instructions and
compare the current one with a call, if wrong compare the instruction at the position x+n
and x-n , for n a little number. Additionally, look for pushed arguments into registers and
stack. Inside the function we can consider more information about instructions scheme.

- 9 -

Here, we look for this instruction s prototype lea reg64, [imm64] if we run a scan inside the
function it will return numerous results. The ingenuity behind this idea is to use a basic
isomorphs trick, comparing a personal signature with the compiled code.

- 10 -

Conclusion:

In this paper, we cover how to realize a kind of standalone Patchguard for 64bits
architecture to check main targeted structures of rootkits.
The specificity of this paper is its 64bits oriented architecture and the improvement of
authenticity trick compared to x86 existing tools like SVV (System Virginity Verifier) which
are not allowed to restore interrupts or MSRs by their original values.

- 11 -

References

[1] Matthew Conover (2006), Windows Vista Kernel Mode Security

http://www.symantec.com/avcenter/reference/Windows_Vista_Kernel_Mode_Security.pdf

[2] Joanna Rutkowska (July/August 2006), Subverting Vista Kernel

http://invisiblethings.org/papers/joanna%20rutkowska%20-%20subverting%20vista%20kernel.ppt

[3] Authentium (October 2006), Microsoft Patchguard

http://blogs.authentium.com/sharp/?p=12

[4] Intel, Protected-Mode Exceptions and Interrupts (5-3)

IA-32 Intel Architecture Software Developer s Manual. System Programming Guide

[5] Matthieu Suiche (December, 2006) IDTGuard v0.1 Public Build

http://www.msuiche.net/?p=9

[6] Metasploit, Windows System Call Table (NT/2000/XP/2003/Vista)
http://www.metasploit.com/users/opcode/syscalls.html

[7] Intel, SYSCALL / SYSRET

IA-32 Intel Architecture Software Developer s Manual. Volume 2B

[8] Matthew Conover (2004), Open-source x64 Disassembler

http://www.cybertech.net/~sh0ksh0k/projects/x64dis/

http://www.symantec.com/avcenter/reference/Windows_Vista_Kernel_Mode_Security.pdf
http://invisiblethings.org/papers/joanna%20rutkowska%20-%20subverting%20vista%20kernel.ppt
http://blogs.authentium.com/sharp/?p=12
http://www.msuiche.net/?p=9
http://www.metasploit.com/users/opcode/syscalls.html
http://www.cybertech.net/~sh0ksh0k/projects/x64dis/

