
Oulu University Secure Programming Group (2002)

Software Considered Harmful:
Why Software is Insecure

Content © by OUSPG 2002

Art © by Origion 1999

-XKD�5|QLQJ
,QIRWHFK 2XOX�DQG�'HSDUWPHQW�RI�

(OHFWULFDO�(QJLQHHULQJ
3�2�%R[�����

),1�������8QLYHUVLW\�RI�2XOX
)LQODQG

RXVSJ#HH�RXOX�IL
KWWS���ZZZ�HH�RXOX�IL�UHVHDUFK�RXVSJ

Oulu University Secure Programming Group (2002)

Motivation

: Software vulnerabilities prevail:
“Fragile and insecure software continues to be a major threat to

a society increasingly reliant on complex software systems.”
- Anup Ghosh [Risks Digest 21.30]

: A focal problem area is software implementation, which may introduce
potential for unanticipated and undesired program behaviour

: We have made some rather strong claims:
8 (A) Secure programming errors are systematic!

8 (B) Many vulnerabilities could be eliminated with low cost!

8 (C) Dynamic black-box testing would be a decent first-aid!

Oulu University Secure Programming Group (2002)

Presentation outline

: Background and context
8 OUSPG
8 Security versus vulnerabilities

: Implementation level vulnerabilities
8 Specifically for embedded systems
8 Typical examples

8 Impact & Elimination

: Systematic approach to eliminate implementation level vulnerabilities:
PROTOS
8 PROTOS test suites

: PROTOS test suite: c06-snmpv1
: Conclusions: Lessons learned

Oulu University Secure Programming Group (2002)

OUSPG

: Active as an independent and academic research group in the
Computer Engineering Laboratory since summer 1996

: Our purpose:
“To study, evaluate and develop methods of implementing and

testing application and system software in order to prevent,
discover and eliminate implementation level security

vulnerabilities in a pro-active fashion.
Our focus is on implementation level security issues and

software security testing.”

Oulu University Secure Programming Group (2002)

: The total security of the release is the product of the specification,
design, implementation and testing performed in the software process

1. Specification
2. Design

3. Implementation
4. Testing

5. Maintenance/Use

Implementation & testing

Oulu University Secure Programming Group (2002)

Security Development

: Distribution of effort in development

Specification

Design

Implementation

Testing

Maintenance

Oulu University Secure Programming Group (2002)

Security Endangered by Vulnerabilities

: InfoSec vulnerabilities endanger (CIA):
8 Confidentiality, Integrity and/or Availability of information

: Security may have Safety implications
: InfoSec vulnerability could be caused by:

8 Software failure
8 Misconfiguration

8 Human or procedural error

: What threatens our InfoSec:
8 Spontaneous combustion

7Hardware and software reliability
7Natural disasters

8 Malicious activity (who we prepare for)

7Pranksters, Script kiddies, Terrorists, Professionals ...

Oulu University Secure Programming Group (2002)

Vulnerability Reality Check

: Security is not the Holy Grail:
8 Address and understand risks first
8 Risk arithmetics [T * V = R]:

7 0 * V = 0 (no threats equals no risks)

7T * 0 = 0 (no vulnerabilities equals no risks)

: Risk is impossible to assess without possibility of measuring the
vulnerability and threat

: Reactive or Proactive approach to the risk

THREAT * VULNERABILITY = RISK

Oulu University Secure Programming Group (2002)

Embedded devices: new ground for vulnerabilities

: Features from workstation computers and low-end wireless terminals are
integrated in embedded systems
8 Modern embedded systems have operating systems and open interfaces

FreeBSD
Linux-variants
Palm
Symbian
EPOC
Cisco IOS
...

Oulu University Secure Programming Group (2002)

Nature of embedded systems

: Differ from traditional computer systems
8 No hard disk (EEPROM, flash memory)
8 Weak software development tools

8 Some differences between Low-end embedded devices, PDAs and
Workstation computers

> 1000Fully windowed56kbit/s - 1Gbit/s128MB - 64GBWS

240Semi-windowed9.6kbit/s - 11Mbit/s8MB - 64MBPDA

30Fixed1kbit/s - 43.2kbit/s> 256 kBLow-end

MIPSUIData transfer rateRAMType

Oulu University Secure Programming Group (2002)

Implementation level vulnerabilities

: Embedded systems have a new problem of very limited amount of
memory
8 Primitive memory management

: Components that process external input can have implementation level
vulnerabilities
8 Cause system to fail, either by crashing, entering a forever loop or just

stopping to accept input

: Programmers incorrectly assume that the data to be processed is of a
certain form and it meets certain requirements
8 The length of strings is always limited to pre-defined value, length values are

always correct and the data is always well-formed

Oulu University Secure Programming Group (2002)

Flaws 1/2

: Buffer overflows
8 The memory reserved for a buffer or a variable can be exceeded and the

program can write outside this memory (in the stack or in the heap)

8 Most common vulnerabilities, very common in low-level languages

: Memory allocation bombs
8 Embedded systems usually have very light weight memory management

in their operating systems: Processes may share the same memory space
and the memory allocation function of the operating system could wait
until a block big enough is free or fail instantly if a memory block big
enough is not available.

: Recursive parsers
8 Embedded systems usually have a rather small stack, where registers

and function call return addresses are saved. This will cause recursive
parsers to fail, if it is possible to force it to do a deep level of recursion.

Oulu University Secure Programming Group (2002)

Flaws 2/2

: Signed indices or lengths
8 Values used in table look ups and length comparisons should be

unsigned. However, programmers are often using signed data types.
Negative indices and lengths are sure to cause problems.

: Format string vulnerabilities
8 Caused by incorrect usage of printf()-style functions
8 Fairly common and serious flaw

: Missing checks for missing elements
8 An application receiving information from the parser might crash due to a

missing mandatory element it expects to be always present. This might
also result in accessing illegal memory areas.

: Too small data types might cause an infinite loop due to roll-over
: Missing integer boundary value checks

8 Missing a check could result in eg. reading data located after the end of a
table, thus resulting in access violation (denial of service)

Oulu University Secure Programming Group (2002)

Failures

: As a flawed system receives faulty input, a failure might occur

Denial of serviceToo small data types

Denial of serviceMissing check from missing elements

Execute arbitrary codeFormat string

Execute arbitrary code
(if causes buffer overflow)

Signed index or length

Read from illegal memory spaceMissing integer boundary value check

Corrupt memory outside reserved stackRecursive parser

Wait forever / Write arbitrary data to
memory starting from address 0x00000000

Malloc bomb

Execute arbitrary codeBuffer overflow

Failure modeType

The most serious failures for flaw types

Oulu University Secure Programming Group (2002)

Impact for embedded system 1/2

: Currently no publicly available exploits that would execute arbitrary
code in any embedded system with wireless connectivity targeted to
consumers

: To write a clean stack-based buffer overflow exploit that makes the
victim system to execute arbitrary code requires at least the following
knowledge:
1. Instruction set of the target system with encoding rules

2. Knowledge on how to crash the target system due to buffer overflow

3. Decent knowledge of memory map of the target system. This requires
knowledge of where arbitrary code will be inserted and how to be able to
jump there.

Oulu University Secure Programming Group (2002)

Impact for embedded system 2/2

: Patch deployment
8 It is nearly impossible for the consumers to update the devices themselves
8 If an embedded product gets mass-exploited, software upgrades to fix the

vulnerability are required
8 The only feasible way to upgrade the software is to go to the nearest service

point which offers upgrading service

8 The cost of mass-upgrading consumer electronics is high

: Another approach is to add a filter to the network infrastructure which
drops malicious PDUs
8 Extra cost for service providers or operators

8 Might decrease the network performance

Oulu University Secure Programming Group (2002)

Methods for vulnerability elimination 1/2

: Vulnerability elimination is a process where vulnerabilities are
searched from a software component using testing or other activities
and the problems found are removed

: Manual reading of the source code
: Static analysis
: Manual testing

Oulu University Secure Programming Group (2002)

Methods for vulnerability elimination 2/2

: Manual reading of the source code
8 Inspection

8 Code audits

: Static analysis
8 Tools to examine the source code for security weaknesses: Flawfinder,

RATS, ITS4

8 Tools produce false positives (and do not cover all flaws)

: Manual testing
8 In vulnerability elimination, test cases are used for robustness testing

8 Typical test cases for robustness testing try to prove that the system
does not tolerate exceptional input

8 Test cases can be grouped to testgroups and further to test suites

Oulu University Secure Programming Group (2002)

Searching for the process Grail to reduce
vulnerability

: Bug prevention and elimination methods in the software development
process (by B. Beizer)
8 Thorough analysis
8 Prototypes

8 Analytical models

8 Formal methods
8 Inspections

: Awareness: skills in secure programming and safety engineering
: Testing is the means for discovering the bugs that persist after these

Oulu University Secure Programming Group (2002)

Searching for the technical Grail to reduce
vulnerability

: Alternatives for educating the engineers:
8 Safer libraries
8 Better compilers and languages (e.g. Java)

8 Operating System (kernel) solutions

: Methods behind them:
8 Bounds checking / strong typing (run/compile time)

8 Non-executable stack, stack guarding techniques

8 Sandboxing and managed code
8 Code signing (You will know who to blame? ;)

: Deployment? Adaptation? Completeness?
8 There will still be room for a safety net provided by testing

Oulu University Secure Programming Group (2002)

Testing the Security of Protocol Implementations

: Protocols are used for communication between software functions, modules,
components and packages, or even between the software and the user.

: Information security is constantly endangered by errors in the contemporary
protocol implementations.

: The PROTOS project will research different approaches of testing
implementations of protocols using black-box (i.e. functional) testing methods.
8 The goal is to support pro-active elimination of faults with information security

implications.
8 Awareness in these issues is promoted.
8 Methods are developed to support customer driven evaluation and acceptance

testing of implementations.
8 Improving the security robustness of products is attempted through supporting the

development process.
8 Vendors are informed of found vulnerabilities.

: Results are public, except for the bug reports and demonstration exploits

Oulu University Secure Programming Group (2002)

PROTOS - "the goal"

: Despite existence of TTCN and others, vulnerabilities were constantly found
: Testing framework

8 a skeletal structure designed to support or enclose something - Webster

: Testing platform (a.k.a. scripting platform)
8 (Mil.) (a) solid ground on which artillery pieces are mounted ... (b) a metal stand

or base attached to certain type of artillery pieces - Webster

: At least we learn the protocols ... ;)

Oulu University Secure Programming Group (2002)

PROTOS

: Security Testing of Protocol Implementations
: Three-year (1998-2001) project in close cooperation with VTT
: Results:

8 A novel (mini-simulation) vulnerability testing method developed

8 Several papers and test suites published
8 Spin-off company Codenomicon Ltd

Oulu University Secure Programming Group (2002)

PROTOS
- Framework & Platform

Provocation
Knowledge

Test
Generator

Injector

Instrument

Test
Analyzer

Protocol
Specification

has

gives
feedback to

Exploit

Failure

Subject

makes
possible to

create
threats
security

of

feeds

feeds test cases to

metrics is
collected by

Fault

ProtoScope

causes

is detected
by

Fault
Information

produces

metrics is
analysed by

Oulu University Secure Programming Group (2002)

Our approach - in a nutshell

Today, thousands of gifted and patient, but uncoordinated monkeys are pounding different
products in order to reveal vulnerabilities.

Think of us as rather dumb monkeys using a monkey-machine and systematic methodology
to eliminate the most trivial ones.

Visual by
http://www.PDImages.com

Oulu University Secure Programming Group (2002)

[Embedded & Telephony]

[Infrastucture &
Management]

[Server & Infrastructure]

[Server & Telephony]

[Home & Desktop]

LDAP Database

WAP Gateway
WAP Terminal

HTTP Client

SNMP

Networks

Oulu University Secure Programming Group (2002)

Test-suite summary

12 (12 tested)29516 / 24100118 / 100snmpv1

6 (8 tested)1264993ldapv3

5 (12 tested)3966115http-reply

10 (10 tested)103384wap-wmlc

7 (7 tested)423639wap-wsp-request

Failed productsTest casesTest groupsTest-suite

Oulu University Secure Programming Group (2002)

Recent PROTOS Test-Suite: c06-snmpv1

: CERT® Advisory CA-2002-03 Multiple Vulnerabilities in Many
Implementations of the Simple Network Management Protocol (SNMP)
8 http://www.cert.org/advisories/CA-2002-03.html
8 Couple of man months to develop

8 Several man months to coordinate

8 As of May 2002:
7Over 200 vendors informed
7~140 vendors have responded publicly
7~100 vendors had affected (vulnerable) products

8 New vendor statements keep pouring into the advisory

Oulu University Secure Programming Group (2002)

c06-snmpv1: Impact

: The Simple Network Management Protocol (SNMP) is the most popular
protocol in use to manage networked devices. SNMP runs on a multitude
of devices and operating systems, including, but not limited to:
8 Core Network Devices (Routers, Switches, Hubs, Bridges, and Wireless

Network Access Points)

8 Consumer Broadband Network Devices (Cable Modems and DSL Modems)
8 Consumer Electronic Devices (Cameras and Image Scanners)

8 Networked Office Equipment (Printers, Copiers, and FAX Machines)

8 Network and Systems Management/Diagnostic Frameworks (Network
Sniffers and Network Analyzers)

8 Networked Medical Equipment (Imaging Units and Oscilloscopes)
8 Manufacturing and Processing Equipment

: Affected vendors include Cisco, Novell, Sun, IBM, Microsoft, 3Com,
Nokia, Stonesoft, Xerox, Compaq and Dell

[http ://www.cert.org/advisories/CA-2002-03.html]

Oulu University Secure Programming Group (2002)

Quotes on c06-snmpv1

: “If the box is still running, and still responding to SNMP after the test
suite completes, you pass. If the box crashes, reboots, or bursts into
flames, you fail.” [snmp-forum -mailinglist]

: "The University of Oulu […] SNMP vulnerability warning. My advice:
Find out what the university's security team will investigate next and
turn it off in your environment before the team releases its next
report.“ [Computerworld]

Oulu University Secure Programming Group (2002)

Test-suite vs. bug hunters

: "… Imagine if FTP was assumed to be free of exploits and somebody
dumped a tool on the Internet that demonstrated all the discovered
vulnerabilities all at once." [snmpv1]

: "X will deliver the patch (fixed 19 bugs) ..." [ldapv3]

: The test-suites do not discover just one, but a set of vulnerabilities in the
interface

Oulu University Secure Programming Group (2002)

Surprising findings in sub-components

: "Very interesting. We were extremely careful, but there was a deeply
embedded support routine that was not doing proper bounds checking on
the host portion of the URL." [wap-wsp-request]

: Even with careful software development, portions that were outside the
process can contain failures

: Also software implemented in Java were shown to have buffer overflows in
the native code sections

Oulu University Secure Programming Group (2002)

Surprising return packets

: "The most serious problem (from a security point of view) might cause the
gateway to transmit some of its memory contents as an HTTP header name
to the HTTP server, though you may not have noticed it doing that." [wap-
wsp-request]

: Sometimes the software does not fail in noticeable form, but just returns
some (confidential?) data or even memory structures to the requester

Oulu University Secure Programming Group (2002)

Test reproduction

: "It is always good to receive reports on the performance of our products,
especially when they provide details on how to reproduce problems." [wap-
wsp-request]

: Test-suites provide the vendor the means for assessing the quality of the
product themselves

Oulu University Secure Programming Group (2002)

Regression testing

: "I believe this alert will do wonders for improving general security in LDAP
implementations." [ldapv3]

: If integrated to the software development process, the test-suites have a
chance of ‘raising the bar’ in the software products

: The most trivial errors are easily discovered and eliminated

Oulu University Secure Programming Group (2002)

Code reuse: bugs are in the hiding

: "[...] I loaded the oldest backup tape I could find and read, which was from
early 1991, and some of these vulnerabilities were present then […] these
vulnerabilities have been silently present for over a decade and they are
ubiquitous […]" [snmpv1]

: A bug in software can be in the hiding, and be copied into new instances
and versions of the software

Oulu University Secure Programming Group (2002)

Motivation for quality improvement

: "I am disappointed in X for not even testing for these vulnerabilities until
pressure was put on them through resellers and for not publicly announcing
it so that administrators are made aware." [ldapv3]

: Public pressure to reliability and security issues increases

Oulu University Secure Programming Group (2002)

Product comparisons

: "I was wondering if you are going to post your results anywhere for us to
look through? We would be interested to see how we compared to the
other products you have been testing." [wap-wsp-request]

: Both the vendors themselves and the customers lack the means of
comparing product quality between products of different vendors

Oulu University Secure Programming Group (2002)

Conclusions: Lessons learned

: Security should be inheritant in software
: Security is, by its nature, risk analysis
: Death-Zones were apparent in PROTOS test-suites

8 Several products had problems in exactly same categories

7E.g. String table index handling in wap-wmlc and proxy authentication in
http-reply were rather error prone

: Decoder problems are abundant
: Real diversity is not produced by developing different implementation with

same toolkits, but by using different tools and paradigms

: Embedded systems are becoming similar to conventional WS computers
8 Formerly closed systems will be used in open context (IP networks etc.)
8 Vulnerabilities will emerge due to immature software culture

8 Consumer electronics will have security problems

