Agents of responsibility in software vulnerability processes

Ari Takanen, Petri Raasakka, Marko Laakso and Juha Roning
University of Oulu, Finland

December 2, 2002

Abstract. Modern software is infested with flaws having information security
aspects. Pervasive computing has made us and our society vulnerable. However,
software developers do not fully comprehend what is at stake when faulty software
is produced and flaws causing security vulnerabilites are discovered. To address this
problem, the main actors involved with software vulnerability processes and the
relevant roles inside these groups are identified. This categorisation is illustrated
through a fictional case study, which is scrutinised in the light of ethical codes of
professional software engineers and common principles of responsibility attribution.
The focus of our analysis is on the acute handling of discovered vulnerabilities in
software, including reporting, correcting and disclosing these vulnerabilities. We
recognise a need for guidelines and mechanisms to facilitate further improvement in
resolving processes leading to and in handling software vulnerabilities. In the spirit
of disclosive ethics we call for further studies of the complex issues involved.

Keywords: information security, software vulnerability, professional ethics, security
evaluation, software development, software testing

1. Introduction

To produce robust and trustworthy software, professional and proficient
approaches to software development are required. Cost-benefit and risk
analyses may be performed to determine the level of expertise required
in a software project and to specify the security and quality require-
ments' of the final product. Although it is desirable to strive to build
dependable software, in some cases the public can be adequately served
with inexpensive, less robust software with no heavy quality assurance
procedures. In cases of more demanding customers requiring robustness
from the product, professional software engineering methods exist to
help software developers provide better quality software.

! We divide information security roughly into two different aspects. Traditional
information security takes the perspective of security requirements, focusing on
methods for protecting the confidentiality, integrity and availability with means
such as filtering, attack fingerprinting, user authentication and encryption. On the
other hand, the software security approach focuses on software quality and reliability,
where the issues relate to the actual development flaws with security implications
and their solutions.

';:‘ © 2002 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 2/12/2002; 0:21; p.1

2 Takanen, Raasakka, Laakso, ROning

However, trivial errors that cause security vulnerabilities? and safety
hazards are frequently found in both consumer software and advanced
building blocks of the security-critical information infrastructure.? In-
formation security typically focuses on protecting the confidentiality,
integrity and availability of information from external threats, whereas
the safety issues of computer systems are related to risks to life or
property from natural or accidental hazards. Security and safety in
software are attributes that cannot be effectively measured or guaran-
teed, and are thus always based on levels of risk. A system is safe or
secure when the level of risk is acceptable. Modern society depends
on software products to the extent that when considering flaws in
security and robustness, we can often use the terms safety and security
interchangeably, or combine them under the term dependability. Un-
fortunately, often all this may not have been taken into consideration
when developing software. One insecure component in a security-critical
environment can compromise the reliability of the whole system.

The scope of this paper is narrowed down to issues related to creating
and handling of unintentional security-related development flaws, also
called software vulnerabilities. Our goal is to describe and identify the
main ethical issues to be considered when assessing software vulner-
ability processes, focusing on disclosing the actors and relevant roles
involved in a way that enables more thorough analyses to be made
of the distribution of responsibility among them. By responsibility we
here mean the attribution of burden resulting from realised compro-
mises of computer security, but also safety. The existence of accepted
professional guidelines allocates responsibilities to those who claim or
are expected to follow them.

We begin with an introduction to disclosive ethics and respounsibility,
and a short presentation of generally accepted codes of ethics for pro-
fessional software engineers. After outlining the most distinctive agents
and mechanisms involved in software vulnerability handling processes
and summarising some viewpoints on the issue, we move to a fictional
case study of software vulnerability exploitation. It illustrates the prac-
tical meaning of the categories of actors and roles we define as the main
agents in software vulnerability processes. Subsequently, we scrutinise
the moral and professional responsibilities and practices of the three

2 A vulnerability can be a lacking security requirement (e.g. lack of, or improper
authentication, encryption, ...), or a development error in the software (e.g. buffer
overflow, race condition, ...).

3 Peter G. Neumann. Computer-Related Risks. ACM Press/Addison Wesley, 1995;
The Risks Digest. Forum On Risks To The Public In Computers And Related
Systems. http://catless.ncl.ac.uk/Risks; Nancy G. Leveson. Safeware: system
safety and computers. Addison-Wesley Publishing Company, 1995.

paper.tex; 2/12/2002; 0:21; p.2

Agents of responsibility in software vulnerability processes 3

major role groups involved. The article is concluded by focusing our
analysis on the role groups involved in vulnerability handling. By this
analysis we aim to provide a relatively neutral starting point explicating
the necessary facts and relationships for further normative analyses of
this controversial issue.

2. Disclosing responsibility and professionalism

2.1. DISCLOSIVE ETHICS

Philip Brey* has suggested a three-level methodology in identifying and
analysing previously undisclosed ethical issues in information technol-
ogy consisting of disclosure, theoretical and application levels. In this
classification, emphasis is placed on illuminating the often indistinct
normativity inherent in computer systems, but also in their usage and
closely related societal issues. In the actual disclosure level of (dis-
closive) computer ethics Brey recommends a joint effort of computer
specialists, philosophers and social scientists in its practise. Basicly,
these disclosure level studies are descriptions of computer systems and
their usage, where the focus on issues deemed ethical is directed by a
common sense definition of a selected moral principle. This is done in
order not to push a phenomenon into a narrow predetermined category
imposed by an elaborate ethical theory, but to preserve the pragmati-
cal complexities for further analysis. The actual recommendations for
correct policies concerning the information technology belong to the
area of applied ethics, where normative analyses founded on selected
moral ideologies are made.

As the writers of this article represent the engineering and social
sciences traditions, Brey’s recommendation of an interdisciplinary ap-
proach is appreciated. We categorise our article as a variant of disclosive
ethics at the disclosure level, even though the dilemmas considered
here are not altogether previously unknown® and have already caused
contradictions between different parties involved. However, the ethical
implications of the subject at hand are hard to grasp as the vulnera-
bility process is usually not understood as the wide continuum in the
social and societal level it is.

Subsequently, our presentation differs somewhat from the notion of
disclosure level ethics as meant by Brey, by focusing on the explica-
tion of social relations and societal structures surrounding this issue,

4 Philip Brey. Method in computer ethics: Towards a multi-level interdisciplinary
approach. Ethics and Information Technology, 2(2): 125-129, 2000.

® OUSPG has collected the past discussions on vulnerability handling in a link
list. http://www.ee.oulu.fi/research/ouspg/sage/disclosure-tracking/

paper.tex; 2/12/2002; 0:21; p.3

4 Takanen, Raasakka, Laakso, ROning

rather than centering on the functioning of the technology itself. The
explicated structures and relations are then preliminarily utilised in
fathoming the distribution of responsibility between the agents capable
of carrying it (e.g. human agents and compositions thereof) in the event
of unforeseen or unwanted functioning of the technology. The categories
of roles and actors are defined further in this article to facilitate this
analysis, the former with reference to individual human agents and the
latter pointing to the compositions (groups, structures, organisations,
etc.) of individuals. At this stage we tentatively call our variant of
the disclosive ethics approach as doing social disclosure level ethics.
It should be noted that we do not attempt to formulate any final
normative (concrete) recommendations regarding our subject in this
article, but leave them for further normative analysis.

2.2. RESPONSIBILITY

Professional players in information technology are not without respon-
sibility to those whom they serve, be they employers or customers. This
is especially so with software with security or safety implications. Issues
such as ignorance, irresponsibility or even arrogance have an ethical
aspect, especially in professional cadres but also outside of them. Often
malfunctions in computers are attributed solely to ’bugs’, for example,
or the computer itself is seen as the root cause of the problem, neglect-
ing the fact that the technology has its makers, suppliers and utilisers
who all carry their share of moral responsibility.> When considering the
relationship between moral responsibility and security, the malicious
intent which the presumed security is protecting against does create its
own share of moral responsibility. When considering safety and moral
responsibility, this malicious intent of the abuser is sometimes missing,
thus leaving moral responsibility solely on the developers, intermedi-
aries and users of the technological construct. In our article, we prefer
to use the term dependability (combining security and safety), because
we primarily exclude intentionally malicious attack activity from the
analysis of our article.

Anton Vedder” describes the conditions of responsibility attribution
in his article discussing the accountability of Internet access and ser-
vice providers. He identifies two aspects of responsibility; prospective
and retrospective. By retrospective responsibility the consequences of

6 John Ladd. Computers and Moral Responsibility: A Framework for an Ethical
Analysis. from The Information Web: Ethical and Social Implications of Computer
Networking, edited by Carol Gould, Westview Press, Boulder, Colorado, 1989,
pp.207-227.

7 Anton Vedder. Accountability of Internet access and service providers - strict
liability entering ethics? Ethics and Information Technology, 3(1): 67-74, 2001.

paper.tex; 2/12/2002; 0:21; p.4

Agents of responsibility in software vulnerability processes 5

actions can be attributed to persons, whereas by prospective responsi-
bility he means an obligation or duty to act or not to act in a certain
way prescribed by a moral principle, which applies to the person at the
time of the event. If a person is to be held retrospectively responsible,
a moral principle has to be shown to have applied to him at the time of
the action, or omission of action. These principles, apparently, can be
found both in formal and informal (meaning common sense) cultural
forms. Furthermore, it has to be determined whether the two remaining
conditions for attributing retrospective responsibility, being 1) causality
and 2) intentionality, are sufficiently in effect. Causality is defined as the
contribution of the person’s action to the effect or consequences, be the
contribution “direct or indirect, substantial or additional”. Intention-
ality means that the person must have had some amount of purpose
in his actions and/or their relation to the consequences, and is not
totally ignorant of the meaning of his actions and their consequences.
The same of course applies for omissions of action.

Vedder also delves into a philosophical debate about the applica-
bility of responsibility as a collective measure in the area of ethics.?
Sara Baase has clarified this dilemma by pragmatically claiming that
responsibility can be attributed to both individuals and organisations.’
Our application of the concept of responsibility also has similarities
with the notion of positive moral responsibility as defined by John
Ladd, where emphasis is placed on the distribution of responsibility
to multiple actors.'® This was explicated in opposition to the more
traditional method of negative responsibility, where finding a single
scape-goat is essential to exonerate the others involved.

Thus in this article, we focus on the moral responsibilities of per-
sons involved in developing and providing software to customers, while
including also those individuals participating in later stages of vul-
nerability handling processes. Many of the issues discussed here are
already covered by legal, contractual or professional responsibilities.
As we are not experts in the field of law nor in theoretical ethics, our
viewpoint is out of necessity pragmatical. Therefore, we opt to take
cover behind the shield of the disclosive ethics mandate and primarily
use our common sense, not moral philosophy, as regards to this question
in our preliminary analysis.

& (Vedder, 2001).

9 Sara Baase. A gift of fire: social, legal and ethical issues in computing, page 342.
Prentice Hall, 1997.

10 (Ladd, 1989).

paper.tex; 2/12/2002; 0:21; p.5

6 Takanen, Raasakka, Laakso, ROning
2.3. PROFESSIONAL ETHICS

In an ACM!! report!? on their position on considering software engi-
neering as a licensed engineering profession, the ACM concludes that
the software engineering field does not need licensing to be a profession
and that it cannot support licensing efforts for software engineers, as
is promoted and required in many countries in fields offering services
directly to the public, such as doctors, lawyers, civil engineers, contrac-
tors, day care workers, barbers, and surveyors. The state of knowledge
and practice in software engineering is too immature to warrant licens-
ing, and licensing would not be effective in assuring software quality
and reliability.'3

There are numerous rules and guidelines in software engineering that
state how the profession of software engineering should be practised
with high moral standards. Organisations such as ACM and IEEE-
CS™, have started promoting professional approaches among their mem-
bers, with the help of certification, training and also by the deployment
of ethical codes. Several organisations have compiled their codes of
ethics'® which their members should follow to show at least some con-
cern toward the ethical aspect of the business and the responsibilities
brought up by these considerations. Ethics related to software depend-
ability issues are also considered in the professional codes of ethics.
They point out the moral responsibilities of professional developers in
ensuring that suitable protections are in place to avoid loss of human
lives or property due to faults in the software.

A short version of the code of ethics'®, which all IEEE members
should agree to follow, contains ten simple rules of ethics. Of these,
attention is drawn to four that are closest to the focus of this article:

“1. to accept responsibility in making engineering decisions consis-
tent with the safety, health and welfare of the public, and to promptly
disclose factors that might endanger the public or the environment;”.

11 Association for Computing Machinery. http://www.acm. org.

12 In “A Summary of the ACM Position on Software Engineering as a Licensed
Engineering Profession” the ACM points out that they believe the problem of reliable
and dependable software, especially in critical applications, is the most important
problem facing the IT profession. http://www.acm.org/serving/se_policy/.

13 The history of the joint IEEE Computer Society and ACM Steering Committee
for the establishment of software engineering as a profession. http://computer.org/
tab/History.htm.

4 Institute of Electrical and Electronics Engineers - Computer Society. (A member
society of IEEE.) http://computer. org.

5 Online Ethics Center. Codes of FEthics and Conduct. http://www.
onlineethics.org/codes/.

6 IEEE Code of Ethics. A note distributed to all members of the IEEE association.
http://wuw.ieee.org/about/whatis/code.html.

paper.tex; 2/12/2002; 0:21; p.6

Agents of responsibility in software vulnerability processes 7

This clearly points out that both developers and external researchers
are responsible and obligated to do their best to bring to public at-
tention any faults in their products and the products of the others
that endanger the public or the environment. The more critical the
environment, the more important this point becomes.

The responsibility of software engineers to understand the conse-
quences and to inform others about what they know, and to keep on
studying, are pointed out in the following two rules. “5. to improve the
understanding of technology, its appropriate application, and potential
consequences; 6. to maintain and improve our technical competence and
to undertake technological tasks for others only if qualified by train-
ing or experience, or after a full disclosure of pertinent limitations;”.
These two rules together point out that software engineers should also
be able to make dependable software for critical applications and to
comprehend the impact these applications may have on human lives.
Developers, and perhaps even vendors, should clearly point out if they
are unable to meet the security and safety requirements or follow the
engineering practices that should result in good quality, and they should
inform their co-workers and warn their customers of the possible risks
in using the product.

“7. to seek, accept, and offer honest criticism of technical work, to
acknowledge and correct errors, and to credit properly the contributions
of others;”. This encourages external researchers to find and resolve
security or safety related flaws in the software of others, and obliges
developers to fix them the best they can and not shoot the messenger
but instead give credit where it is due.

Some work has been done to combine the different codes of ethics
into one specially tailored for software engineering. This code!” has
been accepted by the IEEE and the ACM as a standard supporting indi-
vidual software engineers or software engineering managers, and groups
thereof, in their striving for ethically sound professional practices. This
code is seen to bind anyone claiming to be or aspiring to be a software
engineer. According to the ACM/IEEE-CS code, the first obligation
of the engineer is always to the public good. The ACM/IEEE code of
ethics is on the principal level quite similar to the IEEE code previously
discussed, but it is one step further operationalised towards the practise
in software engineering. However, generally accepted explicit guidelines

17 Software Engineering Code of Ethics and Professional Practice. As recom-
mended by the ACM/IEEE-CS Joint Task Force on Software Engineering Ethics
and Professional Practices (SEEPP). http://wuw.acm.org/serving/se/code.htm;
Don Gotterbarn, Keith Miller and Simon Rogerson. Computer Society and ACM
Approve Software Engineering Code of Ethics. Computer, 32(10): 84-88, 1999.
http://computer.org/computer/code-of-ethics.pdf.

paper.tex; 2/12/2002; 0:21; p.7

8 Takanen, Raasakka, Laakso, ROning

regarding the reporting and handling of software vulnerabilities do not
yet exist.

3. Software vulnerabilities

The proactive means of preventing software security vulnerabilities
from emerging can only be achieved by good software development
practises. The state of the art in development of dependable software
is based on at least four identifiable aspects: qualified engineers, exten-
sive audits, test coverage and quality assurance.'® These aspects are
complementary and none of them can be ignored. For most vendors,
qualified engineers may be difficult to come by, and certifications of
secure programming skills are scarce. In the OpenBSD'? project, most
critical source code is thoroughly audited by security-aware developers.
The project is also an example of software development where security
and quality override a wide set of features in priority. Although testing
can never reach full test coverage and can never prove that there are
no flaws left, the PROTOS? project shows how, by using unexpected
but systematic tests, testing can focus on external threats and depend-
ability by concentrating on a wide set of inputs in testing the external
interfaces of the software. Security standards?' enforce quality in the
various phases of the software life-cycle, exerting an indirect effect on
the development and use of software.

The reactive methods of resolving software security vulnerabilities
include, e.g., discovery and reporting processes. Vulnerabilities are dis-
covered both by developers themselves and by external evaluators.
There are several approaches with which both professional and non-
professional evaluators can resolve or disclose vulnerabilities.?? In ad-
dition to directly contacting the software developers or vendors, public
disclosure mailing lists?® and other channels are used for providing feed-
back to the vendors about vulnerabilities in their software. It is obvious

18 See e.g. (Leveson, 1995), pages 158-159.

9 See http://wuw.openbsd.org.

20 PROTOS - Security Testing of Protocol Implementations. http://www.ee.
oulu.fi/research/ouspg/protos/.

21 Such as ISO/IEC 15408 with software development aspects, and ISO/IEC 17799
with interest in system maintenance and use.

22 Marko Laakso, Ari Takanen and Juha R6ning. The vulnerability process: a tiger
team approach to resolving vulnerability cases. In Proceedings of the 11th FIRST
Conference on Computer Security Incident Handling and Response, Brisbane, 13-18
June, 1999.

23 Best-known is Bugtraq. Mailing lists discussions are archived by e.g. Neohapsis,
Inc. http://archives.neohapsis.com/

paper.tex; 2/12/2002; 0:21; p.8

Agents of responsibility in software vulnerability processes 9

that an inconsiderate approach to publishing vulnerability details can
expose the users of deployed systems to unnecessary risks of intrusion,
in addition to causing harmful publicity to the software vendors. Thus,
balancing all these considerations in software vulnerability handling
processes®? is a matter to be delicately handled and likely to bring
forth controversy regardless of the route opted for.

The rapid creation and active deployment of security fixes?® is criti-
cal in maintaining software system reliability. It can be harmful for the
customers if the software vendor decides to fix an emerged vulnerability
quietly in later versions without announcing the necessity of patch
deployment in software currently in use. When the vulnerability details
are known only by the vendors and developers of the software and they
do not produce a method of repair, they are making it impossible to
protect against intrusions by malicious users that find out about this
vulnerability on their own. On the other hand, whenever a fix is pub-
lished on the Internet, it also provides enough information on analysing
the vulnerability details to allow breaking into systems that have not
applied this fix to their systems.?® Currently, public databases®” of past
and present vulnerability exploitation details and exploitation scripts?®
are available for anyone to use for both research and education as well
as for questionable purposes.?’

In conventional risk management concerning information security
breaches, the focus of attention is usually on system administration,
maintenance and use. Risk management of computer networks tradi-
tionally involves the physical, technical and administrative controls and
procedures for reducing risks cost-effectively. For risk management in
software development, the best solutions would involve training, tools
and engineering processes that improve quality. Certification processes
are one metric on which to base risk management. A certain quality

24 The software vulnerability handling process is typically seen to mean the inter-
action of agents and factors causing an opening of the window of vulnerability in
software and the process of closing this window. Opening does not necessarily mean
publicity of the vulnerability, as failures due to the errors can happen without active
and malicious involvement.

25 Also called security patches.

26 (Laakso et al., 1999).

27 SecurityFocus.com claims to provide the Internet’s largest and most compre-
hensive database of security knowledge and resources freely available to the public.
http://wuw.securityfocus.com/

28 The automated attack programs or scripts are colloquially called exploits.

2% Ari Takanen, Marko Laakso, Juhani Eronen, Juha Roning. Running malicious
code by exploiting buffer overflows: A survey of publicly available exploits. In
Proceedings of the 9th Annual EICAR Conference, Brussels, Belgium, 4-7 March,
2000.

paper.tex; 2/12/2002; 0:21; p.9

10 Takanen, Raasakka, Laakso, ROning

factor can be expected from people with a certain certification or from
products that carry certification from a trusted evaluator.’ In risk
avoidance, one way is to use licence agreements to transfer the risk
to the customer.?! However, evaluation of software quality may be
difficult for customers, and thus the decision to purchase software, even
in a security-critical context, is often made according to the marketed
features and not according to the actual security impact of using the
product. In fact, the actual security impact of the product may not be
known even to the software marketers or developers themselves.

Legislation tries to interpret the needs of the modern information
society. New laws have been proposed to prevent reverse-engineering
of commercial software, but this can also restrain security research by
limiting the allowed methods.3? Although consumer protection laws
generally apply to software, additional laws have been proposed to
release developers from responsibility and liability for damage caused
by programming errors.?3 In some countries, there has been discussion
on restricting access to security vulnerability information.3*

In information security incidents or intrusions where the software
failures were abused, the responsibility of software developers of both
free and commercial software is rarely discussed in public. In addi-
tion to developers, distributors and integrators of software or systems,
customers and system administrators are essential parties in software
vulnerability processes, but often without clearly stipulated responsibil-
ities. Even external evaluators of security, be they organised tiger-teams
or dilettante groups having different motivations for the disclosure of
discovered vulnerabilities, may choose to act in ways that others might

30 Ana del Amo Calvo. The liability of Professional Experts Like Risk Managers.
In F. Galindo and G. Quirchmayr, editors, Advances in Electronical Government,
Pre-Proceedings of the Working Conference of the International Federation of In-
formation Processing WG 8.5 and the Center for Computers and Law, Zaragoza,
Spain, Feb 10-11, 2000.

31 Thid.

32 Kerstetter J. A reprieve for ’ethical hacking’. PC Week Online. July 20, 1998.
http://www.zdnet.com/eweek/news/0720/20ewto.html; Lemos R. Security expert
blasts shoddy software. ZDNet News. July 9, 1999. http://www.zdnet.com/zdnn/
stories/news/0,4586,2290399,00.html.

3% Cem Kaner. Software Engineering and UCITA. Computer & Information
Law, 18(2), 1999.; IEEE-USA UCITA Network, http://www.ieeeusa.org/forum/
grassroots/ucita/.

34 NTBugtraq mailing list moderator Russ Cooper, mentions in his email titled
’Administrivia #31473: NTBugtraq at the White House’ that ’classified channels’
are being considered to replace public forums. Email on the NTBugtraq mailing list,
April 19th 2000. Mailing list archive available at http://www.ntbugtraq.com/.

paper.tex; 2/12/2002; 0:21; p.10

Agents of responsibility in software vulnerability processes 11

see as irresponsible® acts towards the general public or the software
vendor in question.

4. Vulnerability process - a fictional case-study

In software development, people who usually consider themselves pro-
fessional developers or programmers create software for the public with
responsibilities and obligations to the company they work for, but
also to the clients and users of the software. With the adoption of
professional roles, their responsibilities in the moral sense can be ar-
gued to be enhanced compared to non-professional stances. In security
vulnerability testing, a team of external evaluators of security, called
a tiger-team, searches for vulnerabilities in either design, implementa-
tion or configuration of the software components. If both these major
parties claim to be acting professionally, their actions can be viewed
from the same perspective of professional ethics. These two groups are
not, however, the only ones involved in software security incidents and
vulnerability processes. The following case study was invented to point
out the most frequently encountered roles of different actors in software
vulnerability processes, and also to exemplify the level of complexity
often inherent there.

Emil’s house burned down due to a software fault in the heating
system controller. This particular software was purchased by his
employer, Org Ltd., who uses it to control the heat in their chemical
processes, and given to Emil to learn and to practise its operation
at home. The software was purchased from a company called Dist
Inc., who are the retailers for the developer, Vend Inc. A subcon-
tractor for Vend Inc., HeatSW Ltd., a company comprised of a team
of five fellows, produced the vulnerable component for use in the
process control software. Fortunately, Break-Team, a professional
tiger-team, had reported the problem to Vend Inc. a few months
ago, but the vendor-provided security patch was not available at
the time of the incident at Emil’s house. However, a commercial
security product vendor, Snake-Oil Inc., had produced and mar-
keted a product that was supposed to protect against any attack
against this vulnerability. Emil had this commercial protection in-
stalled at home according to the company check-list for installing
the software. Still, a young elementary school student, Kid, found
an exploit created by a person called Rogue, who had evaluated the

35 Vulnerability disclosure publications and discussion are collected at http://
www.ee.oulu.fi/research/ouspg/sage/disclosure-tracking/.

paper.tex; 2/12/2002; 0:21; p.11

12 Takanen, Raasakka, Laakso, ROning

Mediator-Control Government

POLITICAL /
Government Government LEGISLATIVE Media
EXECUTIVE JURISDICTIONAL body (main-
body body stream)

Standards/
certification S N
body , AN
Insurance s N NGO
body a N (advocate /

professional /
industry)

=
i) Non-affiliated
———————————— - Tiger-team
| evaluators / actors
Security
vendor
:
Free-software | Retailer |
developer : :

Service provider/
Integrator

'~
N
|
I .
%
-
7

Evaluator

-

Provider User

Figure 1. Major actors in typical software vulnerability processes grouped according
to typical functions.

security of the software and published a working exploit against it
on a public disclosure mailing list, and Kid used it against Emil’s
home. The legislation of Govenia does not cover such a case, but
the law enforcement caught up Kid, who is now under prosecution,
but has no money for covering the damage.

To begin analysing this case study, it is first necessary to figure out
the relationships between the different parties in typical vulnerability
cases. Figure 1 shows a simplified diagram of the various parties in
the vulnerability process, introducing a division into five actor groups:
the mediator-control group, the user group, the provider group, the
developer group and the evaluator group.

paper.tex; 2/12/2002; 0:21; p.12

Agents of responsibility in software vulnerability processes 13

In vulnerability handling3®, various new parties and problem areas
enter the scene. An external evaluator studies the software with the
purpose of discovering software vulnerabilities, and reports the results
to the vendor, who in part notifies the necessary developers about the
discoveries. The discoverer can also directly notify the public of the ex-
istence of the vulnerability, thus performing a 'public disclosure’. If full
details are disclosed, then a ’full disclosure’ takes place. A non-affiliated
discoverer of the vulnerability typically follows the best practices as
seen on the various information channels in the security community.
These usually involve writing a proof-of-concept demonstration script
against the software vulnerability and reporting the vulnerability to
the relevant software vendors. Depending on the response, if any, from
the vendor, he usually notifies the public about the potential risk in
information systems. More experienced external evaluators have their
own practises that they follow in the reporting process. Organisations
such as CERT/CC3" and AusCERT?? are able to assist in the reporting
process.

When trying to point a finger at the respounsible parties, the obvious
starting point, as often seen in the public media, is the 'malicious hack-
ers’, i.e., the attackers, and sometimes the disclosers of the vulnerability
details. This obvious but oversimplified view would stop the analysis
at these lone scapegoats. The responsibilities of the users, other evalu-
ators, developers and providers should also be examined in the light of
the case study.

However, when starting to unwrap the possible attribution of respon-
sibility among the different parties, one soon encounters the problem
of different functions and segments inside organisations or groups of
individuals, called 'actors’ in Figure 1. Therefore, we introduce a second
model. This model is described in Figure 2, where three role groups
are defined by a common denominator of functionality. The roles in a
specific role group can be found from different actor groups, but all roles
in a role group are not necessarily found from a single actor group in our
model. This allocation of certain roles to certain actors is made from the
perspective of responsibility attribution in software vulnerability pro-
cesses, and is neither generalisable nor complete. Furthermore, the role
of management or executives is excluded from this modelling because

36 Here, by vulnerability handling we mean the part of the vulnerability process
initiating from the discovery of the vulnerability by any agent involved. Typi-
cally vulnerability handling consists of the discovery/reaction, correction creation,
disclosing and nullifying of the vulnerability.

3T CERT Coordination Center. http://wuw.cert.org.

38 Australian Computer Emergency Response Team. http://wuw.auscert.org.
au

paper.tex; 2/12/2002; 0:21; p.13

14 Takanen, Raasakka, Laakso, ROning

Vulnerability handling roles: found from
Evaluator + Mediator-Control + Developer + Provider
actor groups

External —_)
evaluators Coordinators

N/

Security
response

System
administrators

\

End-Users
Purchasers —

Developers

N

Customer

relations
Testers /

Product acceptance and maintenance roles:
found from

User + Provider actor groups

Quality assurance roles: found from
Developer + Provider actor groups

Figure 2. Main roles found from different actor groups distributing responsibilities
arising from software vulnerability processes.

of the unfeasibility of going into details of organisational ethics. Each
role is regarded as basicly autonomous without explicitly discussing the
limitations in hierarchical organisations. However, if there is a necessity
to use an actor as a responsible entity in our analysis, we will do so
without deliberating the possible decision-making mechanisms found
inside this actor. With these reservations, the main roles relevant to
the study are presented and the unwrapping supported by these two
categorisations of actors and roles can proceed.

4.1. USER ACTOR GROUP
Three roles can be distinguished from the user actor group: end-users,

system administrators and purchasers of software. The user actor group
includes customer organisations and the users within those organisa-

paper.tex; 2/12/2002; 0:21; p.14

Agents of responsibility in software vulnerability processes 15

tions. In the case study, Emil has an employment contract with the
customer organisation, Org Ltd., which has purchased software or soft-
ware solutions from both the retailer and the security vendor. The
customer organisations also typically have a group of administrators
that install, configure and maintain the systems, in addition to setting
various guidelines of operation in the organisation. The user group also
includes home users, who are regarded as independent actors compara-
ble to customer organisations. Home users usually are responsible for
maintaining their own systems. Both the home users and the customer
organisations are usually bound by the licence agreements agreed upon
with the purchase of the software. In cases of custom software specially
built for the purchaser, these agreements are often formed when the
contract for developing the software is signed. In the case of shrink-
wrapped3? software, the agreement is typically presented at the moment
of purchase or installation of the software.

4.2. DEVELOPER AND PROVIDER ACTOR GROUPS

People doing software development as subcontractors typically have a
contract with their client, the software vendor, where their business
responsibilities and obligations are defined. For the purposes of this
case study, we will focus on the moral responsibilities of the vendor
packaging or developing the software, towards their customers. Also,
considering that the vendor can sometimes be seen as the distributor
or retailer, at least in some shrink-wrapped software, we will assume in
this case study that the retailer did not acquire any legal responsibility
for the quality of the software, but just transferred the agreements
between the vendor and the customer organisation.

From the developer actor group, again three relevant roles can be
deduced, forming the quality assurance role group. Marketing and sales
form what is here called the customer relations role. Customer relations
personnel typically give the facts, based on the information they receive
from within the software developing company, that the customers base
their purchasing decisions on. The developers, including the designers
and implementors of the software, are defined as a central role in quality
assurance. The role of testers is accordingly in the assessment of prod-
ucts handed over from the developers. Both developers and testers have
a conception of the quality of the software, and are chiefly responsible
for ensuring that the required quality is met with the best possible
effort.

In vulnerability handling the role of security response can be found
in the developer and provider actor groups. Security response person-

39 Also called commercial off-the-shelf software (COTS).

paper.tex; 2/12/2002; 0:21; p.15

16 Takanen, Raasakka, Laakso, ROning

nel communicate with the external evaluators and the coordinators
facilitating this exchange of information.

4.3. EVALUATOR ACTOR GROUP

Now, attention can be shifted to the evaluator actor group, and to its
relationships to the user and developer actor groups. The following
actor types of evaluators can be recognised, with varying levels of
professionalism in their approaches:

External tiger-team: Professional and benign tiger-teams use legal
means to discover faults and to notify the vendor about the dis-
covered vulnerabilities and risks in software products. These teams
are often supported by university or government funding.

Security vendor or team: Commercial security evaluators develop
security products, or evaluate and certify software produced by
other vendors.

Non-affiliated evaluators: Sometimes disregarding licence agreements,
some motivated and skilled individuals look for faults in software.
Their motivation may vary from benign and legitimate interests
to an irresponsible hunt for their 15 minutes of fame. Their meth-
ods of reporting vary accordingly and often include ready-to-use
demonstration scripts as proof of the vulnerabilities discovered.
Non-affiliated evaluators with below-average technical skills, but
with public access and the will to use the tools available from
vulnerability databases and mailing lists, are colloquially called
'script-kiddies’.?Y To impress their friends and group members,
these youngsters interested in the security field and hacking cul-
ture often try the available exploit scripts without thinking of the
consequences.

Internal testing teams of software vendors are regarded as part of the
developer actor group for the purposes of this presentation. These pro-
fessional teams are, in all probability, bound by non-disclosure agree-
ments prohibiting them from any disclosure of their findings outside
their commissioning organisation.

Professional evaluator teams have sometimes applied professional
codes of ethics and other guidelines within the group. In cases of non-
professional evaluators, the risks are extremely high, as the process

40 Script-kiddies can be seen as evaluators of system maintenance and security
practises, i.e., they typically attack known errors which should have been repaired
by the maintainers.

paper.tex; 2/12/2002; 0:21; p.16

Agents of responsibility in software vulnerability processes 17

and communication are typically uncontrollable and a published vul-
nerability can cause surprising financial losses when caught by the
public media. These evaluators, with sometimes malicious intent, can
disregard or be outside the jurisdiction of modern legislation against
reverse-engineering and thus have a wider choice of tools available than
the professional evaluators using legitimate testing methods. The eth-
ical commitment of unprofessional evaluators may vary, resulting in
methods of operation ranging from considerate and sound practices to
outright malicious actions intended to cause harm to other parties. If
and when a security assessment or a security solution is made into
a commercial product, the evaluator faces the same responsibilities
towards their customers as any other commercial company.

4.4. MEDIATOR-CONTROL ACTOR GROUP

Although several actors can influence vulnerability handling processes,
the relevant actors in the mediator-control actor group in particular
are the entities actively participating in the communication process.
Although the focus of organisations such as national CERTs has tradi-
tionally been on incident handling, they nowadays actively participate
in vulnerability handling as well. With dedicated resources and exist-
ing connections to several software developing organisations, including
commercial vendors, they can connect the relevant people in a coordi-
nated and safe manner, and can help in the assessment of the related
risks and coverage of the problems. All necessary vendors are contacted
by means of personal communication, and most system administrators
follow the mailing list used to report on the risks, work-arounds or fixes.

Publicly available mailing lists such as Bugtraq and NTBugtraq,
typically involve an active group of people participating in the moder-
ation and organisation of the lists. A moderator of a public disclosure
mailing list can assist in the process of vulnerability handling or decide
to control the disclosure by postponing it to a later time. The mod-
erator can also influence the reporter by discussing about the level of
information given and the professionality of the reporting approach.
Even with active moderation, these lists can generate from hundreds
to thousands of messages per month, and thus are not something the
big audience, or even all vendors and administrators, follow.

Thus, the role of the actors in the mediator-control group is to
coordinate the communication process and information management
in the vulnerability handling process. If requested, other parties, even
external evaluators such as commercial security vendors, can also take
the role of the coordinator and may use their own dedicated people as
coordinators in reporting the security or safety risks they notice.

paper.tex; 2/12/2002; 0:21; p.17

18 Takanen, Raasakka, Laakso, ROning

5. Responsibility attribution to different roles

To clarify the attribution of moral and professional responsibilities in
the five actor groups involved in software vulnerability processes, three
different role groups were identified. We will focus on the roles related
to actual vulnerability handling, but will also superficially describe the
other two role groups: quality assurance, and product acceptance and
maintenance.

Disclosure level ethics presentations leave ethical analysis on a ba-
sic, usually common sense level in order not to push a phenomenon
into a narrow predetermined category imposed by an elaborate ethical
theory.*! However, in order to disclose the relevant factors for fur-
ther, more thorough normative analysis of responsibility attribution,
we have utilised the three previously introduced conditions for retro-
spective responsibility attribution. These conditions are 1) the existence
of prospective responsibility, 2) the intentionality condition and 3) the
causality condition.*?

We will focus mainly on the various, most often professional roles
in our preliminary analysis of responsibility attribution in software
vulnerability processes, but will also use the category of actors where
necessary as dictated by common sense.*

5.1. QUALITY ASSURANCE ROLES

In quality assurance, found in the developer and provider actor groups,
we identified the roles of developers, testers and customer relations.
The customer relations role entails the marketing, public relations
and sales personnel of the aforementioned actor groups. The customer
relations personnel depend on the information provided by the tech-
nical experts of their organisation and possibly the statements of the
previous actors in the marketing chain. In addition to this, concerning
the responsibility aspect, publicly available facts also have to be taken
into consideration. Customer relations personnel have to seek, receive
and convey valid knowledge of the products, and remain truthful to
their customers in known security aspects while in their natural pur-
suit of profit. Here, the effort of the mediator-control actor group,
e.g., in the form of various standards or the information flows from
different sources, play an increasingly important role. To summarise,

4 (Brey, 2000).

42 (Vedder, 2001).

3 Guidelines and obligations for providers/developers and customers are pre-
sented in e.g.: W. Robert Collins, Keith W. Miller, Bethany J. Spielman, and Phillip
Wherry. How good is good enough? Communications of the ACM, 37(1): 81-91,
1994.; Also commented on by (Baase, 1997), pages 344-346.

paper.tex; 2/12/2002; 0:21; p.18

Agents of responsibility in software vulnerability processes 19

the intentionality condition is an essential factor. Customer relations
personnel can be seen to be bound by the moral principles dictated
by common sense, even if they did not have formal and explicit codes
of conduct regarding their profession. The causality condition is often
easily demonstrated as the purchasers of software products rely on the
given information on product security and quality. In the case of open
source and non-profit software, the role and motivation of customer
relations blurs, although even if striving only for fame, the burden of
responsibility remains.

In the case study presented, the main responsibility within the role
group of customer relations falls on the security vendor actor, whose
marketing claims turned out to be without credibility. If any express
warranties were actually made by the security vendor, they naturally
are the crucial arguments. The original vendor of the software produced
vulnerable bad-quality software, but if the vendor did not make any
groundless dependability assurances, it may be argued to be less ac-
countable in comparison with a security vendor that claimed to provide
add-on security. However, if the original vendor’s customer relations
knew about, or even had a reason to suspect the existence of vulner-
abilities and still proceeded to market their product without proper
disclosed reservations, the moral appraisal obviously changes.

Developers and testers of software have an obvious moral responsi-
bility to ensure to their best ability that their products are safe to use.**
Secure programming and safety engineering skills are essential for pro-
fessionals developing dependable software. Abnormal situations need
to be tested besides the traditional approach of testing and validating
conformance to requirements.*® However, as previously discussed, a risk
analysis has to be made considering the probable use of the product.
Does a software malfunction during its use lead to safety-critical situa-
tions that threaten human lives/health or are the repercussions limited
to economical losses or just to the suffered nuisance? What level of
robustness is adequate for the use the product or system is intended
for, and how carefully should these proper areas of use be defined by
personnel in the roles of quality assurance? The intentionality condition
fails if the testers and developers of software cannot sufficiently define
the areas of usage for their products, even if the causality condition is
in effect and the moral principles of professional ethics clearly apply.

If in the case study the vulnerable software was intended to be specif-
ically used in an industrial process defined by the quality assurance of
the software vendor, the customer organisation may have a hard time

44 See e.g. (Baase, 1997), pages 346-348.
45 (Leveson, 1995), pages 158-159.

paper.tex; 2/12/2002; 0:21; p.19

20 Takanen, Raasakka, Laakso, ROning

trying to point out vendor responsibilities in a malfunction occurring in
private home use. Instead, the customer organisation’s responsibility to
its employee may come into consideration. In this case study, however,
we assume that the vendor had not strictly specified the product’s area
of use, but had intended it as a malleable, general-use heat controlling
software component.

The implications of professional ethics place heavy responsibilities
on the individual software engineer or manager of software engineering,
who has to try to balance these ethical requirements with obligations
to the commissioners of his work. Withholding information of known
security vulnerabilities is clearly unacceptable. However, if applicable
standards are lacking, deciding when an adequate level of software ro-
bustness has been achieved is more ambiguous. In the case study, it can
be argued that all stages of the software development process should
have met the qualification recommendations as applied to safety-critical
systems, that is, as if the product were made for the most challenging
usage environment conceivable.

5.2. ROLES IN PRODUCT ACCEPTANCE AND MAINTENANCE

In product acceptance and maintenance, the roles of the administrator,
purchaser and end-user were identified. These roles are found from the
user and provider actor groups, but in reality can also be found in other
actor groups, as well.

System administrators have the responsibility of upholding the level
of security in their systems. Maintenance here differs significantly from
less malleable products in that with software, vulnerabilities are con-
stantly surfacing to be reacted upon. However, all customer organisa-
tions or individual home users may not be able to devote a sufficient,
often excessive, amount of time to track the bad news. The level of
system administration is a major contributing factor for intrusions, as
some organisations repair their installations rather late, if ever.*6

In the presented case study, the customer organisation’s administra-
tors had included the supposedly adequate protection for the exploited
vulnerability in the company check-list and thus are excused from re-
sponsibility. The only window for responsibility attribution on them
would be a situation where they were commissioned to constantly
monitor the same public disclosure mailing list where the exploit was
published by Rogue, and either left the protective measures disclosed
by Rogue unimplemented or if they had the technical capability to
independently protect their systems, left that undone. However, we

46 William A. Arbaugh, William L. Fithen and John McHugh. Windows of
Vulnerability: A Case Study Analysis. Computer, pp. 52-59, December, 2000.

paper.tex; 2/12/2002; 0:21; p.20

Agents of responsibility in software vulnerability processes 21

assume that Rogue did not include any protective measure to counter
his demonstration script, and the administrators did not have the skills
or resources to nullify the vulnerability on their own.

Customer organisations’ purchasers and the home-users in this role
have their share of responsibility*” in assessing the suitability of the
software to the function it is used in and in ensuring resources and
guidance for the proper usage and maintenance of the product. In
assessing the suitability of the software product, the purchaser’s diffi-
culties in ascertaining the security attributes of the product are obvious.
Usually the purchaser is very heavily dependant upon the information
provided by others and without the possibility of independent security
assessment of the product.

The concept of informed consent used in medical ethics has been
applied to the decisions to purchase and use software as well.*® Gen-
erally it means that the patient is informed of the probable risks and
benefits involved in a procedure, its possible alternatives and is able to
make knowledgeable decisions on the matter. When software purchas-
ing decisions are made, from the security perspective these conditions
cannot be satisfied if commonly understood information or criteria in
assessing the security level or robustness of the product is lacking.

6. Vulnerability handling

Here, by vulnerability handling we mean the part of the vulnerability
process initiating from the discovery of the vulnerability by any agent
involved. Various phases and life-cycles of software flaws and vulnera-
bilities have been formulated.*® For the purposes of this study, aimed
to be a neutral starting point for further analysis, we divide vulnera-
bility handling into the phases of 1) discovery/reaction, 2) correction
creation, 3) disclosure and 4) nullification of the software vulnerability.
The phases do not necessarily succeed each other in a chronological
order and are not all even necessarily present, with the exception of the
discovery /reaction phase. We recognise that the creation of a ready-to-
use script exploiting the vulnerability can take place in any of the
phases, the crucial factor being whether and in what manner it is
disclosed or used. Earlier, the roles of external evaluators, security
response and coordinators were identified in vulnerability handling. The

47 See e.g. (Collins et al., 1994); and (Baase, 1997), pages 344-346.

8 (Collins et al., 1994).

49 (Laakso et al., 1999); (Arbaugh et al., 2000); See also e.g. Steve Christey
and Chris Wysopal. “Responsible Vulnerability Disclosure Process”, a currently
withdrawn IETF draft dated February 2002.

paper.tex; 2/12/2002; 0:21; p.21

22 Takanen, Raasakka, Laakso, ROning

phase of nullification also includes roles from the product acceptance
and maintenance role group.

6.1. MAIN MORAL PRINCIPLES APPLIED IN VULNERABILITY
HANDLING

There are some relatively widely accepted formal moral principles and
guidelines that can be applied when considering vulnerability handling
by the various roles identified. Of course, the clear stipulations of the
IEEE and ACM/IEEE-CS ethical codes concerning the responsibility
to find, disclose and cooperate in correction of flaws apply, as well as
similar clauses for accepting professional criticism and giving due credit
where it is appropriate. The core principle of these codes is to promote
the well-being and safety of the public.’® However, these codes do not
deliberate on the responsible disclosure of information regarding flaws
in the specific conditions of software vulnerability disclosures when the
benefit-risk relationship of this action is not clearcut.

Two applicable principles in this matter can nevertheless be found
from the Organisation for Economic Co-operation and Development
(OECD) Guidelines for the security of information systems. This rec-
ommendation introduces the principles of awareness and democracy,
which, according to the definitions in the guidelines, can be interpreted
as applying to vulnerability handling and processes. The awareness
principle, when at first including an objective to promulgate informa-
tion dissemination of the security of information systems to agents
with legitimate interest, clearly states that this should be done in a
manner which does not compromise security. Alleviating this restric-
tion, the democracy principle nevertheless concludes that the security
interests of various actors must be counterbalanced by the principles
of a democratic society concerning the flow and use of information.?!

The main content of the principles presented above can be condensed
to the principles of beneficence and nonmaleficence. The common sense
definition of beneficence is the providing of good to others, whereas
nonmaleficence means the avoidance of causing harm to others. In the
medical setting, nonmaleficence implies that necessarily some amount
of pain has to be inflicted upon the patient to attain greater good, but
the agent’s responsibility is to minimise this harm inflicted.5? This is

%0 See e.g. (Gotterbarn et al., 1999).

51 Organisation for Economic Co-operation and Development. Guidelines for the
security of information systems. November 1992. http://wwwl.oecd.org/dsti/sti/
it/secur/prod/e_secur.htm.

52 See e.g. Tanya Fusco Johnson. Ethical Issues: In Whose Best Interest? In Tanya
Fusco Johnson, editor, Handbook on Ethical Issues in Aging, pages 17-18. Greenwood
Press. Westport, Connecticut London, 1999.

paper.tex; 2/12/2002; 0:21; p.22

Agents of responsibility in software vulnerability processes 23

readily applicable to software vulnerability handling, where inevitably
because of practical limitations, some window of opportunity for mali-
cious activity will manifest itself regardless of the method of vulnera-
bility handling opted for. The intensity by which these two principles
are applicable to agents in vulnerability handling depends on, among
other factors, whether they consider themselves as professional or not.
For unprofessional agents the demands set by common sense can be
argued to be essentially similar to professional ones, but less intense.

6.2. DISCOVERY/REACTION PHASE

One role that could be considered to share responsibility for software
security incidents is formed by external evaluators in the case of not
practicing a professional approach, i.e., not adhering to professional
ethics and accepted practises in the disclosure of the vulnerability,
and more so in cases of demonstrating the vulnerability in a hostile
manner. The worst example of reacting to discovered vulnerabilities
is taking advantage of them without any disclosure for evaluation by
other related parties.

Although software vulnerabilities are sometimes found during the
normal usage of the product, more often deliberate testing is the method
leading to the discovery. In testing activities, methods such as reverse-
engineering that do not always have a clear legislative status should
be avoided, and used only when the legal status has been ascertained
or as a last resort measure for compelling reasons. External vulnera-
bility analysis of commercial software can also be done by using func-
tional®® testing methods, i.e., without knowing or reverse-engineering
the internal structure of the software.

Reporting of a vulnerability can quickly follow its discovery, but
sometimes a lengthy verification period is needed to show that the
vulnerability is valid and that all technical facts are correct before
approaching the developer of the system or software. A well prepared
bug report can increase the chance of a prompt response.

Vendor policies on handling vulnerability reports cover issues such
as the acknowledgement timeframe and methodology. Having a single
point of contact for vulnerability reports helps in controlling and han-
dling the reporting process so that all reporters receive a reply in a
timely manner. If a vulnerability appears to be low-risk to the system
in question, the nature of the response sent to the reporter can make
a difference in his reaction to the possible delays in the repair process.

Various coordinators in the software vulnerability handling process
promote various guidelines for reporting vulnerabilities to the devel-

53 Also called black-box testing methods.

paper.tex; 2/12/2002; 0:21; p.23

24 Takanen, Raasakka, Laakso, ROning

opers. Disclosure policies of mailing-lists and organisations specify the
used timeframe, e.g., the grace period that the vendor is given for
preparing the corrective measures and customer notifications or ad-
visories. The availability of contacts and resources is necessary if an
organisation takes the responsibility of coordinating the handling of
a vulnerability. Networks of coordinating organisations can handle a
vulnerability covering several reporters and vendors located in different
countries.

6.3. CORRECTION CREATION PHASE

Discovered vulnerabilities should be fixed in a coordinated and healthy
manner without unnecessary publicity and consequent risk of criminal
activity. Although this phase mostly involves the developers of soft-
ware, sometimes urgent attention is required from the evaluators and
coordinators.

A lengthy process is sometimes necessary to develop a good means of
correcting the vulnerability, and the main responsibility for the external
evaluators is in verifying that the final correction closes the vulnera-
bility. This sometimes requires urgent action if the developer does not
reveal the schedule for the evaluator to prepare for.

The more open the developer is towards both the evaluator and
the coordinator in the actual correction creation phase, the better the
cooperation typically can be. Adequate quality assurance methods can
decrease the probability of similar errors existing elsewhere in the same
product or re-emerging in the future versions. Explaining these reasons
to the other involved parties can again increase the chance of successful
cooperation.

When a vulnerability case involves more than one company, either
several developers, or a combination of providers and developers, the
communication process often requires coordination and mediation. A
neutral party is often also necessary when several countries are involved,
perhaps even with government or military involvement or interest in
the vulnerabilities.

6.4. DISCLOSURE PHASE

The window of vulnerability typically starts from the public or limited
disclosure.?* Minimising the window of opportunity for malicious intru-
sions, while at the same time effecting as wide a security patch-up of
the discovered vulnerability as possible, requires systematic approaches.

54 Although it can be argued to start from the creation of the fault behind it, as
potential mishaps do not always require malicious activity.

paper.tex; 2/12/2002; 0:21; p.24

Agents of responsibility in software vulnerability processes 25

Different models of vulnerability disclosure have been tried out in order
to hold the exploitability in check.

Unconstructive publicity can end up in loss and damage to the ac-
tors in the developer, provider and user groups, thus also causing the
evaluators an unnecessary risk of liability for damages. Publishing the
vulnerability details, when the vendor leaves no other option by consis-
tently ignoring or downplaying the vulnerability, may be necessary as
a last resort to promote public interest, which means considering the
health, safety and welfare of the public.?® In the case study, the external
tiger-team appeared to act professionally in informing the vendor of the
vulnerability and in giving the vendor the time it needed to react to
the situation, rather than immediately seeking publicity or a rash way
out of the situation.

Not all parties in the evaluator-tester group have internalised consid-
erate methods in disclosing security vulnerabilities, but instead disclose
them perhaps spontaneously, or according to their more selfish motives.

In the case study the most obvious culprits were the unprofessional
evaluators; the script-kiddie and the publisher of the vulnerability de-
tails. They, in the ethical sense, carry the weight of responsibility of
their actions in proportion to their understanding of the results. The
actions of the publisher of the vulnerability details and attack scripts
are somewhat defended, even in public mailing lists, by the fact that
without the publicity of the security hole, the vulnerability would have
been left untouched, unrepaired, and furthermore left to spread even
wider to other software systems. However, notifying the vendor in ad-
vance, allowing them some time to prepare a fix, is promoted in the
full disclosure policies available.’® In spite of this, a wide consensus
as to what amounts to a responsible disclosure policy or enforceable
guidelines is yet to be attained between different actor groups.

For the security response role of the actors in the developer and
provider actor groups, the main tasks in the disclosure phase include,
naturally, the disclosing of relevant information through their own chan-
nels and possibly using mainstream media as well. Delivering the secu-
rity advisories and the available corrections to customers as effectively
as possible would be a central goal. Additionally, the security response
personnel should offer support and guidance to their customers.

In the case study, the software vendor had not issued a security advi-
sory containing any interim workarounds alleviating the exploitability
of the vulnerability, even when several months had passed since the

%5 See (Gotterbarn et al., 1999).

% See e.g. Full Disclosure Policy (RFPolicy) v2.0. http://www.wiretrip.net/
rfp/policy.html by Rain Forest Puppy; The CERT Coordination Center Vulnera-
bility Disclosure Policy. http://www.cert.org/faq/vuldisclosurepolicy.html.

paper.tex; 2/12/2002; 0:21; p.25

26 Takanen, Raasakka, Laakso, ROning

tiger-team had reported the problem. If they had the technical capa-
bility to find or knew about the interim workarounds, but decided not
to disclose them before their actual security patch was ready and tested,
it could be argued that they share their part of the moral responsibility
for the security incident. However, as mentioned before, the publication
of any corrective measure to mitigate a vulnerability carries with it the
risk of drawing malicious interest and evaluation in order to exploit the
vulnerability. Even if this corrective measure did thoroughly protect
the systems against this vulnerability, there are systems where, for one
reason or another, the corrective measure is not taken into use.

The role of security response, in both the developer and provider
actor groups, and the role of coordinators of vulnerability handling, typ-
ically an organisation such as CERT/CC or a moderator of a mailing-
list, is to control the communication process. Failure to interact with
the reporters often results in uncontrollable vulnerability handling,
confused or angry customers and unnecessary windows of opportunity
for malicious actions. As the Figure 3 shows, it is possible to attempt
to limit the communication around the evaluator actors by using the
developer and mediator-control actor groups’ channels to reach the
actors in the provider and user groups.

6.5. NULLIFICATION PHASE

In the nullification phase the main task falls to the role of system admin-
istration of the relevant actors in the user and provider actor groups. In
cases where security updates for the software product would have been
available, it has been argued that the possible security incidents were
due to bad practices of security by the system administrators. Some
obligations and responsibility may filter down to the role of end-user.
If the end-users clearly violate the correct procedures in software usage,
they can be partially responsible for the security violations.

Databases of past vulnerabilities®” provide means for collecting the
details of past vulnerabilities and learning from them. This provides
incentive and possibilities for the quality assurance of developer and
provider actor groups, but also to evaluators and nonaffiliated actors
with various motives.

6.6. REALITIES OF SOFTWARE VULNERABILITY PROCESSES

The evaluators’ reporting of discovered vulnerabilities to the public
appears to have little effect in general. The typical vendor approach is

57 See e.g. SecurityFocus http://www.securityfocus.com and the Mitre http:
//wuw.mitre.org.

paper.tex; 2/12/2002; 0:21; p.26

Agents of responsibility in software vulnerability processes

27

Mediator-Control

CERT

(or similar)

body

Government
EXECUTIVE

Government
JURISDICTIONAL
body

Standards /
certification

~ .
Security
vendor

Free-software
developer
Sub-contractor

Developer

Insurance

Evaluator

Government
POLITICAL /
LEGISLATIVE
body

Media
(main-

e

-

Non-affiliated
evaluators / actors

''''''' "(

Provider

stream)

NGO
(advocate /
professional /
industry)

Customer
organisation

User

\ \
\ \
\ \
\ \
| Service provider / \
i Integrator ‘
| \
| \
| |

LEGEND:
Information flow / Co-operation

Figure 8. Tiger-team actor’s (external evaluator role) triangle co-operation method
with the software vendor (security response role) and the CERT organisation
(coordinator role) in vulnerability handling.

to quickly fix the exact notified vulnerability and not the entire poor
quality of the software module, thus leaving other vulnerabilities in the
software or even reintroducing the problems unfixed in later versions.
Improvement of the general quality of software is slow. This may be due
to the number of non-professional developers in the field. Even people
who have been in software development for decades sometimes miss the
whole area of robust software and the dangers that non-robust software
brings.58

The vendor is responsible, and hopefully sometimes liable, to the
whole public, in addition to clients, for bad quality software. However,
the current trends in legislation®® may in effect make an exception
in the common (Western) practise of vendor/developer liability when

58 (Leveson, 1995), pages 156, 233-234.
9 (Kaner, 1999).

paper.tex; 2/12/2002; 0:21; p.27

28 Takanen, Raasakka, Laakso, ROning

applied to the software industry. These new legislative drafts would
in practise move the whole responsibility of software malfunction, in-
cluding security incidents, to the licence-bound customer. Furthermore,
disclosing flaws in software could be restricted only to those cases,
where the software vendor gives permission to do so. Vendors would
not be required (by law) to disclose even the known flaws in their
software. These last two propositions would be in clear violation of the
software engineering code of ethics.%9

From the vendor’s perspective, there is a clear rationality behind
these aspirations, which possibly have one of their main justifications
in ’computer malleability’, a concept introduced by James Moor.5!
The multitudes of operating environments and possible modifications
of software products dwarf the variability of more conventional prod-
ucts, making it harder to foresee the proper quality requirements for
software.5?

If the liability for possible malfunctions in software is transferred
to customers, software vendors can release unpolished software to be
tested in the field. Nevertheless, when considering society as a whole,
this obviously is not acceptable. Developers and vendors of software
should be, within reasonable limits, held also legally responsible for the
quality of their products and for losses their clients suffer because of
their software. In cases of widely deployed software, the moral responsi-
bility is towards the whole society. Additionally, vendors and developers
can be held responsible for not acting professionally in repairing the
problems they become aware of in their software.

Professional security evaluators of software also have a very thin line
that they tread on in order to maintain professional ethical integrity.
For example, the coverage of vulnerability testing of software may be
biased, in effect providing negative publicity to some software vendors
but leaving other vulnerable products by different vendors untouched.
This biasing can even be deliberate, as can of course be the timing of
various disclosures. Professional security evaluators/vendors may also
be tempted to withhold information of discovered vulnerabilities at
their disposal, so as to retain their competitive edge in relation to
rivaling companies. The good of the external security evaluator is not
necessarily exactly the same as the good of the public, especially when
operating on commercial prerogatives.

50 ALERT: a danger to the Public and a danger to the development of Safe
Quality Software in new legislation. A white paper from the Software Engineering
Ethics Institute (SEERI) to software professionals. http://www.seeri.etsu.edu/
WhitePaper.shtm.

61 James Moor. What is computer ethics. Metaphilosophy 16(4): 266-275, 1985.

52 See e.g. (Baase, 1997), page 347.

paper.tex; 2/12/2002; 0:21; p.28

Agents of responsibility in software vulnerability processes 29

The possible role of neutral third-party organisations as coordinators
and intermediaries in vulnerability handling has been discussed and has
sometimes been taken into practise. Including a reliable international
organisation as an overseer of information flows in a process, especially
when dealing with public channels and media, may lessen the software
vendors’ apprehensions toward external security evaluators. The roles
of various other mediator-control actors are also discussed regarding
the whole continuum of software vulnerability processes. One neutral
party anticipated to have a strongly increasing role are the insurance
companies covering the risks of customer organisations using software
applications.%> Often being the partial bearers of economical losses
inflicted in software security incidents, the insurance companies would
have a natural interest in keeping these incidents at bay.

7. Conclusions and future work

In this article the main features of a fictional software security vulner-
ability process were discussed, from which some aspects were clarified
using professional ethical codes, some widely accepted principles for re-
sponsibility attribution and foremost of all, common sense as reference
points. The presented case study was not constructed to represent a
typical software vulnerability process, but rather to exemplify the com-
plexity often inherent there and to introduce the commonly involved
agents. However, the main actors and roles were then defined in a way to
reflect their typical functions and connections in software vulnerability
processes. It is apparent that these processes and the compromises in-
herent in the current level of software security are not well known to the
public at large. It is hoped that this disclosive ethics presentation would
prompt a second stage in which more specific normative evaluations of
software security issues are conducted.

In the fictional case study presented, five distinctive actor groups
were identified: developer, provider, user, evaluator and mediator-control.
From these actors three role groups were identified and further analysis
was focused on the roles responsible for the actual handling of the dis-
covered software vulnerability. It was noted that the crucial aspects in
software vulnerability handling were the approach taken by the external
evaluators in the dissemination of vulnerability details, the manner in
which the vendor acknowledges and reacts to this information and the
inclusion of a neutral third party as a facilitator and coordinator in
this process. The overall impact is felt in the user actor group, where

53 See e.g. (del Amo Calvo, 2000).

paper.tex; 2/12/2002; 0:21; p.29

30 Takanen, Raasakka, Laakso, ROning

the role of system administrators is to react to reasonably well formu-
lated instructions resulting from the vulnerability handling process. In
software quality assurance, security maintenance of products and the
veracity of information concerning the product offered to purchasers
were identified as major aspects to be considered. In all these activities
the ethical codes of professional software engineers apply, if the agents
under scrutiny claim to take a professional stance. Also the princi-
ples included in the Guidelines for the security of information systems
adopted by the OECD member countries are applicable in this area.
However, the practical concretisation of these recommendations seems
to be unrealised in software vulnerability processes.

In developing software products for use where there is a safety issue
or even a risk of losing human lives, there traditionally have been high
standards and strict control of the quality of the services and prod-
ucts.%* On the other hand, in the field of software engineering with
little experience with safety issues, the quality of software has been
noted to be poor from the security perspective. The current situation
shows that generically used software engineering processes and quality
assurance methods are still immature as far as the security factor is
concerned, and professional ethics do not yet give explicit guidelines for
the handling of software vulnerabilities. Security and safety problems
with software are far too often seen as accidents, without demands for
accountability for the losses due to bad quality software.

In software engineering, professional obligations are still not based
on accepted standards. Many times the responsibility to find out sound
practises in software vulnerability handling processes seems to fall on
the individual, the ethically committed software engineer or manager,
and groups thereof. At the societal level, software vendor/developer
organisations do not yet seem to have an effective counterpart of equal
size and strength forcing them to adopt transparent, generally accept-
able practices, especially if legislation bypasses their liabilities. The
situation in software development seems too often to be similar to
that in vulnerability handling. In the absence of official or organisa-
tional guidelines the professionals must refer to their sense of moral
responsibility to ensure sufficient dependability and quality of software.
Demands for better dependability of software have also been increas-
ingly voiced by significant customer entities. However, the irregularities
in the approaches adopted by external evaluators of software are also
problematic from the vendor/developer point of view. Regulative and
standardisation activities in these areas can safely be predicted to be

64 See e.g. (Leveson, 1995).

paper.tex; 2/12/2002; 0:21; p.30

Agents of responsibility in software vulnerability processes 31

on the rise, according to the normal maturing of novel technologies and
their integration into society.5?

The risks involved in the ever-growing software industry, and the
security compromises they pose for the individual or society, are not
yet disclosed to or understood by the greater public. Nor do these risks
seem to have quite the same popular appeal as more traditional objects
of attention, such as environmental threats caused by other industries.
One subject that was not thoroughly discussed, and which often draws
the concern of the security community, is the threat that a software
application gains too wide a population in society. The great majority
of the security community agrees that a lack of diversity can cause much
distress, and the security threats it brings are enormous. Because of
its overt permeation and implicated major repercussions, a vulnerable
application does not even have to be used in critical environments to
pose a major threat to infrastructure.

The general public relies on and trusts in the products that tradi-
tional software engineering produces. Is the trust placed on software
engineers blind and without any questioning? The real problem is that
today the responsibilities of software engineers as professionals in the
ethical dimension are yet not publicly recognised and enforced, when
compared to professions such as lawyers or various vocations in health
care. At the same time, enabling technology is making these other pro-
fessions increasingly dependent on the integrity of software engineers.
Still, the responsibility of the software industry to society at large is
not scrutinised in the same magnitude or manner as is the case with
many other industries or segments of society.

How the ethical problems in software security can be solved is worth
some profound research effort on the application (and possibly theo-
retical) level as defined in Brey’s concept of disclosive computer ethics
methodology. We have adapted and created some terms for the pur-
poses of this pragmatical study, but they are not intended as authorita-
tive definitions. The various responsibilities and professional obligations
of agents in various roles involved in software vulnerability processes
should be argued for and specified in more detail. Approaches to ef-
fectively improving the quality of security-critical software and widely
distributed software packages can also be formulated and promulgated,
taking into account the overall impact software vulnerabilities have on
the infrastructure of modern society. Finally, these considerations and
the agreements formed upon them should be enforced in standardisa-
tion, certification programmes and legislation.

55 See e.g. (Baase, 1997), pages 140-141, 345, 347.

paper.tex; 2/12/2002; 0:21; p.31

32 Takanen, Raasakka, Laakso, ROning

Acknowledgements

The authors thank the staffs of the Secure Programming Group at the
University of Oulu (OUSPG) and Codenomicon Ltd. for their extensive
help and participation. We also offer our gratitude to the AusCERT and
CERT/CC for their patient support in resolving the vulnerability cases
that led to the development of this article. Special thanks to Lic.Tech.
Rauli Kaksonen, Prof. Gerald Quirchmayr, Prof. Jorma Kajava and
Prof. Mikko Siponen for their supportive comments on this issue. This
research is part of the PROTOS project.

References

Ana del Amo Calvo. The liability of Professional Experts Like Risk Managers. In
F. Galindo and G. Quirchmayr, editors, Advances in Electronical Government,
Pre-Proceedings of the Working Conference of the International Federation of In-
formation Processing WG 8.5 and the Center for Computers and Law, Zaragoza,
Spain, Feb 10-11, 2000.

William A. Arbaugh, William L. Fithen and John McHugh. Windows of Vulnera-
bility: A Case Study Analysis. Computer, pp. 52-59, December, 2000.

Sara Baase. A gift of fire: social, legal and ethical issues in computing. Prentice-Hall
Inc., 1997.

Philip Brey. Method in computer ethics: Towards a multi-level interdisciplinary
approach. Ethics and Information Technology, 2(2): 125-129, 2000.

W. Robert Collins, Keith W. Miller, Bethany J. Spielman, and Phillip Wherry. How
good is good enough? Communications of the ACM, 37(1): 81-91, 1994.

Don Gotterbarn, Keith Miller and Simon Rogerson. Computer Society and ACM
Approve Software Engineering Code of Ethics. Computer, 32(10): 84-88, 1999.

Tanya Fusco Johnson. Ethical Issues: In Whose Best Interest. In Tanya Fusco
Johnson, editor, Handbook on Ethical Issues in Aging, pages 17-18, Greenwood
Press. Westport, Connecticut London, 1999.

Cem Kaner. Software Engineering and UCITA. Computer & Information Law,
18(2), 1999.

Marko Laakso, Ari Takanen and Juha Roning. The vulnerability process: a tiger
team approach to resolving vulnerability cases. In Proceedings of the 11th FIRST
Conference on Computer Security Incident Handling and Response, Brisbane,
13-18 June, 1999

John Ladd. Computers and Moral Responsibility: A Framework for an Ethical Anal-
ysis. from The Information Web: Ethical and Social Implications of Computer
Networking, edited by Carol Gould, Westview Press, Boulder, Colorado, 1989,
pp.207-227.

Nancy G. Leveson. Safeware: system safety and computers. Addison-Wesley
Publishing Company, 1995.

James Moor. What is computer ethics. Metaphilosophy, 16(4): 266-275, 1985.

Peter G. Neumann. Computer-Related Risks. ACM Press / Addison-Wesley
Publishing Company, 1995.

Ari Takanen, Marko Laakso, Juhani Eronen, Juha Roning. Running malicious code
by exploiting buffer overflows: A survey of publicly available exploits. In Pro-

paper.tex; 2/12/2002; 0:21; p.32

Agents of responsibility in software vulnerability processes 33

ceedings of the 9th Annual EICAR Conference, Brussels, Belgium, 4-7 March,
2000.

Anton Vedder. Accountability of Internet access and service providers - strict
liability entering ethics? Ethics and Information Technology, 3(1): 67-74, 2001.

paper.tex; 2/12/2002; 0:21; p.33

paper.tex; 2/12/2002; 0:21; p.34

