Protocol Genome Project: Functional Genes (dr aft)

$ld: genes.ms,v 1.2 2005/04/25 12:32:12 aki Exp $
http://www.ee.oulu.fi/reseanouspg/protos/genome/
ouspg@ee.oulu.fi

ABSTRACT

This paper presents a small domain specific language for describing structure. It is
used in the Protocol Genome Project as a way to describe shared structural components
of communication protocols. The language and its presented implementétictively
amount to a parser generattrough the language can alscpeess structures that are
hard to capture using grammars alone. The presented implementation is embedded into
the algorithmic language Scheme.

1. Introduction general purpose languagewd underlying for
malisms, logic- and lambda calculus based, were

The Protocol Genome Project aims to process consi(_jered. The Ianguage described in this docu-
protocols in terms of their shared structural com- Mentis based on ideas from both approaches.
ponents - their genesobe adle to easily gpress
and process these structures weehdevdoped a The functional genes language consists of tw
small language for describing them. This docu- parts; gene>@ressions and their matching func-
ment describes aevsion of that language, and a tions. These correspond to regulatpessions
way to implement it. The language is intended to and their associated automata. The language of
be simple, gpressie eough to handle common gene &pressions is here defined with a grammar
structures from communication protocols and The language consists of one or more primiti
easy to process symbolically. genes, and means of combining them to more
complex ones. Both agggete and primitie
Much of the structure in protocols is syntactic and 9€nes share the same structure and can be com-
can be defined using formal grammars. In the Pinéd to mak more comple genes. Thisallows
tasks where grammars are used there is usually a "€ t0 quickly and safely build descriptions of
strict separation between syntax and semantics. COMPpl& structures from their components.
Some common structures in communication pro-
tocols, like length-payload pairs, can be viewed as Each gene expression is a first class value in the

leaks from semantics to syntax. Vhere usually underlying language. This means thatytban be
simple to implement &tiently with a general easily constructed and modified in a program.
purpose programming language, but require rather The implementation of the language described
horrible purely grammatical constructions. belov consists of some macros and functions that
translate these genapressions to functions with
Conceptually the structures we need ipress a certain form. These functions to genepees-

are simple. Therefore, instead of adding ad-hoc Sions what finite automata are t@uéar epres-
extensions to a grammar based system, or using S'ONS.

some existing umersal structure description lan-

guage, we decided to nmak dmain specific lan- The gene xpressions can also be compiled to
guage for the task. The language is embedded to a programs that perform others tasks. One imple-

mentation we hze ompiles them to functions
that operate on siif arrays, and one we will
implement in a f& months will compile them to
functions that generate data instead of parsing it.

Scheme ws a natural choice for implementation
language. It has aybienic macro system which
malkes building safe embedded languages simple.
Functional programming style is also well sup-
ported, since Scheme is fedtively typed
Lambda-I calculus.

Some knowledge of Scheme is assumed in the
following chapters.

2. Thelanguage

Below is the grammar for the genemessions.
The only primitve gene is herdit, which means
an individual bit of data.Union, catenateand
sequenceare combining operations that can be
used to construct compound genes.

<gene> ::= bit
| (union <gene>+)
| (catenate <gene>+)
| (sequence <sequence-form>*
(return <expression>))

<sequence-form> ::= (skip <gene>)
| (gene <variable> <gene>)
| (assert <expression>)
| (et <variable> <gene>)

<expression> ::= A Scheme expression
<variable> ::= A Scheme variable

The cowention is that a genexpression is either
the name of a primite a a previously defined
gene, or an@ression in parenthesis where the
first element is an operation and the rest aye-ar
ments to that operation.

Each gene expression both defines a structure and

gives ome interpretation of it. ¥ sy that the
gene gauates to that alue, gien some input.
The primitve gene bit gauates either true or
false depending on the input.

Union and catenatewk as in formal languages.
Union creates a gene that matches successfully if

ary of its parameter genes match. Catenate con-
structs a gene that matches successfully if all of
the parameter genes match in that ardlsrion
evduates to the value of the matching geGate-
nate @auates to a list of the values of the genes.

Sequence bekes like catenate, bt instead of
implicitly collecting the values returned by genes
to a list, each of them isxplicitly skipped with
skipor bound to a variable witlet

The bindings made in a sequence becomiedé
bindings that are visible in the subsequent genes.
Each expression in the grammar can be wn
Scheme ®pression and can use values bound by
let as normal @riables. Assertchecks that the
given expression does notvauate to false. This
can be used for example to check that a gene has
evduated to a desired value.

Using this core language additional genes and
combining operations can be defined. Belare
some examples.

(define (epsilon value)
(sequence
(return value)))

(define (kleene* thing)
(sequence
(gene self
(union
(sequence
(let this thing)
(let rest self)
(return (cons this rest)))
(epsilon null)))
(let value self)
(return value)))

(define (kleene+ gene)
(sequence
(let this gene)
(let rest (kleene* gene))
(return (cons this rest))))

These behsa & in reqular expressions. Epsilon is

a gene that abays succeeds with thewgh value
without consuming andata. The kleene opera-
tions mean zero or more and one or more repeti-
tions of the gren gene. Values are collected to a
list. Kleene* could hee wsed itself directlybut a

local recursre gene was defined as an example.

(define (repeat count gene)
(union

(sequence
(assert (= count 0))
(return null))

(sequence
(let this gene)
(let rest (repeat (- count 1) gene))
(return (cons this rest)))))

(define (until step terminal)
(union
(sequence
(let match terminal)
(return (list match)))
(sequence
(let this step)
(let rest (until step terminal))
(return (cons this rest)))))

Repeat means a repetition of &egi gene a gien
number of times. This is a common construct in
communication protocols. Note that the count
may be a variable bound in a sequence and can
therefore depend on the preceding input. Until
means a sequence of zero or moreemgigep
genes followed by a gen terminal gene.The
values are in both cases collected to a list.

(define (integer size)
(sequence
(let bits (repeat size bit))
(return (bits->integer bits))))

(define byte (integer 8))

(define (literal wanted gene)
(sequence
(let value gene)
(assert (equal? value wanted))
(return value)))

Integer interprets a fed length bit sequence as an
unsigned intger Canonical bit order is assumed
unless otherwise stated. Literal is a gene thalt e
uates to a gen value.

3. Animplementation

The basic idea of the implementation is to repre-
sent all genes as functions written in explicit suc-
cess and failure continuation passing stylexilie
cal bindings are used to store all state informa-
tion. Thistechnique is commonly used in compil-
ing logic based languages to functional languages.
Gene gpressions are directly compiled to func-
tions by defining the primite mmbining opera-
tions as macros, and the priméigene as a func-
tion. The target language isfeftively Lambda-I
calculus, which makes reasoning about genes and
their behavior relatiely simple.

We wse bit as the primite gene. Input data is rep-
resented as a list of boolean values. The only case
in which the initial gene gene will fail is if there is

no more input data. In that case the failure contin-
uation ft is invoked. Otherwise the first bit and
rest of the data are passed to the success continua-
tion sc

(define bit
(lambda (sc ft data)
(if (null? data) (ft)
(sc (car data) (cdr data)))))

The remaining three primitess construct ne
genes. Sequence is a macro that fixphads to a
new gene - a lambdaxgression with the same
form as the bit - and then proceeds to process the
contents. The let form binds the value returned by
a gene to a gien variable and skip bekies gmi-

larly but binds the value to a variable that does not
occur free in rest of the expression. Assert calls
failure continuation if the gien expression ealu-

ates to élse. Because each gene is compiled to a
function, Schems’ local mutual recurse func-
tion definition form can be used also for internal
genes.

(define-syntax sequence
(syntax-rules (assert return skip let gene)
((sequence (a . b).c)
(lambda (sc ft data)
(sequence 42 sc ft data (a . b) . c)))
((sequence 42 sc ft data
(gene namel vall) (gene name?2 val2) rest)
(letrec ((namel vall) (name2 val2) ...)
(sequence 42 sc ft data . rest)))
((sequence 42 sc ft data (let var thing) . rest)

(thing
(lambda (var data)
(sequence 42 sc ft data . rest))
ft data))
((sequence 42 sc ft data (skip thing) . rest)
(thing
(lambda (fresh data)
(sequence 42 sc ft data . rest))
ft data))
((sequence 42 sc ft data (assert exp) . rest)
(if exp (sequence 42 sc ft data . rest) (ft)))
((sequence 42 sc ft data (return value))
(sc value data))))

Union constructs a megene, where the success
continuation of each sub-gene is connected to the
newv one, and eachaflure continuation to the
remaining sub-genes or thewnéailure continua-
tion. Catenate simply collectsalies from each
gene and constructs a list of them.

(define-syntax union
(syntax-rules ()
((union 42 sc ft data a)
(a sc ft data))
((union 42 sc ft data a . b)
(asc
(lambda () (union 42 sc ft data . b))
data))
((union 42 sc ft data) (ft))
((union . stuff)
(lambda (sc ft data)
(union 42 sc ft data . stuff)))))

(define-syntax catenate
(syntax-rules ()
((catenate a . b)
(sequence
(let this a)
(let rest (catenate . b))
(return (cons this rest))))
((catenate)
(epsilon null))))

These four definitions are all it takes to compile
gene-a&pressions into »ecutable functions in
Scheme. The small core is useful, because the
system can easily be modified and rep¢ded. A
number of variations of the primig qerations
have keen tested. Each operation also has simple
properties, which makes proving assertions about
them relatiely easy.

There are manalternatves to this implementa-
tion. In this version the first gene of a union that
matches will be the value of the union. Thefiguf
array based arsion processes each of the possi-
bilities.

Scheme provides first class continuations which
can be used for backtrackingWe initially
thought that real continuation could be useful for
adding another backtracking layer when process-
ing suffix trees or arrays, but it turned out that the
one provided by genes is Haofent with only a
few modifications. Inanother languages genes
can be for gample defined as networks of objects
or as code for a stack based machine.

4, Case studies

We havewritten some tests to seevhalifferent
versions of the language belea Currently the
largest gene has a description of about 250 lines.
It defines the parser for of the Scheme implemen-
tation used for prototyping purposes. Apart from
having byte as the primite pgece of data, it uses
the same macros and ded operations that are
defined in this paper.

A protocol related test is filtering IPv4 patk
from a packet capture file. The packet structure is
described with a gene of about 20 lines and
returns the payload of the packet.

A simple calculator program was written to
demonstrate v genes can be used to implement
small languages. It calculatesalves of fully
parenthesized arithmetic expressions and has a
description of some 50 lines.

5. Future applications

The language is still welving. Efficiency and
portability issues will be addressed if the lan-
guage prees to be seful.

One obvious sample applicatiorouwld be to write

an easily extensible and traffic analyZBre sim-
plest approach suld be to write a large number
of paclet descriptions and a matcher that analyzes
for example a packet capture file against thvergi
descriptions. Not¢hat this isnot the goal of the
Protocol Genome Project. There are already good

tools for this task, and we do notvieaenough
resources to start writing a useful set of protocol
descriptions by hand. &/will probably write a
simple trafic analyzer and descriptions for anfe
protocols for testing purposes. The adtage of
our approach auld be that protocol descriptions
could probably be relattly simple and could be
loaded from plain text files to the program. It
might become a useful tool as such,vled we
could male it aufficiently easy and extend.

The genes could also be used to writzified
extended parsers\We lelieve that there is need
for an embedded language similar toguiar
expressions that would allosafe and easy pro-
cessing of possibly malicious or mutated input
data.

In Protocol Genome Project the genes are used as

a dructure description language. The current pro-
totype searches for known genes from input data,
constructs n& ones for frequent repetitions,
scores them with anvaduation function and
matches them against a suffiector The current
main goal is to usearious gene expression infer
ring and learning techniques to build a realistic
autonomous protocol verse engineering tool.

References:

[Scheme]
R. Kelsgy, W. Clinger, J. Rees (eds.),
Revised5 Report on the Algorithmic Lan-
guage fheme,HigherOrder and Symbolic
Computation, Vol. 11, No. 1, August, 1998
and ACM SIGPLAN Notices, Vol. 33, No.
9, Septembe1998

[Lambda-1]
A. ChurchThe Calculi of Lambda Ceer-
sion. (AM-6) (Annals of Mathematics Stud-
ies) Princeton Uniersity Press; (January 1,
1985)

Appendix A: | Pv4 header

1 (sequence

2 (letip-version (integer 4))

3 (let header-length (integer 4))
4 (let service-type byte)

0o ~NO O

©

11
12
13
14
15
16
17
18

(let total-length (integer 16))

(let identification (integer 16))

(skip zero-bit)

(let DF-bit bit)

(let MF-bit bit)

(letfragment-offset (integer 13))
(lettime-to-live byte)

(letprotocol byte)

(letheader-checksum (integer 16))
(letsource-address word)

(letdest-address word)

(letoptions (repeat (- header-length 5) word))
(letpayload (repeat (- total-length (* header-length 4)) byte))
(returnpayload))

