Protocol Genome Project: Structue Inference (draft)

$Id: structuems,v 1.3 2005/05/10 12:58:19 aki Exp aki $
http://www.ee.oulu.fi/reseanouspg/protos/genome/

ouspg@ee

.oulu.fi

ABSTRACT

This document presents some of the current structure inference techniques used in
the Protocol Genome Project. The project aims te&ldp tools and techniques for pro-
cessing communication protocols. The underlying idea is that by takiraptade of
shared structural properties of these protocols - their genes - these tools can be made sim-

pler and more efficient.

1. Owerview

The techniques presented in this paper are based
on the third prototype of the Protocol Genome
Project, representing about four man-months of
work.

The Protocol Genome Project aims tovelep
techniques and tools for processing current com-
munication protocols. Although our prototype
tools are being deloped for processing paek
capture files, the techniques can be applied to pro-
cessing other data sets such as files or sentences
of a language.

Our main goal for the first half of 2005 is to pro-
duce a traffic fuzzerThis involves processing a
piece of some tré€, inferring structure from it
and then producing or modifying traffic based on
that knavledge. Fuzzers are useful for example in
protocol implementation testing.

The nontrivial part of writing a fuzzer is structure
inference. Our current approach is based on tech-
nigues borrved from bioinformatics, parsing,
logic programming, artificial intelligence and
design of some traditional algorithmsThese
techniques are intended to be sufficient for the
purposes of producing a simple fuzzeney will

be refined later to produce a more realistic proto-

col reverse engineering tool.

We have split the problem to three parts. Firstly
the concept of a structure is made concrete by
having a language to describe them. This makes a
structure simply anx@ression of the structure
description language. The remaining parts are
structure inference, in other wordsuilding
expressions of the language from data, and
fuzzing, meaning building or modifying data
based on the inferred structure. This document
describes ho the first tw tasks are currently
handled. The third task is\ial and useful only if
the preceding ones are.

We we the Scheme programming language to
malke rapid prototyping and debugging easy
Functional programming style ensures that parts
of programs can be changed withoufeefing
how the rest of the program beles. This allevs

us to easily eplore with different techniques. The
current prototypes comeubdled with a simple
(slow) Scheme interpreter that is sufficient for
running them. One of the freelyailable high
quality implementations will be used for the
actual programs.

2. Functionalgenes 3. Structure inference

We will first define what is meant by a structure. Structure inference is currently the main part of
If something is to be garded as a useful struc- the project.Due to tight schedule we Y& had to

ture, one has to be able to some&hiecognize and make a umber of compromises to be able to pro-
use it. An eerly general definition wuld be that duce the fuzzer in time. Refine@rgions of the

a dructure is something for which there is an presented techniques may be used as components
accepting algorithm. in our later programs, but as suchytlaee not yet

sufficient for realistic protocol rerse engineer

Usually the structures that are being searched, M9

interpreted or otherwise used are simple and do

not require a general purpose language to describe

them. Also, additional pever in in a structure 3.1. Expertmodules

description language means higher cost for using

it. Subsets of more general languages are often The data processed by the structure inference pro-
used, because thecan be guaranteed to V@& gram can be thought of as a list of byte lists.yThe
some useful properties, and the languages them- may be packets, files or other pieces of d#ta.
seles can be made simpler by using a special expert module is a part of the program that looks
purpose syntax. For example regulapressions for some kinds of structures from this data. If
and BNF representation of cortdree grammars, some interesting patterns are found, tkpegt
which are subsets of formal grammars, are com- module proposes them as interesting ones.
monly used to describe syntactic structure.

Our current prototype currently uses threpest
Much of the structure we need to describe and modules.
process is syntactic and could be easily described
with grammars. The rest waver invdves some
kind of input @aluation which would require her 3.1.1. Thefall-back expert
rible grammatical constructionsoTaddress this

shortcoming we deloped a language called A gene expression that matchesy dnput data

functlon_al genes. Wdarted from simple lambda sources can be constructedsiilly. The epres-

expressions that handled the troublesome parts, gjon essentially lists all of the data and thus does

and then bilt typical grammar operations from o gie any aditional insight to its structure. The

them. fall-back expert constructs either this or some
other trivial gene xpression from aninput data.

The resulting language has simple semantics, can This expert is only ivoked when no other struc-

be implemented and embedded easily and can be tures are found.

processed symbolically within programs. Within a

program the genexpressions are compiled to

functions that do something with the structure. 3.1.2. Thegene pool expert

The separation of the language and implementa-

tion is useful, because_ special purpose parsers and p gene pool Epert contains a pool of hand-writ-

fuzzers can be compiled from genepeessions ten gene xpressions. Theool may contain for

simply by using a different compilation strategy. example genes for null terminated strings, ipv4
headers, length-value pairs and other common

We airrently use gene expressions in the proto- structures.

type as a structure description language and an

embedded language taild parsers. I_n this docu- This expert when gen input data finds all the

ment by structure we mean something that can be ccyrrences of all the genes in the pool from the

described in this language. A more detailed ata and proposes the matched ones as interest-

description of functional genes is in [4]. ing structures. This expert is used to find wno
interesting structures.

3.1.3. Thesubstring expert

The main shortcoming of the gene porpert is
that it is only concerned with structure within one
data source. Often structures that are not interest-
ing by themselves turn out to be such when one
looks at the whole.

The substring expert finds interesting frequently
occurring substrings from all of the input data.
These substrings are scored by the number of
their occurrences and their lengths. When the
search has finished, gene expressions are built for
the strings and proposals consisting of the gene
expressions and their occurrences are returned.

3.2. Thecontroller

The role of the controller is to manage the input
data and the expert moduleA.controller is first
given some data to process. This can be fare-

ple lines of a text file or packets from of patk
capture file.

The controller uses a wde and conquer
approach to process the data andldba gene
expression by combiningxpressions of the com-
ponents. It gies the data to all thexpert modules
and collects the proposals. If there are no propos-
als, the fall-back expert isvoked. Otherwise the
most interesting proposal is selected based on an
evduation function.

Once the currently most interesting pattern is
selected, the data is partitioned to data sources
that did not contain a match of the pattern, and the
before and after parts of each data source that
have matched. These three partitions are pro-
cessed recungtly and the resulting genepgres-
sions are combined with the proposed one using a
catenation and a union.

The actual combining step can apply a number of
simplifications to @oid constructing a huge gene
expression. For example nested catenations and

4. Suffixtrees and -arrays

The most difficult part of the project ié&ping
time and space complies of each step in
acceptable bounds. A simple layered, heuristic
and inherently parallel structure inference pro-
gram would probably fit in f@ thousand lines of
code. It would also be absolutely uselegndor
nontrivial inputs.

Our first prototype consisted essentially of a gene
pool expert and a controlleand simply iterated

all of the remaining input data at each step to find.
This is olviously inefficient, since a gene usually
has to inspect the same sequence of bytey man
times. One \ay to sole this problem would be to
have the genes memoize the inputs. There is-ho
eve a nmore general and eent technique.

Sufiix trees and -arrays were \dtoped for pro-
cessing genomesSuffix trees can be thought of
as radix trees into which each suffix of the input
data is inserted. Shisf arrays were desloped as a
more space @&tient alternatre o wffix trees. A
suffix array of a string of length contains a per
mutation of the numbers [0..n], denoting thei-le
cographically sorted sfifes of the input starting
from each position.

The reason wh a this data structure is useful is
that once it is computed for some input data; cer
tain queries about the data can be answeifed ef
ciently. In our case both the gene matching and
shared substring searching operate directly on the
suffix array This makes it possible tofettively
process each occurrence of each unique byte
sequence in the input in parallel.

Construction of stifk arrays is important for both
bioinformatics [2] and data compression [3]. Cur
rently the most efficient algorithms for construct-
ing them hae linear time and space requirements.
Our current prototype uses an algorithm described
in [1]. It was modified to be able to process multi-
ple data sources.

unions can be combined and empty genes can be When the controller has selected a proposal and

removed from a catenation.

partitions the data based on it, the data in the suf-
fix array changes. Instead of recomputing the suf-
fix array for each ne stage the ordering of the
previous one is used tauldd the n&v ones. There-
fore the suix array needs to be constructed only
once.

5. Future directions

The presented techniques will be refined for a
while, after which a fuzzer will be made that uses
the inferred structure. If we were to continue in
this direction, learningx@ert modules andvelu-
ation functions wuld be the next logical steps.
The most ohious extension to controller omld

be a decent post-processing step after combining
the partitions. This wuld for example recognize
shared genexgressions found in separate parti-
tions as instances of the same structure.

Although these additions would impete qual-

ity of inferred structure, there is still a fundamen-
tal problem in our current approach. In most inter
esting cases the input consists of layers, where
structure should be found found from the interpre-
tation of another structure.

Our current plan is to experiment with the pre-
sented techniques, and thenuwad more general
structure inference.

References:

[1] N. Jesper Larsson, ufihiko Sadakane
"Faster Suffix Sorting'Technical Report
LU-CS-TR:99-214, Dept. of Computer Sci-
ence, Lund Uniersity, 1999

[2] M.l.Abouelhoda, S. Kurtz, E. Ohlebsch
"The enhanced suffix array and its applica-
tions to genome analysi$roc. 2nd \rk-
shop on Algorithms in Bioinformaticspi+
ume 2452 of LNCS, 2002

[3] SadakaneK. "A fast algorithm for making
sufix arrays and for Bumws-Wheeler
transformation"Data Compression Confer
ence, 1998. DCC '98. Proceedings

[4] The usual suspects'Protocol Genome
Project: Functional Genes (dft)* Our
project web site.

