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Abstract

A new public key cryptosystem is proposed and analyzed. The scheme
is quite practical, and is provably secure against adaptive chosen ciphertext
attack under standard intractability assumptions. There appears to be no
previous cryptosystem in the literature that enjoys both of these properties
simultaneously.

1 Introduction

In this paper, we present and analyze a new public key cryptosystem that is prov-
ably secure against adaptive chosen ciphertext attack (as defined by Rackoff and
Simon [20]). The scheme is quite practical, requiring just a few exponentiations
over a group. Moreover, the proof of security relies only on a standard intractabil-
ity assumption, namely, the hardness of the Diffie-Hellman decision problem in
the underlying group.
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The hardness of the Diffie-Hellman decision problem is essentially equivalent
to the semantic security of the basic El Gamal encryption scheme [12]. Thus,
with just a bit more computation, we get security against adaptive chosen cipher-
text attack, whereas the basic El Gamal scheme is completely insecure against
adaptive chosen ciphertext attack. Actually, the basic scheme we describe also
requires a universal one-way hash function. In a typical implementation, this can
be efficiently constructed without extra assumptions; however, we also present a
hash-free variant as well.

While there are several provably secure encryption schemes in the literature,
they are all quite impractical. Also, there are several practical cryptosystems that
have been proposed, but none of them has been proven secure under standard
intractability assumptions. The significance of our contribution is that it provides
a scheme that is provably secure and practical at the same time. There appears to
be no other encryption scheme in the literature that enjoys both of these properties
simultaneously.

Chosen Ciphertext Security

Semantic security, defined by Goldwasser and Micali [14], captures the intuition
that an adversary should not be able to obtain any partial information about a mes-
sage given its encryption. However, this guarantee of secrecy is only valid when
the adversary is completely passive, i.e., can only eavesdrop. Indeed, semantic
security offers no guarantee of secrecy at all if an adversary can mount an active
attack, i.e., inject messages into a network or otherwise influence the behavior of
parties in the network.

To deal with active attacks, Rackoff and Simon [20] defined the notion of se-
curity against anadaptive chosen ciphertext attack. If an adversary can inject mes-
sages into a network, these messages may be encryptions, and the adversary may
be able to extract partial information about the corresponding cleartexts through
its interactions with the parties in the network. Rackoff and Simon’s definition
models this type of attack by simply allowing an adversary to obtain decryptions
of its choice, i.e., the adversary has access to a “decryption oracle.” Now, given an
encryption of a message—the “target” ciphertext—we want to guarantee that the
adversary cannot obtain any partial information about the message. To achieve
this, we have to restrict the adversary’s behavior in some way, otherwise the ad-
versary could simply submit the target ciphertext itself to the decryption oracle.
The restriction proposed by Rackoff and Simon is the weakest possible: the ad-
versary is not allowed to submit the target ciphertext itself to the oracle; however,
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it may submit any other ciphertext, including ciphertexts that are related to the
target ciphertext.

A different notion of security against active attacks, callednon-malleability,
was proposed by Dolev, Dwork, and Naor [9]. Here, the adversary also has access
to a decryption oracle, but his goal is not to obtain partial information about the
target ciphertext, but rather, to create another encryption of a different message
that is related in some interesting way to the original, encrypted message. For ex-
ample, for a non-malleable encryption scheme, given an encryption ofn, it should
be infeasible to create an encryption ofn + 1. It turns out that non-malleability
and security against adaptive chosen ciphertext attack are equivalent [10].

A cryptosystem secure against adaptive chosen ciphertext attack is a very pow-
erful cryptographic primitive. It is essential in designing protocols that are secure
against active adversaries. For example, this primitive is used in protocols for
authentication and key exchange [11, 10, 2] and in protocols for escrow, certi-
fied e-mail, and more general fair exchange [1, 22]. The practical importance
of this primitive is also highlighted by the adoption of Bellare and Rogaway’s
OAEP scheme [4] (a practical but only heuristically secure scheme) as an internet
encryption standard and for use in the SET protocol for electronic commerce.

There are also intermediate notions of security, between semantic security and
adaptive chosen ciphertext security. Naor and Yung [19] propose an attack model
where the adversary has access to the decryption oracle onlyprior to obtaining
the target ciphertext, and the goal of the adversary is to obtain partial information
about the encrypted message. Naor and Yung called this type of attack achosen
ciphertext attack; it has also been called a “lunch-time” or “midnight” attack. In
this paper, we will always use the phraseadaptivechosen ciphertext attack for
Rackoff and Simon’s definition, to distinguish it from Naor and Yung’s definition.

Previous Work

Provably Secure Schemes.Naor and Yung [19] presented the first scheme prov-
ably secure against lunch-time attacks. Subsequently, Dolev, Dwork, and Naor
[9] presented a scheme that is provably secure against adaptive chosen ciphertext
attack.

Rackoff and Simon [20] present and prove the security of an encryption
scheme, but their scheme is actually not a public key scheme in the traditional
sense: in their scheme,all users—both senders and receivers—require public
keys, and moreover, a trusted center is required to perform certain functions. In
contrast, all other schemes mentioned in this paper, including our own, are tradi-
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tional public key systems: encryption is a probabilistic function of the message
and the receiver’s public key, decryption is a function of the ciphertext and the
receiver’s secret key, and no trusted center is required. This distinction can be
important: adding extra system requirements as in the Rackoff and Simon scheme
can greatly restrict the range of application of the scheme.

All of the previously known schemes provably secure under standard in-
tractability assumptions are completely impractical (albeit polynomial time),
as they rely on general and expensive constructions for non-interactive zero-
knowledge proofs. This includes non-standard schemes like Rackoff and Simon’s
as well.

Practical Schemes.Damgard [8] proposed a practical scheme that he conjectured
to be secure against lunch-time attacks; however, this scheme is not known to
be provably secure, and is in fact demonstrably insecure against adaptive chosen
ciphertext attack.

Zheng and Seberry [24] proposed practical schemes that are conjectured to
be secure against chosen ciphertext attack, but again, no proof based on standard
intractability assumptions is known. Lim and Lee [16] also proposed practical
schemes that were later broken by Frankel and Yung [13].

Bellare and Rogaway [3, 4] have presented practical schemes for which they
give heuristic proofs of adaptive chosen ciphertext security; namely, they prove
security in an idealized model of computation, the so-calledrandom oraclemodel,
wherein a hash function is represented by a random oracle.

Shoup and Gennaro [22] also give El Gamal-like schemes that are secure
against adaptive chosen ciphertext attack in the random oracle model, and that
are also amenable to efficient threshold decryption.

We stress that although a security proof in the random oracle model is of some
value, it is still only a heuristic proof. In particular, these types of proofs do not
rule out the possibility of breaking the scheme without breaking the underlying
intractability assumption. Nor do they even rule out the possibility of breaking the
scheme without finding some kind of weakness in the hash function, as recently
shown by Canetti, Goldreich, and Halevi [7].

Outline of paper

In x2 we review the basic definitions that we need for security and intractability
assumptions. Inx3 we outline our basic scheme, and inx4 we prove its security.
In x5 we discuss some implementation details and variations on the basic scheme.
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2 Definitions

2.1 Security against adaptive chosen ciphertext attack

We recall Rackoff and Simon’s definition.
Security is defined via the following game played by the adversary.
First, the encryption scheme’s key generation algorithm is run, with a security

parameter as input. Next, the adversary makes arbitrary queries to a “decryption
oracle,” decrypting ciphertexts of his choice.

Next the adversary chooses two messages,m0; m1, and sends these to an “en-
cryption oracle.” The encryption oracle chooses a bitb 2 f0; 1g at random, and
encryptsmb. The corresponding ciphertext is given to the adversary (the inter-
nal coin tosses of the encryption oracle, in particularb, are not in the adversary’s
view).

After receiving the ciphertext from the encryption oracle, the adversary con-
tinues to query the decryption oracle, subject only to the restriction that the query
must be different than the output of the encryption oracle.

At the end of the game, the adversary outputsb0 2 f0; 1g, which is supposed
to be the adversary’s guess of the valueb. If the probability thatb0 = b is 1=2 + �,
then the adversary’sadvantageis defined to be�.

The cryptosystem is said to be secure against adaptive chosen ciphertext attack
if the advantage of any polynomial-time adversary is negligible (as a function of
the security parameter).

2.2 The Diffie-Hellman Decision Problem

There are several equivalent formulations of the Diffie-Hellman decision problem.
The one that we shall use is the following.

Let G be a group of large prime orderq, and consider the following two dis-
tributions:

� the distributionR of random quadruples(g1; g2; u1; u2) 2 G4;

� the distributionD of quadruples(g1; g2; u1; u2) 2 G4, whereg1; g2 are ran-
dom, andu1 = gr

1
andu2 = gr

2
for randomr 2 Zq.

An algorithm that solves the Diffie-Hellman decision problem is a statisti-
cal test that can effectively distinguish these two distributions. That is, given a
quadruple coming from one of the two distributions, it should output0 or 1, and
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there should be a non-negligible difference between (a) the probability that it out-
puts a 1 given an input fromR, and (b) the probability that it outputs a 1 given
an input fromD. The Diffie-Hellman decision problem is hard if there is no such
polynomial-time statistical test.

This formulation of the Diffie-Hellman decision problem is equivalent to sev-
eral others. First, making the substitution

g1 ! g; g2 ! gx; u1 ! gy; u2 ! gxy;

one sees that this is equivalent to distinguishing Diffie-Hellman triples
(gx; gy; gxy) from non-Diffie-Hellman triples(gx; gy; gz). Note that by a trivial
random self-reducibility property, it does not matter if the baseg is random or
fixed.

Second, although we have described it as a problem of distinguishing two
distributions, the Diffie-Hellman decision problem is equivalent to the worst-case
decision problem: given(gx; gy; gz), decide—with negligible error probability—
if z = xy mod q. This equivalence follows immediately from a random self-
reducibility property first observed by Stadler [23] and later by Naor and Reingold
[17].

Related to the Diffie-Hellman decision problem is the Diffie-Hellman problem
(giveng, gx andgy, computegxy), and the discrete logarithm problem (giveng and
gx, computex).

There are obvious polynomial-time reductions from the Diffie-Hellman deci-
sion problem to the Diffie-Hellman problem, and from the Diffie-Hellman prob-
lem to the discrete logarithm problem, but reductions in the reverse direction are
not known. Moreover, these reductions are essentially the only known methods
of solving the Diffie-Hellman or Diffie-Hellman decision problems. All three
problems are widely conjectured to be hard, and have been used as assumptions
in proving the security of a variety of cryptographic protocols. Some heuristic
evidence for the hardness of all of these problems is provided in [21], where it is
shown that they are hard in a certain natural, structured model of computation. See
[23, 17, 6] for further applications and discussion of the Diffie-Hellman decision
problem.

Note that the hardness of the Diffie-Hellman decision problem is equivalent to
the semantic security of the basic El Gamal encryption scheme. Recall that in the
basic El Gamal scheme, we encrypt a messagem 2 G as(gr; hrm), whereh is
the public key of the recipient.

On the one hand, if the Diffie-Hellman decision problem is hard, then the
group elementhr could be replaced by a random group element without changing
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significantly the behavior of the attacker; however, if we perform this substitution,
the messagem is perfectly hidden, which implies security.

On the other hand, if the Diffie-Hellman decision problem can be efficiently
solved, then an attacker can break El Gamal as follows. The attacker chooses two
messagesm0; m1, giving these to an encryption oracle. The encryption oracle
produces an encryption(u; e) = (gr; hrmb), whereb 2 f0; 1g is chosen at ran-
dom. The attacker’s task is to determineb, which he can do by simply determining
which of (u; h; e=m0) and(u; h; e=m1) is a Diffie-Hellman triple.

Note that the basic El Gamal scheme is completely insecure against adaptive
chosen ciphertext attack. Indeed, given an encryption(u; e) of a messagem, we
can feed the(u; g � e) to the decryption oracle, which gives usg �m.

2.3 Collision-resistant Hash Functions

A family of hash functions is said to becollision resistantif upon drawing a func-
tion H at random from the family, it is infeasible for an adversary to find two
differentinputsx andy such thatH(x) = H(y).

A weaker notion is that of auniversal one-wayfamily of hash functions [18].
Here, it should be infeasible for an adversary to choose an inputx, draw a random
hash functionH, and then find a different inputy such thatH(x) = H(y). Such
hash function families are also calledtarget collision resistant. See [5] for recent
results and further discussion.

3 The Basic Scheme

We assume that we have a groupG of prime orderq, whereq is large. We also
assume that cleartext messages are (or can be encoded as) elements ofG (although
this condition can be relaxed—seex5.2). We also use a universal one-way family
of hash functions that map long bit strings to elements ofZq (although we can do
without this—seex5.3).

Key Generation.The key generation algorithm runs as follows. Random elements
g1; g2 2 G are chosen, and random elements

x1; x2; y1; y2; z 2 Zq

are also chosen. Next, the group elements

c = gx1
1
gx2
2
; d = g

y1
1
g
y2
2
; h = gz

1

7



are computed. Next, a hash functionH is chosen from the family of universal
one-way hash functions. The public key is(g1; g2; c; d; h;H), and the private key
is (x1; x2; y1; y2; z).

Encryption.Given a messagem 2 G, the encryption algorithm runs as follows.
First, it choosesr 2 Zq at random. Then it computes

u1 = gr
1
; u2 = gr

2
; e = hrm; � = H(u1; u2; e); v = crdr�:

The ciphertext is
(u1; u2; e; v):

Decryption. Given a ciphertext(u1; u2; e; v), the decryption algorithm runs as
follows. It first computes� = H(u1; u2; e), and tests if

u
x1+y1�
1

u
x2+y2�
2

= v:

If this condition does not hold, the decryption algorithm outputs “reject”; other-
wise, it outputs

m = e=uz
1
:

We first verify that this is an encryption scheme, in the sense that the decryp-
tion of an encryption of a message yields the message. Sinceu1 = gr

1
andu2 = gr

2
,

we have
ux1
1
ux2
2

= grx1
1

grx2
2

= cr:

Likewise,uy1
1
u
y2
2

= dr anduz
1
= hr Therefore, the test performed by the decryp-

tion algorithm will pass, and the output will bee=hr = m.

4 Proof of Security

In this section, we prove the following theorem.

Theorem 1 The above cryptosystem is secure against adaptive chosen ciphertext
attack assuming that (1) the hash functionH is chosen from a universal one-way
family, and (2) the Diffie-Hellman decision problem is hard in the groupG.

To prove the theorem, we will assume that there is an adversary that can break
the cryptosystem, and that the hash family is universal one-way, and show how
to use this adversary to construct a statistical test for the Diffie-Hellman decision
problem.
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For the statistical test, we are given(g1; g2; u1; u2) coming from either the
distributionR orD. At a high level, our construction works as follows. We build
a simulator that simulates the joint distribution consisting of adversary’s view in
its attack on the cryptosystem, and the hidden bitb generated by the generated
oracle (which is not a part of the adversary’s view).

We will show that if the input comes fromD, the simulation will be nearly
perfect, and so the adversary will have a non-negligible advantage in guessing
the hidden bitb. We will also show that if the input comes fromR, then the
adversary’s view is essentially independent ofb, and therefore the adversary’s
advantage is negligible. This immediately implies a statistical test distinguishing
R fromD: run the simulator and adversary together, and if the simulator outputsb

and the adversary outputsb0, the distinguisher outputs1 if b = b0, and0 otherwise.
We now give the details of the simulator. The input to the simulator is

(g1; g2; u1; u2). The simulator runs the following key generation algorithm, us-
ing the giveng1; g2. The simulator chooses

x1; x2; y1; y2; z1; z2 2 Zq

at random, and computes

c = gx1
1
gx2
2
; d = g

y1
1
g
y2
2
; h = gz1

1
gz2
2
:

The simulator also chooses a hash functionH at random. The public key that the
adversary sees is(g1; g2; c; d; h;H). The simulator knows(x1; x2; y1; y2; z1; z2).

Note that the simulator’s key generation algorithm is slightly different from the
key generation algorithm of the actual cryptosystem; in the latter, we essentially
fix z2 = 0.

The simulator answers decryption queries as in the actual attack, except that it
computesm = e=(uz1

1
uz2
2
).

We now describe the simulation of the encryption oracle. Givenm0; m1, the
simulator choosesb 2 f0; 1g at random, and computes

e = uz1
1
uz2
2
mb; � = H(u1; u2; e); v = u

x1+y1�
1

u
x2+y2�
2

;

and outputs
(u1; u2; e; v):

That completes the description of the simulator. As we will see, when the
input to the simulator comes fromD, the output of the encryption oracle is a
perfectly legitimate ciphertext; however, when the input to the simulator comes
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from R, the output of the decryption oracle will not be legitimate, in the sense
that logg1 u1 6= logg2 u2. This is not a problem, and indeed, it is crucial to the
proof of security.

The theorem now follows immediately from the following two lemmas.

Lemma 1 When the simulator’s input comes fromD, the joint distribution of the
adversary’s view and the hidden bitb is is statistically indistinguishable from that
in the actual attack.

Consider the joint distribution of the adversary’s view and the bitb when the
input comes from the distributionD. Sayu1 = gr

1
andu2 = gr

2
.

It is clear in this case that the output of the encryption oracle has the right
distribution, sinceux1

1
ux2
2

= cr, uy1
1
u
y2
2

= dr, anduz1
1
uz2
2

= hr; indeed, these
equations imply thate = mbh

r andv = crdr�, and� itself is already of the right
form.

To complete the proof, we need to argue that the output of the decryption
oracle has the right distribution. Let us call(u0

1
; u0

2
; e0; v0) 2 G4 a valid ciphertext

if logg1 u
0

1
= logg2 u

0

2
.

Note that if a ciphertext is valid, withu0

1
= gr

0

1
andu0

2
= gr

0

2
, thenhr

0

=

(u0

1
)z1(u0

2
)z2 ; therefore, the decryption oracle outputse=hr

0

, just as it should. Con-
sequently, the lemma follows immediately from the following:

Claim. The decryption oracle—in both an actual attack against the cryptosystem
and in an attack against the simulator—rejects all invalid ciphertexts, except with
negligible probability.

We now prove this claim by considering the distribution of the pointP =

(x1; x2; y1; y2) 2 Z4q, conditioned on the adversary’s view. Letlog(�) denote
logg1(�), and letw = log g2.

¿From the adversary’s view,P is a random point on the planeP formed by
intersecting the hyperplanes

log c = x1 + wx2 (1)

and
log d = y1 + wy2: (2)

These two equations come from the public key. The output from the encryption
oracle does not constrainP any further, as the hyperplane defined by

log v = rx1 + wrx2 + �ry1 + �rwy2 (3)
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containsP.
Now suppose the adversary submits an invalid ciphertext(u0

1
; u0

2
; v0; e0) to the

decryption oracle, wherelogu0

1
= r0

1
and log u0

2
= wr0

2
, with r0

1
6= r0

2
. The

decryption oracle will reject, unlessP happens to lie on the hyperplaneH defined
by

log v0 = r0

1
x1 + wr0

2
x2 + �0r0

1
y1 + �0r0

2
wy2; (4)

where�0 = H(u0

1
; u0

2
; e0): But it is clear that the equations (1), (2), and (4) are

linearly independent, and soH intersects the planeP at a line.
It follows that the first time the adversary submits an invalid ciphertext, the de-

cryption oracle rejects with probability1� 1=q. This rejection actually constrains
the pointP, puncturing the planeH at a line. Therefore, fori = 1; 2; : : :, theith
invalid ciphertext submitted by the adversary will be rejected with probability at
least1� 1=(q� i+ 1). ¿From this it follows that the decryption oracle rejects all
invalid ciphertexts, except with negligible probability.

Lemma 2 When the simulator’s input comes fromR, the distribution of the hid-
den bitb is (essentially) independent from the adversary’s view.

Let u1 = gr1
1

andu2 = gwr2
1

. We may assume thatr1 6= r2, since this oc-
curs except with negligible probability. The lemma follows immediately from the
following two claims.

Claim 1. If the decryption oracle rejects all invalid ciphertexts during the attack,
then the distribution of the hidden bitb is independent of the adversary’s view.

To see this, consider the pointQ = (z1; z2) 2 Z
2

q. At the beginning of the
attack, this is a random point on the line

log h = z1 + wz2; (5)

determined by the public key. Moreover, if the decryption oracle only decrypts
valid ciphertexts(u0

1
; u0

2
; e0; v0), then the adversary obtains only linearly dependent

relationsr0 logh = r0z1 + r0wz2 (since(u0

1
)z1(u0

2
)z2 = gr

0z1
1

gr
0z2
2

= hr
0

). Thus, no
further information aboutQ is leaked.

Consider now the output(u1; u2; e; v) of the simulator’s encryption oracle. We
havee = � �mb, where� = uz1

1
uz2
2

. Now, consider the equation

log � = r1z1 + wr2z2: (6)

Clearly, (5) and (6) are linearly independent, and so the conditional distribution of
�—conditioning onb and everything in the adversary’s view other thane—is uni-
form. In other words,� is a perfect one-time pad. It follows thatb is independent
of the adversary’s view.
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Claim 2. The decryption oracle will reject all invalid ciphertexts, except with
negligible probability.

As in the proof of Lemma 1, we study the distribution ofP = (x1; x2; y1; y2) 2

Z4q, conditioned on the adversary’s view. ¿From the adversary’s view, this is a
random point on the lineL formed by intersecting the hyperplanes (1), (2), and

log v = r1x1 + wr2x2 + �r1y1 + �wr2y2: (7)

Equation (7) comes from the output of the encryption oracle.
Now assume that the adversary submits an invalid ciphertext(u0

1
; u0

2
; e0; v0) 6=

(u1; u2; e; v), wherelogu0

1
= r0

1
and log u0

2
= wr0

2
, with r0

1
6= r0

2
. Let �0 =

H(u0

1
; u0

2
; e0).

There are three cases we consider.

Case 1.(u0

1
; u0

2
; e0) = (u1; u2; e). In this case, the hash values are the same, but

v0 6= v implies that the decryption oracle will certainly reject.

Case 2.(u0

1
; u0

2
; e0) 6= (u1; u2; e) and�0 6= �.

The decryption oracle will reject unless the pointP lies on the hyperplaneH
defined by (4). However, the equations (1), (2), (7), and (4) are linearly indepen-
dent. This can be verified by observing that

det

0
BBB@

1 w 0 0

0 0 1 w

r1 wr2 �r1 �wr2
r0

1
wr0

2
�0r0

1
�0wr0

2

1
CCCA = w2(r2 � r1)(r

0

2
� r0

1
)(�� �0) 6= 0:

Thus,H intersects the lineL at a point, from which it follows (as in the proof of
Lemma 1) that the decryption oracle rejects, except with negligible probability.

Case 3.(u0

1
; u0

2
; e0) 6= (u1; u2; e) and�0 = �. We argue that if this happens with

nonnegligible probability, then in fact, the family of hash functions is not universal
one-way—a contradiction. Note that if we made the stronger assumption of col-
lision resistance, there would be essentially nothing to prove, but with the weaker
universal one-way assumption, an argument is needed. We use the adversary to
break the universal one-way hash function as follows. We modify the encryption
oracle in the simulator, so that it outputs(u1; u2; e; v) as before, except that now,
e 2 G is simply chosen completely at random. Up until such time that a collision
occurs, the adversary’s view in this modified simulation is statistically indistin-
guishable from the view in the original simulation, and so the adversary will also
find a collision with nonnegligible probability in the modified simulation. But the
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argument(u1; u2; e) toH is independent ofH, and in particular, we can choose it
beforechoosingH.

5 Implementation Details and Variations

In this section, we briefly discuss some implementation details and possible vari-
ations of the basic encryption scheme.

5.1 A simple implementation

We choose a large primep such thatp� 1 = 2q, whereq is also prime. The group
G is the subgroup of orderq in Z�

p. We restrict a message to be an element of the
setf1; : : : ; qg, and “encode” it by squaring it modulop, giving us an element in
G. We can recover a message from its encoding by computing the unique square
root of its encoding modulop that is in the setf1; : : : ; qg.

For the hash function, one could use a function like SHA-1, or possibly some
keyed variant, and make the appropriate collision-resistance assumption. How-
ever, it is only marginally more expensive to do the following, which is based
only on the hardness of discrete logarithms inG. Say we want to hash a bit
string to an integer modq. Write the bit string as a sequence(a1; : : : ; ak), with
eachai 2 f0; : : : ; q � 1g. To define the hash function, chooseh1; : : : ; hk in
G at random. The hash of(a1; : : : ; ak) is then the least non-negative residue of
�ha1

1
� � �hakk 2 Z�

p, where the sign is chosen so that this value is inf1; : : : ; qg.
This hash function is collision resistant, provided computing discrete loga-

rithms inG is hard. To see this, note that from a collision, we obtain a nonzero
sequence(a1; : : : ; ak) modq such that

ha1
1
� � �hakk 2 f1;�1g \G = f1g:

Using a standard argument, it is easy to see that finding such a relation is equiva-
lent to computing discrete logarithms.

Note that the group elementsg1; g2 andh1; : : : ; hk can be system-wide param-
eters, used by all users of the system.

5.2 A hybrid implementation

It would be more practical to work in a smaller subgroup, and it would be nice to
have a more flexible and efficient way to encode messages.
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To do this, assume we have a symmetric-key cipherC with a key length ofl
bits. Now choose a large primep such thatp� 1 = qm, whereq is a3l-bit prime.
The groupG is the subgroup of orderq in Z�

p. A message in this scheme is just an
arbitrary bit string. To encrypt a messagem, we modify our encryption algorithm,
computinge = CK(m), where the encryption keyK is computed by hashinghr

to anl-bit string with a public 2-universal hash function.
For the hash functionH used in the encryption scheme, something like SHA-

1, possibly keyed, would be appropriate.
The security of this variant is easily proved using the techniques of this paper,

along with the left-over hash lemma [15], assuming the cipherC is semantically
secure.

5.3 A hash-free variant

We can actually eliminate the hash functionH from the scheme, so that the se-
curity can be based strictly on the Diffie-Hellman decision problem for an arbi-
trary groupG. Suppose the strings we need to hash in the original scheme are of
the form(a1; : : : ; ak), where0 � ai < p. In the modified scheme, we replace
the group elementd in the public key byd1; : : : ; dk. For 1 � i � k, we have
di = g

yi1
1
g
yi2
2

, whereyi1 andyi2 are random elements ofZq included in the secret
key. When encrypting, we compute

v = cr
kY

i=1

dairi ;

and when decrypting, we verify that

v = u
x1+
P

k

i=1
aiyi1

1
u
x2+
P

k

i=1
aiyi2

2
:

Using the same proof techniques as for the basic scheme, it is straightforward
to prove that this modified version is secure against adaptive chosen ciphertext
attack, assuming the Diffie-Hellman decision problem inG is hard.

5.4 A “lite” version secure against lunch-time attacks

To achieve security against lunch-time attacks only, one can simplify the basic
scheme significantly, essentially by eliminatingd, y1, y2, and the hash function
H. When encrypting, we computev = cr, and when decrypting, we verify that
v = ux1

1
ux2
2

.
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