
Model Inference Guided Random Testing of Programs with
Complex Input DomainsRevision : 1:44

Aki Helin, Joachim Viide, Marko Laakso, Juha Röning
University of Oulu, Computer Engineering Laboratory

Linnanmaa BOX 4500, FIN-90014 University of Oulu, Finland

ouspg@ee.oulu.fi

ABSTRACTThe obvious need for networked software to survive mali-
ious input has promoted robustness testing where ex
ep-tional input is either manually or randomly designed withthe hope of
at
hing the vulnerabilities prior to wide ex-ploitation. Manual test design is subje
t to human errors,the language of undo
umented proprietary proto
ols is outof the rea
h of the designer, and even with do
umentationla
k of human resour
es may be
ome a bottlene
k. Con-versely, blind random fuzzing is hindered by the impossi-bility of addressing in�nite input spa
e in �nite time. As a
ompromise between pure randomness and human design wehave developed an intelligent random testing methodology.The te
hnique is based on generating testing material forprograms by mutating an automati
ally inferred stru
turalmodel of their proper input data. Our te
hnique is appli
a-ble to programs that pro
ess input, provided that samplesof the input data are available. The te
hnique
an be usedin a bla
k box manner to automati
ally produ
e test
ases.It
an also be extended with domain spe
i�
 knowledge ina natural way. We argue that our approa
h strikes a pra
-ti
al
ompromise between
ompletely random and stru
tureaware test
ase generation te
hniques.
1. INTRODUCTIONSe
urity vulnerabilities infest information te
hnology. Theprograms we use pro
ess information from various sour
esand use a plethora of en
odings and proto
ols. Input pro-
essing routines are among the most exposed areas of a pro-gram, whi
h is why they should be espe
ially reliable. This israrely the
ase. The obvious need to survive mali
ious inputhas drawn attention to robustness testing where ex
eptionalinput is either manually or randomly designed with the hopeof
at
hing the vulnerabilities prior to wide exploitation.The
lassi
 work by Miller et al. demonstrated the e�e
tive-ness of random testing for dis
losing se
urity
riti
al inputparsing errors.[18, 17℄ The PROTOS proje
t[2℄ developed anapproa
h to systemati
ally test implementations of proto-
ols in a bla
k-box fashion. PROTOS
lassi
 approa
h pro-du
ed several highly e�e
tive test suites. The most famousof them so far being the SNMP suite, whi
h a�e
ted overone hundred vendors and raised
onsiderable interest e.g.from the
riti
al infrastru
ture prote
tion perspe
tive.[11,3℄ Lately fuzzing has be
ome a buzzword in information se-
urity. Many re
ent publi
 dis
losures of vulnerabilities have

been based on various degrees of fuzzing.Our previous work in robustness testing of proto
ol imple-mentations has shown that manually designed stru
turalmutations and ex
eptional element values are an eÆ
ientway to expose errors in networked software. Unfortunatelymanual test design is subje
t to the same human errors asthe original programming task of the tested software. Fur-thermore, the languages of undo
umented propriatery pro-to
ols are out of the rea
h for human test designers, and evenwith do
umentation the la
k of human resour
es may
omea bottlene
k. Blind random fuzzing on the other hand ishindered by the impossibility of addressing an in�nite inputspa
e in �nite time.During the PROTOS proje
t the suspi
ion emerged thatthere
ould be a fairly small set of stru
tural building blo
ksthat most real-life proto
ols a
tually use. A
orollary wouldbe that many proto
ol implementations,
onsidering theirgeneral quality,
ould share the same kinds of vulnerabili-ties. And indeed, the test
ase designers soon began to spotwhat they
alled death zones from the proto
ol spe
i�
a-tions; similar parts between spe
i�
ations for di�erent pro-to
ols whi
h seemed to be systemati
ally implemented par-ti
ularly sloppily. Eronen and Laakso have identi�ed somepossible reasons for this.[9℄The hypotheti
al stru
tural building blo
ks were
alled pro-to
ol genes, and based on this idea the PROTOS Proto
olGenome Proje
t was initiated in 2003. The main motiva-tion was to study the existen
e of proto
ol genes, and to�nd ways to identify and exploit them. The real ulteriormotive was to get rid of the most time
onsuming phases ofPROTOS
lassi
 testing. The goal was to essentially pro-du
e a te
hnique and a general tool to automati
ally
reatee�e
tive test
ases from arbitrary valid data examples, whi
hwould in the long run
omplement the manual test designapproa
h.The resulting te
hniques
an be seen as instan
e of what we
all model based fuzzing. The idea is to automati
ally builda model des
ribing the stru
ture of some given training ma-terial, and use the model to generate similar data to be usedas robustness testing material. By using a higher level de-s
ription of the data, the fuzzer is able to make
hanges tostru
ture as well as the
ontent of some training material.

In the PROTOS
lassi
 approa
h the model is built man-ually, and in traditional random testing the model
an be
onsidered to be a trivial one.The approa
h
an be split to three main phases. Firstlythe
on
ept of a stru
ture is made
on
rete by sele
ting alanguage in whi
h to represent the models. Any inferredstru
ture will then be representable as an expression in the
hosen language. The se
ond phase is model inferen
e, thetask of whi
h is to build a meaningful or otherwise interest-ing des
ription of the training material. The last phase isusing the model, or possibly a mutated version of it, to pro-du
e data that resembles the training material. This data
an then be used to test the target programs.In this paper we des
ribe how these phases are implementedin one of our prototype tools, and dis
uss initial experien
eson the e�e
tiveness of the produ
ed test
ases when pittedagainst real life software. Finally we argue that our approa
hstrikes a pra
ti
al
ompromise between
ompletely randomand stru
ture aware test
ase generation te
hniques.
2. REPRESENTING GENESThe �rst task in building a random model based testingframework is sele
ting a knowledge representation system.The purpose of this system is to store the result of stru
-ture inferen
e. Sin
e the stru
ture inferen
e step is usually
omputationally
omplex, it is useful to have an externalor otherwise storable representation for the result, so thatit
an be saved and reused. The system should provide away to easily represent the kinds of stru
tures that will beinferred, along with means of pro
essing and using them.In many
ases the result
an simply be stored in an ad-ho
data stru
ture. However, a well-de�ned language may proveto be useful in stru
ture inferen
e and fuzzing. There aremany formal languages whi
h are suitable to this task. Inour
ase the requirement was, that the language should beable to easily de�ne the shared building blo
ks in pa
kets of
ommuni
ation proto
ols; the proto
ol genes.
2.1 Formal GrammarsOur �rst approa
h for expressing proto
ol genes was basedon formal grammars[10℄, namely the regular and
ontext-free subsets. These subsets of grammars are widely usedin form of regular expressions and BNF based syntax de�ni-tions. Many subsets of grammars have well known propertis,su
h as mat
hing
omplexities and te
hniques, asso
iatedautomata, normal forms and in some
ases inferring
om-plexities. They are an attra
tive stru
ture representationsystem, be
ause they
an be easily pro
essed symboli
ally,have
lean and simple semanti
s and
an des
ribe varioussynta
ti
 stru
tures eÆ
iently.One early prototype of ours,
alled RegExpert, produ
edin
rementally more pre
ise Unix-style regular expressionsfrom input data. Figure 1 shows a regular expression pro-du
ed from a bun
h of GIF images. An eye trained tothe ways of regexps may see that even the early prototype�nds some stru
tural information: the magi
 identi�er string(\GIF87a") and most of the header.11Coin
identally - and a bit ironi
ally - the GIFs used were

GIF87a.{1}\^C.{1}\^B.{1}\000\000\000\000\000\�\�\�.*\,\000\000\000\000.{1}\^C.{1}\^B\000\^B\ \<8C>\<8F>\l'\�E\��\^O\�
\<9C>\t'\�U\<8B>\�s\ \ij\û\^O\<86>\âH\<96>\�\<89>\ ,e\ê\Ê\u\�̂\^K.{2}L\�\�o\<8D>\�
\�u\Î\�\ \^O\^L<87>.{3}\<88>L*\<97>\�I\ ,e\�o<8D>J\�g\Ô.{2}\<8A>\�Ij\�u\�U\o\�\^K\^N\<8B>.*\�.*\��\u.{3}\�E\�
\ô\�z\�y\<8E>\�I.{3}\�\�\^O\^X\(8.*\�E.*\�.*\�e.*\)9IYi.*\�U.*\�e\�u.*\.*\:JZjz.*\<8A>.*\�z\Ê\�U\ê\�u.*\.*\;K\[k\{.*\z.*\�E\Û\�e.{4}\<L.*\�n.*\ij\�I\�U.*\��.*\-\=M.{2}\}\<8D>\<9D>\ .*\Æ.*\��\�y\^M\^^.{3}\^n\~\<8E>.*\<9E>.*\Î.*\SS.*\ .*\z.*\ .*\`.*\ .*\Î.*\ .*\<.*\ .*\<99>.*\ .*\�e.*\ .*\ .*\�e.*\Û.*\ .*\�I.*\ .*\^?.*\^?.*\<83>.*\<85>.*\<87>.*\<88>.*\<8A>.*\<8C>.*\�l.*\ .*\<95>.*\<89>.*\<9A>.*\<9A>.*\ .*\ ,a.*\d'.*\ .*\ l.*\ l.*\�n.*\ .*K.*\z.*\ .*\�.*\ .*\Â.*\ .*\<8C>.*\�I.*\�I.*\�E.*\ .*\<9D>.*\�I.*\�Y.*\ .*\�Y.*\ .*\�e.*\�̂.*\ .*\~o.*\ .*\000.*\ .*\).*\ .*\Â.*\ .*6.*\ .*\℄.*\ .*\".*\ .*\d'.*\ .*V.*\ .*\ .*\�a.*\ .*\ .*\�I.*0.*\ .*\^Q.*\^Q.*\ .*R.*\�o.*\/.*\ .*S.*\?.*\^T.*\ .*U.*u.*\ .*l.*6.*\ .*w.*7.*\ .*\<8F>.*Y.*\�z.*y.*\:.*\;.*\ij.*\�u.*\�u.*\�u.*\=.*\;.*Figure 1: A regular expression an early prototypeRegExpert produ
ed from GIF images.The downside of using grammars is that they
an not eas-ily represent many simple stru
tures used in proto
ols and�le formats. These stru
tures, su
h as length-payload pairsand
he
ksums,
an be
onsidered as leaks from semanti
s tosyntax. Creating de�nitions of them using grammars aloneis possible, but the resulting system would lose the simpli
-ity appeal. To this end, the grammar formalism is oftenextended with operations for handling other kinds of tasks.Attribute grammars[13℄ provide a well de�ned way of ex-tending grammars with semanti
s. A similar approa
h wasadopted in the former PROTOS
lassi
 model representa-tion system.
2.2 Functional GenesInstead of adding extensions to grammars, we de
ided to addgrammar-based operations as an extension to another sys-tem. Fun
tional genes is a small domain-spe
i�
 languagedeveloped at early phases of our proje
t. It provides a way tobuild de
larative stru
ture des
riptions by using grammar-style rules as well as purely fun
tional program
ode. Thelanguage
onsists of a small set of simple primitive opera-tions, from whi
h aggregate stru
tures
an be built. Thelanguage is implemented as a subset of the S
heme[12℄ pro-gramming language.A fun
tional gene is an expression obeying a simple gram-mar. Ea
h fun
tional gene de�nes a stru
ture in some givendata, and gives an interpretation of its meaning. The genes
an be pro
essed symboli
ally in the inferring phase, andlater they
an be evaluated for example to extended parsersor fuzzers of the spe
i�ed stru
ture.In addition to being useful as a language for storing interme-diate results of stru
ture inferen
e, manually written fun
-tional genes o�er a
onvenient way to express simple parsers,in whi
h
ase they are evaluated to fairly standard
odefor ba
ktra
king parsing fun
tions. Figure 2 shows a hand-written example fun
tional gene representing well formedIPv4 pa
kets. The gene is de�ned as a sequential stru
tureof �elds with di�erent bit widths. The interpretations ofwood spe
trum images whi
h our neighbouring group work-ing on image pattern re
ognition used in a
ompletely di�er-ent
ontext. The resulting regular expression worked, with-out modi�
ations, quite well for �ltering away most GIFsthat were not wood spe
trum images from the same sour
e.

(let-stru
ture((ip-version (integer 4))(header-length (integer 4))(servi
e-type byte)(total-length (integer 16))(identifi
ation (integer 16))(skip zero-bit)(DF-bit bit)(MF-bit bit)(fragment-offset (integer 13))(time-to-live byte)(proto
ol byte)(header-
he
ksum (integer 16))(sour
e-address word)(dest-address word)(options(repeat (- header-length 5) word))(payload(repeat(- total-length (* header-length 4)) byte)))payload)Figure 2: A fun
tional gene representing IPv4 pa
k-etsthese �elds
an be named and used in other parts of thede�nition. In the example, the de�nition begins by assign-ing the names ip-version and header-length to integer-interpretations of the �rst two 4 bit sequen
es some data.The names integer, byte and word refer to previously de-�ned or primitive fun
tional genes, whereas repeat is anoperation for
omposing joint stru
tural de�nitions. At theend of the stru
ture its �nal interpretation - in this
ase thepayload of an IPv4 pa
ket - is spe
i�ed.
3. MODEL INFERENCEOn
e a suitable knowledge representation system was
ho-sen, we
an pro
eed to infer stru
ture from the data. Thisis the model inferen
e step, whi
h is a tough nut to
ra
k.Ideally the program should be able reasonably to deal with
ommon �le formats, network proto
ols, as well as naturallanguage and weather data statisti
s.
3.1 General PrinciplesWe will assume that the training material
an be en
odedas an initial model, that is, an expression of the stru
turerepresentation language. In our fuzzing
ontext, the initialmodel des
ribes a set of �les
ontaining the valid programinputs. The stru
ture inferen
e step
an be spe
i�ed as thetask of �nding a more interesting model that does not
on-
i
t with the initial one. One approa
h would be to growa new model altogether, for example by using geneti
 pro-gramming te
hniques. We have mainly fo
used on applyingproperty-preserving transformations to the initial model. Inboth
ases the pro
ess,
on
eptually or in pra
ti
e,
onsistsof a rapidly expanding tree of possibly better models.An important subproblem is that of model sele
tion. Giventwo models, one should be able to de
ide whi
h of themis more interesting. One
ommon approa
h to solving this

problem is to use MDL (MinimumDes
ription Length) prin-
iple[19℄. It is often useful to equate learning, or inferring,stru
ture from some data with the ability to
ompress it.A good model will generally require less spa
e than the ini-tial one, sin
e it
an des
ribe redundan
y in data by usinghigher-level
on
epts. The MDL prin
iple uses the amountof information required to represent the model as the s
oringmethod. In other words, it provides a formalised version ofthe O

am's razor. One of the most useful properties of thisstrategy is its tenden
y to prote
t from over�tting a model.Even though this approa
h gives an intuitively sound de�ni-tion for a better model, the fa
t that the problem is nowequivalent with
ompression may not seem what was in-tended. However, assuming that one extends the modeldes
ription language with domain spe
i�
 knowledge, thes
ore of a model may bene�t from using the extensions. Amodel
andidate
an therefore be more interesting if it
andes
ribe data using the supplied ba
kground knowledge.Assuming these prin
iples, the task of writing a good modelinferen
e system would seem to be somewhat trivial; eitherenumerate all possible models in size order and �nish withthe �rst one that mat
hes the training data, or start withthe initial model and sear
h the best possible model deriv-able from it. Rather obviously both of these approa
hesrequire exponential time and spa
e in nontrivial
ases. Us-ing a turing-
omplete stru
ture representation system, su
has S
heme, �nding the optimal model is not solvable[8℄. Ifonly the model size is used as s
oring method, the problemis still equivalent with
omputing the Kolmogorov
omplex-ity[14℄ of the given data. Thus, one generally must resort toheuristi
s and make edu
ated guesses.
3.2 Functional Gene InferenceOur �rst prototype of a fun
tional gene inferen
e engine op-erates by sear
hing the
ontents of a model for o

urren
esof hand written fun
tional genes des
ribing
ommon proto-
ol stru
tures, su
h as null terminated strings and length-payload pairs. In this tool, the domain spe
i�
 knowledge
onsists these prede�ned stru
tures. The latter prototypesalso in
orporate sear
hing for shared
ontent in input data,namely maximal frequently o

urring substrings.The tool starts by
onstru
ting a trivial model from thetraining data sour
es. The model is then evolved using a re-
ursive divide and
onquer approa
h. The tool �rst sear
hesthe model for o

urren
es of the prede�ned stru
tures andfrequently o

urring substrings. A hand-written evaluationfun
tion, based on the MDL prin
iple, is used to sele
t themost interesting proposal at ea
h division step. After themost interesting path has been sele
ted, the model is parti-tioned around the
urrent �nding, and the surrounding partsare pro
essed re
ursively.When no more interesting stru
tures are found, the
onquer-ing phase begins. The smaller submodels are re
ombinedba
k into a
omplete model of the data. Some further modelsimpli�
ations are also applied while re
ombining. The in-tention is to build a model whi
h re
ognizes shared or oth-erwise interesting
ontents in training data, so that theymay be mutated, repeated, deleted and permuted instead ofsimply modifying their
ontents.

3.3 Implementation IssuesThe most diÆ
ult part of model inferen
e is keeping timeand spa
e
omplexities of ea
h step in a

eptable bounds. Ifsome expensive operation is to be performed frequently, itis often useful to make it faster by pre
omputing a suitabledata stru
ture. The intention is to represent the frequetlyneeded results stati
ally in memory, so that the result
anbe simply looked up.Algorithms and data stru
tures, whi
h may prove to be use-ful,
an be sear
hed from areas su
h as bioinformati
s[22,23℄, data
ompression[21℄ and arti�
ial intelligen
e[20, 4, 7℄.Indeed, for example the Proto
ol Informati
s Proje
t[1℄ hasapplied algorithms from bioinformati
s to reverse engineernetwork proto
ols.In our experien
e, suÆx trees[24℄ and suÆx arrays[16, 5,15℄ have been useful. On
e
onstru
ted, they allow parallelwalking of ea
h unique o

urren
e of a sequen
e of datain the model using simple
onstant- or logarithmi
 timelookups. SuÆx arrays are espe
ially attra
tive be
ause oftheir low memory overhead. In our
urrent prototypes fun
-tional genes and other te
hniques operate dire
tly on a suf-�x array
omputed from the input data. This speeds manyoperations
onsiderably while adding only a small
onstantmemory-overhead. In many
ases the suÆx array needs onlybe
onstru
ted on
e, sin
e the same ordering
an be reusedwhen the model
hanges.A fun
tional data stru
ture for model representation mayalso prove to be useful, sin
e it makes ba
ktra
king easy andallows automati
 sharing of
ontents between model gener-ations.
4. FUZZINGOn
e a model has been inferred, the generation of randomisedtest
ases, i.e. fuzzing, may �nally
ommen
e. This is afairly simple pro
edure
ompared to previous steps. Basi-
ally our prototype fuzzer takes a model expression, whi
hin our
ase is a fun
tional gene, and
ompiles it to a reverseparser, whi
h generates data based on requested stru
tureinstead of parsing it.The model, sin
e it gives some insight into the stru
ture ofthe
orre
t data, allows a fuzzer to make
hanges to higherlevel stru
tures as well as traditional
hanges to known
on-tents. Sin
e the inferred model usually builds generalisationsrather than rigidly de�ning only the training data, the in-ferred model
an generate more data than the initial one,where the the extra data
an be
onsidered fuzzed. How-ever, we have had most su

essful results by intentionallymutating the model itself. The model mutations
ontain forexample dupli
ation, removal, swapping and random alter-ation of fun
tional genes.Di�erent kinds of strategies in produ
ing data from the model
an be applied, depending on the desired goal. Making largesets of strongly mutated data, a strategy sometimes referredto as shotgun testing, is a good way to expose any suspi
iousbehavior. On the other hand making single point mutationsto original inputs is a good way to narrow down what ex-a
tly
auses a problem. In both
ases it is useful to storesome metadata des
ribing how ea
h fuzzed pie
e of data was

Figure 3: Some of the remotely haunting imagery ofthe 'Freak Show' gallery, produ
ed by fuzzing validGIF and JPEG images.
onstru
ted, in order to be able to examine it later on.
5. RESULTSWe have implemented and enhan
ed the des
ribed te
h-niques in a series of prototypes and have used them to gen-erate fuzzed test
ases for several �le formats. File formatswere
hosen as a good starting point for testing, be
ausethey share a lot of
ommon ground with proto
ols in termsof implementation. In the tests we used a
rude stru
ture in-feren
e strategy whi
h only �nds maximal shared
ontents,and
ombines them in the manner des
ribed above. We alsofo
used on visible and easily reprodu
ible failure modes anddid not in
lude any low level monitoring for more esoteri
and masked software failures. Nevertheless, this approa
hhas proven to be surprisingly e�e
tive and mali
ious. Inthe following, we will brie
y
ataloque some trials in feed-ing fuzzed data to real programs. However, we will not gointo spe
i�
s su
h as singling out tested software or test
asedetails.
5.1 Round 1: Image files (GIF and JPEG)The �rst two groups of test
ases that were a
tually fedto implementations were for the GIF and JPEG image for-mats. The fuzzing for ea
h format was done based on a fewhundred valid images randomly obtained from the internet.From these images we generated around 1000
ases for bothformats, whi
h we fed to several programs by hand.Amongst the test subje
ts were several popular web browserpa
kages on various platforms, most of whi
h we managed to
rash with several generated broken images. We then
on-stru
ted a HTML page gallery of some of the fuzzed pi
turesa�e
tionately
alled 'Freak Show' (Figure 3). Loading thepage
aused visibly erroneous program behaviour in testedbrowsers, in
ontrast to the page simply being rendered tos
reen with some visual glit
hes.

5.2 Round 2: Office packages (DOC, RTF and
XLS)Two groups of test
ases generated from valid DOC and RTFdo
uments and XLS spreadsheets proved to be e�e
tive aswell. The test
ases managed to
ause a wide range of visiblefailures in ea
h sofware pa
kage, from resour
e exhaustion toto
rashing and even lo
king up the entire operating system.

5.3 Round 3: Security software (multiple for-
mats)The latest development has in
luded the testing of se
uritysoftware solutions to see their rea
tions to fuzzed data. We
reated test
ases from several di�erent data formats, su
has exe
utable �les and RAR and ZIP
ompressed ar
hives.The
aused quirks were extremely interesting and wildlyimaginative. For instan
e, in one
ase feeding a fuzzed RARdata
aused a se
urity software solution to start ignoringall obvious se
urity threats it usually
at
hes. Meanwhilethe program
ontinued to present the impression there isnothing wrong with it.Naturally feeding the image and oÆ
e �les from earlier rounds
aused failures as well.

6. DISCUSSIONThe presented te
hnique has proven to be a surprisingly ef-fe
tive way of
reating test
ases
ausing repeatable visiblesoftware failures,
onsidering its la
k of any domain spe-
i�
 knowledge. Thus we argue that in
orporating modelinferen
e with random test generation has the potential toover
ome the ineÆ
ien
ies of both random testing and hand-made test suites, su
h as those of PROTOS
lassi
.Furthermore we postulate that the
ombination of man-ual test design and model inferen
e guided random testingshould be explored. The quality of the inferred model obvi-ously depends on the available data samples; if samples la
kin depth and diversity, then mu
h of the dormant parsingfun
tionality in software will be missed by the generated test
ases. Manual test design would result in
oarse partitioningof the input spa
e, from where the ma
hine may take over inorder to systemati
ally
run
h the �ne-grained details. Thisway the ill e�e
ts of tunnel vision and omissions as well hu-man errors may be alleviated in test design. Perhaps thiswill be a way to leap beyond the pesti
ide paradox as statedby Boris Beizer: \Every method you use to prevent or �ndbugs leaves a residue of subtler bugs against whi
h thosemethods are ine�e
tual."[6℄The most signi�
ant limitation of the des
ribed approa
h isits la
k of domain spe
i�
 knowledge. The means of express-ing, inferring and in
orporating external reasoning should bedeveloped further. A realisti
 tool would probably
ombineseveral independent model inferen
e te
hniques in a uni�edframework. A suÆ
iently powerful stru
ture des
ription lan-guage
ould be used as the
ommon denominator to glue theapproa
hes together.The design of our initial prototypes was biased towards be-ing able to generate e�e
tive testing material for a
ertain
lass of programs. Now that we have developed something

that has proven to be e�e
tive, work will also
ontiue to-wards general purpose model inferen
e and abuse. Ulti-mately we aim to mature this te
hnique into a test
asegeneration framework, whi
h would be similar to the oneprodu
ed in the earlier PROTOS proje
t, but easier andfaster to use. We are also planning on releasing full
edgedtest sets of fuzzed data in the manner established in thePROTOS proje
t.
7. CONCLUSIONSAn automati
ally inferred model
an be used as basis to gen-erate
orre
t looking data for program robustness testing.The te
hnique seems to be e�e
tive if the inferred modelssu

eeds in �nding meaningful stru
tures from the originaldata. The bottlene
k is usually in model
onstru
tion, whi
hrequires resour
es.Our testing te
hnique
an be applied to any sample inputto automati
ally produ
e test
ases in a bla
k box manner.The te
hnique
an also be extended in a natural mannerwith domain spe
i�
 knowledge that augments its eÆ
ien
y.We argue that our approa
h strikes a pra
ti
al
ompromisebetween
ompletely random and stru
ture aware test design,while it
an be used in
onjun
tion with these te
hniques to
omplement them.We believe that automati
 stru
ture analysis
an make ran-dom testing a viable option, be
ause a stru
tural modelallows a randomized fuzzer to generate more meaningful
hanges in robustess testing material. Our experien
es withsimple prototypes suggest that this approa
h is e�e
tive andshould be explored further.

8. REFERENCES[1℄ The proto
ol informati
s proje
t.http://www.baselineresear
h.net/PI/.[2℄ Protos - se
urity testing of proto
ol implementations.http://www.ee.oulu.fi/resear
h/ouspg/protos.[3℄ Protos test-suite:
06-snmpv1. http://www.ee.oulu.fi/resear
h/ouspg/protos/testing/
06/snmpv1/.[4℄ N. Abe. Feasible learnability of formal grammars andthe theory of natural language a
quisition. InPro
eedings of the 12th
onferen
e on Computationallinguisti
s, pages 1{6, Morristown, NJ, USA, 1988.Asso
iation for Computational Linguisti
s.[5℄ M. I. Abouelhoda, S. Kurtz, and E. Ohlebus
h. Theenhan
ed suÆx array and its appli
ations to genomeanalysis. In 2nd Workshop on Algorithms inBioinformati
s, LNCS, 2002. http://
iteseer.ist.psu.edu/abouelhoda02enhan
ed.html.[6℄ B. Beizer. Software Testing Te
hniques. John Wiley &Sons, In
., New York, USA, 1990.[7℄ S. Ben-David and M. Ja
ovi. On learning in the limitand non-uniform (&egr;,&dgr;)-learning. In COLT '93:Pro
eedings of the sixth annual
onferen
e onComputational learning theory, pages 209{217, NewYork, NY, USA, 1993. ACM Press.[8℄ G. J. Chaitin. The Limits of Mathemati
s.Springer-Verlag, 2003.[9℄ J. Eronen and M. Laakso. A
ase for proto
oldependen
y. In Pro
eedings of the First IEEEInternational Workshop on Criti
al Infrastru
tureProte
tion, Nov. 2005.http://www.ee.oulu.fi/resear
h/ouspg/protos/sota/matine/IWCIP2005-depen%den
y/.[10℄ J. E. Hop
roft and J. D. Ullman. Introdu
tion toAutomata Theory, Languages, and Computation.Addison-Wesley, Reading, Massa
husetts, 1979.[11℄ R. Kaksonen. A Fun
tional Method for AssessingProto
ol Implementation Se
urity. Te
hni
al Resear
hCentre of Finland (VTT), Espoo, Finland, 2001.Li
entiate thesis. http://www.ee.oulu.fi/resear
h/ouspg/protos/analysis/VTT2001-fun
tional%/.[12℄ R. Kelsey, W. Clinger, and J. Rees. Revised5 reporton the algorithmi
 language S
heme. ACM SIGPLANNoti
es, 33(9):26{76, 1998. html://
iteseer.ist.psu.edu/arti
le/kelsey98revised.html.[13℄ D. E. Knuth. Semanti
s of
ontext-free languages.Theory of Computing Systems, 2(2):127{145, 1968.http://dx.doi.org/10.1007/BF01692511.[14℄ A. Kolmogorov. Logi
al basis for information theoryand probability theory. IEEE Transa
tions onInformation Theory, 14(5):662{664, 1968.[15℄ N. J. Larsson and K. Sadakane. Faster suÆx sorting.Te
hni
al Report LU-CS-TR:99-214,LUNDFD6/(NFCS-3140)/1{20/(1999), Department ofComputer S
ien
e, Lund University, Sweden, May1999.

[16℄ U. Manber and G. Myers. SuÆx arrays: a new methodfor on-line string sear
hes. In SODA '90: Pro
eedingsof the �rst annual ACM-SIAM symposium on Dis
retealgorithms, pages 319{327, Philadelphia, PA, USA,1990. So
iety for Industrial and Applied Mathemati
s.[17℄ B. Miller, D. Koski, C. P. Lee, V. Maganty,R. Murthy, A. Natarajan, and J. Steidl. Fuzzrevisited: A re-examination of the reliability of UNIXutilities and servi
es. Te
hni
al report, 1995.[18℄ B. P. Miller, L. Fredriksen, and B. So. An empiri
alstudy of the reliability of UNIX utilities.Communi
ations of the Asso
iation for ComputingMa
hinery, 33(12):32{44, 1990.[19℄ J. Rissanen. Hypothesis sele
tion and testing by themdl prin
iple. Comput. J., 42(4):260{269, 1999.[20℄ S. Russell and P. Norvig. Arti�
ial Intelligen
e: AModern Approa
h. Prenti
e-Hall, Englewood Cli�s,NJ, 2nd edition edition, 2003.[21℄ K. Sadakane. A Fast Algorithm for Making SuÆxArrays and for Burrows-Wheeler Transformation. InPro
eedings of IEEE Data Compression Conferen
e(DCC'98), pages 129{138, Mar. 1998. http://
iteseer.ist.psu.edu/sadakane98fast.html.[22℄ Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian,K. Sj�olander, R. C. Underwood, and D. Haussler.Re
ent methods for RNA modeling using sto
hasti

ontext-free grammars. In Pro
eedings of the AsilomarConferen
e on Combinatorial Pattern Mat
hing, NewYork, NY, 1994. Springer-Verlag.[23℄ I. Salvador and J.-M. Bened��. Rna modeling by
ombining sto
hasti

ontext-free grammars andn-gram models.[24℄ E. Ukkonen. On-line
onstru
tion of suÆx trees.Algorithmi
a, 14(3):249{260, 1995.

