
Protocol Genome Project: Structure Inference (draft)

$Id: structure.ms,v 1.3 2005/05/10 12:58:19 aki Exp aki $
http://www.ee.oulu.fi/research/ouspg/protos/genome/

ouspg@ee.oulu.fi

ABSTRACT

This document presents some of the current structure inference techniques used in
the Protocol Genome Project. The project aims to develop tools and techniques for pro-
cessing communication protocols. The underlying idea is that by taking advantage of
shared structural properties of these protocols - their genes - these tools can be made sim-
pler and more efficient.

1. Overview

The techniques presented in this paper are based
on the third prototype of the Protocol Genome
Project, representing about four man-months of
work.

The Protocol Genome Project aims to develop
techniques and tools for processing current com-
munication protocols. Although our prototype
tools are being developed for processing packet
capture files, the techniques can be applied to pro-
cessing other data sets such as files or sentences
of a language.

Our main goal for the first half of 2005 is to pro-
duce a traffic fuzzer. This involves processing a
piece of some traffic, inferring structure from it
and then producing or modifying traffic based on
that knowledge. Fuzzers are useful for example in
protocol implementation testing.

The nontrivial part of writing a fuzzer is structure
inference. Our current approach is based on tech-
niques borrowed from bioinformatics, parsing,
logic programming, artificial intelligence and
design of some traditional algorithms.These
techniques are intended to be sufficient for the
purposes of producing a simple fuzzer. They will
be refined later to produce a more realistic proto-

col reverse engineering tool.

We hav e split the problem to three parts. Firstly
the concept of a structure is made concrete by
having a language to describe them. This makes a
structure simply an expression of the structure
description language. The remaining parts are
structure inference, in other words building
expressions of the language from data, and
fuzzing, meaning building or modifying data
based on the inferred structure. This document
describes how the first two tasks are currently
handled. The third task is trivial and useful only if
the preceding ones are.

We use the Scheme programming language to
make rapid prototyping and debugging easy.
Functional programming style ensures that parts
of programs can be changed without affecting
how the rest of the program behaves. This allows
us to easily explore with different techniques. The
current prototypes come bundled with a simple
(slow) Scheme interpreter that is sufficient for
running them. One of the freely available high
quality implementations will be used for the
actual programs.

- 2 -

2. Functionalgenes

We will first define what is meant by a structure.
If something is to be regarded as a useful struc-
ture, one has to be able to somehow recognize and
use it. An overly general definition would be that
a structure is something for which there is an
accepting algorithm.

Usually the structures that are being searched,
interpreted or otherwise used are simple and do
not require a general purpose language to describe
them. Also, additional power in in a structure
description language means higher cost for using
it. Subsets of more general languages are often
used, because they can be guaranteed to have
some useful properties, and the languages them-
selves can be made simpler by using a special
purpose syntax. For example regular expressions
and BNF representation of context free grammars,
which are subsets of formal grammars, are com-
monly used to describe syntactic structure.

Much of the structure we need to describe and
process is syntactic and could be easily described
with grammars. The rest however inv olves some
kind of input evaluation which would require hor-
rible grammatical constructions. To address this
shortcoming we developed a language called
functional genes. We started from simple lambda
expressions that handled the troublesome parts,
and then built typical grammar operations from
them.

The resulting language has simple semantics, can
be implemented and embedded easily and can be
processed symbolically within programs. Within a
program the gene expressions are compiled to
functions that do something with the structure.
The separation of the language and implementa-
tion is useful, because special purpose parsers and
fuzzers can be compiled from gene expressions
simply by using a different compilation strategy.

We currently use gene expressions in the proto-
type as a structure description language and an
embedded language to build parsers. In this docu-
ment by structure we mean something that can be
described in this language. A more detailed
description of functional genes is in [4].

3. Structure inference

Structure inference is currently the main part of
the project.Due to tight schedule we have had to
make a number of compromises to be able to pro-
duce the fuzzer in time. Refined versions of the
presented techniques may be used as components
in our later programs, but as such they are not yet
sufficient for realistic protocol reverse engineer-
ing.

3.1. Expertmodules

The data processed by the structure inference pro-
gram can be thought of as a list of byte lists. They
may be packets, files or other pieces of data.An
expert module is a part of the program that looks
for some kinds of structures from this data. If
some interesting patterns are found, the expert
module proposes them as interesting ones.

Our current prototype currently uses three expert
modules.

3.1.1. Thefall-back expert

A gene expression that matches any input data
sources can be constructed trivially. The expres-
sion essentially lists all of the data and thus does
not give any additional insight to its structure. The
fall-back expert constructs either this or some
other trivial gene expression from any input data.
This expert is only invoked when no other struc-
tures are found.

3.1.2. Thegene pool expert

A gene pool expert contains a pool of hand-writ-
ten gene expressions. Thepool may contain for
example genes for null terminated strings, ipv4
headers, length-value pairs and other common
structures.

This expert when given input data finds all the
occurrences of all the genes in the pool from the
data, and proposes the matched ones as interest-
ing structures. This expert is used to find known
interesting structures.

- 3 -

3.1.3. Thesubstring expert

The main shortcoming of the gene pool expert is
that it is only concerned with structure within one
data source. Often structures that are not interest-
ing by themselves turn out to be such when one
looks at the whole.

The substring expert finds interesting frequently
occurring substrings from all of the input data.
These substrings are scored by the number of
their occurrences and their lengths. When the
search has finished, gene expressions are built for
the strings and proposals consisting of the gene
expressions and their occurrences are returned.

3.2. Thecontroller

The role of the controller is to manage the input
data and the expert modules.A controller is first
given some data to process. This can be for exam-
ple lines of a text file or packets from of packet
capture file.

The controller uses a divide and conquer
approach to process the data and build a gene
expression by combining expressions of the com-
ponents. It gives the data to all the expert modules
and collects the proposals. If there are no propos-
als, the fall-back expert is invoked. Otherwise the
most interesting proposal is selected based on an
evaluation function.

Once the currently most interesting pattern is
selected, the data is partitioned to data sources
that did not contain a match of the pattern, and the
before and after parts of each data source that
have matched. These three partitions are pro-
cessed recursively and the resulting gene expres-
sions are combined with the proposed one using a
catenation and a union.

The actual combining step can apply a number of
simplifications to avoid constructing a huge gene
expression. For example nested catenations and
unions can be combined and empty genes can be
removed from a catenation.

4. Suffix trees and -arrays

The most difficult part of the project is keeping
time and space complexities of each step in
acceptable bounds. A simple layered, heuristic
and inherently parallel structure inference pro-
gram would probably fit in few thousand lines of
code. It would also be absolutely useless even for
nontrivial inputs.

Our first prototype consisted essentially of a gene
pool expert and a controller, and simply iterated
all of the remaining input data at each step to find.
This is obviously inefficient, since a gene usually
has to inspect the same sequence of bytes many
times. One way to solve this problem would be to
have the genes memoize the inputs. There is how-
ev er a more general and elegant technique.

Suffix trees and -arrays were developed for pro-
cessing genomes.Suffix trees can be thought of
as radix trees into which each suffix of the input
data is inserted. Suffix arrays were developed as a
more space efficient alternative to suffix trees. A
suffix array of a string of lengthn contains a per-
mutation of the numbers [0..n], denoting the lexi-
cographically sorted suffixes of the input starting
from each position.

The reason why a this data structure is useful is
that once it is computed for some input data, cer-
tain queries about the data can be answered effi-
ciently. In our case both the gene matching and
shared substring searching operate directly on the
suffix array. This makes it possible to effectively
process each occurrence of each unique byte
sequence in the input in parallel.

Construction of suffix arrays is important for both
bioinformatics [2] and data compression [3]. Cur-
rently the most efficient algorithms for construct-
ing them have linear time and space requirements.
Our current prototype uses an algorithm described
in [1]. It was modified to be able to process multi-
ple data sources.

When the controller has selected a proposal and
partitions the data based on it, the data in the suf-
fix array changes. Instead of recomputing the suf-
fix array for each new stage the ordering of the
previous one is used to build the new ones. There-
fore the suffix array needs to be constructed only
once.

- 4 -

5. Future directions

The presented techniques will be refined for a
while, after which a fuzzer will be made that uses
the inferred structure. If we were to continue in
this direction, learning expert modules and evalu-
ation functions would be the next logical steps.
The most obvious extension to controller would
be a decent post-processing step after combining
the partitions. This would for example recognize
shared gene expressions found in separate parti-
tions as instances of the same structure.

Although these additions would improve the qual-
ity of inferred structure, there is still a fundamen-
tal problem in our current approach. In most inter-
esting cases the input consists of layers, where
structure should be found found from the interpre-
tation of another structure.

Our current plan is to experiment with the pre-
sented techniques, and then move to more general
structure inference.

References:

[1] N. Jesper Larsson, Kunihiko Sadakane
"Faster Suffix Sorting"Technical Report
LU-CS-TR:99-214, Dept. of Computer Sci-
ence, Lund University, 1999

[2] M.I.Abouelhoda, S. Kurtz, E. Ohlebusch
"The enhanced suffix array and its applica-
tions to genome analysis"Proc. 2nd Work-
shop on Algorithms in Bioinformatics, vol-
ume 2452 of LNCS, 2002

[3] Sadakane,K. "A fast algorithm for making
suffix arrays and for Burrows-Wheeler
transformation"Data Compression Confer-
ence, 1998. DCC ’98. Proceedings

[4] The usual suspects"Protocol Genome
Project: Functional Genes (draft)" Our
project web site.

