
Research Plan
PROTOS Protocol Genome Project

The Search for Information Technology DNA
DRAFT��� ����� � �	

Aki Helin
Joachim Viide
Timo Hyart

Marko Laakso
Juha Röning

19th November 2004

Abstract

While we depend on computer networks in our daily lives, the programs we
use communicate via a plethora of often incorrectly implemented protocols. Our
previous experiments suggest, that there are structural similarities - protocol genes
- shared between currently used protocols. The theoreticaltools for finding these
genes are out there - both structure extraction and protocols have gotten their fair
share of research. However, they have yet to be combined to find genes from
the sea of protocols. The purpose of this project is to develop a methodology to
find the genes and present protocols using them. The collected gene pool gives a
fresh perspective into many traffic related problems, and a way to look at the ‘big
picture’ giving a radical perspective to the protocol pandemonium.

1

Contents

1 Research plan 3
1.1 Introduction . 3
1.2 Aims . 4
1.3 Risks . 5
1.4 Preliminary Work . 5

1.4.1 A Case Study: Infer . 6
1.4.2 Another Case Study: Regexper 6
1.4.3 A Prototype: Functional genes 7

1.5 Tasks . 7
1.5.1 State of the Art . 8
1.5.2 Prototyping . 8
1.5.3 Testing . 8
1.5.4 Management . 8

1.6 Schedule . 9
1.7 Cost Estimate and Funding . 9
1.8 Background Information . 10

1.8.1 Computer Engineering Laboratory 10
1.8.2 OUSPG . 10

2

1 Research plan

1.1 Introduction

“After a brisk, promising start, the dark ages fell upon the Internet. A number of people
were solving the same set of problems, usually with poor results. This caused a grow-
ing pile of less than optimal standards and programmes. One particularly troublesome
area was that of protocols. While the rest of humanity was starting to think computers
might do a pretty good job at doing something useful, programmers still found it fash-
ionable to write their own buggy ad hoc parsers to solve problems that already had
been solved. Essentially they were reinventing the same wheels over and over again.

Meanwhile people called ‘biologists’ had started developing efficient methods for
digging out bits of DNA doing similar things. They had decided to call these similar bits
‘genes’. The genes they found made it easy (well, at least easier) to compare species,
find out DNA sequences causing different weaknesses, and create horrible mutated
organisms.

Some programmers, too, had tried to compare protocols, find out their weak spots,
and create horrible mutated PDUs (protocol data units). So,easing the tasks by mim-
icking the biologists - figuring out similarities between protocols and calling them
genes - wasn’t too far fetched. Still nobody did so. For 40 years, fear, uncertainty
and doubt prevailed.”1

Intuition based on our previous experiments with creating horrible mutated PDUs
suggests, that there are structural similarities in currently used protocols.[1] When
looking at a large set of protocol definitions, abstracting out the similarities makes
the overall definitions simpler without losing informationcontent, not unlike compres-
sion. Although possibility of using a scheme similar to lossy compression should not be
overlooked. When this process is started from definitions ina concise formal form, and
iterated many times there will be a set of primitives capableof describing the syntax of
the initial protocols.

We will regard these contained structures as ‘genes’ of the protocols. This makes
the genome of a protocol a highly domain-specific description of the protocol’s struc-
tural content. From now on protocol descriptions formed from these genes will be
called ‘g-expressions’.

Basic tools for finding the genes are out there. Both structure extraction and proto-
cols have gotten their fair share of research, but they have yet to be combined to find
similarities from several protocols. Previous studies on protocol analysis have concen-
trated mainly on individual protocols and their state models. Prior work on structural
analysis has concentrated on extracting only syntax from datasets, ignoring all the se-
mantics. Moreover, the focus has been on developing general, all-around solutions for
all problem domains (eg. extracting structure from naturallanguage or music).[2] It is
a noble pursuit, but not a particularily feasible one for ourenvisioned application sce-
narios, if we prefer living long enough to reap the results. In our strategy, specialising
in protocols helps to keep the system simple enough to be practical. At the same time,

1Pers. comm. of the project group in the initial project planning phase.

3

analysing a number of similar protocols in parallel helps tokeep the project going - at
each initial step there must be at least one clear structure to handle.

The gene analogy can be taken further once the gene pool is sufficiently well popu-
lated. It is important to grasp the limitations of the analogy, but it is not mere wordplay
either, and can give fresh perspective to the protocol analysis. Are there lethal genes
- gene sequences particularly prone to implementation errors? Can mutant PDUs be
separated from valid traffic? Is it possible to found relatedprotocols by examining their
genes? And why not use results from the actual gene research field, eg. algorithms for
DNA sequencing, matching and classification?

The purpose of this project is to develop a methodology to extract protocol genes
and present protocols using them. The collected gene pool gives a way to look at the
‘big picture’ of the sea of current protocols. As the work proceeds the methodology
will be abstracted and applied iteratively, each iterationbuilding on the experiences
from previous ones. Some of the work will be carried out manually, by analysing large
amounts of standards and specifications, but also by prototyping activity that will apply
the theory into practical scenarios, such as:

� Identifying weak genes, i.e. constructs prone to implementation flaws.

� Automatic structural mutation (protocol mutation engine).

� Assessment of structural mutation coverage.

� Identifying mutations (a form of structural IDS).

� Structure-aided ‘diff’ (comparison of two instances).

� Parser contracts (“I am hereby designed to handle this, protect me from every-
thing else.”) and canonisation to a standard form.

This approach helps us verify that the results will have actual practical value, from our
slightly information security inclined perspective.

1.2 Aims

The Protocol Genome Project aims to:

� Develop a method to identify protocol genes from protocol specifications and
PDUs and collect them and their characteristics into a database.

� Develop a notation for presenting PDUs as sequences of thesebuilding blocks.

� Build tools for the tasks mentioned above, eg. genome extractor for both known
and unknown protocols.

These aims appear to be along the same lines with Cisco’s Critical Infrastructure
Assurance Group (CIAG) project wishlist item ‘Automated Arbitrary Protocol Reverse
Engineering’:

4

“Develop a general-purpose tool for analyzing and describing arbitrary
protocols based on a packet capture file. This tool would provide a proba-
ble description of any protocol with a particular benefit in describing pre-
viously unknown protocols.”[3]

1.3 Risks
� The worst case scenario is that extraction of a useful gene pool fails. If there

are not enough similarities in protocols, the gene pool might grow too much
and the benefits would be lost. Should this be the case, the focus of the project
would probably shift towards heuristic structure inference techniques. However,
at least one of us believes that the human kind has only been able to create a
limited number of protocol genes.

� A team without proper background could easily spend a few years reinventing
parts of formal language theory and basic parsing techniques. The classic and
contemporary works will be constantly reviewed during the project.

� Even is succesful, the project might remain as a curiosity ifthe g-expressions
and their underlying formalism become too complex. We will try to keep the
g-expressions and underlying system simple.

� There might not be enough resources (CPU, personnel etc.) tocreate g-expressions
for sufficiently many protocols. By keeping the down complexity of g-expressions
and underlying system the risk can be mitigated.

1.4 Preliminary Work

There are many possibilites as to how and what kind of information the genes carry.
Naturally the definition of a g-expression depends on the definition of genes, so we
have intentionally been a bit vague on that. We are going to write small prototypes
for different models to test their properties in practice, before nailing down a specific
choice. In addition to the primary project results we would like to release a buch of
these and other small applications with a brief documentation.

In our preliminary work we have identified two essential problems the genes should
solve. The first problem is leakage of semantics to syntax. Protocols could fairly
easily be processed using existing tools for handling syntactic problems, like checking
whether a packet follows a simple grammar, if there were not certain structures that are
usually found from the semantics side, like evaluating 4 bytes as a signed little endian
integer and using it to define the length of something.

Another problem is how to handle association. When a gene is added to a g-
expression, it’s surroundings may affect it’s behavior. Wehave separated different gene
models into 0-, 1- and n-systems based on the amount of implicit or explicit association.
In the 0-system a gene always works the same, like a piece of regular expression. The
1-system allows a gene to look what it’s immediate neighbours are and the n-system al-
lows each gene to use any information about the whole g-expression. Functional genes

5

are a variation of a n-system. We are also planning a logic based prototype to model a
0-system.

There are a number of approaches that could be applied in parallel to manual gene
sequencing. Methods for finding structural similarities have been developed in areas
such as compression, gene sequencing, algorithmic information theory and artificial in-
telligence. Formal grammars, which have been used extensively in bioinformatics [5],
natural language processing[6] and computer science, would be one interesting base for
building gene sequences, since they are already used for similar tasks in the real world,
and there would be a natural way to extend the system to handleprobabilistic analysis
and constraints while the system still remains more human understandable than a cor-
responding neural network. Training of grammars and other systems manually and by
supervised machine learning could prove to be useful for identification purposes.

Another useful track might be using various simple figerprinting methods for opti-
mizations. Bit and byte distributions, magic numbers in payloads, cheap submatches
and other similar techniques could together prove to be an efficient basis for protocol
identification even by themselves.

1.4.1 A Case Study: Infer

During the preliminary stages of the project we built a prototype structure inference
prototype program called infer, which is essentially a naive implementation of the
Sequitur[2] grammar inference algorithm. It reads a sequence of bytes from a file
and generates a grammar that describes that byte sequence. Below is a small exam-
ple transcript of a Scheme session using the program. The filesmall.txt is loaded and
analyzed. After processing a description of the structure is printed. In this case the
grammar states that the whole text (root node) consists of two equivalent pieces of text,
which consist of two lines where either abba or poro occurs twice.

> (infer "small.txt")
inferring structure from text {

abbaabba
poroporo
abbaabba
poroporo

}
processing: ************ done.
inferred structure:

$root = $3 $3
$1 = a b b a
$2 = p o r o
$3 = $1 $1 \n $2 $2 \n

1.4.2 Another Case Study: Regexper

Another structure inference program developed during pre-project phase is called Reg-
exper. Regexper simply takes a set of packets of arbitrary protocol data and creates a
sequence of regular expressions - regexps - that match all the packets in the set. Any
incoming packet belonging to the same protocol should also be matched by the ex-
pressions, while each expression is more specific than a previous one. That is, the

6

expression contains less wild card elements (arbitrary data of arbitrary length) and
more elements of some known quality (constant values or arbitrary data with constant
length). Thus, the first expressions in the sequence match more packets not belonging
to the protocol than the latter ones.

The created regular expression shows rudimentary structure in the data: constant
headers, data delimiters, magic values etc. This can be usedas a good starting point
in spotting some more advanced structural elements, the likes of checksums or length
fields, as they usually have a defined length.

As a file format can be thought as a protocol, files sharing the same format have
been good test input for the program. Below is the first regular expression the program
dug from 23 GIF image files:

GIF87a.{1}\^C.{1}\^B.{1}\000\000\000\000\000\ß\ß\ß. *\,\000\000\000\000.{1}\^C.{1
}\^B\000\^B\þ\<8C>\<8F>\l’\Ë\í\^O\ č\<9C>\t’\Ú\<8B>\ş\Þ\ij\û\^O\<86>\âH\<96>\æ\<89>\
ę\ê\Ê\ű\î\^K.{2}L\Œ\ö\<8D>\ç\ú\Î\œ\þ\^O\^L\
\<87>.{3}\<88>L*\<97>\Ì\ę\ó\
\<8D>J\ ğ\Ô.{2}\<8A>\Íj\ů\Ü\ ő\œ\^K\^N\<8B>.*\Œ.*\
ì\ű.{3}\Ë\ç\ô\ž\ý\<8E>\Ï.{3}\¿\ß\^O\^X\(8.*\È.*\Ø. *\è.*\)9IYi.*\Ù.*\é\ù.*\
.*\:JZjz.*\<8A>.*\ž\Ê\Ú\ê\ú.*\
.*\;K\[k\{.*\ż.*\Ë\Û\ë.{4}\<L\\.*\ ň.*\ij\Ì\Ü.*\ì.*\-\=M.{2}\}\<8D>\<9D>\ .*\¡.*\í
\ý\^M\^^.{3}\^n\~\<8E>.*\<9E>.*\Î.*\SS.*\þ.*\ż.*\þ .*\‘.*\þ.*\Î.*\þ.*\<.*\þ.*\<99>
.*\þ.*\ ě.*\þ.*\þ.*\ë.*\Û.*\þ.*\Ï.*\þ.*\^?.*\^?.*\<83>.*\<8 5>.*\<87>.*\<88>.*\
<8A>.*\<8C>.*\ ĺ.*\þ.*\<95>.*\<89>.*\<9A>.*\<9A>.*\þ.*\ą.*\d’.*\þ .*\ł.*\ł.*\ ň.*\þ.
K.\ż.*\þ.*\¿.*\£.*\Â.*\þ.*\<8C>.*\Ì.*\Ì.*\Ë.*\þ. *\<9D>.*\Í.*\Ý.*\þ.*\Ý.*\þ.*\é
.*\î.*\þ.*\õ.*\þ.*\000.*\þ.*\).*\þ.*\Â.*\þ.*6.*\þ.* \].*\þ.*\".*\þ.*\d’.*\þ.*V.*\þ
.*\þ.*\ä.*\þ.*\þ.*\Ï.*0.*\þ.*\^Q.*\^Q.*\þ.*R.*\ò.*\ /.*\þ.*S.*\?.*\^T.*\þ.*U.*u.*
\þ.*l.*6.*\þ.*w.*7.*\þ.*\<8F>.*Y.*\ź.*y.*\:.*\;.*\ ij.*\ü.*\ü.*\ü.*\=.*\;.*

An eye trained to the ways of regexps may see that even the firstiteration finds some
structural information: the magic identifier string (“GIF87a”) and most of the header.
Coincidentally - and a bit ironically - the GIFs used are woodspectrum images which
our neighbouring group working on image pattern recognition have used in completely
different viewpoint. The resulting regular expression canbe used in its current form
for filtering away most GIFs that are not wood spectrum imagesfrom the same source.
The system currently finds expressions that exactly match the training data. Adding
probabilities would result in a system that closely resembles hidden markov models.

1.4.3 A Prototype: Functional genes

Functional genes are a prototype to test the n-systems. We have an implementation of
the system that has been tested in practice to handle traffic and other content processing.
The system is described in a separate document.

1.5 Tasks

The project consists of four main tasks, engaged partially in parallel. The first task,
State-of-the-Art, consists of all supporting research of the field and providing the theo-
retical basis of the research. In the second task,Prototyping, the tools for other tasks are
iteratively improved. Improvements are based on the feedback from State-of-the-Art
andTesting. In the third task,Testing, the methodology is developed and experimented.
Managementtakes care of day-to-day project management tasks and coordinates doc-
umentation.

7

1.5.1 State of the Art

The main purpose of this task is keeping up to date with current research on the field,
and to support the other tasks by providing them background information. One in-
triguing prospect is researching methods developed originally for gene research and
hijacking them to our context. This task also acts as a channel to distill the gems of the
research to the outside world.

1.5.2 Prototyping

In this task, both the theoretical protocol gene model is developed and the prototypes
of tools aiding the research are designed and implemented, based on the theory from
State-of-the-Artand feedback fromTesting. Commercial off the shelf components are
used to build the infrastructure. The prototype tools will be used inTestingtask to
verify the developed methodology in practice.

The manual protocol gene pool inference follows these steps:

1. Dissect an initial set of protocols that have practical value and are easy to anal-
yse. Basic IP protocols or especially file formats may turn out to be useful for
bootstrapping the gene pool.

2. Derive a set of primitives/genes.

3. Repeat the first step with new knowledge, until a sufficientgene bucket is ob-
tained.

4. Extend the protocol set to several simple protocols. Apply and extend gene pool
as needed. Be prepared to accept some sort of enumerable/parameterised genes.

5. Same as 4. but with more complex protocols. Support some more structural
changes. Call the gene descriptions g-expressions for historical compatibility.

6. � Examine the properties of the language and its expressions.
� Examine protocol family connections in terms of their g-expressions, prefer-

ably graphically.
� Examine the possibilities of protocol identification giveng-expressions.
� Examine the relationships with common vulnerabilities andapplications to

making automated structural mutations.
� Examine possibilities of deriving accepting/filtering programs from g-expressions.

1.5.3 Testing

In this task, theory fromState-of-the-Artand tools fromPrototypingare applied to
practice. Conclusions regarding the usability of the methodology are drawn. Feedback
is provided mainly forPrototyping.

1.5.4 Management

This task includes traditional project management and document co-ordination.

8

1.6 Schedule

The project starts tentatively on 2004-07-01 and lasts for three years. An iterative
process model will be utilised. In this kind of process, draft deliverables are produced
reasonably fast and they are refined through whole project. This model has been used
successfully in the context of the PROTOS project since 1998.

1.7 Cost Estimate and Funding

The cost estimate and their distribution presented in Table1 is based on known salaries
and calculated personnel resources. The project takes three years, total of 108 (3x36)
man-months. A full three year commitment from all funding partners is crucial for the
successful completion of the project. This is because we expect results to be moderate
in the beginning and to improve over each iteration.

Cost 2004 2005 2006 2007 Total
Personnel salaries, 36mm/year 45000 90000 90000 45000 270000
Side expenses (multiplier 2.00) 45000 90000 90000 45000 270000
Equipment and travels 10000 20000 20000 10000 60000
Total 100000 200000 200000 100000 600000

Table 1: Cost estimate (euros) 2004-2007

The side costs include social security benefits and other expenses for the university.
The total personnel expenses (salaries plus side expenses)are based on the salaries
multiplied by a multiplier the university assigns to the project. Multiplier 2.00 assumes
the university considers this project as basic research. The final judgement will be
made based on the restrictions set by the funding parties, the rule of the thumb being
that stricter restrictions mean a greater multiplier.

Some of the analysis related to the research can be expected to be quite CPU inten-
sive. The costs of equipment and travels are calculated to be10% of the total project
budget.

Initial funding negotiations with UK National Infrastructure Security Co-ordination
Centre (NISCC)[4] are currently underway, Cisco Critical Infrastructure Assurance
Group (CIAG) has been contacted and Microsoft Research willbe contacted shortly.

Project personnel consists of the following people:

� Juha Röning, Ph.D., University of Oulu (responsible director)

� Aki Helin, University of Oulu (project manager)

� Timo Hyart, University of Oulu

� Joachim Viide, University of Oulu

9

1.8 Background Information

1.8.1 Computer Engineering Laboratory

The Oulu University Computer Engineering Laboratory is responsible for education
in computer engineering, embedded systems and software engineering. The curricu-
lum of the laboratory includes basic courses in computer andsoftware engineering and
advanced courses on operating systems, embedded system development, computer ar-
chitectures, quality engineering, real-time object-oriented programming and telecom-
munication software.

Research of the laboratory is carried by the Intelligent Systems Group (ISG) and
concentrates on mobile and context-aware systems, data mining methods and secure
programming. The goal of the research is to develop both industrial applications and
components for an intelligent environment that gives versatile services for its inhabi-
tants. The application areas are diverse, including among others: health monitoring,
modeling of the steel making process, personal robots, mobility aids for the elderly,
smart living room, and security testing of programs.

1.8.2 OUSPG

Inside the Intelligent Systems Group, the Oulu University Secure Programming Group
(OUSPG) has kept its focus on implementation level securityissues and software se-
curity testing. Software implementation may introduce potential for unanticipated and
undesired program behaviour, e.g. an intruder can exploit the vulnerability to compro-
mise the computer system. The group has researched different approaches to testing
implementations of protocols using black-box (i.e. functional) testing methods in PRO-
TOS project, the vulnerability process work, and systematic methodologies to identify
information security related vulnerabilities in a complexmulti-modal network scenario
in Frontier project.

References

[1] PROTOS - Security Testing of Protocol Implementations.Oulu Uni-
versity Security Programming Group (OUSPG) PROTOS projectURL:
http://www.ee.oulu.fi/research/ouspg/protos/

[2] Nevill-Manning, C.G. (1996) Inferring Sequential Structure. Ph.D. thesis, Depart-
ment of Computer Science, University of Waikato, New Zealand.

[3] Critical Infrastructure Assurance Group (CIAG). CIAG Research Project Wishlist.
URL: http://www.cisco.com/security_services/ciag/initiatives/research/wishlist.html

[4] UK National Infrastructure Security Co-ordination Centre (NISCC). URL:
http://www.niscc.gov.uk/

[5] Yasubumi Sakakibara, Michael Brown, Rebecca C. Underwood, I. Saira Mian,
David Haussler (1993) Stochastic Context-Free Grammars for Modeling RNA,
Proceedings of the 27th Hawaii International Conference onSystem Sciences

10

[6] Miles Osborne, Ted Briscoe Learning Stochastic Categorial Grammars (1997),
CoNLL97: Computational Natural Language Learning

11

