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ABSTRACT

The obvious need for networked software to survive mali-
cious input has promoted robustness testing where excep-
tional input is either manually or randomly designed with
the hope of catching the vulnerabilities prior to wide ex-
ploitation. Manual test design is subject to human errors,
the language of undocumented proprietary protocols is out
of the reach of the designer, and even with documentation
lack of human resources may become a bottleneck. Con-
versely, blind random fuzzing is hindered by the impossi-
bility of addressing infinite input space in finite time. As a
compromise between pure randomness and human design we
have developed an intelligent random testing methodology.
The technique is based on generating testing material for
programs by mutating an automatically inferred structural
model of their proper input data. Our technique is applica-
ble to programs that process input, provided that samples
of the input data are available. The technique can be used
in a black box manner to automatically produce test cases.
It can also be extended with domain specific knowledge in
a natural way. We argue that our approach strikes a prac-
tical compromise between completely random and structure
aware test case generation techniques.

1. INTRODUCTION

Security vulnerabilities infest information technology. The
programs we use process information from various sources
and use a plethora of encodings and protocols. Input pro-
cessing routines are among the most exposed areas of a pro-
gram, which is why they should be especially reliable. This is
rarely the case. The obvious need to survive malicious input
has drawn attention to robustness testing where exceptional
input is either manually or randomly designed with the hope
of catching the vulnerabilities prior to wide exploitation.

The classic work by Miller et al. demonstrated the effective-
ness of random testing for disclosing security critical input
parsing errors.[18, 17] The PROTOS project[2] developed an
approach to systematically test implementations of proto-
cols in a black-box fashion. PROTOS classic approach pro-
duced several highly effective test suites. The most famous
of them so far being the SNMP suite, which affected over
one hundred vendors and raised considerable interest e.g.
from the critical infrastructure protection perspective.[11,
3] Lately fuzzing has become a buzzword in information se-
curity. Many recent public disclosures of vulnerabilities have

been based on various degrees of fuzzing.

Our previous work in robustness testing of protocol imple-
mentations has shown that manually designed structural
mutations and exceptional element values are an efficient
way to expose errors in networked software. Unfortunately
manual test design is subject to the same human errors as
the original programming task of the tested software. Fur-
thermore, the languages of undocumented propriatery pro-
tocols are out of the reach for human test designers, and even
with documentation the lack of human resources may come
a bottleneck. Blind random fuzzing on the other hand is
hindered by the impossibility of addressing an infinite input
space in finite time.

During the PROTOS project the suspicion emerged that
there could be a fairly small set of structural building blocks
that most real-life protocols actually use. A corollary would
be that many protocol implementations, considering their
general quality, could share the same kinds of vulnerabili-
ties. And indeed, the test case designers soon began to spot
what they called death zones from the protocol specifica-
tions; similar parts between specifications for different pro-
tocols which seemed to be systematically implemented par-
ticularly sloppily. Eronen and Laakso have identified some
possible reasons for this.[9]

The hypothetical structural building blocks were called pro-
tocol genes, and based on this idea the PROTOS Protocol
Genome Project was initiated in 2003. The main motiva-
tion was to study the existence of protocol genes, and to
find ways to identify and exploit them. The real ulterior
motive was to get rid of the most time consuming phases of
PROTOS classic testing. The goal was to essentially pro-
duce a technique and a general tool to automatically create
effective test cases from arbitrary valid data examples, which
would in the long run complement the manual test design
approach.

The resulting techniques can be seen as instance of what we
call model based fuzzing. The idea is to automatically build
a model describing the structure of some given training ma-
terial, and use the model to generate similar data to be used
as robustness testing material. By using a higher level de-
scription of the data, the fuzzer is able to make changes to
structure as well as the content of some training material.
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In the PROTOS classic approach the model is built man-
ually, and in traditional random testing the model can be
considered to be a trivial one.

The approach can be split to three main phases. Firstly
the concept of a structure is made concrete by selecting a
language in which to represent the models. Any inferred
structure will then be representable as an expression in the
chosen language. The second phase is model inference, the
task of which is to build a meaningful or otherwise interest-
ing description of the training material. The last phase is
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using the model, or possibly a mutated version of it, to pro-
duce data that resembles the training material. This data
can then be used to test the target programs.

In this paper we describe how these phases are implemented
in one of our prototype tools, and discuss initial experiences
on the effectiveness of the produced test cases when pitted
against real life software. Finally we argue that our approach
strikes a practical compromise between completely random
and structure aware test case generation techniques.

2. REPRESENTING GENES

The first task in building a random model based testing
framework is selecting a knowledge representation system.
The purpose of this system is to store the result of struc-
ture inference. Since the structure inference step is usually
computationally complex, it is useful to have an external
or otherwise storable representation for the result, so that
it can be saved and reused. The system should provide a
way to easily represent the kinds of structures that will be
inferred, along with means of processing and using them.

In many cases the result can simply be stored in an ad-hoc
data structure. However, a well-defined language may prove
to be useful in structure inference and fuzzing. There are
many formal languages which are suitable to this task. In
our case the requirement was, that the language should be
able to easily define the shared building blocks in packets of
communication protocols; the protocol genes.

2.1 Formal Grammars

Our first approach for expressing protocol genes was based
on formal grammars[10], namely the regular and context-
free subsets. These subsets of grammars are widely used
in form of regular expressions and BNF based syntax defini-
tions. Many subsets of grammars have well known propertis,
such as matching complexities and techniques, associated
automata, normal forms and in some cases inferring com-
plexities. They are an attractive structure representation
system, because they can be easily processed symbolically,
have clean and simple semantics and can describe various
syntactic structures efficiently.

One early prototype of ours, called RegFEzpert, produced
incrementally more precise Unix-style regular expressions
from input data. Figure 1 shows a regular expression pro-
duced from a bunch of GIF images. An eye trained to
the ways of regexps may see that even the early prototype
finds some structural information: the magic identifier string
(“GIF87a”) and most of the header.!

! Coincidentally - and a bit ironically - the GIFs used were

\=.%\;.*

Figure 1: A regular expression an early prototype
RegExpert produced from GIF images.

The downside of using grammars is that they can not eas-
ily represent many simple structures used in protocols and
file formats. These structures, such as length-payload pairs
and checksums, can be considered as leaks from semantics to
syntax. Creating definitions of them using grammars alone
is possible, but the resulting system would lose the simplic-
ity appeal. To this end, the grammar formalism is often
extended with operations for handling other kinds of tasks.
Attribute grammars[13] provide a well defined way of ex-
tending grammars with semantics. A similar approach was
adopted in the former PROTOS classic model representa-
tion system.

2.2 Functional Genes

Instead of adding extensions to grammars, we decided to add
grammar-based operations as an extension to another sys-
tem. Functional genes is a small domain-specific language
developed at early phases of our project. It provides a way to
build declarative structure descriptions by using grammar-
style rules as well as purely functional program code. The
language consists of a small set of simple primitive opera-
tions, from which aggregate structures can be built. The
language is implemented as a subset of the Scheme[12] pro-
gramming language.

A functional gene is an expression obeying a simple gram-
mar. Each functional gene defines a structure in some given
data, and gives an interpretation of its meaning. The genes
can be processed symbolically in the inferring phase, and
later they can be evaluated for example to extended parsers
or fuzzers of the specified structure.

In addition to being useful as a language for storing interme-
diate results of structure inference, manually written func-
tional genes offer a convenient way to express simple parsers,
in which case they are evaluated to fairly standard code
for backtracking parsing functions. Figure 2 shows a hand-
written example functional gene representing well formed
IPv4 packets. The gene is defined as a sequential structure
of fields with different bit widths. The interpretations of

wood spectrum images which our neighbouring group work-
ing on image pattern recognition used in a completely differ-
ent context. The resulting regular expression worked, with-
out modifications, quite well for filtering away most GIF's
that were not wood spectrum images from the same source.



(let-structure
((ip-version (integer 4))
(header-length (integer 4))
(service-type byte)
(total-length (integer 16))
(identification (integer 16))
(skip zero-bit)
(DF-bit bit)
(MF-bit bit)
(fragment-offset (integer 13))
(time-to-live byte)
(protocol byte)
(header-checksum (integer 16))
(source-address word)
(dest-address word)
(options
(repeat (- header-length 5) word))
(payload
(repeat
(- total-length (* header-
length 4)) byte)))
payload)

Figure 2: A functional gene representing IPv4 pack-
ets

these fields can be named and used in other parts of the
definition. In the example, the definition begins by assign-
ing the names ip-version and header-length to integer-
interpretations of the first two 4 bit sequences some data.
The names integer, byte and word refer to previously de-
fined or primitive functional genes, whereas repeat is an
operation for composing joint structural definitions. At the
end of the structure its final interpretation - in this case the
payload of an IPv4 packet - is specified.

3. MODEL INFERENCE

Once a suitable knowledge representation system was cho-
sen, we can proceed to infer structure from the data. This
is the model inference step, which is a tough nut to crack.
Ideally the program should be able reasonably to deal with
common file formats, network protocols, as well as natural
language and weather data statistics.

3.1 General Principles

We will assume that the training material can be encoded
as an initial model, that is, an expression of the structure
representation language. In our fuzzing context, the initial
model describes a set of files containing the valid program
inputs. The structure inference step can be specified as the
task of finding a more interesting model that does not con-
flict with the initial one. One approach would be to grow
a new model altogether, for example by using genetic pro-
gramming techniques. We have mainly focused on applying
property-preserving transformations to the initial model. In
both cases the process, conceptually or in practice, consists
of a rapidly expanding tree of possibly better models.

An important subproblem is that of model selection. Given
two models, one should be able to decide which of them
is more interesting. One common approach to solving this

problem is to use MDL (Minimum Description Length) prin-
ciple[19]. It is often useful to equate learning, or inferring,
structure from some data with the ability to compress it.
A good model will generally require less space than the ini-
tial one, since it can describe redundancy in data by using
higher-level concepts. The MDL principle uses the amount
of information required to represent the model as the scoring
method. In other words, it provides a formalised version of
the Occam’s razor. One of the most useful properties of this
strategy is its tendency to protect from overfitting a model.

Even though this approach gives an intuitively sound defini-
tion for a better model, the fact that the problem is now
equivalent with compression may not seem what was in-
tended. However, assuming that one extends the model
description language with domain specific knowledge, the
score of a model may benefit from using the extensions. A
model candidate can therefore be more interesting if it can
describe data using the supplied background knowledge.

Assuming these principles, the task of writing a good model
inference system would seem to be somewhat trivial; either
enumerate all possible models in size order and finish with
the first one that matches the training data, or start with
the initial model and search the best possible model deriv-
able from it. Rather obviously both of these approaches
require exponential time and space in nontrivial cases. Us-
ing a turing-complete structure representation system, such
as Scheme, finding the optimal model is not solvable[8]. If
only the model size is used as scoring method, the problem
is still equivalent with computing the Kolmogorov complex-
ity[14] of the given data. Thus, one generally must resort to
heuristics and make educated guesses.

3.2 Functional Gene Inference

Our first prototype of a functional gene inference engine op-
erates by searching the contents of a model for occurrences
of hand written functional genes describing common proto-
col structures, such as null terminated strings and length-
payload pairs. In this tool, the domain specific knowledge
consists these predefined structures. The latter prototypes
also incorporate searching for shared content in input data,
namely maximal frequently occurring substrings.

The tool starts by constructing a trivial model from the
training data sources. The model is then evolved using a re-
cursive divide and conquer approach. The tool first searches
the model for occurrences of the predefined structures and
frequently occurring substrings. A hand-written evaluation
function, based on the MDL principle, is used to select the
most interesting proposal at each division step. After the
most interesting path has been selected, the model is parti-
tioned around the current finding, and the surrounding parts
are processed recursively.

When no more interesting structures are found, the conquer-
ing phase begins. The smaller submodels are recombined
back into a complete model of the data. Some further model
simplifications are also applied while recombining. The in-
tention is to build a model which recognizes shared or oth-
erwise interesting contents in training data, so that they
may be mutated, repeated, deleted and permuted instead of
simply modifying their contents.



3.3 Implementation Issues

The most difficult part of model inference is keeping time
and space complexities of each step in acceptable bounds. If
some expensive operation is to be performed frequently, it
is often useful to make it faster by precomputing a suitable
data structure. The intention is to represent the frequetly
needed results statically in memory, so that the result can
be simply looked up.

Algorithms and data structures, which may prove to be use-
ful, can be searched from areas such as bioinformatics[22,
23], data compression[21] and artificial intelligence[20, 4, 7].
Indeed, for example the Protocol Informatics Project[1] has
applied algorithms from bioinformatics to reverse engineer
network protocols.

In our experience, suffix trees[24] and suffix arrays[16, 5,
15] have been useful. Once constructed, they allow parallel
walking of each unique occurrence of a sequence of data
in the model using simple constant- or logarithmic time
lookups. Suffix arrays are especially attractive because of
their low memory overhead. In our current prototypes func-
tional genes and other techniques operate directly on a suf-
fix array computed from the input data. This speeds many
operations considerably while adding only a small constant
memory-overhead. In many cases the suffix array needs only
be constructed once, since the same ordering can be reused
when the model changes.

A functional data structure for model representation may
also prove to be useful, since it makes backtracking easy and
allows automatic sharing of contents between model gener-
ations.

4. FUZZING

Once a model has been inferred, the generation of randomised
test cases, i.e. fuzzing, may finally commence. This is a
fairly simple procedure compared to previous steps. Basi-
cally our prototype fuzzer takes a model expression, which
in our case is a functional gene, and compiles it to a reverse
parser, which generates data based on requested structure
instead of parsing it.

The model, since it gives some insight into the structure of
the correct data, allows a fuzzer to make changes to higher
level structures as well as traditional changes to known con-
tents. Since the inferred model usually builds generalisations
rather than rigidly defining only the training data, the in-
ferred model can generate more data than the initial one,
where the the extra data can be considered fuzzed. How-
ever, we have had most successful results by intentionally
mutating the model itself. The model mutations contain for
example duplication, removal, swapping and random alter-
ation of functional genes.

Different kinds of strategies in producing data from the model
can be applied, depending on the desired goal. Making large
sets of strongly mutated data, a strategy sometimes referred
to as shotgun testing, is a good way to expose any suspicious
behavior. On the other hand making single point mutations
to original inputs is a good way to narrow down what ex-
actly causes a problem. In both cases it is useful to store
some metadata describing how each fuzzed piece of data was

ek v

Figure 3: Some of the remotely haunting imagery of
the Freak Show’ gallery, produced by fuzzing valid
GIF and JPEG images.

constructed, in order to be able to examine it later on.

5. RESULTS

We have implemented and enhanced the described tech-
niques in a series of prototypes and have used them to gen-
erate fuzzed test cases for several file formats. File formats
were chosen as a good starting point for testing, because
they share a lot of common ground with protocols in terms
of implementation. In the tests we used a crude structure in-
ference strategy which only finds maximal shared contents,
and combines them in the manner described above. We also
focused on visible and easily reproducible failure modes and
did not include any low level monitoring for more esoteric
and masked software failures. Nevertheless, this approach
has proven to be surprisingly effective and malicious. In
the following, we will briefly cataloque some trials in feed-
ing fuzzed data to real programs. However, we will not go
into specifics such as singling out tested software or test case
details.

5.1 Round 1: Image files (GIF and JPEG)

The first two groups of test cases that were actually fed
to implementations were for the GIF and JPEG image for-
mats. The fuzzing for each format was done based on a few
hundred valid images randomly obtained from the internet.
From these images we generated around 1000 cases for both
formats, which we fed to several programs by hand.

Amongst the test subjects were several popular web browser
packages on various platforms, most of which we managed to
crash with several generated broken images. We then con-
structed a HTML page gallery of some of the fuzzed pictures
affectionately called 'Freak Show’ (Figure 3). Loading the
page caused visibly erroneous program behaviour in tested
browsers, in contrast to the page simply being rendered to
screen with some visual glitches.



5.2 Round 2: Office packages (DOC, RTF and

XLS)

Two groups of test cases generated from valid DOC and RTF
documents and XLS spreadsheets proved to be effective as
well. The test cases managed to cause a wide range of visible
failures in each sofware package, from resource exhaustion to
to crashing and even locking up the entire operating system.

5.3 Round 3: Security software (multiple for-
mats)

The latest development has included the testing of security
software solutions to see their reactions to fuzzed data. We
created test cases from several different data formats, such
as executable files and RAR and ZIP compressed archives.

The caused quirks were extremely interesting and wildly
imaginative. For instance, in one case feeding a fuzzed RAR
data caused a security software solution to start ignoring
all obvious security threats it usually catches. Meanwhile
the program continued to present the impression there is
nothing wrong with it.

Naturally feeding the image and office files from earlier rounds
caused failures as well.

6. DISCUSSION

The presented technique has proven to be a surprisingly ef-
fective way of creating test cases causing repeatable visible
software failures, considering its lack of any domain spe-
cific knowledge. Thus we argue that incorporating model
inference with random test generation has the potential to
overcome the inefficiencies of both random testing and hand-
made test suites, such as those of PROTOS classic.

Furthermore we postulate that the combination of man-
ual test design and model inference guided random testing
should be explored. The quality of the inferred model obvi-
ously depends on the available data samples; if samples lack
in depth and diversity, then much of the dormant parsing
functionality in software will be missed by the generated test
cases. Manual test design would result in coarse partitioning
of the input space, from where the machine may take over in
order to systematically crunch the fine-grained details. This
way the ill effects of tunnel vision and omissions as well hu-
man errors may be alleviated in test design. Perhaps this
will be a way to leap beyond the pesticide paradox as stated
by Boris Beizer: “Every method you use to prevent or find
bugs leaves a residue of subtler bugs against which those
methods are ineffectual.”[6]

The most significant limitation of the described approach is
its lack of domain specific knowledge. The means of express-
ing, inferring and incorporating external reasoning should be
developed further. A realistic tool would probably combine
several independent model inference techniques in a unified
framework. A sufficiently powerful structure description lan-
guage could be used as the common denominator to glue the
approaches together.

The design of our initial prototypes was biased towards be-
ing able to generate effective testing material for a certain
class of programs. Now that we have developed something

that has proven to be effective, work will also contiue to-
wards general purpose model inference and abuse. Ulti-
mately we aim to mature this technique into a test case
generation framework, which would be similar to the one
produced in the earlier PROTOS project, but easier and
faster to use. We are also planning on releasing full fledged
test sets of fuzzed data in the manner established in the
PROTOS project.

7. CONCLUSIONS

An automatically inferred model can be used as basis to gen-
erate correct looking data for program robustness testing.
The technique seems to be effective if the inferred models
succeeds in finding meaningful structures from the original
data. The bottleneck is usually in model construction, which
requires resources.

Our testing technique can be applied to any sample input
to automatically produce test cases in a black box manner.
The technique can also be extended in a natural manner
with domain specific knowledge that augments its efficiency.
We argue that our approach strikes a practical compromise
between completely random and structure aware test design,
while it can be used in conjunction with these techniques to
complement them.

We believe that automatic structure analysis can make ran-
dom testing a viable option, because a structural model
allows a randomized fuzzer to generate more meaningful
changes in robustess testing material. Our experiences with
simple prototypes suggest that this approach is effective and
should be explored further.
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