
A Case for Protocol Dependency

Juhani Eronen, Marko Laakso
University of Oulu, Computer Engineering Laboratory

Linnanmaa BOX 4500, FIN-90014 University of Oulu, Finland
ouspg@ee.oulu.fi

Abstract

Vulnerabilities infest information technology. There is a
lack of tools in risk assessment for understanding the im-
pact that the disclosed vulnerabilities have on the critical
information infrastructures. To address this need, this work
derives a new dimension of dependency from practical vul-
nerability work, namely that of protocol dependency. Clas-
sic technology dependency views were reviewed, a chain
of systematic vulnerability disclosures was followed as a
case study and analysis revealed evidence of protocol de-
pendency. Extrapolating from the experiences of a complex
case, this new dependency dimension can be modelled. The
model will benefit from going beyond a narrow technical
view.

Keywords: critical infrastructure protection, informa-
tion systems, risk assessment, security assessment, protocol
dependency, interdependency, vulnerability, robustness

1. Introduction

The critical infrastructures have been penetrated by in-
formation systems. The very basis that we depend on has
become technologically entangled.

“The protection of critical infrastructures
such as telecommunications, energy, financial
services, health care, public services, and trans-
portation ... not only exhibit strong interdepen-
dence but are also increasingly relying on infor-
mation systems for their operation.” [12]

Vulnerabilities infest information technology. The num-
ber of information technology vulnerabilities tracked by
the information security watch-dog CERT/CC has increased
from a hefty 1090 occurrences in year 2000 to over 1200 in
the first quarter of 2005 alone. Incidents where these vul-
nerabilities have been abused have become so frequent that
this watchdog has lost track of them [5].

The rise of vulnerabilities is new to traditional industries
that have only quite recently become dependent on the in-
formation infrastructure or information technology in gen-
eral [18]. Vulnerabilities manifest in new threats that gener-
ate risks for industries which protect their assets and oper-
ations with the help of risk management. However, vulner-
abilities cannot be mitigated efficiently without first under-
standing the dependencies involved [15].

Technological dependency has been investigated before
in various studies and programs (see for example [8], [25],
[2], [15], [19] and [18].) The effects of dependency cannot
be negated with the help of mere technological solutions
which would only increase the complexity of the system,
and would therefore further add to the effects. Instead, ef-
ficient risk management of dependent technologies would
require multifaceted analysis methods for different aspects
of technological dependency. [9] [15] The science of de-
pendencies is relatively immature and many dependencies
are not yet understood or even uncovered [25].

There is a lack of tools in risk assessment for understand-
ing the impact that the disclosed vulnerabilities have on the
critical information infrastructures. How to determine the
impact of a disclosure of a vulnerability in a product, in cer-
tain types of products or in a more abstract concept such as
a protocol or implementations of a certain protocol? There
is no easy way to gather answers to the following questions:

1. If a product is affected, are similar products affected?

2. If a product is affected, are seemingly unrelated or dif-
ferent products affected?

3. If a vulnerability is found in one networking context,
e.g. the Internet, does it affect a different context, such
as the telephone networks?

4. If a vulnerability affects desktop computing, are appli-
ances with embedded software in danger?

One approach for finding the answers is to explore proto-
cols; languages shared by the information systems for com-
munication. Purpose of this work is to derive a new di-
mension of dependency from practical vulnerability work,

namely that of protocol dependency. It is realised when pro-
tocols within a single protocol family or even between pro-
tocol families have a connection. The impact area of vulner-
abilities in a shared component is greatly expanded due to
protocol dependency. This may lead to faults that can have
a significant effect on an infrastructure.

This paper first introduces classic views on the depen-
dencies of critical infrastructures, and the methods used to
manage related risks. The gravity of vulnerabilities for crit-
ical infrastructures is demonstrated. A method for system-
atic vulnerability assessment is discussed, and different lev-
els of vulnerability are analysed and classified. Resulting
cases on protocol dependencies and protocol views are pre-
sented along with analysis on causes and effects of the de-
pendencies. Finally, the discussion expands to a modelling
method that goes beyond narrow technical views.

1.1. Risk management of dependencies

“The essence of risk management lies in max-
imising the areas where we have some control
over the outcome while minimising the areas
where we have absolutely no control over the out-
come and the linkage between effect and cause is
hidden from us.”

Peter L Bernstein, ‘Against the Gods, The Re-
markable Story of Risk’

Risk management is used in practically all current or-
ganisations and enterprises to protect their assets and ensure
their continued operation. The use of risk management as
a decision-making tool is recommended throughout the or-
ganisation, from senior management to the administration
of individual devices. Risk is thought of as the function
of the likelihood of a threat source displaying a potential
vulnerability, and the resulting impact of the adverse effect.
[27] [28]

A crucial part of risk management is the risk assessment
phase, in which the relevant processes and systems are iden-
tified, their threats and vulnerabilities are anatomised along
with the corresponding likelihoods. From these factors risks
are determined with the help of impact analysis. When the
risks are known the process can continue with the develop-
ment of mitigation strategies for the relevant risks. [27]

Critical information infrastructures present several chal-
lenges for efficient risk assessment. Finding relevant func-
tions requires that infrastructures must first be dissected to
a group of critical sectors. In some cases the analysis is
taken further, and critical elements are identified within the
sectors [8]. The sectors and elements must be evaluated
in the proper context to distinguish the couplings among
them, and thus among the infrastructures. These couplings
are called interdependencies if the relationship between af-

fected infrastructures is bidirectional, and dependencies if it
is unidirectional [25].

The dependencies and interdependencies can be seen
to embody multiple dimensions such as their environment,
feedback mechanisms or failure types, and the degree and
type of the relation strongly influence the operating charac-
teristics of the affected infrastructures [28]. A vulnerability
in linked infrastructures can cause failures due to a common
cause, cascading failures, or even escalating failures among
the affected infrastructures [25].

Current information infrastructures consist of several in-
terconnected infrastructures that expand over countries and
continents. The efficiency of communication networks has
prompted their use even in the most implausible places. The
composed infrastructures exhibit significant complexity and
nonlinear dynamics due to the variety of interconnected el-
ements. A single failure in one part of the infrastructure can
cascade throughout the network over a varying time-span
and finally cause catastrophic failures in the infrastructure.
The origin of the failure might not be evident due to the
complexity of the interconnections. Thus, the study of de-
pendencies is essential for mitigating risks caused by the
vulnerabilities of an infrastructure. [10]

There have been some analyses on the interdependencies
of different critical infrastructure sectors and their techni-
cal and managerial layers. Some analyses have gone as far
as identifying critical information technology components
and their interdependencies with other components, or us-
ing historical data to model the dynamic behaviour of an
interconnected system [2] [28].

However, risk analysis of a single IT component is chal-
lenging due to the very nature of information technology.
IT suffers from the very same continuous evolution and
modification that has made it so widely used in the first
place. Changes in the environment, components, architec-
ture, and procedures create new risks and demand continu-
ous reassessment of the prevalent risk assessment [19] [18].
The current analytic methods for reaching a more holistic
view of the risks and interdependencies of IT systems fall
short of what would be required while vulnerabilities are
prevalent among practically all IT systems [18]. The cur-
rent trend of ubiquitous interconnectivity of IT systems has
resulted in widespread vulnerability, where continuously in-
creasing levels and varieties of attacks have emerged [24].

The heated market situation in the IT industry does not
encourage efforts to reduce the vulnerabilities by the means
of research and analysis [23], and technical solutions will
not alone be sufficient to eliminate the risks created by the
vulnerabilities due to their inherent complexity and vulner-
abilities [25]. Therefore the research on vulnerabilities is a
decisive topic in mitigating the risks related to IT systems
and ultimately to critical infrastructures.

2. Method

This chapter presents the concept of vulnerability from
the information system point of view. Furthermore, a sys-
tematic assessment method that has produced the necessary
data for this study is introduced.

When requirements for a system are gathered into a sys-
tem specification the focus is on the positive requirements,
ie. on what the system should do. Some security and safety
aspects may be incorporated in positive requirements, such
as authentication and cryptography. However, specifying
that system should use cryptography is more a design choice
which attempts to fulfil confidentiality requirement, for ex-
ample for data transportation. It would be more accurate
to require that the information in transit is not disclosed to
unauthorised party. Security aspects described in this fash-
ion are negative (or inherent) requirements, classic example
being “the system should not crash”. A downside of the
negative requirements is that they are hard if not impossible
to systematically test for in the final system. The only re-
alistic possibility is to prove that the negative requirements
are not attained.

©

 P
a

s
i

K
e

m
i

b u g s

NEGATIVE REQUIREMENTS

POSITIVE
REQUIREMENTS

IN SPECIFICATION

UNDESIRED FUNCTIONALITY

DESIRED
FUNCTIONALIT Y

WHEN IMPLEMENTED

IMPLEMENTATION

ACQUIRED FUNCTIONALIT Y

CONFORMANCE
BUGS

PLANNED
FEATURES

“CREATIVE
FEATURES”

FATAL
FEATURES
(BUGS)

Figure 1. Plans vs. reality in implementation

Theory meets practice when the system undergoes im-
plementation. As a result, we get more and less than we
asked for. In information systems this deviation is due to
a gap between typically natural language requirements and
machine language of the implementation and cultural dif-
ferences of people interpreting and implementing the spec-
ifications. Technical decisions, such as the choice of tools
and programming language, also play a major part in the
deviation. Figure 1 illustrates the complications introduced
by the inherent imperfection of the implementation. At
best, positive requirements result in desired features. Fail-
ure of an implementation to capture the positive require-

ments leads to conformance bugs, i.e. failures in conform-
ing to the requirements. Extra functionality brought in by
the implementation results in creative features, ie. features
that can be used to achieve functionality that neither the re-
quirements, designer, nor even the programmer anticipated
for. As the actual functionality of the system enters the area
of negative requirements, undesired features have been im-
plemented and the security of the system has been compro-
mised by vulnerabilities. The need to differentiate between
desired and actualised functionality has been recognised in
the context of critical infrastructure protection [24].

Innate vulnerabilities result when ideas are refined into
concrete implementations. These vulnerabilities can be as
varied as the implementations they appear in - for example.
the Common Vulnerabilities and Exposures project classi-
fies vulnerabilities in numerous continuously evolving cat-
egories [7].

Traditional vulnerability research has proceeded mostly
in a very reactive fashion, addressing vulnerabilities as they
are discovered in a “penetrate & patch” paradigm. An inter-
nal or external auditor finds a vulnerability in an implemen-
tation and reports it. The vendor or maintainer of the im-
plementation can then proceed to fix it. [16] In the process,
knowledge about vulnerability types has been accumulated
and remedies for common vulnerabilities have become well
known. Yet vendors continue to produce software that con-
tains common vulnerabilities, which constitute a major por-
tion of the total amount of found vulnerabilities [4].

On the stated premise, the Oulu University Secure Pro-
gramming Group (OUSPG) has claimed that programming
errors leading to vulnerabilities are systematic, and that
many of those vulnerabilities could be eliminated by sys-
tematic testing [26]. In the PROTOS project, OUSPG set
out to find several vulnerabilities from multiple implemen-
tations with systematic testing. The used approach was
black-box (i.e. functional) testing of protocol implemen-
tations. [21]

Every connection of a software to its exterior takes place
via an interface using a dedicated communications protocol.
In effect, these protocols are used for communication be-
tween software functions, software modules, software com-
ponents, software packages, or even between the software
and the user. In the vulnerability testing performed dur-
ing the PROTOS project, syntactical errors were inserted
into protocol messages, and the messages were input to the
tested implementations. The implementation was deemed
to have failed the test if it exhibited vulnerable behaviour
upon receiving the input. [13]

The testing was done in a systematic fashion and could
be repeated and verified at any time. As many protocols
are standardised and used by several implementations, the
same material could be used to test a multitude of imple-
mentations using the tested protocol. Possibilities emerged

for finding a mass of vulnerabilities in several protocol im-
plementations in a systematic fashion.

3. Results

This chapter describes three of the test materials pub-
lished by the PROTOS team. These materials produced a
large quantity of vulnerability data and revealed interde-
pendencies involved in information system vulnerabilities.
These materials, designed for established Internet protocols,
are listed below in order of publication:

1. Lightweight Directory Access Protocol (LDAP)
The material covers protocol version 3

2. Simple Network Management Protocol (SNMP)
The material covers protocol version 1

3. H.225.0
Part of the H.323 video conferencing protocol suite
The material covers protocol version 4

The findings of the test materials confirmed the claims
stated by the PROTOS project: 80% of the products tested
within the project failed due to exploitable flaws [26]. The
public disclosure of the different test materials were handled
by Australia’s National Computer Emergency Response
Team (AusCERT), the US based CERT Coordination Cen-
ter (CERT/CC) and the UK National Infrastructure Security
Co-Ordination Centre (NISCC). The advisory for the SN-
MPv1 test material alone has statements from 140 vendors
[3].

After the test material for LDAP it became suspect, for
the PROTOS team, that there are implementation level vul-
nerabilities in various ASN.1 parsers, which are prevalent in
protocol implementations. Initial analysis and observations
supported this. Thus, the most significant impacts caused
by the test materials reached far beyond the scope of the
protocols involved. E.g. the LDAP and SNMP protocols
both use a syntactic notation called Abstract Syntax Nota-
tion 1 (ASN.1), more specifically its Basic Encoding Rules
(BER). Syntactic errors with respect to the notation were
routinely used in the corresponding test materials. During
testing it became apparent that the material evoked vulner-
able behaviour also on unrelated implementations that used
ASN.1.

The PROTOS team compiled an internal list of core
protocols to select the target protocol for the next test
suite. Creation of an ASN.1 Basic Encoding Rules (BER)
test suite was considered, but after some consideration an
SNMP test suite with extensive ASN.1 BER encoding tests
was selected.

The SNMPv1 test material attracted much attention, and
other actors became aware of ASN.1 vulnerabilities and be-
gan to work on the subject. NISCC compiled a list of top

ten ASN.1 protocols relevant in the CNI perspective. This
served as guidance for further research, and prompted the
PROTOS team to generate test material for H.225.0. [20]

This discovery enhanced attention on IT-related risks.
The severeness is demonstrated by the fact that the US pres-
ident was briefed on the ASN.1 vulnerabilities [6]. The im-
pact is well described by a study on Canadian critical net-
work infrastructures.

“Testing by Oulu University in Finland re-
cently exposed serious vulnerabilities in the
widely-used version 1 of the Simple Network
Management Protocol (SNMP) and the Light
Directory Access Protocol (LDAP). The formal
definition language Abstract Syntax Notation 1
(ASN1) [sic] has been implicated in both of these
vulnerabilities but experts have not agreed on
whether the problem lies with the Basic Encod-
ing Rules for ASN1 [sic] or the way the rules are
used in implementations. Since the Basic Encod-
ing Rules are used very widely in protocols run-
ning on the world-wide telecommunications in-
frastructure, the problem has serious implications
regardless of the root cause.” [11]

Another issue of impact beyond the obvious was uncov-
ered during the development of the H.225.0 test material. It
was noted that H.225.0 implements a subset of ITU-T rec-
ommendation Q.931 [22]. Q.931 has been developed by
ITU-T in co-operation with ATM Forum. It is used in In-
tegrated Services Digital Network (ISDN) signalling and a
related protocol User to Network Interface (UNI) is used
in Asynchronous Transfer Mode (ATM) signalling. Thus
the potential impact of the H.225.0 test material contain-
ing Q.931 test would be vastly larger than intended. This
raised questions on the linkage of protocol specifications
and prompted research on protocol dependency.

During the creation of the test suite a new vulnerability
domain was discovered. Initially the PROTOS team studied
Q.931 as a part of the H.323 research, and not until some
studies on ISDN it was discovered that the protocols shared
a common connection control protocol. Later it was discov-
ered that ATM also shares a related control protocol - User
to Network Interface.

4. Analysis

“When components of any system are highly
interdependent, there is no such thing as a local
fix.”

Andrew Hunt and David Thomas, ‘The Prag-
matic Programmer’

The PROTOS team has often been queried on the impact
of the vulnerabilities found with the test material. Appar-
ent from the LDAP, SNMP and H.225.0 cases, the impact
assessment is not a trivial task due to different levels of ab-
straction of the vulnerabilities.

The assignment of abstraction levels to vulnerabilities is
a problem previously tackled by the Common Vulnerabil-
ities and Exposures (CVE) project. CVE researched the
existing vulnerability taxonomies and presented the Com-
mon Vulnerability Enumeration standard that uses a single
vulnerability abstraction level [17]. This approach may be
useful from the point of view of a vulnerability database.

Looking back to the test materials, the concept of vulner-
ability meta levels emerges. Meta levels present a multilevel
vulnerability taxonomy designed to categorise vulnerabili-
ties based on their impacts. The basic idea of the taxonomy
is that a vulnerability affecting a low-level concept should
have a high meta level, and vice versa. The rationale be-
hind the idea is that low-level concepts are more prevalent
in the realm of software than high-level ones. Thus, a sys-
tematic error in the implementation of a low-level concept
will result in vulnerabilities with a great impact, whereas
the impact of corresponding high-level vulnerabilities may
be limited to a single implementation.

©

 P
a

s
i

K
e

m
i

2001 2002 2003

OUSPG
TOP

LDAP

2004

SNMP

NISCC
TOP 10

ASN.1 ?

u n d e r s t a n d i n g A S N . 1

SNMP
LDAP
X.509
 - S S L / T L S
 - I S A K M P / I K E
 - S / M I M E
 - H S T
KERBEROS
(BGP)
(PGP)
GENERIC ASN.1

SNMP
LDAP
ATM
X.400
X.500
X.509
KERBEROS
SS7
H323/T.120/T.245
PKCS#10

(Meta level 1)

(Meta level 2)

(Meta level 3)

incl.
Q.931

ISDN-D

ATM

H.323

Figure 2. Vulnerability meta levels vs. PRO-
TOS test materials

The following list presents the meta level’s classification
aided by the illustration of PROTOS test material relation-
ships (see figure 2).

Meta level 0: As discussed earlier, traditional vulnera-
bility research often focuses on a single vulnerability in a
single implementation. Faults that usually lead to vulner-
abilities are found from one or more versions of a single
product. These vulnerabilities exhibit meta level zero.

Meta level 1: Vulnerabilities in multiple implementa-
tions of a single protocol are classified as meta level one.
The PROTOS team set out to find these vulnerabilities as
demonstrated by LDAP, SNMP and H.225.0 test materials
when studied in isolation.

Meta level 2: Often protocols are created based on ear-
lier specifications, or inherited from other protocol families
that have a functionality similar to the desired. In this way
multiple protocols or protocol families can share a common
sub-protocol. If the shared protocol exhibits vulnerabili-
ties, all the protocol families involved may have vulnerabil-
ities. These shared vulnerabilities is what we perceive as
meta level two. This is illustrated H.225.0 case where sub-
protocol Q.931 turned out to be a shared protocol with at
least ISDN and ATM (meta level two).

Meta level 3: Protocols also share a number of
(en)coding schemes, encryption schemes, notations, and the
like. If protocols are thought as the languages that protocol
implementations communicate in, then notations that the
protocols themselves are described in can be thought of as
the alphabet of the language. In order for the implementa-
tion to handle a protocol message, it first has to parse the
alphabet. A vulnerability in e.g. a coding scheme or in its
common implementation can have unforeseeable scope and
consequences. These we call meta level three vulnerabili-
ties. In the test-materials this is reflected by ASN.1 chain, a
shared scheme with numerous protocol families e.g. LDAP,
SNMP, H.225.0 (subset of H.323) and others (meta level
three).

©

 P
a

s
i

K
e

m
i

p r o t o c o l v i e w (H . 3 2 3)

1988 1990 1992 1994 1996 1998 2000 2002

ATM

ITU-T
(ISDN)

Q.931 Q.931
rev.1

Q.2931
Q2971

Q.931
rev.2

UNI 2.0 UNI 3.1
UNI 3.0

UNI 4.0 UNI 4.1

SPECIFICATION HISTORY

2004

UNI 1.0?

ITU-T
(H.323)

V1 V2 V3 V4 V5

Figure 3. The specification history of Q.931
explicates its protocol dependencies

While meta level three vulnerabilities seem hard to grasp
by any analytic means, it appears that meta level two vul-
nerabilities can be apprehended by charting protocol depen-

dency. Hitherto, the approach to protocol dependency in the
PROTOS team has been a reactive one, dependencies have
been taken into account only after they have surfaced in re-
search. Post-mortem analysis on the H.225.0 vulnerabilities
included a study on the history of Q.931 specifications. The
results, presented in figure 3, clearly show the forks taken in
the development of the specification, and the resulting de-
pendencies to other protocol families. Had the analysis been
performed in the early stages of test material development,
it would have been an invaluable asset in impact assessment
and test subject selection.

4.1. Impact of protocol dependency

©

 P
a

s
i

K
e

m
i

m e t a l e v e l s

A1 A2
A

B1 B2
B

C1 C2

C

IIII

B CMeta level 1

Meta level 2

Meta level 3

Figure 4. A scenario with different levels of
dependencies

Figure 4 presents an example case on protocol depen-
dency involving multiple implementations (A1, B1 ...),
three protocols (A, B and C), two protocol families (I and
II), and a higher level schema (α). It can be readily noted
from the figure that the impact area of a vulnerability pro-
gresses geometrically as the vulnerability ascends meta lev-
els of dependency.

However, not all dependencies result in such drastic in-
crease in scope. The ellipses present the cases where enti-
ties of various meta levels exhibit certain dependencies be-
tween themselves only. The upper ellipse represents a de-
pendency shared by notation α and protocol family I but not
the protocol family II, and the lower ellipse a dependency
between two individual protocols but not with the other pro-
tocols from family II.

This example advises that the impacts of protocol depen-
dencies may be varied. Impact assessment calls for detailed
analysis of the entities involved.

4.2. Causes of protocol dependency

Re-use of existing components (as-is or with only cos-
metic changes) is a common habit of the IT industry, par-
ticularly in standardisation. Standardisation bodies such as
ITU-T build new standards heavily based on the preexisting
protocol portfolio. A significant factor behind this policy
are the resources that have been used by the industry to im-
plement the existing components. Re-use creates wider de-
pendency on the shared components, and wildly increases
the impact of the vulnerabilities related to these compo-
nents.

Dependency through re-use also presents itself when
identical code, methods or protocols appear in multiple im-
plementations. This may occur due to shared legacy code,
similar choices made during implementation, plain re-use
or other factors. Identical structural foundations are used,
albeit possibly for multiple purposes, and the affected im-
plementations are subject to shared vulnerabilities.

In contrast, problems can arise when an implementation
uses novel technologies instead of adopting well-tried and
tested ones. This kind of development can have its benefits
if proper care is taken. If not, it can lead to replicating the
very errors that had plagued the present de facto standard in
its early days. In this case, the new technology has merely
reinvented the wheel and in a way becomes dependent on
the technology it tried to recreate. It has been suggested that
the WAP protocols are an exemplary case of the downsides
of overlapping development [1].

4.3. Types of protocol dependency

If a protocol is shared among different protocol families
and environments, it can be thought of as a subset of pro-
tocols that contain it. Similarly, a protocol can itself be a
superset, i.e. it can use or contain a set of protocols that
might in turn be shared by other protocols. Study on both
of these dimensions is beneficial.

Charting which protocols incorporate the target protocol
is useful for determining its scope of dependency and the
impact of vulnerabilities in the protocol and its implemen-
tations. This was demonstrated with the case of the vulner-
abilities in Q.931 message handling.

On the other hand, charting the protocols incorporated by
the target protocol gives insight on its usage scenarios and
on the services it affects. For example, H.225.0 contains
units for call signalling and registration, admission and sta-
tus (RAS). Therefore the affected services are H.323 termi-
nals, gateways and gatekeepers providing admission control
services. H.323 gateways provide protocol conversion ser-
vice between different network and terminal types, which
implicates the re-use of signalling data.

Additionally, protocols can form complex chains that

propagate data and/or control data between a source and
a destination. For example, authentication data can travel
from a client to an authentication database through a mul-
titude of servers and authentication servers via various pro-
tocols. Some of the nodes in the chain will simply pass the
data along but other nodes may try to interpret it. Thus,
vulnerabilities may be triggered in the later parts of the pro-
tocol chain if the passed data is erroneous. [14] In this case,
the vulnerability is a result of data propagation dependency.

Similarly, the passed data may represent control data for
an implementation or a protocol along the chain. In the au-
thentication example, the database server usually handles
the data it receives as control data, and malicious authen-
tication input by the user will trigger a vulnerability in the
database. [14] This vulnerability can be thought to result
from control propagation dependency.

Other types of protocol dependencies might be the re-
sult of incidental common component re-use between pro-
tocols. Dependent components may include interfaces, ob-
jects, parsing mechanisms and libraries.

5. Discussion

Most current IT systems implement a number of proto-
cols, most of which they require for normal functionality. In
effect, the system can be communicated with by a number
of means from various locations, and it parses diverse net-
work data. This makes the system, as well as other systems
on the network, dependent on the implemented protocols in
a multitude of ways. If any protocol, or its implementation,
that the system is dependent on should exhibit vulnerabili-
ties, all the operations of the system may be compromised.

As discussed earlier, risk management of a system is dif-
ficult due to the changing nature of information technology.
A protocol, however, is more a static entity. Many success-
ful protocols have been in use for decades, and changes in
specifications are relatively scarce. This makes it easier to
include protocols in risk assessment.

Protocol dependency is a subtle view on the technologies
that form the information infrastructure. It complements the
known views and offers new insights on technological de-
pendency. Understanding protocol dependency aids the as-
sessment of the dependencies of an infrastructure and the
impact a vulnerability would have on it. It guides the co-
ordination of resources in response to vulnerabilities in the
infrastructure and allocation of resources towards effective
research and pro-active work on improving the robustness
of the infrastructure. This work includes the current vul-
nerability management work as well as crisis scenario plan-
ning “what-if” questions. The benefits are both technical
and managerial.

Risk assessment methodologies have a need for comple-
mentary modelling tools [15] [25]. A modelling method-

ology for protocol dependency could be such a tool. The
scope of protocol dependency is wide, and its study would
require advanced data gathering methods along with visual-
isation methods to present the results in easily grasped and
compressed forms.

Thus, the proposed methods for researching protocol de-
pendency include:

1. Expert interviews augmenting the plain data mining
approach to the following activities

2. Summaries of relevant technical specifications, their
relations to other specifications and historical depen-
dencies

3. Surveys of the public attention on the security of dif-
ferent protocols and protocol implementations

4. Surveys on the prevalence of protocol implementations
and their usage environments

 ©
 P

a
s

i
K

e
m

i

Figure 5. Data sources and research results
of the proposed model

The accumulated data is presented with visual models
that bring up different aspects from the data related to pro-
tocol dependency and security (see figure 5). As the model
is highly visual, it can additionally be used as a communi-
cation method between researchers and other actors.

6. Conclusions

Systematic vulnerability assessment of information sys-
tems has proved that dependencies are not uncommon
among protocols and their implementations. The study
of protocol dependencies benefits vulnerability assessment,

and it should be performed proactively during the develop-
ment and risk assessment of software. Furthermore, proto-
col dependency provides a subtle view on the technologies
that form the information infrastructure. It complements the
known views and offers new insights on technological de-
pendency. The benefits are both technical and managerial.

Extrapolating from the experiences of a complex case,
this new dependency dimension can be modelled. The
model will benefit from going beyond a narrow technical
view.

References

[1] M. Banahan. Impressions of using WAP/WML.
http://ebusiness.gbdirect.co.uk/case_
studies/wapimpressions.html; accessed June 27,
2005.

[2] T. Brown, W. Beyeler, and D. Barton. Assessing infrastruc-
ture interdependencies: the challenge of risk analysis for
complex adaptive systems. Int. J. Critical Infrastructures,
1(1):108–117, 2004.

[3] CERT/CC. CERT advisory CA-2002-03 multiple vulner-
abilities in many implementations of the Simple Network
Management Protocol (SNMP). http://www.cert.
org/advisories/CA-2002-03.html; accessed
June 29, 2005.

[4] CERT/CC. CERT/CC overview: Incident and vulnera-
bility trends. http://www.cert.org/present/
cert-overview-trends/module-2.pdf; ac-
cessed June 29, 2005.

[5] CERT/CC. CERT/CC statistics 1988-2005. http:
//www.cert.org/stats/cert_stats.html; ac-
cessed June 13, 2005.

[6] R. Clarke. Looking at vulnerability issues in addressing
cyber security, 2000. http://www.ncs.gov/nstac/
march2002/nsatc_cybersecurity.html; ac-
cessed June 29, 2005.

[7] CVE. CVE abstraction content decisions: Rationale and
application. http://www.cve.mitre.org/cve/
cd_rationale_application.html#id_bugs; ac-
cessed June 29, 2005.

[8] M. Dunn, A. W. Isabelle Wigert, and J. Metzger. In-
ternational CIIP Handbook 2004 An Inventory and Anal-
ysis of Protection Policies in Fourteen Countries. Com-
prehensive Risk Analysis and Management Network,
2004. http://www.isn.ethz.ch/crn/_docs/
CIIP_Handbook_2004_web.pdf; accessed June 13,
2005.

[9] A. V. Gheorge and D. V. Vamanu. Complexity induced vul-
nerability. Int. J. Critical Infrastructures, 1(1):76–85, 2004.

[10] A. V. Gheorghe and L. Mili. Editorial: In risk management,
integrating the social, economic and technical aspects of cas-
cading failures across interdependent critical infrastructures.
Int. J. Critical Infrastructures, 1(1):1–2, 2004.

[11] M. Harrop. Creating Trust in Critical Network Infrastruc-
tures: Canadian Case Study. International Telecommunica-
tion Union, 2002. http://www.itu.int/osg/spu/

ni/security/docs/cni.07.doc; accessed June 13,
2005.

[12] IWCIP2005. Call for papers. http://www.iwcip.
org/2005/CfP_WS2005.html; accessed June 13,
2005.

[13] R. Kaksonen, M. Laakso, and A. Takanen. Vulnerabil-
ity analysis of software through syntax testing, 2000.
http://www.ee.oulu.fi/research/ouspg/
protos/analysis/WP2000-robustness; accessed
June 29, 2005.

[14] J. Kenttälä. Exploiting communication patterns in com-
plex information networks. Master’s thesis, Depart-
ment of Information Processing Science at University of
Oulu, 2005. http://www.ee.oulu.fi/research/
ouspg/frontier/; accessed June 29, 2005.

[15] A. Koubatis and J. Y. Schönberger. Risk management of
complex critical systems. Int. J. Critical Infrastructures,
1(2/3):206–208, 2005.

[16] M. Laakso, A. Takanen, and J. Röning. The vul-
nerability process: A tiger team approach to resolv-
ing vulnerability cases. In Proceedings of the 11th
FIRST Conference on Computer Security Incident Han-
dling and Response. (Brisbane, Australia. June 13-18,
1999), 1999. http://www.ee.oulu.fi/research/
ouspg/protos/sota/FIRST1999-process/; ac-
cessed June 29, 2005.

[17] D. E. Mann and S. M. Christey. Towards a common enu-
meration of vulnerabilities. http://www.cve.mitre.
org/docs/cerias.html; accessed June 29, 2005.

[18] M. Masera and M. Wilikens. Interdependencies with the
information infrastructure: Dependability and complexity
issues. In Paper at the 5th International Conference on
Technology, Policy, and Innovation. (Ispra, 26-29 June,
2001), 2001. http://www.delft2001.tudelft.
nl/paper%20files/paper1168.doc; accessed
June 13, 2005.

[19] R. Mock and M. Corvo. Risk analysis of information sys-
tems by event process chains. Int. J. Critical Infrastructures,
1(2/3):247–257, 2005.

[20] NISCC. NISCC vulnerability advisory 006489/H323 vul-
nerability issues in implementations of the H.323 pro-
tocol. http://www.niscc.gov.uk/niscc/docs/
re-20040113-00387.pdf; accessed June 29, 2005.

[21] OUSPG. PROTOS - security testing of protocol imple-
mentations. http://www.ee.oulu.fi/research/
ouspg/protos/; accessed June 29, 2005.

[22] OUSPG. PROTOS test-suite: c07-h2250v4.
http://www.ee.oulu.fi/research/ouspg/
protos/testing/c07/h2250v4/; accessed June 29,
2005.

[23] PCCIP. Critical Foundations: Protecting America’s Infras-
tructures. President’s Commission on Critical Infrastructure
Protection, 1997.

[24] PITAC. Cyber Security: A Crisis of Priorisation. National
Coordination Office for Information Technology Research
and Development, February 2005.

[25] S. M. Rinaldi, J. P. Peerenboom, and T. K. Kelly. Iden-
tifying, understanding, and analyzing critical infrastruc-
ture interdepencencies. IEEE Control Systems Magazine,
21(6):111–25, December 2001.

[26] J. Röning and J. Eronen. Software consid-
ered harmful: Why software is insecure, 2002.
http://www.ee.oulu.fi/research/ouspg/
protos/sota/CorpSec2002/; accessed June 29,
2005.

[27] G. Stoneburner, A. Goguen, and A. Feringa. Risk
Management Guide for Information Technology Systems.
National Institute of Standards and Technology, July
2002. http://csrc.nist.gov/publications/
nistpubs/800-30/sp800-30.pdf; accessed June
13, 2005.

[28] A. Wenger, J. Metzger, and D. Myriam. Inter-
national CIIP Handbook: An Inventory of Protec-
tion Policies in Eight Countries. Center for Se-
curity Studies and Conflict Research, Seilergraben 45
49 ETH Zentrum SEI CH-8092 Zurich Switzerland,
2002. http://www.isn.ethz.ch/crn/_docs/
CIIP_Handbook_2002_bw.pdf; accessed June 13,
2005.

