
Marko Laakso is a loony Finn with UNIX background, gained from administrating the network of the
Department of Electrical Engineering at the University of Oulu. AusCERT advisories from summer
1996 pushed him beyond point of no return by raising the question "More of this same kind, again?"
Ever since he has been pestering AusCERT and vendors with bug reports too long to be read.

Ari Takanen, a complementary reinforcement with NT networking and administration background,
brings in his expertise and interests in the field. He is set out to prove that there are similarities in
vulnerabilities beyond operating system boundaries. His goal is at the Diploma Engineer Degree
(MSEE), meanwhile he works as a Research Scientist at the Department of Electrical Engineering.

Since 1983 Professor Juha Röning has been a member of faculty of the Department of Electrical
Engineering at the University of Oulu, where he received his Diploma Engineer Degree (MSEE), 1983,
Licentiate in Technology with Honours, 1985, and Doctor of Technology, 1992. He is a member of
SPIE, IEEE, Sigma Xi, Finnish Pattern Recognition Society, and Finnish Artificial Intelligence Society
(FAIS).

Together they form the Secure Programming Group at the University of Oulu, Finland (OUSPG). Their
main objective is to promote proactive vulnerability work.

The vulnerability process: a tiger team
approach to resolving vulnerability cases

Marko Laakso, Ari Takanen, Juha Röning
University of Oulu, Department of Electrical Engineering

Computer Engineering Laboratory
Linnanmaa BOX 4500, FIN-90401 Oulu, Finland

{ fenris,art,jjr} @ee.oulu.fi

ABSTRACT

Security vulnerabilities that affect widely deployed software emerge frequently.
Addressing these maladies requires coordination and communication. The purpose of
this work was to explore a systematic approach to reporting and resolving
vulnerability cases, from a tiger team perspective. A life-cycle model with checkpoint-
based metrics was developed, a case study was carried out and observations were
gathered. The vulnerability process was found to be complicated but manageable. The
role of the FIRST teams as coordinators is encouraged and a shift from undisciplined,
reactive vulnerability work towards a professional, proactive approach is promoted.

1. Introduction

A software system, whether an application or an operating system, may contain
security-related flaws that lead to loss of confidentiality, integrity or availability of the
information resources. These flaws introduce vulnerabilities that may be exploited in
ways that violate the security policy of the system. Software vulnerabilities that affect
widely deployed software packages are brought forward in public forums on a weekly
basis. In addition to problems with brand new products, fresh vulnerabilities emerge
even from packages that have otherwise withstood the test of time. The overall impact
of deficiencies in the software itself goes beyond the effect of vulnerabilities caused
by improper configurations of individual installations.

Software vulnerabilities are disclosed in varying fashions. These include public
disclosures, security advisories and security bulletins from vendors. Vulnerability
reports may appear on full disclosure mailing lists and various distribution lists, and
sometimes even in mainstream media. New vulnerabilities are found by the vendors
themselves, and also by their customers and independent organisations when
evaluating the security of the subject software. Vulnerabilities manifest themselves
during security reviews, quality assurance and normal system operation, and
sometimes in more thorough penetration testing. As part of its research, the Secure
Programming Group at the University of Oulu (OUSPG) has adopted a role of the
vendor independent security evaluator, a software vulnerability tiger team [1].
OUSPG has been a source of several vulnerability reports.

The life-cycle of a vulnerability case begins with the discovery of the defect and
terminates after all aspects of the problem have been properly resolved.
Communication is required between different actors with potentially conflicting roles.
These actors, roles and activities form the vulnerability process, which ultimately
aims to complete the life-cycles of the vulnerability cases in an orderly manner.

Different points of view regarding the vulnerability process have been presented
amongst security professionals. The vendor perspective has been highlighted at the
vendor panel coordinated by Sanchez at a Forum of Incident Response and Security
Teams (FIRST) conference in 1997 [2]. In 1996, at a FIRST workshop, McMillan
described vulnerability handling procedures and advisory team activities from the
viewpoint of computer emergency response teams [3].

There is a lack of documentation and support aimed at vendor-independent parties
discovering novel software vulnerabilities, and this has resulted in less than optimal
life-cycles for vulnerability cases and an undisciplined process that has been hard to
understand, control and improve.

The purpose of the work reported here was to support teams and private persons who
unveil security vulnerabilities while evaluating, reviewing and testing software
products. The material provided herein aims to encourage a disciplined and analytic
approach to reporting and resolving vulnerability cases, and to highlight practical
experiences gained from the perspective of a vulnerability tiger team. An attempt is
made to improve the vulnerability process both by providing both metrics for
gathering performance statistics and by describing observations of potential problem
areas.

We introduce here a model for the vulnerability life-cycle, and provide supporting
terminology. Different actors and their roles are identified, primitive checkpoint-
based metrics are described, a simple case study is carried out and observations from
different phases of the vulnerability process are presented, both based on the OUSPG
case history. Possible avenues for continuing and expanding vulnerability work are
discussed and conclusions are drawn.

2. The vulnerability process

Analysis and documentation of the context and internals of vulnerability work are
prerequisites for understanding, controlling and improving the process of resolving
vulnerability cases. We introduce here first the terminology and later the approach
used by the OUSPG, including the models and metrics adopted.

2.1. Terminology

Uniform terminology is a necessity for efficient communication and documentation.
A study of the terminology used in the context of vulnerability analysis was presented
by Krsul [4]. Definitions of the roles, actors and activities used in this study will
follow in the subsequent sections. OUSPG adaptations of central terms and their
definitions are set out below:

Errors made during software development result in faults that may lead to failures,
i.e. incorrect or undesired program behaviour [5].

A possibility of a failure in a security-critical portion of an application is manifested
as a potential vulnerability. If an actual method for triggering an insecure state in the
application is known, then the application is considered to be exploitable via a
verified vulnerability. A verified vulnerability, designated later as a vulnerability,
exposes information resources to the loss of confidentiality, integrity or availability.
Reproduction of a vulnerability occurs when the vulnerability is verified by an
another party after receiving the vulnerability details.

The term exploit is used to denote either a passive or an active attack method or
receipt aimed to take advantage of an existing vulnerability. Using an exploit to
perform an attack to violate the security policy of the target system will be referred to
as exploitation of the vulnerability.

The term vulnerability case is used to refer to the basic processing unit in
vulnerability work. A vulnerability case may contain only one specific vulnerability,
or it may group together several related vulnerabilities. The term vulnerability life-
cycle is used to designate the emergence of a vulnerability case, its evolutionary
phases and termination. Vulnerability work, referred to later on as the vulnerability
process, carries out the life-cycles and engages in activities such as vulnerability
prevention, feedback integration and efficiency improvement. This study excludes
patch deployment from the vulnerability process.

A vulnerability case is initiated by a vulnerability disclosure. In an internal disclosure
the vulnerability details are in the possession of parties directly involved in the
vulnerability process, as determined by the need-to-know principle. A public
disclosure is said to have taken place when the details are known by a wider audience.
Active sources for public disclosures are full disclosure mailing lists such as BugTraq
and NTBugTraq [6] [7]. These lists are email distributions that promote the
dissemination of vulnerability details to all interested parties. If a public disclosure is
sought for, then the grace period is the amount of time given to the affected vendor to
react before the details are published.

Information about a vulnerability case may be disseminated in a vulnerability
advisory. This is supported by an impact assessment, which determines the
seriousness of the vulnerability by considering who is affected and how. An interim
work-around or a software fix, known as a patch, addresses the vulnerability by either
limiting or preventing its exploitation.

Software penetration testing is an activity aimed at disclosing vulnerabilities in target
software, i.e. in the selected subjects. A vulnerability case follows the penetrate-and-
patch paradigm when the vulnerability is found by penetration testing and addressed
by an administrative work-around or software correction. A vulnerability tiger team is
a person, group or organisation that conducts software penetration testing in order to
assess the security of the subjects. The penetration testing may be carried out by
monitoring during normal operation, casual inspection, formal evaluation or
systematic testing.

2.2. Actors and their roles

Three major roles have been identified in the vulnerability process (Figure 1) and are
described here in detail. Moreover, two supplementary roles are noted. These may be
adopted by actors such as the vulnerability tiger teams, vendors and security
organisations.

RepairingOriginating

Coordinating

Figure 1: Major roles inside the vulnerability process

An actor in the originating role is the source of the vulnerability report that initiates
or supplements a case life-cycle. An originator discovers the vulnerability during
penetration testing. Actors in this role have expertise in the security problem domain
and thus should participate in developing an interim work-around, evaluating the final
fix and reviewing a potential advisory.

An actor in the coordinating role supervises the vulnerability work by assisting the
other participants in carrying out the vulnerability case life-cycles and by
accumulating expertise in the process domain. A coordinator assists in establishing
and maintaining the communication link between the originators and repairers. The
communication will benefit from existing security contacts maintained by the
coordinators. Actors in this role may provide vulnerability verification and impact
assessment and may direct the life-cycle activities accordingly. Coordinators may
filter and combine the vulnerability information if several originators are involved in
the case. Vulnerability characteristics may require a call for the involvement of
several repairers. The coordinators may evaluate and develop administrative work-

arounds and participate in evaluating the final correction. They may provide the
channels for distributing vulnerability information as widely as possible after
production or evaluation of the advisory in co-operation with other parties.

An actor in the repairing role should be the expert in the application domain of the
product affected by the vulnerability case. Ideally a repairer should be involved in the
organisation responsible for developing and distributing the vulnerable product. The
involvement of actors in this role is essential for developing and distributing the
work-arounds and patches, and for assessing the impact of the vulnerability and the
side-effects of the proposed solutions. Due to their familiarity with the use and user
base of the vulnerable product, actors in this role should either initiate or evaluate the
advisories addressing the issue.

In addition to the roles considered above, which are inherent in the vulnerability
process, supplementary roles can be identified. The main deliverables of the process,
improved security of the software products and heightened vulnerability awareness,
are assumed to implicitly benefit the users of the products. Users represent an external
entity in a consuming role. An actor in a tracking role may be a bystander collecting
vulnerability information for research purposes or a party who contributes its
expertise to a case without engaging in any of the major roles.

Individuals, groups and organisations participating in the vulnerability work may
assume any of the roles introduced above. Two or more roles may be assumed by a
single entity, e.g. a vendor with an engineering team in a repairing role and a vendor’s
security coordination team in a coordinating role (Example A).

Example A: A vulnerability in Product P is discovered by an external vulnerability
tiger team (originator) during penetration testing. The vulnerability is reported
directly to the respective Vendor V, where the information is forwarded to the
Vendor’s internal security coordination team (coordinator). Information is dispatched
to an engineering team (repairer) responsible for the Product P.

Multiple roles may merge inside an entity, e.g. a vendor with product engineering
team internally discovering the vulnerability and subsequently providing the fix. A
straight-forward mapping between the roles and actors can be reached when an
external vulnerability tiger team acts as the originator, a Computer Security Incident
Response Team (CSIRT) assumes the coordinating role and the respective vendor
takes the repairing role.

The number of actors involved in a vulnerability case directly contributes to the
complexity of communication. A typical vulnerability case known as a multi-vendor
vulnerability may involve several vendors with vulnerable products due to a
coincidence or inherited code-base (Example B). Multi-coordinator and multi-
originator cases are feasible and have been observed in practice.

Example B: A vulnerability in Product P for operating system O is disclosed on a full
disclosure mailing list by an anonymous contributor (originator). FIRST Team T
(coordinator) verifies the vulnerability and discovers that it affects several operating
systems related to O due to common inheritance. Vulnerability information is
dispatched to all respective vendors (repairers).

2.3. A vulnerability tiger team approach

The discussion that follows will reflect the vulnerability process from the perspective
of a vulnerability tiger team in the originating role. The activities and mutual
communications of the coordinators and repairers are treated in less detail and are
abstracted as black boxes (Figure 2).

The internal operation of the tiger team can be roughly divided into two subactivities.
Its vulnerability research is the source of discoveries that initiates new vulnerability
cases, and the technical aspects of the vulnerability case are handled in this research.
Vulnerability management consists of tracking, communication and feedback
integration, the main objective being to ensure that the cases proceed through their
life-cycles and are eventually terminated. Performance statistics should be gathered
during vulnerability tracking.

RESEARCH
MANAGE-

MENT
REPAIRER(S)

ORIGINATOR(S)

COORDINATOR(S)

TIGER
TEAM

RESPONSE
TEAM

SOFTWARE
VENDOR

Figure 2: A tiger team in the originating role

2.4. A model of the vulnerability case life-cycle

The model of the vulnerability case life-cycle proposed here identifies the different
stages that a case enters during its lifetime and the transitions between these stages
(Figure 3).

REPORTING DATE

VERIFICATION DATE

DISCOVERY DATE

RESEARCH

VERIFICATION

REPORTING

EVALUATION EVALUATION

ADVISORY GENERATION REPAIRING

PATCH EVALUATION

ADVISORY RELEASE PATCH RELEASE

ADVISORY EVALUATION

FEEDBACK

COORDINATING REPAIRING

ORIGINATING

ACKNOWLEDGEMENT DATE

PATCH DATEADVISORY DATE

CASE CLOSURE DATE

CHECKPOINT

Legend:

ACTIVITY

INTERNAL
TRANSITION

COMMUNICATION

Figure 3: Model of a vulnerability life-cycle

At each stage a principal activity is carried out by actors in responsible roles. Each
transition has a prerequisite in the form of a deliverable and represents a check-point
that can be utilised for gathering performance statistics. Rejection of the vulnerability
at certain stages will result in termination of the life-cycle.

Activity: Research
Responsible role: Originating
Deliverable: Potential vulnerability
Check-point: Discovery date

The research activity is the spontaneous entry point into the vulnerability life-cycle.
Penetration testing or a comparable activity may result in a discovery that unveils a
potential vulnerability.

Activity: Verification [optional]
Responsible role: Originating
Deliverable: Verified vulnerability
Check-point: Verification date

During verification the originating party attempts to filter false positives and assess
the technical nature and exploitability of the potential vulnerability. If the originator
lacks resources for verification, it may be sensible to proceed without a confirmation.

If the potential vulnerability is evaluated as definitely harmless, it may be rejected. If
a successful verification takes place, the vulnerability details are supplemented by an
exploit.

Activity: Reporting
Responsible role: Originating
Deliverable: Vulnerability report
Check-point: Reporting date

Essential information about the vulnerability is collected and recorded during the
reporting phase. The report is delivered to the coordinators and to the identified
repairers. Completeness of the vulnerability report is promoted in order to reduce the
amount of communication.

An example of a form for a vulnerability report is presented in Appendix A. An
outline for the vulnerability report should include:

• Tracking information
• Identification of the affected products and vendors
• Initial impact assessment
• Description of the test environment and subject software for reproduction

purposes
• Technical description of the vulnerability
• Possible exploitation details (an exploit) for reproduction purposes
• Initial work-around if available
• Contact information

Activity: Evaluation [black box abstraction]
Responsible roles: Repairing and Coordinating
Deliverables: Acknowledgement, evaluation and change request
Check-point: Acknowledgement date

During the evaluation phase, the reported vulnerability is either acknowledged or
rejected by the recipients. Rejection may be the result of a reproduction failure or an
impact assessment conclusion. The vulnerability report combined with the evaluation
results will initiate the repairing branch of the life-cycle via a change request. Impact
assessment, work-around verification and observations from the reproduction form
the basis for the advisory generation thread of the life-cycle. An acknowledgement or
rejection notice is sent to the originators as feed-back. All parties should agree upon
the case closure before final rejection.

Activity: Repairing [black box abstraction]
Responsible role: Repairing
Deliverable: Patch candidate
Check-point: None specified

A patch candidate is created as a fix proposal to address the vulnerability in the
software.

Activity: Patch evaluation
Responsible roles: Coordinating, Originating and Repairing
Deliverable: Patch feedback
Check-point: None specified

A patch candidate is evaluated for effectiveness and correctness.

Activity: Patch release [black box abstraction]
Responsible role: Repairing
Deliverable: Released patch
Check-point: Patch date

The tested and accepted patch candidate is released.

Activity: Advisory generation [black box abstraction]
Responsible role: Coordinating
Deliverable: Draft advisory
Check-point: None specified

A draft advisory is written.

Activity: Advisory evaluation
Responsible roles: Coordinating, Originating and Repairing
Deliverable: Advisory feedback
Check-point: None specified

The draft advisory is evaluated for correctness.

Activity: Advisory release [black box abstraction]
Responsible role: Coordinating
Deliverable: Advisory release
Check-point: Advisory date

The accepted advisory is released.

Activity: Feedback
Responsible roles: Coordinating, Originating and Repairing
Deliverable: None specified
Check-point: Date of the case closure

During the feedback phase, observations on the case are exchanged and process
statistics are updated. Feedback integration should support vulnerability prevention
and the improvement of process efficiency.

2.5. Primitive metrics based on process check-points

Primitive metrics for measuring the performance of the vulnerability process were
developed based on the life-cycle model and identified check-points. The unit for the
proposed metrics is a time interval counted in days. The metrics and their
abbreviations and definitions are illustrated in Table 1.

Table 1: Performance metrics

Metric Abbrev. Definition

Verification Delay VD Delay between discovery and verification

Reporting Delay RD Delay between verification and reporting

Evaluation Delay ED Delay between reporting and acknowledgement

Patch Delay PD Delay between reporting and patch release

Advisory Delay AD Delay between reporting and advisory release

Curing Delay CD MAX(PD, AD)

Treatment Delay TD VD + RD + CD

The internal performance of the originator can be measured by combining the
verification delay (VD) and reporting delay (RD). The external performance of both
the coordinators and repairers is characterised by the curing delay (CD). Overall
performance of the process is driven by the treatment delay (TD).

3. A vulnerability case study

The OUSPG has been gathering tracking information for vulnerability cases since
autumn 1996. Cases originating from the OUSPG have been recorded in full detail in
accordance with the proposed model, and available data for appropriate reference
cases have been entered in the database in order to support vulnerability research. A
subset of 28 cases was used in the case study and was extracted from the database of
61 cases. The case study comprised 11 cases, where the OUSPG had an originating
role, and 17 cases, where it was a tracking or contributing role. A checkpoint based
summary of the database subset is presented in Appendix B.

Observations were gathered on different activities and stages in the vulnerability life-
cycle. Problem areas pertaining to a large variety of cases are illustrated below.

3.1. Overall observations

Communication delays are inherent during all phases of the vulnerability life-cycle.
Factors such as different time zones, holidays, the workload of the actors and the
number of parties involved all contribute to the observed lag. Large delays may lead
to misunderstandings, and thus confirmation should always be sought via alternative
channels before rash conclusions or decisions are made.

One of the surprising perplexities involved in the vulnerability life-cycle is the
accelerated time frame phenomenon. The originating party may be best prepared and
oriented to support the life-cycle near the time of discovery, verification and reporting
of the vulnerability. On the other hand, it may take time for the repairing party to
allocate resources for the vulnerability case. As a result, a case considered dormant

for months by the originators may reactivate suddenly and demand patch evaluation
within a very short time frame, for example.

Safe communication channels should not be taken for granted, and requiring them
may complicate the reporting phase. Even if the report recipients are prepared for an
encrypted email exchange, two different standards, i.e. PGP and S/MIME, may be
involved. If the initial contact is an encrypted email that requires more than usual
effort to handle, it may be dropped on the floor due to overload at the receiving end.
The overhead for initiating communication should be kept at a minimum, but it may
be wise to avoid any exchange of potentially harmful information prior to the
establishment of a trusted channel.

The collecting of tracking information should commence from day zero. Everything
may start as "just one vulnerability" but later on turn into a unmanageable mess. The
originating party should assign a unique tracking number to each vulnerability and
collect tracking information given by the coordinators and repairers. Advisories,
patches, reports and other communications related to a case should be archived for
later perusal.

Multi-vendor cases should be identified as early as possible. Vulnerabilities bearing
similarities in their manner of activation or exploitation should be grouped under the
same case. For example, an advisory may be issued about a web browser with a buffer
overflow type vulnerability in displaying an image with a long name tag. In such a
case competing browser vendors are left in an awkward position if their products
exhibit the same vulnerable behaviour and are not considered in the advisory. Release
of the vulnerability details tends to stimulate testing of similar products, and findings
may be presented in vivid discussions on full disclosure mailing lists. A shared code
base foreshadows a multi-vendor discovery, in that the same vulnerable code could
have been inherited by several branches of operating systems, or the same algorithm
library could have been used in several competing products. An isolated code base
does not exclude multi-vendor characteristics, since certain operations implemented in
code may be more vulnerability prone than others. The same vulnerability may be
repeated in independent implementations of the same conceptual functionality.
Vendor-independent coordinators are best equipped to ensure proper identification of
the scope of a vulnerability.

Prioritisation disagreements may arise during impact assessment. For example, the
issue of local vulnerabilities exploitable via existing local user accounts vs. remote
vulnerabilities exploitable without an existing account is controversial one. In the case
of multi-user time-shared operating systems such as the UNIX variants, arguments
may favour the comparable seriousness of both cases. The vast possibilities for
compromise of a local unprivileged account pose a serious risk when combined with a
local vulnerability permitting privilege elevation.

The communication overhead with the repairing party is considerably reduced if the
actor in the repairing role has a software vulnerability tiger team, such as a security
group, that can either participate in repairing or assume a coordinating role inside the
vendor’s organisation. Vendors should benefit from the accumulated knowledge of a
specialised group inside their own organisation.

3.2. Observations on vulnerability research

Identifying vulnerabilities may be considered as reverse engineering activity. Any
legal concerns arising from strict license agreements or outstanding non-disclosure
agreements should be considered during vulnerability research, and recipients of the
reports should be agreed upon by the holders of such rights. When in doubt,
disassemblies and execution traces should not be collected and should be omitted
from the report, even though these are valuable for pin-pointing the vulnerability
location. A less invasive approach is offered by research focusing on observed
vulnerable behaviour.

3.3. Reporting related observations

The efficiency of the life-cycle is built up on the vulnerability report. The report has
two conflicting requirements: completeness and compactness. It should provide
sufficient details to support other activities in the process. A structured vulnerability
report template is presented in appendix A.

FIRST teams such as the AusCERT and CERT-CC may be able to act as coordinators
[8] [9] [10]. Response teams are familiar with different operating environments and
vulnerability history and have comprehensive vendor contacts. These attributes
provide a solid foundation for impact assessment, identification of repairers and
initiation of communication with them. The CERT-CC charter promotes contact with
them in cases requiring vulnerability coordination [11].

When a report is received by the vendors it may be directly entered in bug, problem or
escalation databases. An unfiltered database entry would contain sensitive information
such as potential exploitation details. Such a disclosure may be more likely if front-
line support is used as the reporting channel, or if an automatic bug report filing
system exists. These databases may be public, i.e. distributed to customers as a
service or offered as a resource for a joint development effort. Care should be taken
that no information not intended for publication is entered in such databases. Database
clean-up after a leakage may be difficult or impossible due to factors such as CDROM
distribution of the database snapshots.

In an attempt to trim down the number of messages exchanged, the vulnerability
report may include coordination details, remarks and background information relevant
for the parties directly involved in the vulnerability process but irrelevant for the
actual repair process. Information that should not be carved in stone in the databases
of the repairers should be clearly marked as such, see Appendix A for an example
convention.

A software package may be popular but still remain unmaintained for a long time, e.g.
the popular email package Message Handler (MH). Locating the proper repairers for
cases involving unmaintained packages may prove to be non-trivial, as the originators
or coordinators may have to assume the repairing role and face the problem of
integrating the patch into package distribution. In cases where a proper vendor with
the capability for generating a patch and integrating it into future releases can be
identified, the repairing role should be assumed by such an entity.

A demonstration of exploitability may be required before the repairers can commence
patching. Customising the exploit details, such as the padding, for yet another buffer
overflow type vulnerability may appear to be a waste of effort, but it may be
necessary for satisfactory completion of the case life-cycle. Public disclosures where
the details are left as "an exercise for the reader" may result in insufficient pressure
for patch generation but a disclosure sufficient for potential abusers to complete the
exploit. Practice appears to indicate that most potential vulnerabilities disclosed
publicly will attract a corresponding exploit in the long run.

Standard support channels provided by vendors may prove to be tedious for
vulnerability reports. Front-line support may require pay per call for customers
without a service contract, and some vendors may only take very limited WWW-form
bug reports. Some vendors have adopted a policy of not requiring a support contract
for security cases. FIRST teams may prove to be invaluable for tackling this problem,
due to their existing contacts.

The technique of proposing a specific fix in the report may backfire. The repairers
may directly adopt the proposed fix in order to meet the customer’s desires,
incorporate it blindly and verify it against the specific exploit, while a slight variant of
the exploit would still result in penetration.

3.4. Observations on acknowledgements

A lack of feedback from vulnerability reproduction failures can cause considerable
grief. Feedback should be supplied if the reproduction fails. The originators should
attempt to identify the cause of the failure and to reiterate the technical details. An
understanding of reproduction failures may reveal valuable work-around information.

3.5. Repair failures

Patch production can be a complicated and time-consuming process for the repairers.
Factors such as multiple platforms, revisions, regression testing, available resources,
interface change requirements and cost-benefit issues are apt to give rise to delays,
and may even halt the mending activity. The originator should be provided with
reasonable feedback on progress.

The patch quality may not meet the expectations of the originating party. The patch
may address the problem at a specific line of source code, but a new vulnerable
condition may occur a bit further down. This highly localised approach to patching
has been called the +/- 4-lines syndrome. Also, different teams may be responsible for
maintaining current releases and for integrating the fix into future releases. The
people with the least security experience or with insufficient resources for a more
thorough study may well be occupying maintenance positions.

The patch generation process may be excessively customer driven. A customer has to
demand the fix and has to accept it before it is published. This may lead to delays in
patch generation and may leave lingering problems in the case of communication
breakdowns.

3.6. Observations on patch release

The originators may seek to establish the initial communication with minimal
overheads, and thus provide only some tentative vulnerability details, with a deeper
analysis to come. If a patch is released without granting the originating party a chance
to verify the patch, it may lead to further vulnerability reports that could have been
handled in the same case and with less overheads.

Some vulnerabilities may prove to be too extensive to patch in existing releases, and a
work-around has to suffice until the next release. Problematic change requests include
ones where public interfaces have to be altered in a way that interferes with their
compatibility.

3.7. Observations on advisory generation

An understanding of the underlying priorities, mechanics and procedures in the
advisory process will help the originators and repairers to collect and provide relevant
information. McMillan (1996) covers such aspects from the coordinator perspective
[3].

Draft advisories should be clearly marked as such, in case the material leaks. At the
draft stage the advisory may contain unconfirmed and incomplete details that may
cause confusions and inconvenience if released prematurely. Such an event occurred
recently in the IBM vs. ssh case [12].

3.8. Observations on advisory release

A patch release may be comparable to a public disclosure. Descriptive "readme" files
accompanying the patch may reveal explicit vulnerability details. Patch access is
sufficient for reverse engineering of the actual failings, whereas comparison of the
vulnerable version with the patched version may reveal the details. When release of
an advisory is delayed relative to the patch there may be confusion as to whether the
patch really addresses an already known problem or not.

The proposed metric of choosing the greater value of patch delay and advisory delay
for measuring the curing delay may appear to be a harsh requirement. However, a leak
of information, and the uncertainty arising from the bare patch release justify the strict
line. When the proper patches are available, there is a need for an accompanying
advisory. This may consist of just a short statement about the security nature of the
patches with reference to related public disclosures. The most concise form observed
has been an entry on the recommended security patch list.

Without a corresponding advisory, the patch may not reach sufficient penetration
amongst customers. Even security-conscious customers may be reluctant to change
working systems if the security aspect is not stated clearly enough. Patch deployment
may be problematic, and the release of vulnerability information should be weighted
up as a risk, especially when widely deployed and mostly unadministrated client
system software is in question. Patch deployment tools may be non-existent or
lacking.

Minimalistic patches should be provided for customers who do not wish to upgrade a
whole release or to install new functionality bundled with the patch. Cases where a
security patch has added new functionality, later identified as a source of new
vulnerabilities, are not unheard of.

4. Discussion

The complete tracking data available for cases originating from the OUSPG support
the proposed model. The cases unambiguously passed the check-points and the actors
involved in the process assumed the roles identified here. The model served as a
communication vehicle, brought discipline to vulnerability case management and
gave a basis for systematic vulnerability data collection.

Although the proposed model and related discussion may appear overly concerned
with performance and formalism, this may be justified. A disciplined approach could
lessen the high risks involved if the vulnerabilities endanger vital portions of the
infrastructure. The process of counter-balancing the cost of addressing the discovered
vulnerabilities against the potential loss may appear to be a complicated one and
should be based on solid risk management. Both threats and vulnerabilities are
required for a risk to materialise. Geer (1998) presents an excellent discussion of risk
management in security research and cost-benefit-risk trade-off [13].

Public disclosures are constantly taking place and penetration testing is being
conducted by uncoordinated parties. Tiger teams carrying out systematic testing and
handling vulnerability cases professionally should be able to reduce considerably the
risk exposure caused by public disclosures. Such teams would represent a shift from
reactive to proactive vulnerability work.

The motivation for vulnerability tiger team work could stem from a combination of
academic, customer and vendor perspectives. Examples of academic vulnerability
work could encompass the accumulation of vulnerability knowledge and aim beyond
the penetrate-and-patch paradigm. The customer approach could include acceptance
testing of commercial off-the-shelf products and other 3rd party software. The vendor
perspective could emphasise measures for preventing the introduction of
vulnerabilities into software products.

Repairers may be faced with the dilemma of accumulating vulnerability knowledge.
Originators may be experts in the vulnerability domain and have resources that
concentrate on technical aspects, whereas the parties in the repairing role may be
product engineers with minimal resources for familiarising themselves with up-to-
date vulnerability knowledge. Such perils may be cast aside by vendors that have tiger
teams of their own.

Legal concerns such as the WIPO treaty may in the long run hinder software
penetration testing conducted by vendor-independent parties by restricting activities
considered to constitute reverse engineering [14]. The limitations imposed by laws
and license agreements should be considered in the context of vulnerability tiger team
activity.

Impact assessment is a complicated aspect of the vulnerability life-cycle. Each actor

must perform his own impact assessment for internal go/no-go decisions, although
some media-sensitive cases may call for public impact assessment, which can best be
presented by a party independent of the originating and repairing roles.

As well as being sources of public impact assessment, independent coordinators such
as the FIRST teams have an important role in the vulnerability process. The
identification of multi-vendor cases, the building of test laboratories, the reduction of
communication overheads and the improvement of process efficiency are important
tasks that are best conducted by vendor-independent parties. If economically feasible,
these teams are encouraged to undertake and continue the vulnerability work.

4.1. Future work

The concept of forming vendor-independent vulnerability tiger teams should be
evaluated and a model should be developed for their operation. A call for such action
on public collaboration was voiced by Eric Allman (pers. comm. 1999).

The lack of widely deployed tools to support software penetration testing should be
addressed, and the possibility of using licensing terms for such tools to enforce a
grace period before public disclosure should be discussed in order to ensure the
involvement of the repairing party.

Vulnerability tracking information should be elaborated, together with a classification
of the vulnerabilities. Several classification schemes and taxonomies have been
proposed by the research community, and a comprehensive study of vulnerability
taxonomies has been conducted (Krsul 1998) [4]. Combining the performance
statistics with vulnerability attributes would provide a basis for a more profound
analysis of the case properties. Attributes could include characteristics such as the
amount of communication, in terms of the number of emails required, impact
classification and the technical type of the vulnerability.

Reflections on the case study should be collected into a concise and easily available
document, which should provide a few rules of thumb for actors entering the
vulnerability scene for the first time.

5. Conclusions

This study was designed to support the vulnerability process by encouraging a
disciplined approach and by highlighting experiences gained by a vulnerability tiger
team. An undisciplined process may be hard to understand, control and improve.
Regardless of its apparent bias, this study aims to provide insights into the
vulnerability process and proposes a systematic approach. Support is provided for
vendor security contacts, both current and new members of the FIRST, and other
interested parties, such as the media. The material presented here is mainly for the
benefit of those entering the scene as the originating parties of vulnerability reports,
and it should also fuel further discussion about this particular area of security work.

A terminology and a life-cycle model with primitive metrics were also presented
above, a case study carried out and observations on it recorded. The process was
found to be complicated but manageable.

The applicability of these findings is limited by the focus on the role of vulnerability
tiger teams. Complicated aspects of vendor and security organisation involvement in
the vulnerability process were abstracted by means of a black box approach. A further
constraint is placed on generalisation of the findings by the OUSPG-centric nature of
this discussion.

The observations emphasise the role of FIRST teams as coordinators and argue for the
promotion of a shift from undisciplined, reactive vulnerability work towards a
professional, proactive approach.

Further research on elaborating the case attributes is recommended in order to support
analysis of the properties and behaviour of different cases. Tools and documentation
to support preventive vulnerability work are called for. Actors involved in future
cases are encouraged to treat these fragile aspects with care.

6. Acknowledgements

The authors of this document wish to acknowledge Olivier Malhomme for collecting
the life-cycle data and for the modelling performed during his stay at the OUSPG.
Enormous gratitude is expressed to AusCERT, CERT-CC and the respective vendors
for their active role in resolving the cases originated by the OUSPG and for their
valuable feedback. The input from Rauli Kaksonen (VTT Electronics), Danny Smith
(Sun Microsystems) and Rob McMillan (AusCERT) is acknowledged. Last but not
least, ideas and experiences donated by the community at large, such as the
contributors to the full disclosure mailing list discussions, have been invaluable in the
preparation of this paper.

7. References

[1] OUSPG "Secure Programming Group, University of Oulu, Finland (OUSPG)"
<http://www.ee.oulu.fi/research/ouspg/> (Accessed 3 Feb, 1999)

[2] Sanchez, Miguel J. "Opening The Vendor Black Box". Opening talk in the vendor panel.
The 9th Annual FIRST Conference and Workshop on Computer Security Incident Handling
and Response, Bristol, England. June 23-27, 1997.

[3] McMillan, Rob. "Vulnerability/Advisory process". Workshop session. The 8th FIRST
Conference and Workshop on Computer Security Incident Handling and Response, Santa
Clara, California, United States. July 28-31, 1996.

[4] Krsul, Ivan. Software Vulnerability Analysis. PhD Thesis. Purdue University, Coast TR 98-
09. 1998.

[5] IEEE. ANSI/IEEE Standard Glossary of Software Engineering Terminology. IEEE Press.
1990.

[6] Netspace Project "BUGTRAQ@NETSPACE.ORG"
<http://www.lsoft.com/scripts/wl.exe?SL1=BUGTRAQ&H=NETSPACE.ORG>
(Accessed 23 Feb, 1999)

[7] Cooper, Russ, "NTBugtraq - NTBugtraq Home" <http://ntbugtraq.ntadvice.com/>
(Accessed 23 Feb, 1999)

[8] FIRST "Forum of Incident Response and Security Teams" <http://www.first.org>
(Accessed 13 Mar, 1999)

[9] AusCERT "Australian Computer Emergency Response Team" <http://www.auscert.org.au>
(Accessed 13 Mar, 1999)

[10] CERT-CC "Cert Coordination Center" <http://www.cert.org> (Accessed 13 Mar, 1999)

[11] Cert-CC "About the CERT(r) Coordination Center"
<http://www.cert.org/meet_cert/meetcertcc.html> (Accessed 23 Feb, 1999)

[12] SSH Communications Security Ltd. "SSH - Products - SSH Protocols - Rootshell attack"
<http://www.ssh.fi/sshprotocols2/rootshell.html> (Accessed 3 Feb, 1999)

[13] Geer, Daniel E. Driving the future. ;login: Security Special Issue. May 1998. pp.24-33.

[14] Electronic Frontier Foundation "Intellectual Property - WIPO Copyright & Database
Protection Proposals Archive" <http://www.eff.org/pub/Intellectual_property/WIPO/>
(Accessed 3 Feb, 1999)

APPENDIX A: A Vulnerability Reporting Form

This appendix describes the vulnerability reporting form adopted by the secure
programming group at the University of Oulu (OUSPG). The structure of the form is
illustrated section by section, with accompanying comments.

The following shorthand notation is adopted:

• <ACTOR-ID> is used to denote the actor responsible for triggering the event.
Typical actors used by the OUSPG include: OUSPG, AusCERT, CERT-CC and
respective vendors.

• <CONTACT> is used to denote the contact details for the actors involved in the
vulnerability case. This is typically the email address of the party involved.

• <COUNT> is used to denote a quantity, e.g. the number of emails exchanged
during the process of resolving a vulnerability case.

• <DATE> is used to denote the timestamp of an event, a checkpoint in the
vulnerability process, in the format YYYYMMDD. For example, 19990124
represents 24th January 1999.

• <DESC> is used to denote a short free-form description of the entry or the title
of a related document.

• <STATE> can be either PENDING, OPEN or CLOSED. Ideally this should
denote the status of the vulnerability case by identifying the current stage in the
process.

• <TRACKING#> is used to denote the case identifier for tracking purposes.
OUSPG, AusCERT and CERT-CC, for example, use their own tracking
numbers, and respective vendors may have one or more tracking identifiers in
the form of service call numbers, escalation numbers or bug identifiers.

• The symbol [*] at the end of a line is used to denote repetition (N = 1). Fields
marked with this symbol may appear once or several times in order to supply all
relevant information, e.g. when several bug identifiers have been assigned by
different vendors.

Completeness of the information entered in certain sections is promoted by check-box
type input lists covering most typical entries. For brevity, some check-box lists have
been collapsed into sample entries. Some formatting aimed at improving readability
has been removed in order to save space.

A.1: Title information

The title section introduces the critical information at the top of the document. A
unique vulnerability case identifier and list of recipients for the vulnerability report
are included.

 University of Oulu Secure Programming Group
 Vulnerability Reporting Form (V1.3)

 OUSPG#: <TRACKING#> <DESC>
 Distribution: <CONTACT> [*]

A.2: Preface

The preface contains information that should not be entered in persistent databases
such as those kept by vendors. This may include sensitive material about 3rd party
vulnerabilities or merely personal remarks. All such information is collected here and
clearly marked in order to facilitate safe and easy data entry by recipients.

0. Preface [please omit from persistent databases]
 <DESC> [*]

A.3: Tracking information

Initial tracking information is included in the report as background material and as a
reminder of the vulnerability process check-point structure. The tracking information
should be updated later in a separate database. Most date-based events may contain
several entries and for multiple events the earliest appropriate date is used in the
statistics.

1. OUSPG tracking Information
 OUSPG#: <TRACKING#>
 CERT#: <TRACKING#> [<ACTOR-ID>] [*]
 BugID#: <TRACKING#> [<ACTOR-ID>] [*]

 Advisory: <DESC> [<ACTOR-ID>] [*]

 Discovered: <DATE> [<ACTOR-ID>] [*]
 Verified: <DATE> [<ACTOR-ID>] [*]
 Reported: <DATE> [<ACTOR-ID>] [*]
 Acknowledged: <DATE> [<ACTOR-ID>] [*]
 Fix available: <DATE> [<ACTOR-ID>] [*]
 Public disclosure: <DATE> [<ACTOR-ID>] [*]
 Public exploit: <DATE> [<ACTOR-ID>] [*]
 Advisory date: <DATE> [<ACTOR-ID>] [*]

 Type: <DESC> [*]
 Category: <DESC> [*]

 Emails: <COUNT> [<DATE> <ACTOR-ID>] [*]
 State: <STATE>

A.4: Affected product and vendor

The affected product section aims to provide sufficient details to enable front-line
service or process coordinators to select the right vendor, product engineering or
escalation team to address the problem. The distribution and installation information
represents an attempt to provide a starting point for impact assessment conducted by
the actors in a coordinating role.

2. Affected Product
 2.1. Product or Package Name: <DESC>
 2.2. Short description of the affected product: <DESC>
 2.2. Vendor(s): <ACTOR-ID> [*]
 2.3. Distribution:

[] Bundled with the core OS
[] Purchased or acquired separately

 2.4. Installation:
[] Installed by default in a typical environment
[] Installed by default but has to be activated by admin
[] Installed and activated separately by admin
[] Installed and activated separately by an unprivileged user

 2.5. Product available for OS versions: <DESC> [*]

A.5: Suspected Impact and Vulnerability Type

The section on the suspected impact and vulnerability type gives further details to
support impact assessment and attempts to classify the vulnerability type.

3. Suspected Impact and Vulnerability Type
 3.1. Exploitability:

[] Local - by users with local accounts
[] Remote - over the network without an existing local

account
 3.2. Compromise:

[] Total compromise of a privileged account UID: <DESC>
[] Total compromise of an unprivileged account UID: <DESC>
If not a total compromise, please specify:
[] Confidentiality
[] Integrity
[] Availability (Denial of Service)

 3.3. Timing:
[] Exploitable at any time
[] Exploitable under specific conditions: <DESC>

 3.4. Vulnerability Category:
[] Buffer overflow
[] File manipulation
 [] Ability to create user-modifiable arbitrary files
 [] Ability to create unmodifiable arbitrary files
 [] Ability to truncate or remove arbitrary files
 [] Ability to change owner of arbitrary dirs or files
 [] Ability to change protection modes of arbitrary dirs or

files
 [] Other: <DESC>
[] Execution
[] Exploitation involves a time window of the race condition

type
[] Other: <DESC>

 3.5. Comment on impact: <DESC>

A.6: Tested Software

The tested software section is crucial in order to support reproduction of the
vulnerability by the coordinators and repairers. The environment, including platform
and operating system versions, should be described in sufficient detail, and the base
version and installed patches of the subject software used for verifying the
vulnerability should be described in detail. Since the same code may be shared

between different versions of the same or related products, already tested variants
should be identified. Since the same vulnerability may re-emerge or other complex
interrelationships with different vulnerabilities may exist, related bugs should be
identified.

4. Tested Software
 4.1. Test Environment: <DESC>
 4.2. Software Package Version: <DESC>
 4.3. Related patches
 [] No related patches were available to the author
 [] Patches for the product used during testing: <DESC>
 4.4. Other versions
 [] No other versions were tested
 [] Other versions found vulnerable: <DESC>
 [] Other versions found immune: <DESC>
 4.5. Possibly related known bugs: <DESC>

A.7: Vulnerable Code

The vulnerable code section is repeated for each of the vulnerabilities involved in the
case. Precise identification of the subjects, the method by which the vulnerability was
discovered and a description of the anomalies found and their location are desirable.

V1. Vulnerable Code #01 [*]
 V1.1. Binary identified to exhibit vulnerable behaviour: <DESC>
 V1.2. Binary Type
 [] setuid / setgid
 [] network (privileged) daemon
 [] local (privileged) daemon
 [] other
 V1.3. Functionality Description (’man’ abstract): <DESC>
 V1.A1. Anomaly #01 [*]
 V1.A1.1. Anomaly discovered in:
 [] Normal system operation
 [] Casual inspection
 [] Stress-test to find vulnerabilities
 [] Other: <DESC>
 V1.A1.2. Anomaly discovered via:
 [] Reported by a 3rd party:
 [] Suspicious filenames
 [] Unexpected crash
 [] ’sotruss’, ’truss’ or ’par’ output
 [] Debugger
 [] Custom Vulnerability Tool: <DESC>
 [] Other: <DESC>
 V1.A1.3. Anomaly description
 While running: <DESC>
 Tool output: <DESC>
 Explanation: <DESC>
 V1.A1.4. Anomaly location
 [] Unknown
 Stack-trace (’pstack’ - if available): <DESC>
 Process-map (’pmap’ - if available): <DESC>
 [] Vulnerable code is located inside the core executable
 [] Vulnerable code is located in a library: <DESC>
 V1.A1.5. Comment: <DESC>

 V1.5. Comment: <DESC>

A.8: Exploitation details

A proof of concept should be given for each anomaly by providing sufficient
exploitation details.

E1. Exploitation details - for V1.A1 [*]
 <DESC>

A.9: Work-around

If any work-arounds have been found by the originators, these should be identified
and their side-effects and efficiency assessed.

W1. Work-around [*]
 W1.1. Proposed work-around
 W1.1.1. Description
 [] Removal of setuid/setgid bit
 [] Other: <DESC>
 W1.1.2. Side-effects
 [] Unknown
 [] Other: <DESC>
 W1.1.3. Efficiency
 [] Unknown
 [] Prevents the presented exploit
 [] Other: <DESC>
 W1.1.4. Detailed description: <DESC>

A.10: Supplementary information

Supplementary information such as overall comments, sufficient and redundant
contact information and possible appendices or attachments are given at the end of the
report.

5. Comments: <DESC>
6. Contact information: <DESC>
7. Attachments: <DESC>

APPENDIX B: Summary of the Vulnerability Case Study

A summary of a subset of the vulnerability case database collected by the OUSPG is
presented in Table B.1. Selection criteria for the cases presented were the availability
of both a patch and an advisory. Dates given for different checkpoints are given in
accordance with the proposed model. Furthermore, a field with the number of emails
exchanged by AusCERT in a coordinating role has been added to illustrate enhanced
attribute collection. Since the cases are not comparable, all vendor references have
been abstracted in order to avoid "vendor bashing".

Table B.1 A summary of a subset of the OUSPG Vulnerability Database

O
U

SP
G

#

D
IS

C
O

V
E

R
Y

D
A

T
E

V
E

R
IF

IC
A

T
IO

N
D

A
T

E

R
E

P
O

R
T

IN
G

D
A

T
E

A
C

K
. D

A
T

E

P
A

T
C

H
 D

A
T

E

A
D

V
IS

O
R

Y
D

A
T

E

E
M

A
IL

S

0001 - 19960902 - - 19960710 19960724 ?
0002 - 19960816 - - 19961010 19960730 40
0003 - 19960816 - - 19960916 19960726 ?
0004 19960916 19960919 19960919 19960923 19970110 19970501 33
0005 - - - - 19961223 19960802 80
0006 19960807 19960808 19960808 19960809 19961010 19961015 80
0007 19961010 19961014 19961015 19961017 19961029 19961120 67
0008 19960817 19960819 19960819 19960819 19961223 19970224 33
0009 - - - - 19970401 19970324 ?
0010 - - - - 19970409 19970226 ?
0011 - - - - 19970511 19970213 28
0012 19970423 19970423 19970423 19970424 19970510 19970528 17
0013 19970301 19970301 19970304 19970305 19970421 19970604 31
0014 - - - - 19970530 19970604 ?
0015 19960528 19960528 19960601 19960808 19961010 19970625 128
0016 19961006 19961006 19961007 19961007 19970617 19970624 7
0017 - - - - 19970612 19970624 ?
0018 - - - - 19970702 19970715 ?
0019 - - - - 19970711 19970117 ?
0020 - - - - 19970718 19970730 ?
0021 - 19970520 - - 19970707 19970521 33
0022 - - - - 19970811 19970812 ?
0023 - - - - 19970716 19970825 ?
0024 - - - - 19970428 19970820 ?
0025 19960903 19960905 19960905 19960906 19970813 19970917 7
0026 19970520 19970523 19970523 19970523 19971006 19971028 4
0027 - - - - 19970826 19971203 17
0028 19960818 19960818 19960819 19960819 19970113 19980121 20

