
Magstripe Interfacing - A Lost Art
By Acidus (acidus@yak.net www.yak.net/acidus)

-- Intro
Just like Sun Microsystems, people have been forecasting the death of
magstripes for years. Yet they are still the most common form of
physical authentication in the world. Their wide-spread deployment
makes components for them cheap, and home brewed applications
limitless. While there is a great wealth of knowledge on the Internet
about magstripes, most are over 6 years old, mostly for very specific
micro controllers, or have out of date source code with no comments.
Straight answers about how Magstrips work and how to interface to a
modern PC simply don't exist. I plan to correct that.

-- Brief History
Count Zero wrote the definitive work on magstripes in Nov of 1992 for
Phrack 37, entitled “Card-O-Rama: Magnetic Stripe Technology and
Beyond” [1]. While an excellent work, discussing the physical
characteristics of magstripes, as well as how the data in encoded on
them, it contains no information about how interfacing yo magstripe
readers. While several people have published works on readers and
copiers [2], the definitive guide on interfacing readers to computers
was written by Patrick Gueulle in June of 1998 entitled “Interfacing a
TTL Magcard Reader to the PC Game port”[3]. This work is extremely
short, with no explanation of its Pascal source code.

It has be over 6 years since someone wrote something of substance about
magstripe interfacing. The uncommented source code that you can find
out there, in [3] for example, is so horribly dated that it will not
run on any modern Windows OS (2K, XP). This article will explain in
detail interfacing a Magstripe to a computer, explain how to control
it, and present easily ported source code that people can use.

-- Magstripe Basics
See [1] for much more information about this subject. Magstripes
consist of several magnetic particles held to a PVC card with a glue,
and the orientation of these particles (and their magnetic fields) is
how the data is stored. Magstripes can contain several Tracks of
information, each .110 inches wide. These tracks are defined by several
standards; we are most interested in Track 2. This is the most widely
used track, having been standardized by the American Bankers
Association. This track contains up to 40 characters from a 16
character set.

So how is the magnetic representation understood by computers? Well the
reader contains a head which outputs an analog signal of the magnetic
fluxes on the card. A specialized chip, called an F2F decoder, converts
these signals into digital outputs. Interfacing directly to the analog
signals would be insane, and F2F chips are critical for easy
interfacing (see [2] for interfacing without a F2F chip). Each F2F chip
needs 5 volts (5V) and a ground (GND) as inputs, and for output has a
Card Present (CP) line, as well as 1-3 pairs of Clock (CLK) and Data
(DATA) lines, one pair for each track the reader supports. These F2F
chips decode the magstripe data of each track as Bit Stream, using the
CLK and DATA line. When the CLK line goes high, DATA line is the value

of that bit (low=0, high=1). The CP line goes high when the reader
detects that a card is being swiped through it. We will not use the CP
line in our implementation.

-- Our Approach.
Using an F2F chip, we can read the bit stream of the data on the card.
From the ABA standard, we know how those bits represent numbers and
characters (shown later in Figure 3). We simply need a way for a
computer to read in the bit stream, and write some software to convert
it to the characters defined in the ABA standard. The good news is
readers with built in F2F chips are easy to find and pretty cheap. They
can be purchased from Digikey, Jameco, etc under the name TTL readers.
You don't want to buy the expensive readers that connect directly to a
serial or parallel port, as these reader will require special software
to read from them.

We are going to adapt an approach shown in [3], and interface through
the gameport. This has several advantages. The gameport provides 5V and
GND to run the reader without an external power supply; its has 4 easy
to read inputs; gameports are usually free whereas serial and parallel
ports are not; and even legacy free PCs without parallel ports, serial
ports or ISA slots still have gameports.

-- Parts
Getting a TTL reader is pretty easy. Digikey has a large section on
them. Simply search for “mag card.” Other online stores carry them as
well. You want the simplest and cheapest one you can get. We are only
interested in Track 2 readers, we don't care about cabling for since we
will make our own, and we don't want motorized readers. We want the
readers where you manually swipe the card (these are a lot cheaper). I
am a big fan of the Omron V3A family of readers, specifically the V3A-
4, since it offers exactly what we need. Expect to spend ~$15-20
dollars.

In addition, you will need a DB15 male connector to plug into the
gameport. Make sure you don't buy a DB15 HD for VGA connections.
Jameco part #15034 is what you want. You'll also need soldering tools,
some wire, a hot glue gun, and some electrical tape. I used few feet of
speaker wire to connect the reader to the gameport, so the reader could
sit in front of the computer.

-- How to Interface
Make sure you can get the data sheet for your TTL reader, and that it
supports Track 2. Check the manufacturers site. Using the pinout from
the data sheet, solder wires to the 5V, GND, DATA, and CLK pins, making
sure you are using the CLK/DATA pair for Track 2 if you reader supports
multiple tracks. The contacts you have to solder to could be quite
small; after soldering the wires, I covered the contacts on the reader
with hot glue to make sure they wouldn't shift, break, or short each
other out. Take your time and solder carefully.

Next, solders the ends of the 5V, GND, DATA and CLK to the DB15
connector as shown in Figure 1.

A word of warning: not all the grounds on a gameport will really be
grounds. Check using a LED to make sure the 5V and GND going to your
reader are really active.

What we have done is soldered the reader outputs to the input pins on
the gameport that correspond to joystick buttons. We can now access the
bit stream from the F2F chip as if we are checking the status of
joystick buttons! We read from the gameport by reading from i/o port
0x201. If we wired the reader to a gameport as shown in Figure 1, when
we read from IO port 0x201, we will receive a byte whose format is
described in Figure 2.

Notice that the inputs are inverted. Thus for each corresponding bit, 0
means a 1 from the card and a 1 means a 0 from the card. How do we read
a byte from port 0x201? It varies from language to language, but is
normally of the form “inputByte = INP(address).”We then use “AND 16” to
extract the DATA bit from the 5th bit of the read byte . This gives us
the bit stream.

-- Bit Stream Explained
The bit stream of a track 2 magstripe card looks like this:

[leading zeros...][start][Data...][end][LRC][trailing zeros...]

The data on the card is a 16 character set, represented by 5 bits, 4
for the character, 1 as odd parity. The character set for Track 2 is
shown in Figure 3.

We are only interested in 0-9, and the start, stop and field
characters. They show us where in the bit stream we have valid data,
and how that data is divided into fields. The number of leading zeros
and trailing zeros vary, and are there to Sync the clock inside the F2F
chip. The trailing zeros are there so you can run your mag card
backwards through a reader. Please note the F2F chip doesn't look for
the start or stop characters, or anything like that. It simply reads
the fluxes and outputs the CLK and DATA lines. Our program must scan
the stream and find the start character. Once you find it, you know
where the 5 bit boundaries are for each character, and can read the
data on the card. We are interested in all Data from the Start
character to the Stop Character. The LRC is a checksum uses to make
sure the data on the card is correct. The source code doesn't check the
LRC. Rarely is it necessary, and for the most part any problems you
have will have to deal with the timing loop, as described in the next
section.

-- Problems
Remember all those advantages for interfacing to a gameport? There is
one big downside. The gameport doesn't generate an interrupt when a
joystick is moved or a button is pressed. This means in our software we
have to use lots of loops when reading the bit stream so we can trap
the changes of the CLK line. To read a single data bit from the DATA
line, we have to do the following:
Step 1: Loop, checking for when the CLK goes high (and thus bit 5 goes
low)
Step 2: Save the value of the DATA line (bit 5)
Step 3: Loop, waiting for the CLK to go low (and thus bit 5 to go high)
Step 4: If we still have more bits to read, go to Step 1
This is a time critical loop. The program has to catch each and every
bit, in real time, since the bits are not saved or cached in anyway. If
you have several programs running and your computer is off doing
something else and misses a bit, the data will be wrong. How time
critical it is can vary with language and hardware. On a Pentium 150,
the PASCAL code from [2] compiled and worked in fine in DOS, but an
implementation in Qbasic, even compiled, failed. A Pentium II 266 under

Win2K ran the VB version just fine with no load, but failed in I tried
while defragging a drive. The 3.4+ GHz machines of today should have no
problem.

Lastly, a note on IO port access. If you want to use my VB code, and
are using Win2K or XP, you will need to grab the Inpout32 from [4].
This is a DLL that allows you to directly access IO ports under 2K and
XP, which don't allow direct access like Win 9x and ME do.

-- Source Code Explained
VB is used because it's easy to understand and port, and I don't want
the language to interfere with the explanation. The code is limited in
that it will only deal with cards slid in the proper direction. It is
heavily commented, so here is a quick overview. We read the DATA from
the card just as described above, using a set of time critical loops.
The array is sized to 240 since we will never have more than 240 bits
on Track 2. We don't need to use the CP line, because the CLK line will
not go high until a card is in the track. After the first stage, our
array contains entire bytes from 0x201, when we only care about the
Data bit. The next stage uses AND 16 to mask off the DATA from the 5th
bit. The array now has only 1's and 0s, the raw bit stream. Next we
scan the array looking for 11010. This marks the start of the data.
Once found, and we than read 5 bits at a time, looking for the end
character, 11111. When we find it, we read through the bit stream from
the start character to the stop character at 5 bit intervals (since
each character in the stream is 5 bits), and decode the characters
using the chart in Figure 3. We append these decoded characters to a
string until we have read all the data between the start and stop.

Here is a sample of the decoded bit stream of a Visa
Account Number: 4313 0123 4567 8901
Expires: 5/06
Output: ;4313012345678901=0506101xxxxxxxxxxxxx?

The 101 after the expiration data is common to all Visa cards. See [1]
and [2] for many more examples of card formats.

-- Improvements
The code give here is very basic, so people can understand whats going
on. More advanced code and application are available from [5]. One of
the first improvements would be allowing the card to be swiped in both
directions. You capture the bit stream the same way. You then look for
the start character, then attempt to find the end character and then
the LRC. You then calculate the LRC to make sure the data is correct.
If any of those steps fail, simply try again going backwards through
the stream. Interrupt driven programming would also be a plus. We
didn't use the CP line, because our polling method doesn't need it, and
the game port doesn't have it. Using the CP line and the CLK line, you
could wire something to say the strobe line on a parallel port and
trigger an interrupt so the computer doesn't have to keep polling until
a card is really there.

-- Closing and Thanks
“If I have seen farther than others, it is only because I have stood on

the shoulders of giants.” Those giants, most notably Count Zero, made
this article possible. Thanks to all the hackers who learned so much
and documented their discoveries. Please take this code and improve on
it as much as you'd like. Just remember to give credit as I have:
hackers have been working on Magstripes for nearly 15 years. Swipe all
the cards ain your wallet, you would be amazed at the stuff you will
find encoded on them; I've found SSNs, PIN numbers, birth dates,and
more.

There is no group, there is only code.

--References
Copies of most of the info from these links can be found at
www.yak.net/acidus

[1] Card-O-Rama: Magnetic Stripe Technology and Beyond, Count Zero,
http://www.phrack.org/phrack/37/P37-06 -The Definitive guide on
magstripes: Formats, encoding, and reading.

[2] Magnetic Stripe reader/writer, Luis Padilla Visdomine,
http://www.gae.ucm.es/~padilla/extrawork/stripe.html -An excellent web
page, Luis builds a mag reader and writer from scratch. Lots of
examples of card formats, rather advanced.

[3] Interface a TTL Magcard Read to the PC Games Port, Patrick Gueulle
http://www.blackmarket-
press.net/info/plastic/magstripe/card_tech/3IFD.pdf -A very short paper
on PC interfacing with Source Code.

[4] Logix 4 U Homepage, www.logix4u.cjb.net – Contains the inpout32.dll
needed to directly access IO ports using INP and OUT on Win2k and XP
machines.

[5] Most Significant Bit Homepage, Acidus, www.yak.net / acidus – My
homepage, lots of info on a variety of subjects.

