PoC||GTFO

THE BOOK OF POC||GTFO.
Copyright © 2017 by Travis Goodspeed.

While you are more than welcome to copy pieces of this book and distribute it electroni-
cally, only No Starch Press may produce this printed compilation commercially. Feel free
to photocopy these articles for classroom use, or just to do your part in the camuzmar
tradition.

Printed in China
First printing
2120191817 123456789

ISBN-10: 1-59327-880-2
ISBN-13: 978-1-59327-880-9

For information on distribution, translations, or bulk sales,
please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

No Starch Press and the No Starch Press logo are registered trademarks of No Starch
Press, Inc. Other product and company names mentioned herein may be the trademarks
of their respective owners. Rather than use a trademark symbol with every occurrence
of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While
every precaution has been taken in the preparation of this work, neither the author nor
No Starch Press, Inc. shall have any liability to any person or entity with respect to any
loss or damage caused or alleged to be caused directly or indirectly by the information
contained in it.

Anyone who cannot understand that
a useful science can be built on stunt hacking
will not understand this book, either.

Man of The Book Manul Laphroaig, T.G. S.B.
Editor of Last Resort Melilot
TEXnician Evan Sultanik
Editorial Whipping Boy Jacob Torrey
Funky File Supervisor Ange Albertini
Assistant Scenic Designer Philippe Teuwen

and sundry others

Contents

[Introduction] 9
0_A CFP with POC| 13
0:1 Letusbegml 13
10:2 _1Pod Antiforensics]
| by Travis Goodspeed| 15
0:3 ELFs are dorky, Elves are cool |
| by 5. Bratus and J. Bangert|. 20
10:4 Epistle to Hats of All Colors |
| by Manul Laphroaigl 29
0:5 Returning from ELEF to Libc |
| by Rebecca .Bx Shapiro| 32
0:6 GTFO or #FAIL |
| by FX of Phenoelit| 35
[1 Proceedings of the Society of PoC||GTFO| 37
I1:1 Lend me yourears!|. 37
[1:2 RNG in four lines ot Javascript |
| by Dan Kaminsky| 39
|I1:3 Serena Butler's TV Typewriter |
| by Travis Goodspeed| 47
[1:4 Making a Multi-Windows PE |
| by Ange Albertii| 58
15 This ZIP 1s also a PDFE |
| by Julia Wolff 62

Contents

[1:6 Burning a Phone |

| by Josh Thomas| 65
|1:7 Sermon on the Divinity of Languages |
| by Manul Laphroaigl 69
[27 The Children’s Bible Coloring Book of PoC|[[GTFO| 73
2:1 Ring them Bells!| 73
[2:2 Build your own birdfeeder. |
| by Manul Laphroaigl 76
2:3 A PGP Matryoshka Doll |
| by Myron Aubl oL 80
12:4 Code Execution on a Tamagotchi |
| by Natalie Silvanovich| 83
2:5__Shellcode for MSP430]
| by Travis Goodspeed| 88
[2:6 Calling putchar() from ELF |
| by Rebecca .Bx Shapiro| 96
[2:7 POKE of Death for the TRS 80/M100 |
| by Dave Weinstein| 106
2:8 This OS1s also a PDE |
| by Ange Albertim 109
12:9 A Vulnerability in Reduced Dakarand |
| by Joernchen|o oL 115
12:10 Juggernauty |
| by Ben Nagy| 125

[3__Address on the Smashing of Idols to Bits and Bytes| 129

BI TFear Notll 129
13:2 Greybeard’s Luck |
| by Manul Laphroaigl 133
B:3__This PDF is a JPEG]
| by Ange Albertmi 140

Contents

18:4 Netwatch for SMM |
| by Wise and Potter|. 143
13:5 Packet-in-Packet Mitigation Bypass |
| by Travis Goodspeed|. 150
8:6 _An RDRAND Backdoor in Bochs |
| by Taylor Hornby|. 159
18:7 _Kosher Firmware for the Nokia 2720 |
| by Assaf Nativ| 166
13:8 Tetranglix Boot Sector |
| by Haverinen, Shepherd, and Sethi 182
13:9 Detusing the Qualcomm Dragon |
| by Josh Thomas| 187
13:10 Tales ot Python’s Encoding |
| by Frederik Braun| 000 191
[3:11 Angecryption |
| by Albertini and Aumasson| 195
4 Tract de la Société Secretel 203
[4:1 Let me tell youastory| 203
4:2 Epistle on the Bountiful Seeds of ODay |
| by Manul Laphroaigl 206
4:3 This OS 1s a Boot Sector |
| by Shikhin Sethi| 208
4:4 _Prince of PoC |
| by Peter Ferrie| 221
4:5 New Facedancer Framework |
......................... 230
4:6 Power Glitching Tamagotchi |
| by Natalie Silvanovich| 238
14:7 A Plausibly Deniable Cryptosystem |
| by Evan Sultanik| o000 245

Contents

4:8 Hardening Pin Tumbler Locks |

| by Deviant Ollam|. 256
4:9 Intro to Chip Decapsulation |

| by Travis Goodspeed| 265
4:10 Forget Not the Humble Timing Attack |

| by Colin O'Flynn| 277
4:11 This Truecrypt is a PDF |

| by Ange Albertio 286
4:12 How to Manually Attach a File to a PDF |

| by Albertini) oo 290
(413 Ode to ECB]

| by Ben Nagy| 294
[5__Address to the Inhabitants of Earth| 297
b:1 It started like this| oo 297
P:2 A Sermon on Hacker Privilege. |

| by Manul Laphroaigl 301
p:3 ECB: Electronic Coloring Book |

| by Philippe Teuwen| 306
p:4 An Easter Egg in PCI Express |

| by Jacob Torrey|] 315
5:5 A Flash PDF Polyglot |

| by Alex Infihr| 322
p:6 This Multiprocessing OS5 is a Boot Sector |

| by Shikhin Sethi| 326
5:7 A Breakout Board tfor Mini-PCle]

| by Joe FitzPatrick| 338
5:8 Prototyping a generic x86 backdoor in Bochs |

[by Matilda] 346
[5:9 Your Cisco blade is booting PoC||GTFO. |

by Mik|. 360

Contents

[5:10 T am my own NOP Sled. |
| by Brainsmoke| oL 370
p:11 Abusing JSONP with Rosetta Flash |
| by Michele Spagnuolo] 375
[5:12 Sexy collision PoCs |
| by A. Albertini and M. Eichlseder| 386
0:13 Ancestral Voices |
| by Ben Nagyl 398
6 Old Timey Exploitation| 401
[6:1 Communion with the Weird Machined 401
6:2 On Giving Thanks |
| by Manul Laphroaigl 404
[6:3 Gekko the Dolphin |
| by Fiora] 410
6:4 This TAR archive 1s a PDF! |
| by Ange Albertinil 430
16:5 x86 Alchemy and Smuggling |
| by Micah Elizabeth Scott|] 434
6:6 Detecting MIPS Emulation |
| by Craig Heftner| 450
16:7 More Cryptographic Coloring Books |
| by Philippe Teuwen| 458
6:8 PCB Reverse Engineering |
| by Joe Grand| o oL 471
16:9 Davinci Seal |
| by Ryan O'Neilll 480
16:10_Observable Metrics |
| by Don A. Bailey| 495

Contents

{7 PoC||GTFO, Calisthenics and Orthodontial 511
[7:1 With what shall we commune this evening?| 511
[7:2 The Magic Number: 0xAA5H |

| by Morgan Reece| 514
[(:3 _Coastermelt]

| by Micah Elizabeth Scott| 516
[7:4 The Lysenko Sermon |

| by Manul Laphroaigl 525
[7:5 When Scapy 1s too high-level |

| by Eric Davisson|o 000 532
[7:6 Abusing file formats |

| by Ange Albertimll 0. 541
I AES-NI Backdoors]

| by BSDaemon and Pirata] 585
[:8 Innovations with Linux core files]

| by Ryan O'Neilllo 0 .. 598
I7:9 Bambaata speaks from the past. |

| by Count Bambaata] 612
[7:11 Cyber Criminal’s Song |

| by Ben Nagy| 620

|8 Exploits Sit Lonely on the Shelf| 623
I8:1 Please stand; now, please be seated.| 623
18:2 Witches, Warlocks, and Wassenaar |

| by Manul Laphroaigl 626
18:3 Compiler Bug Backdoors |

| by Bauer, Cuoq, and Regehr{ 631
8:4 A Protocol for Leibowitz |

| by Goodspeed and Muur|. 639
18:5 Jigeling into a New Attack Vector |

| by Mickey Shkatov| o000 659

Contents

B:6

Hypervisor Exploit, Five Years Old

| by DJC and Bittman|. 667
[8:7 Stegosploit |
| by Saumil Shah|o 0oL 673
8:8 On Error Resume Next |
| by Jeftball| oo oo 714
[8:9 Unbrick My Part |
| by Tommy Brixton| 718
18:10 Backdoors up my Sleeve |
| by JP Aumasson| oL 720
18:11 Naughty Signals |
| by Russell Handorf 731
8:12° Weird Crypto |
| by Philippe Teuwen| 740
[Useful Tables| 750
Index! 773
788

Contents

Introduction

Dear reader, this is a weird book.

These are the collected works of the International Journal of
Proof of Concept or Get The Fuck Out, a prestigious publication
for ladies and gentlemen with an interest in reverse engineering,
file format polyglots, radio, operating systems, and other assorted
technical subjects. The journal’s individual issues are published
in a variety of countries across the Americas and Europe, but this
volume you hold contains our first nine releases in [788] action-
packed pages, indexed and cross referenced for your convenience.

At first glance, it’s a technical book. It’ll tell you how to do
strange and clever things, how to make polyglot ﬁlesﬂ and crazy
radio signalsﬂ and boot sector video gamesﬂ It will teach you a
lot about reverse engineeringEI and also about frustrating reverse
engineersﬂ This is a book to teach you about machines, about
how they really are rather than how they are supposed to be.

But this is a bit more fun—and far more irreverent—than most
technical books. While some articles cuss for the fun of itE| oth-
ers carefully build an argument across pages to end with a single
harsh word in uncompromising support of scientific reproducibil-

ity[]

Contents

E\ .“_a.:__,_-—mm___E&_:___,_.___:_...,
. _...E_E_ '8

il
My .uq.

...5_7

10

Contents

You will also find a few pieces of philosophy, a grumpy old
preacher’s ramblings about Lysenkoﬁ fashionable straw hatsﬂ
and the Thanksgiving holidaym You will find a song in the style
of Gilbert and Sullivarﬂ and a poem about cryptographyE This
is a book to give you some culture.

But I really do believe that this is also a therapeutic book,
to be read when times are tough and you’re feeling low. When
your day job becomes dull and you begin to feel you've lost the
magic of our profession, when you forget that joy which is found
in a short and clever proof of concept, search within this book
for something to liven things up and make you care once more.

Every last page carries with it the sincere belief that each and
every one of us can outsmart those infernal contraptions, the
wretched blinky boxes that sometimes seem to rule our lives.

Your neighbor,
Pastor Manul Laphroaig, T.G. S.B.

8Page
9Page
10Page
HPpage
12page

11

Contents

12

0 A CFP with POC

0:1 Let us begin!

This first release of our fine journal was distributed on paper in
Las Vegas in the summer of 2013, inspired by a night of good
conversation about the harsh realities of academic publishing.
Fueled by a bit too much scotch, Pastor Laphroaig called upon
his neighbors to send their favorite clever tricks, which were sta-
pled together and printed for sharing. Try as we might to be
embarrassed by our humble beginnings, we love these early arti-
cles and think you will, too.

In PoC||GTFO Travis Goodspeed will show you how to
build your own antiforensic hard disk out of an iPod by patching
the open source Rockbox firmware. The result is a USB disk,
one which still plays music but will self destruct if forensically
imaged. It will never give you up, and it will never let you down.

In PoC||GTFO Julian Bangert and Sergey Bratus provide
some nifty tricks for abusing the differences in ELF dialect be-
tween exec() and 1ld.so. As an example, they produce a file
that is both a library and an executable, to the great confusion
of reverse engineers and their totally legitimate IDA Pro licenses.

PoC||GTFO[0:4]is a sermon on the subjects of Bitcoin, Phrack,
and the den of iniquity known as the RSA Conference, inviting
all of you to kill some trees in order to save some souls. It brings
the joyful news that we might finally shut up about hat colors
and get back to hacking!

13

0 A CFP with POC

Delivering more nifty ELF research, Bx presents in PoC||GTFO
a trick for returning from the ELF loader into a libc function
by abuse of the IFUNC symbol. There’s a catch, though, which is
that on amd64 her routine needs to pass a very restricted set of
arguments. The first parameter must be zero, the second must
be the address of the function being called, and the third argu-
ment must be the address of the symbol being dereferenced. This
article ends in a cliffhanger, which is resolved in PoC||GTFO
when she shares with us the tricks needed to call putchar() and
getchar ().

Remembering good times, PoC||GTFO by FX tells us of
an adventure with Barnaby Jack, one which features a golden
vending machine and some healthy advice to get the fuck out of
Abu Dhabi.

C-P-U Software

Computer Programs Unlimited

N 0
AdTO ATLAS....

e PLANS COMPLETE
Cross Country Trips.
® Gives Time and Cost

* Points of Interest Computations

« Populations - Capitols e Educational - Informative
® Largest Cities - Areas e Easy & Fun to Use
* Individual State Maps ® Use with One or Two Drives
* Interstate Highways 48K Applesoft 3.3 DOS
® $47.50 - 2 Disks
(206) 337-5888 Documentation

C-P-U Software 9710 - 24th Ave. S.E., Everett, WA 98204

14

0:2 iPod Antiforensics by Travis Goodspeed
0:2 iPod Antiforensics

by Travis Goodspeed

In my lecture introducing Active Disk Antiforensics at 29C3,
I presented tricks for emulating a disk with self defense features
using the Facedancer board. This brief article will show you how
to build your own antiforensic disk out of an iPod by patching
the Rockbox framework.

To quickly summarize that lecture: (1) USB Mass Storage is
just a wrapper for SCSI. We can implement these protocols and
make our own disks. (2) A legitimate host will follow the filesys-
tem and partition data structure, while a malicious host—that is
to say, a forensics investigator’s workstation—will read the disk
image from beginning to end. There are other ways to distin-
guish hosts, but this one is the easiest and has the fewest false
positives. (3) By overwriting its contents as it is being imaged, a
disk can destroy whatever evidence or information the forensics
investigator wishes to obtain.

There are, of course, exceptions to the above rules. Some high-
end forensics software will image a disk backward from the last
sector toward the first. A law-enforcement forensics lab will never
mount a volume before imaging it, but an amateur less concerned
with a clean prosecution might just copy the protected files out
of the volume.

Finally, there is the risk that an antiforensic disk might be
identified as such by a forensic investigator. The disk’s security
relies upon the technician triggering the erasure, and it won’t be
sufficient if the technician knows to work around the defenses.
For example, he could revert to the recovery ROM or read the
disk directly.

15

0 A CFP with POC

@ .)

e

16

0:2 iPod Antiforensics by Travis Goodspeed

Patching Rockbox

Rockbox exposes its hard disk to the host through USB Mass
Storage, where handler functions implement each of the SCSI
commands needed for that protocol. To add antiforensics, it is
necessary only to hook two of those functions: READ(10) and
WRITE(10).

In firmware/usbstack/usb_storage. c of the Rockbox source
code, blocks are read in two places. The first of these is in
handle_scsi(), near the SCSI_READ_10 case. At the end of this
case, you should see a call to send_and_read_next (), which is
the second function that must be patched.

In both of these, it is necessary to add code to both (1) observe
incoming requests for illegal traffic and (2) overwrite sectors as
they are requested after the disk has detected tampering. Be-
cause of code duplication, you will find that some data leaks
out through send_and_read_next () if you only patch handle_-
scsi(). (If these function names mean nothing to you, then you
do not have the Rockbox code open, and you won’t get much out
of this article, now will you? Open the damn code!)

On an iPod, there will never be any legitimate reads over
USB to the firmware partition. For our PoC, let’s trigger self-
destruction when that region is read. As this is just a PoC, this
patch will provide nonsense replies to reads instead of destroying
the data. Also, the hard coded values might be specific to the
2048-byte sector devices, such as the iPod Video.

The following code should be placed in the SCSI_READ_10 case
of handle_scsi(). tamperdetected is a static boolean that
ought to be declared earlier in usb_storage.c. The same code
should go into the send_and_read_next () function.

17

11

13

15

17

19

21

23

25

27

29

0 A CFP with POC

//These sectors are for 2048-byte sectors.

//Multiply by 4 for devices with 512-byte sectors.

if (cur_cmd.sector >=10000 && cur_cmd.sector <48000)
tamperdetected=true;

//This is the legitimate read.

cur_cmd.last_result = storage_read_sectors(
IF_MD2(cur_cmd.lun,) cur_cmd.sector,
MIN (READ_BUFFER_SIZE/SECTOR_SIZE, cur_cmd.count),
cur_cmd.datal[cur_cmd.data_select]

)

//Here, we wipe the buffer to demo antiforensics.
if (tamperdetected){
for (i=0;i<READ_BUFFER_SIZE;i++)
cur_cmd.datalcur_cmd.data_select][i]=0xFF;
//Clobber the buffer for testing.
strcpy (cur_cmd.datal[cur_cmd.data_select],
"Never gonna let you down.");

//Comment the following to make a harmless demo.

//This writes the buffer back to the disk,

//eliminating any of the old contents.

if (cur_cmd.sector >=48195)

storage_write_sectors(

IF_MD2(cur_cmd.lun,)
cur_cmd.sector,
MIN(WRITE_BUFFER_SIZE/SECTOR_SIZE, cur_cmd.count),
cur_cmd.data[cur_cmd.data_select]);

HIGH CLASS MILLINERY

12 WEST STREET (Over Bigelow-Kennard’s) o
Smart Tailored and Dress Hats. Made of fine materials and of - \

the best workmanship. Exclusive styles. No two hats alike. \
Courteous attention whether you buy or not. rd
PRICES, SIX DOLLARS AND UP. * ol \

18

0:2 iPod Antiforensics by Travis Goodspeed

Bypassing Antiforensics

This sort of an antiforensic disk can be most easily bypassed by
placing the iPod into Disk Mode, which can be done by a series
of key presses. For example, the iPod Video is placed into Disk
Mode by holding the Select and Menu buttons to reboot, then
holding Select and Play/Pause to enter Disk Mode. Be sure that
the device is at least partially charged, or it will continue to
reboot. Another, surer method, is to physically remove the disk
from the iPod and read it manually.

Further, this PoC does not erase evidence of its own existence.
A full and proper implementation ought to replace the firmware
partition at the beginning of the disk with a clean Rockbox build
of the same revision and also expand later partitions to fill the
disk.

Neighborly Greetings

Kind thanks are due to The Grugq and Int80 for their work on
traditional antiforensics of filesystems and file formats, as well
as to Scott Moulton for discretely correcting a few of my false
assumptions about real-world forensics.

Thanks are also due to my coauthors on an as-yet-unpublished
papeIEI which predates all of my active antiforensics work but is
being held up by the usual academic nonsense.

1Since published as Implementation and Implications of a Stealth Hard
Disk Backdoor by Zaddach, Kurmus et al.

19

0 A CFP with POC

0:3 ELFs are dorky, Elves are cool

by Sergey Bratus and Julian Bangert

The ELF ABI is beautiful. It’s one format to rule all the
tools: when a compiler writes a love letter to the linker about its
precious objects, it uses ELF; when the RTLD performs runtime
relocation surgery, it goes by ELF; when the kernel writes an
epitaph for an uppity process, it uses ELF. Think of a possible
world where binutils would use their own separate formats, all
alike, leaving you to navigate the maze; or think of how ugly
a binary format that’s all things to all tools could turn out to
be (xcoughx ASN.1, X.509 xcoughx), and how hard it’d be to
support, say, ASLR on top of it. Yet ELF is beautiful.

Verily, when two parsers see two different structures in the
same bunch of bytes, trouble ensues. A difference in parsing of
X.509 certificates nearly broke the Internet’s SSL trust model]
The latest Android Master Key bugs that compromised APK sig-
nature verification are due to different interpretation of archive
metadata by Java and C+-+ parsers/ unzippersEFyet another se-
curity model-breaking parser differential. Similar issues with
parsing other common formats and protocols may yet destroy
remaining trust in the open Internet.

ELF is beautiful, but with great beauty there comes great
responsibility—for its parsersﬁ So do all the different binutils
components as well as the Linux kernel see the same contents in
an ELF file? This PoC shows that’s not the case.

2See PKI Layer Cake by Dan Kaminsky, Len Sassaman, and Meredith L.
Patterson

3See http://www.saurik.com/id/18 and http://www.saurik.com/id/17.

4Cf. “The Format and the Parser,” a little-known variant of the “The Beauty
and the Beast.” They resolved their parser differentials and lived invul-
nerably ever after.

20

0:3 ELFs are dorky, Elves are cool by S. Bratus and J. Bangert

There are two major parsers that handle ELF data. One
of them is in the Linux kernel’s implementation of execve(2)
that creates a new process virtual address space from an ELF
file. The other—since the majority of executables are dynam-
ically linked—is the RTLD 1d.so(8), which on your system
may be called something like /lib64/ld—linux—x86—64.so.2E|
which loads and links your shared libraries—into the same ad-
dress space.

It would seem that the kernel’s and the RTLD’s views of this
address space must be the same, that their respective parsers
should agree on just what spans of bytes are loaded at which
addresses. As luck and Linux would have it, they do not.

The RTLD is essentially a complex name service for the process
namespace that needs a whole lot of configuration in the ELF file,
as complex a tree of C structs as any. By contrast, the kernel side
just looks for a flat table of offsets and lengths of the file’s byte

5Just objcopy -0 binary -j .interp /bin/ls /dev/stdout, wasn’t that
easy? :)

21

0 A CFP with POC

segments to load into non-overlapping address ranges. RTLD’s
configuration is held by the .dynamic section, which serves as
a directory of all the relevant symbol tables, their related string
tables, relocation entries for the symbols, and so onﬁ The kernel
merely looks past the ELF header for the flat table of loadable
segments and proceeds to load these into memory.

As a result of this double vision, the kernel’s view and the
RTLD’s view of what belongs in the process address space can be
made starkly different. A libpoc.so would look like a perfectly
sane library to RTLD, calling an innocent “Hello world” function
from an innocent 1libgood.so library. However, when run as an
executable it would expose a different .dynamic table, link in a
different library, libevil.so, and call a very different function,
such as dropping a shell. It should be noted that 1d.so is also an
executable and can be used to launch actual executables lacking
executable permissions, a known trick from the Unix antiquityﬂ
however, its construction is different.

The core of this PoC, makepoc.c that crafts the dual-use ELF
binary, is a rather nasty C program. It is, in fact, a backport
to C of our Ruby ELF manipulation tool, Mithrilﬁ inspired by
ERESI, but intended for liberally rewriting binaries rather than
for ERESI’s subtle surgery on the live process space.

6To achieve RTLD enlightenment, meditate on the Grugq’s
subversiveld.pdf and Mayhem’s elf-rtld.txt, for surely these
are the incarnations of the ABI Buddhas of our age, and none has
described the runtime dynamic linking internals better since.

7/1ib/1d-1linux.so <wouldbe-execfile>

8https://github.com/jbangert/mithril

22

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

0:3 ELFs are dorky, Elves are cool by S. Bratus and J. Bangert

2 makepoc.c ------------“--“------- */
/* I met a professor of arcane degree
Who satd: Two wast and handwritten parsers
Live in the wtld. Near them, in the dark
Half sunk, a shattering exzploit lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those papers read
Which yet survive, stamped on these lifeless things,
The hand that mocked them and the student that fed
And on the terminal these words appear:
"My mname is Turing, wrecker of proofs:
Parse this wunambigously, ye machine, and despair!"
Nothing besides is possible. Round the decay
0f that colossal wreck, boundless and bare
The lone and level root shells fork away.
-- Inspired by Edward Shelley */
#include <elf.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#define PAGESIZE 4096
size_t filesz;

// This is the enormous buffer holding the ELF file.
// For neighbours running this on an Electronica BK,
// the size might have to be reduced.

char file [3*PAGESIZE];

E1f64_Phdr *find_dynamic (E1f64_Phdr *phdr);
uint64_t find_dynstr (E1f64_Phdr *phdr);

/* New memory layout

Memory mapped to File Offsets
Ok ++++] / |ELF Header /-
+ [1st [*#*xx [(orig. code) / /1
+ |Pagel /(real .dynamic)| <-[-+
4k + t====+ t===============+ |/
+ / / / /
++> [2nd [+ |kernel_phdr J<--]--
|Page| * / /
/ I * / /
t====+4 ¥ +=s=============+
* [ldso_phdrs [---1

| fake .dynamic [<-/
| w/ new dynstr |/

23

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

0 A CFP with POC

Somewhere far below, there is the .data segment,
which we dignore.

LD.so/kernel boundary assumes the offset that applies on disk
works also in memory; however, if phdrs are in a different
segment, this won’t hold.
*/
int elf_magic(){

E1f64_Ehdr #*ehdr = file;

E1f64_Phdr *orig_phdrs = file + ehdr->e_phoff;
E1f64_Phdr *firstload,*phdr;
int i=0;

//For the sake of brevity, we assume a lot about the layout.
//First 4K has the mapped parts of program

//2nd 4K holds the program headers for the kernel

//3rd 4k holds the program headers for ld.so +

assert (filesz>PAGESIZE);

assert (filesz<2*xPAGESIZE);

//The mnew dynamic section is mapped just above the program.

for(firstload = orig_phdrs; firstload->p_type!=PT_LOAD;
firstload++);

assert (0 == firstload->p_offset);

//2nd page of memory will hold 2nd segment.

assert (PAGESIZE > firstload->p_memsz);

uint64_t base_addr = (firstload->p_vaddr & ~Oxffful);

//PHDRS as read by the kernel’s ezecve() or dlopen(),

//but NOT seen by ld.so

E1f64_Phdr *kernel_phdrs = file + filesz;

memcpy (kernel_phdrs,orig_phdrs, //copy PHDRs
ehdr ->e_phnum * sizeof (E1f64_Phdr));

//Point ELF header to new PHDRs.

ehdr ->e_phoff = (char #*)kernel_phdrs - file;

ehdr ->e_phnum++;

//4dd a new segment (PT_LOAD), see above diagram.
E1f64_Phdr *new_load = kernel_phdrs + ehdr->e_phnum - 1;
new_load->p_type = PT_LOAD;
new_load->p_vaddr = base_addr + PAGESIZE;
new_load->p_paddr = new_load->p_vaddr;
new_load->p_offset = 2*xPAGESIZE;
new_load->p_filesz = PAGESIZE;
new_load->p_memsz = new_load->p_filesz;
new_load->p_flags = PF_R | PF_W;
//Disable large pages or ld.so complains when loading as .so
for(i=0;i<ehdr->e_phnum;i++){

if (kernel_phdrs[i].p_type == PT_LOAD)

24

0:3 ELFs are dorky, Elves are cool by S. Bratus and J. Bangert

96 kernel_phdrs[i].p_align = PAGESIZE;

}

98

//Setup the PHDR table to be seen by ld.so,

100 //not kernel’s ezecve ()

E1f64_Phdr *ldso_phdrs = file + ehdr->e_phoff

102 - PAGESIZE // First 4K is mapped in old segment.

+ 2*xPAGESIZE; // Offset of new segment.

104 memcpy (1dso_phdrs,

kernel_phdrs,ehdr->e_phnum * sizeof (E1f64_Phdr));

106 //ld.so 2.17 determines load bias (4SLR)

//of main binary by looking at PT_PHDR

108 for (phdr=1dso_phdrs;phdr->p_type != PT_PHDR;phdr++);

//ld.so expects PHDRS at this wvaddr

110 phdr ->p_paddr = base_addr + ehdr->e_phoff;

//This isn’t used to find the PHDR table,

112 //but by ld.so to compute ASLR slide

//(main_map ->1_addr) as (actual PHDR address)-(PHDR address
in PHDR table)

114 phdr ->p_vaddr = phdr->p_paddr;

116 //Make a new .dynamic table at the end of the
//second segment to load libevil instead of libgood.
118 unsigned dynsz = find_dynamic(orig_phdrs)->p_memsz;
E1f64_Dyn *old_dyn =

120 file + find_dynamic(orig_phdrs)->p_offset;
E1f64_Dyn *1ldso_dyn = (char *)ldso_phdrs
122 + ehdr->e_phnum * sizeof (E1f64_Phdr);

memcpy (ldso_dyn,old_dyn,dynsz) ;

124 //Modify address of dynamic table in ldso_phdrs,
//which is only used in ezec().

126 find_dynamic (ldso_phdrs) ->p_vaddr =

base_addr + (char*)ldso_dyn - file - PAGESIZE;
128
//We need a new dynstr entry. Luckily ld.so doesn’t do

130 //range checks on strtab offsets, so we stick it at the end.

char *1ldso_needed_str = (char x)ldso_dyn +
132 ehdr ->e_phnum * sizeof (E1f64_Phdr) + dynsz;
strcpy(ldso_needed_str, "libevil.so");
134 //replace 1st dynamic entry, DIT_NEEDED
assert (ldso_dyn->d_tag == DT_NEEDED);
136 ldso_dyn->d_un.d_ptr =
base_addr + ldso_needed_str - file
138 - PAGESIZE - find_dynstr(orig_phdrs);

}

140| void readfile () {

FILE *f= fopen("target.handchecked","r");
142 //Use provided binary because this PoC might

25

144

146

148

150

152

156

158

160

162

164

166

168

170

172

11

13

0 A CFP with POC

//not like the output of your compiler
assert (f);
// Read the entire file
filesz = fread(file ,1,sizeof file,f);
fclose (f);

}

void writefile (){
FILE xf= fopen("libpoc.so","w");
furite(file,sizeof file,1,f);
fclose(f);
system("chmod +x libpoc.so");

}

E1f64_Phdr *find_dynamic (E1£f64_Phdr #*phdr){
//Find the PT_DYNAMIC program header
for (;phdr->p_type != PT_DYNAMIC;phdr++);
return phdr;

}

uint64_t find_dynstr (E1£f64_Phdr *phdr){
//Find the address of the dynamic string table
phdr = find_dynamic (phdr);
E1f64_Dyn *dyn;
for(dyn = file + phdr->p_offset;

dyn->d_tag != DT_STRTAB; dyn++);
return dyn->d_un.d_ptr;
}
int main ()
{

readfile () ;
elf_magic();
writefile();

L et Makefile -------cc-ccoccconaaana-
h.so: h.c
gcc -fpic -shared -Wl,-soname,$@ -o $@ $~
all: libgood.so libevil.so makepoc target libpoc.so
all_is_well

libpoc.so: target.handchecked makepoc
./makepoc
clean:
rm -f *.so *.o target makepoc all_is_well
target: target.c libgood.so libevil.so
echo "#define INTERP \"‘objcopy -0 binary -j .interp \
/bin/1ls /dev/stdout ‘\"" >> interp.inc && gcc -o target \
-0s -Wl,-rpath,. -Wl,-efoo -L . -shared -fPIC -1lgood target.
c \

26

15

17

19

21

23

10

0:3 ELFs are dorky, Elves are cool by S. Bratus and J. Bangert

&& strip -K foo $@ && echo ’copy target to target.
handchecked by hand!’

target.handchecked: target
cp $< $0; echo "Beware, you compiled target yourself. \
YMMV with your compiler, this is just a friendly poc"

all_is_well: all_is_well.c libpoc.so
gcc -o $@ -Wl,-rpath,. -lpoc -L. $<
makepoc: makepoc.c
gcc -ggdb -o $@ $<

V2 B target.c ----------------------- */
#include <stdio.h>
#include "interp.inc"
const char my_interp[]
__attribute__((section(".interp"))) = INTERP;

extern int func();
int foo (){

// printf("Calling funcln");

func () ;

exit(1); //Needed, because there is mo crt.o

}

2 R 19bg00d.C =----------“--------~---- */
#include <stdio.h>
int func(){ printf ("Hello World\mn");}

4 B libevil.C -----mmm e e oo *x/
#include <stdio.h>
int func(){ system("/bin/sh");}

2 B all_ds_well.c --------coomooomoonnn */
extern int foo();
int main(int argc, char x*xargv) {
foo();
}

27

0 A CFP with POC

You Can Make All Sorts of Pretty
Things with Plasticine

Even the littlest girl loves to ‘‘make things” and
there is no more delightful nor profitable play than
modeling with

HARBUTT'S
PLASTICINE

It puts a child on the right road to think and act for itself,
develops the artistic sense and accuracy of observation and en-
i courages the use of both hands. It holds endless enjoyment and
inspiration for all ages. Harbutt’s Plasticine is clean and abso-
.| lutely antiseptic. It is not mussy like clay, as it requires no
il water, but is always ready for instant use. You can use
{l it over and over again.
g In various sized outfits with complete instructions for model-
1l ing, designing, housebuilding.
Sold by Toy, Stationery and Art Dealer: ere. lfy d I
cannot suppl; ee bool kll dlul of dealer.
T e ot Alhay N o Bys ﬂ\adTe&C‘\

L |||Ill|.. 4

0:3.1 Neighborly Greetings and \cite{ }s:

Our gratitude goes to Silvio Cesare, the Grugq, Klog, May-
hem, and Nergal, whose brilliant articles in Phrack and else-
where taught us about the ELF format, runtime, and ABI. Spe-
cial thanks go to the ERESI team, who set a high standard of
ELF (re)engineering to follow. Uninformed 6:3 by Skape led us
to re-examine ELF in the light of weird machines, and we thank
.Bx for showing how to build those to full generality. Last but
not least, our view was profoundly shaped by Len Sassaman and
Meredith L. Patterson’s amazing insights on parser differentials
and their work with Dan Kaminsky to explore them for X.509
and other Internet protocols and formats.

28

0:4 Epistle to Hats of All Colors by Manul Laphroaig

0:4 Pastor Manul Laphroaig’s First
Epistle to Hacker Preachers of All
Hats, in the sincerest hope that we
might shut up about hats, and get
back to hacking.

by P.M.L.

First, I must caution you to cut out the Sun Tsu quotes. While
every good speaker indulges in quoting from good books of fiction
or philosophy, verily I warn you that this can lead to unrighteous-
ness! For when we tell beginners to study ancient philosophy in-
stead of engineering, they will become experts in the Art of War
and not in the Art of Assembly Language! They find themselves
reading Wikiquote instead of Phrack, and we are all the poorer
for it!

I beg you: Rather than beginning your sermons with a quote
from Sun Tzu, begin them with nifty little tricks which the laity
can investigate later. For example, did you know that “strings
-n 20 ~/.bitcoin/blk0001.dat” dumps ASCII art portraits of
both Saint Sassaman and Ben Bernanke? This art was encoded as
fake public keys used in real transactions, and it can’t be removed
without undoing all Bitcoin transactions since it was inserted into
the chain. The entire Bitcoin economy depends upon the face of
the chairman of the Fed not being removed from its ledger! Isn’t
that clever?

Speaking of cleverness, show respect for it by citing your scrip-
ture in chapter and verse. Phrack 49:14 tells us of Aleph1’s heroic
struggle to explain the way the stack really works, and Unin-
formed 6:2 is the harrowing tale of Johnny Cache, H D Moore,
and Skape exploiting the Windows kernel’s Wifi drivers with bea-

29

0 A CFP with POC

con frames and probe responses. These papers are memories to
be cherished, and they are stories worth telling. So tell them!
Preach the good word of how the hell things actually work at
every opportunity!

Don’t just preach the gospel, give the good word on paper.
Print a dozen copies of a nifty paper and give them away at
the next con. Do this at Recon, and you will make fascinating
friends who will show you things you never knew, no matter how
well you knew them before. Do this at RSA—without trying to
sell anything—and you’ll be a veritable hero of enlightenment in
an expo center of half-assed sales pitches and booth babes. Kill
some trees to save some souls!

Don’t just give papers that others have written. Give early
drafts of your own papers, or better still your own documented
Oday. Nothing demonstrates neighborliness like the gift of a good
exploit.

Further, I must warn you to ignore this Black Hat / White Hat
nonsense. As a Straw Hat, I tell you that it is not the color of the
hat that counts; rather, it is the weave. We know damned well
that patching a million bugs won’t keep the bad guys out, just
as we know that the vendor who covers up a bug caused by his
own incompetence is hardly a good guy. We see righteousness in
cleverness, and we study exploits because they are so damnably
clever! It is a heroic act to build a debugger or a disassembler,
and the knowledge of how to do so ought to be spread far and
wide.

First, consider the White Hats. Black Hats are quick to judge
these poor fellows as do-gooders who kill bugs. They ask, “Who
would want to kill such a lovely bug, one which gives us such
clever exploits?” Verily I tell you that death is a necessary part
of the ecosystem. Without neighbors squashing old bugs, what
incentive would there be to find more clever bugs or to write more

30

0:4 Epistle to Hats of All Colors by Manul Laphroaig

clever exploits? Truly I say to the Black Hats, you have recouped
every dollar you've lost on bugfixes by the selective pressure that
makes your exploits valuable enough to sustain a market!

Next, consider the Black Hats. White Hat neighbors are so
quick to judge these poor fellows, not so much for selling their
exploits as for hoarding their knowledge. A neighbor once said
to me, “Look at these sinners! They hide their knowledge like
a candle beneath a basket, such that none can learn from it.”
But don’t be so quick to judge! While it’s true that the Black
Hats publish more slowly, do not mistake this for not publishing.
For does not a candle, when hidden beneath a basket, soon set
the basket alight and burn ten times as bright? And is not self-
replicating malware just a self-replicating whitepaper, written in
machine language for the edification of those who read it? Verily
I tell you, even the Black Hats have a neighborliness to them.

So please, shut up about hats and get back to the code.

—NM. Laphroaig

\\l ///

=7

Postscript: This little light of mine, I'm gonna let it shine!

31

0 A CFP with POC

0:5 Returning from ELF to Libc

by Rebecca “Bx” Shapiro

Dear friends,

As you may or may not know, demons lurk within ELF meta-
data. If you have not yet been introduced to these creatures,
please put this paper down and take a look at either our talk
given at 29C3, or our soon-to-be released WOOT publicationﬂ

Although the ability to treat the loader as a Turing-complete
machine is Pretty Neat, we realize that there are a lot of useful
computation vectors built right into the libraries that are mapped
into the loader and executable’s address space. Instead of re-
inventing the wheel, in this sermon we’d like to begin exploring
how to harness the power given to us by the perhaps almighty
Libec.

The System V amd64 ABI scripturﬂ in combination with the
eglibc-2.17 writings have provided us ELF demon-tamers with
the mighty useful IFUNC symbol. Any symbol of type IFUNC is
treated as an indirect function—the symbol’s value is treated as
a function, which takes no arguments, and whose return value is
the patch.

The question we will explore from here on is: Can we harness
the power of the IFUNC to invoke a piece of Libc?

After vaguely thinking about this problem for a couple of months,
we have finally made progress towards the answer.

Consider the exit () library call. Although one may question
why we would want to craft metadata that causes a exit () to be
invoked, we will do so anyway, because it is one of the simplest

9Since published at WOOT 2013 as “Weird Machines” in ELF: A Spotlight
on Unappreciated Metadata by Shapiro, Bratus, and Smith.
10psABI-x86_64.pdf

32

0:5 Returning from ELF to Libc by Rebecca .Bx Shapiro

calls we can make, because the single argument it takes is not
particularly important, and success is immediately obvious.

To invoke exit (), we must lookup the following information
when we are compiling the crafted metadata into some host ex-
ecutable. This is accomplished in three steps, as we explain in
our prior work.

1. The location of exit () in the Libc binary.
2. The location of the host executable’s dynamic symbol table.

3. The location of the host executable’s dynamic relocation
table.

To invoke exit(), we must accomplish the following during
runtime:

1. Lookup the base address of Libc.

2. Use this base address to calculate the location of exit () in
memory.

3. Store the address of exit () in a dynamic IFUNC symbol.
4. Cause the symbol to be resolved.

. and then there was exit ()!

Our prior work has demonstrated how to accomplish the first
two tasks. Once the first two tasks have been completed at run-
time, we find ourselves with a normal symbol (which we will call
symbol 0) whose value is the location of exit(). At this point
we have two ways to proceed: we can either

(1) have a second dynamic symbol (named symbol 1) of type
IFUNC and have relocation entry of type R_X86_64_64 which

33

0 A CFP with POC

refers to symbol 0 and whose offset is set to the location of sym-
bol 1’s values, causing the location of ext() to be copied into
symbol 1, or we could

(2) update the type of the symbol that already has the address
of exit() to that it becomes an IFUNC. This can be done in a
single relocation entry of type R_X86_64, whose addend is that
which is copied to the first 8 bytes of symbol 0. If we set the
addend to 0x0100000a00000000, we will find that the symbol
type will become 0x0a (IFUNC), the symbol shndx will be set as
01 so the IFUNC is treated as defined, and the other fields in the
symbol structure will remain the same.

After our metadata that sets up the IFUNC, we need a reloca-
tion entry of type R_X86_64_64 that references our IFUNC symbol,
which will cause exit () to be invoked.

At this moment, you may be wondering how it may be possible
to do more interesting things such as have control of the argument
passed to the function call. It turns out that this problem is still
being researchedB In eglibc-2.17, at the time the IFUNC is
called, the first argument is and will always be 0, the second
argument is the address of the function being called, and the
third argument the addressed of the symbol being referenced.
Therefore at this level exec(0) is always called. It will clearly
take some clever redirection magic to be able to have control over
the function’s arguments purely from ELF metadata.

Perhaps you will see this as an opportunity to go on a quest
of ELF-discovery and be able to take this work to the next level.
If you do discover a path to argument control, we hope you will
take the time to share your thoughts with the wider community.

Peace out, and may the Manul always be with you.

1See PoC||GTFO on page

34

0:6 GTFO or #FAIL by FX of Phenoelit

0:6 GTFO or #FAIL
by FX of Phenoelit

To honor the memory of the great Barnaby Jack, we would like
to relate the events of a failed proof of concept. It happened on
the second day of the Black Hat Abu Dhabi conference in 2010
that the hosts, impressed by Barnaby’s presentation on ATMs,
pointed out that the Emirates Palace hotel features a gold ATM.
So they asked him to see if he could hack that one too.

Never one to reject challenges or fun to be had, Barns gathered
a bunch of fellow hackers, who shall remain anonymous in this
short tale, to accompany him to the gold ATM. Suffice it to say,
yours truly was among them. Thus it happened that a bunch of
hackers and a number of hosts in various white and pastel colored
thawbs went to pay the gold ATM a visit. Our hosts had assured
everyone in the group that it was totally OK for us to hack the
machine, as long as they were with us.

The PoC

While the gold ATM, being plated with gold itself, looked rather
solid, a look at the back of the machine revealed a messy knot of
cables, the type of wiring normally found on a Travis Goodspeed
desk. Since the machine updates the gold pricing information on-
line, we obviously wanted to have a look at the traffic. We there-
fore disconnected the flimsy network connections and observed
the results, of which there were initially none to be observed,
except for the machine to start beeping in an alarming way.
Nothing being boring, we decided to power cycle the machine
and watch it boot. For that, yours truly got behind it and used
his considerable power cable unplugging skills to their fullest ex-
tent. Interestingly enough, the gold ATM stayed operational,

35

0 A CFP with POC

obviously being equipped with the only Uninterruptable Power
Source (UPS) in the world that actually provides power when
needed.

Reappearing from behind the machine, happily holding the
unplugged network and power cables, yours truly observed the
group of hosts being already far away and the group of hackers
following close behind. Inverting their vector of movement, the
cause of the same became obvious with the approaching storm
troopers of Blackwater quality and quantity. Therefore, yours
truly joined the other hackers at considerable speed.

The FAIL

Needless to say, what followed was a tense afternoon of drinking,
waiting, and considering exit scenarios from a certain country,
depending on individual citizenship, while powers that be were
busy turning the incident into a non-issue.

The #FAIL was quickly identified as the inability of the fel-
lowship of hackers to determine rank and therefore authority of
people that all wear more or less the same garments. What had
happened was that the people giving authority to hack the ma-
chine actually did not possess said authority in the first place or,
alternatively, had pissed off someone with more authority.

The failed PoC pointed out the benefits of western military
uniforms and their rank insignia quite clearly.

Neighborly Greetings

Neighborly greetings are in order to Mr. Nils, who, upon learning
about the incident, quietly handed the local phone number of the
German embassy to yours trulyB

124.971.2.644.6693

36

1 Proceedings of the Society of
PoC||GTFO: An Epistle to the
10th H2HC in S3o Paulo

1:1 Lend me your ears!

In PoC||GTFO Dan Kaminsky presents of all strange things
a defensive PoC! His four lines of Javascript seem to produce
random bytes, but that can’t possibly be right. If you disagree
with him, PoC||STFU[Y

This issue’s devotional is in PoC||GTFO where Travis
Goodspeed shares a thought experiment in which Ada Lovelace
and Serena Butler fight on opposite sides of the Second War on
General Purpose Computing using Don Lancaster’s TV Type-
writer as ammunition.

In the grand tradition of backfiring parse tree differentials,
Ange Albertini shares in PoC||GTFO a nifty trick for cre-
ating a PE file that is interpreted differently by Windows XP,
7, and 8. Perhaps you’ll use this as an anti-reversing trick, or
perhaps you’ll finally learn why TinyPE doesn’t work after XP.
Either way, neighborliness abounds.

In PoC||GTFO Julia Wolf demonstrates on four napkins
how to make a PDF that is also a ZIP. This trick was so nifty
that we used it not only in pocorgtfo01.pdf, but also in all of

1See PoC||GTFO for a counter-example in Firefox under high load.

37

1 Proceedings of the Society of PoC||GTFO

our subsequent releases.

In PoC||GTFO Josh Thomas will teach you a how to per-
manently brick an Android phone by screwing around with its
voltage regulators in quick kernel patch. We the editors remind
readers to send only quality, technical correspondence to Josh;
any rubbish that merely advocates your chosen brand of cell-
phone should be sent to jobs@paper.1li.

Today’s sermon, to be found in PoC||GTFO concerns the
divinity of programming languages, from PHP to BASIC. Follow-
ing along with a little scripture and a lot of liquor, we’ll see that
every language has a little something special to make it worth
learning and teaching. Except Java.

__Introducing low cost, Apple IL__
compatible disk drives

40-track drive with half-tracking for only $375.00

Eight colors to choose from

The drive cabinet is available in a standard
Apple offwhite, lime green, dark green, bright
orange, computer blue, brilliant yellow, black
or chrome.

Easy to install
Simple plug-in with no additional wiring or
power supply required.

Complete Apple II patibilif
40-track, 5'/s inch drive that runs 3.3 DOS,
PASCAL or CP/M (Apple disk controller
required).

Complete Disk Drive System
For only $375, you get the 5"/
inch disk drive, color coordi-
nated cabinet, and cable. Or,
there’s a two drive system that
includes two 40-track disk
drives, cabinets, Apple disk
controller, and cables for only
$850.00.

For further information, or to
order the Apple Il compatible
disk drives, call or write:

Full Warranty and

Service

90-day warranty plus serv-
ice center for out-of-warranty
service.

2
I ;?;ETI:&E&LN&\. . Dealer and quantity discounts available upon request
Fior N s, MasterCard, VISA or COD orders accepted. Apple and Apple I

(213) 341-7914 are registered trademarks of Apple Computer, Inc.

38

1:2 RNG in four lines of Javascript by Dan Kaminsky

1:2 Four Lines of Javascript that Can't
Possibly Work
So why do they?

by Dan Kaminsky

Introduction

When Apple’s iPhone 5S was announced, a litany of criticism
against its fingerprint reader was unleashed. Clearly, it would
be vulnerable to decade old gelatin cloning attacks. Or clearly,
it would utilize subdermal analysis or electrical measurement or
liveness checking and not be vulnerable at all. Both fates were
possible.

It took Nick DePetrillo and Rob Graham to say, “PoC||GTFO.”

What Starbug eventually demonstrated was that the old at-
tacks do indeed still work. It didn’t have to be that way, but
at the heart of science is experimentation and testing. The very
definition of unscientific work is not merely that it will not be
subjected to test but that by design it cannot.

Of course, I am not submitting an article about the iPhone 5S.
I’'m here to write about a challenge that’s been quietly going on
for the last two years, one that remains unbroken |

Can we use the clock differentials, baked into pretty much every
piece of computing equipment, as a source for a True Random
Number Generator? We should find out.

2See PoC| GTFO on page for a break that was written in reply to
this article. Dan’s challenge worked! —PML

39

1 Proceedings of the Society of PoC||GTFO

// These
function
function
function
function

functions form an RNG.

millis () {return Date.now();}

flip_coin () {n=0; then = millis()+1; while(millis()<=then) {n=!n;} return n;}
get_fair_bit () {while (1) {a=flip_coin(); if(al!=flip_coin()) {return(a);}}}
get_random_byte () {n=0; bits=8; while(bits--){n<<=1; nl=get_fair_bit();} return n;}

// Use it like this.
report_console = function() {while(1) {console.log(get_random_byte());}}
report_console();

Figure 1.1: Reduced Dakarand as four lines of Javascript.

40

1:2 RNG in four lines of Javascript by Dan Kaminsky

Context

“The generation of random numbers is too important to be left
to chance,” as Robert R. Coveyou from Oak Ridge liked to say.
Computers, at least as people like to mentally model them, are
deterministic devices. The same input will always lead to the
same output.

Electrically, this is unnecessary. It takes a lot of work to make
an integrated circuit completely reliable. Semiconductors are
more than happy to behave unpredictably. Semiconductor man-
ufacturers, by contrast, have behaved very predictably, refusing
to implement what would admittedly be a rather difficult part to
test.

41

1 Proceedings of the Society of PoC||GTFO

Only recently have we gotten an instruction out of Intel to
retrieve random numbers, RDRAND. I can’t comment as to the
validity of the function except to say that any audit process that
refuses its auditors physical access to the part in question and
disables all possible debugging or post-verification after release
is not a process that inspires confidence.

But do we need the instruction? The core assumption is that
in lieu of RDRAND the computer is deterministic, that the same
input will lead to the same output. Seems reasonable, until you
ask:

If all I do is turn a computer on, will it take the same number
of nanoseconds to reach the boot screen?

If you think the answer is yes, PoC||GTFO.

If you think the answer is no, that there will be some amount
of nanosecond drift, then where does this drift come from? The
answer is that the biggest lie about your computer is that it’s
just one computer. CPU cores talk to memory busses talk to ex-
pansion busses talk to storage and networking and the interrupt
of the month club. There are generally some number of clocks,
they have different speeds and different tolerances, and you do
not get them synchronized for free. (System-on-Chip devices are
a glaring exception, but it’s still rather common for them to be
speaking to peripherals.)

Merely turning the machine on does not synchronize every-
thing, so there is drift. Where there is drift, there is entropy.
Where there is entropy, there is security.

This is Actually a Problem

To stop a brute force attack against your random number gen-
erator, you need a few bits. At least 80, ideally 128. Not 128
million. 128. Ever. For the life of that particular device. (Not

42

1:2 RNG in four lines of Javascript by Dan Kaminsky

model! The attacker can just go out and buy one of those de-
vices, and find those 128 bits.) Now you may say, “We need more
than 128 bits for production.” And that’s fine. For that, we have
what are known as Cryptographically Secure Pseudo Random
Number Generators (CSPRNG’s). Seed 128 bits in, get an infi-
nite keystream out. As long as the same seed is never repeated,
all is well.

Cryptographers love arguing about good CSPRNGs, but the
reality is that it’s not that hard to construct one. Run a good
cipher or hash function (not RC4) in pretty much any sort of
loop and the best attack reduces to breaking that cipher or hash
function. (If you disagree, PoC||GTFQO.) That’s not to say there
aren’t “nice to have” properties that an ideal CSPRNG can ac-
quire, but empirically two things have actually happened in the
real world some of us are trying to defend.

First, most PRNG’s aren’t cryptographically secure. Most
random numbers are not securely generated. They could be.
CSPRNGs can certainly be fast enough. If we really wanted,
they could be simple enough too. To be fair, the advice of “Just
use /dev/urandom.” is what most languages should follow. But
there’s a second issue, and it’s severe.

The second issue, the hard part, is not expanding 128 bits to
an infinite stream. The hard part is actually getting those 128
bits! So called “True Random Number Generation” is actually
the thing we are bad at, in the real world. The CSPRNG of
the gods falls to a broken TRNG. What is a kernel supposed to
do when /dev/urandom wants data and there is no seed? The
whole idea behind /dev/urandom is that it will provide answers
immediately. And so, in general, it does.

And then Nadia Heninger scans the Internet, and finds that
1/200 RSA keys are badly formed. That’s a floor, by the way.
Keys that are similar but not quite identical are not counted in

43

1 Proceedings of the Society of PoC||GTFO

that 1/200. But of course, buying a handful of devices gives you
the similarity map.

However bad clock differentials might be, they would not have
created this apocalyptic failure rate.

This Didn’t Have to Happen

In 1999, Daniel J. Bernstein pointed out that the 16 bit trans-
action ID in DNS was insufficient and that the UDP source port
could be overloaded to provide almost 32 bits of entropy per DNS
request. His advice was not accepted.

In 1996, Matt Blaze created Truerand, a scheme that pitted
the CPU against signal handlers. His approach actually has a
long and storied history, back to the VMS days, but it was never
accepted either.

In 2011, T released Dakarand. Dakarand is a collection of
approaches for pitting various clocks inside against a computer
against each other. Many random number generation schemes
come down to measuring something that varies by millisecond
with something that varies by nanosecond. (Your CPU, running
in a tight loop, is a fast clock operating in the gigahertz. Your
RTC—Real Time Clock—is much slower and is not reporting
milliseconds accurate to the nanosecond. In confusion, profit.)

Dakarand may in fact fail, somehow, somewhere, in some mode.
But thus far, it seems to work pretty much everywhere, even vir-
tual machines. (As a TRNG, each read event can generate new
seed material without depending on data that might have been
inherited before VM cloning.)

In 2013, in honor of Barnaby Jack, I tossed together the code
on page [0 It’s the weakest possible formulation of this concept,
written in JavaScript and hardened only with the barest level of
Von Neumann. It is called oi. js, and you should break it.

44

1:2 RNG in four lines of Javascript by Dan Kaminsky

What is a

Another name for
the CCB-lI, which is:
e aclock
hour, minute, second
« a calendar
day, day of week,
month, year
e an audio alarm

All on one board for your

TRS-80 Model Il

From the folks who brought you the best
CP/M® for the Model II.

$175 plus shipping
Prepaid, COD, Mastercharge or Visa orders
accepted. California residents add 6%
sales tax.

TreoT PICKLES & TROUT

Warning: |astallation requires opening the Modol Il which may void its
w
Before instailing 1ne CCB-

CLO CALPEEP"

It includes a pacemaker battery which will
give over 8 years of continuous timekeeping.

TRS-80 is a trademark of Tandy Corp.
IEKLES CP/M s a registered trademark of Digital Research Inc.

P.0. BOX 1206, GOLETA, CA 93116, (805) 967-9563

vggest that you wait unti the warranty period has expired

SciTronics introduces . . .

REAL TIME CLOCKS

with full Clock/Calendar Functions

The Worry-free Clocks for People
Who Don’t Have Time to Worry!!

What makes them worry-free?

* Crystal controlled for high
(.002%) accuracy

* Lithium battery backup for contin-
uous clock operation (6000 hrs!!!)

* Complete software in BASIC-
including programs to Set and
Read clock

* Clock generates interrupts
(seconds, minutes, hour) for
foreground/background operation

Versions available for:
* 5-100 bus computers ~ RTC-100 $159
« Apple Il computer TC-A $129
* SciTronics RC-80 RC-80CK $109

Applications: povtits
« Logging Computer on time s SciTronics Inc.

* Timing of events Chesk " 523 S, Clewell St., P.O. Box 5344
o Use it with the SciTronics Remote ™ (y19) senizsg thors

Controller for Real Time control s system with which you plan 10 use
of A.C. operated lights and ap- o« Master Charge anil Vi acceptet,
pliances COD's accepted. PA residonce add sals ax.

World’'s Most Inexpensi

$995

Limit: one per customer

OFFER expires September 15, 1975

Two 4,096 word Memory Boards (kit)

Altair 8800 Computer Kit

ASIC Language System

Your choice of Interface Boards (kit)
Altair 8K BASIC Language

45

1 Proceedings of the Society of PoC||GTFO

After all, it’s just JavaScript. It can’t be secure.

The idea is, in fact, to find the weakest formulation of this
concept that still works. PoC || GTFO shows us where known
security stops and safety margin begins.

On Measuring the Strength of Cryptosystems

Sometimes people forget that we regularly build remarkably safe
code out of seemingly trivial to break components. Hash func-
tions are generally composed of simple operations that, with only
a few rounds of those functions, start becoming seriously tricky to
reverse. RSA, through this lens, is just multiply as an encryption
function, albeit with a mind bending number of rounds.

Humans do not require complex radioactivity measurements
or dwellings on the nature of the universe to get a random bit.
They can merely flip a coin, a system that is well described as
the Newtonian interaction between a slow clock (coin goes up,
coin goes down) and a fast clock (coin spins round and round.)
Pretending that there is nothing with the properties of a simple
coin anywhere in the mess that is a device that can at least run
Linux is enabling vulnerability.

PoC’s in defense are rare—now let’s see what you’ve got. ;)

46

1:3 Serena Butler’s TV Typewriter by Travis Goodspeed

1:3 Weird Machines from Serena
Butler's TV Typewriter

by Travis Goodspeed

In the good old days, one could make the argument—however
fraudulent!—that memory corruption exploits were only used by
the bad guys, to gain remote code execution against the poor
good guys. The clever folks who wrote such exploits were looked
upon as if they were kicking puppies, and though we all knew
there was a good use for that technology, we had little more than
RMS’s paranoid ramblings about fascism to present as a legit-
imate use-case. Those innocent days in which exploit authors
were derided as misfits and sinners are beginning to end, as chil-
dren must now use kernel exploits to program their own damned
cell phones. If we as authors of weird machines are to prepare
for the future, it might be a good idea to work out a plan of
last resort. What could be built if computers themselves were
outlawed?

I'm writing to share with you the concept of a Butlerian Type-
writer, loosely inspired by Cory Doctorow’s 28C3 lecture and
strongly inspired by many good nights of fine scotch with Sergey
Bratus, Meredith Patterson, Len Sassaman, Bx Shapiro, and Ju-
lian Bangert. It’s a little thought experiment about what weird
machines could be constructed in a world that has outlawed
Turing-completeness.

In the universe of Frank Herbert’s Dune, the war on general-
purpose computing is over, and the computers lost—but not be-
fore they struck first, enslaved humanity, and would have elimi-
nated it if it were not for one Serena Butler. St. Serena showed
the way by defenestrating a robotic jailer, leading the rest of hu-
manity in the Butlerian Jihad against computers and thinking

47

1 Proceedings of the Society of PoC||GTFO

48

1:3 Serena Butler’s TV Typewriter by Travis Goodspeed

machines. Having learned the hard way that building huge cen-
tralized systems to run their lives was not a bright idea, humans
banned anything that could grow into one.

So general-purpose computers still exist on the black market,
and you can buy one if you have the right connections and free-
dom from prosecution, but they are strictly and religiously ille-
gal to possess or manufacture. The Orange Catholic Bible com-
mands, “Thou shalt not make a machine in the likeness of a man’s
mind.”

Instead of general purpose computers, Herbert’s society has
application-specific machines for various tasks. Few would argue
that a typewriter or a cat picture is dangerous, but your iPhone
is a heresy. Siri would be mistaken for the Devil herself.

Let’s simplify this rule to Turing-completeness. Let’s imagine
that it is illegal to possess or to manufacture a Universal Tur-
ing Machine. This means no ELF or DWARF interpreters, no
HTML5 browsers. No present-day CPU instruction set is legal
either; not ARM, not MIPS, not PowerPC, not X86, and not
AMDG64. Not even a PDP11 or MSP430. Pong would be le-
gal, but Ms. Pac-Man would not. In terms of Charles Babbage’s
work, the Difference Engine would be fine but the Analytical
Engine would be forbidden.

Now comes the fun part. Let’s have a competition between
Ada Lovelace and Serena Butler. Serena’s goal is to produce
what we will call a Butlerian Typewriter, an application-specific
word processor of sorts. She can use any modern technology
in designing the typewriter, as such things are available to her
from the black market. She even has access modern manufac-
turing technology, so producing microchips is allowed if they are
not Turing-complete. She may not, however, produce anything
contrary to the O.C.B.’s prohibition against thinking machines.
Nothing Turing-complete is legal, and even her social standing

49

1 Proceedings of the Society of PoC||GTFO

POCKET A5G
MINAL

Here's $395 worth of convenience for anyone
working with digital systems. Carry it

anywhere in a pocket, valise or toolkit to enter
and retrieve data. run diagnostics, change
constants, test aata links, etc.

=)

Look at its facilities:

@ Transmits 128
ASCII codes
* @Can display last 30
characters received
@Displays full
% 64-character ASCII
set on clear 16-
segment LEDs
@25-line RS232/c
compatible interface
@Single 5V supply
required at 400mA
typical
@110 or 300 baud
transmission selectable
. @Parity codes, stop bits
settable to your standard
@O0beys bell, cursor and
data format control codes
Phone or write us for more details now:

GR ELECTRONICS,
1640 Fifth Street, ®
Santa Monica, CA 90401. ‘
Telephone: (213) 395-4774. l
65-2337 (BT Smedley SNM).

50

1:3 Serena Butler’s TV Typewriter by Travis Goodspeed

isn’t sufficient to get away with mass production of computers.

So Serena designs a Butlerian Typewriter using black market
tools like Verilog or VHDL, then mass produces it for release
on the white market as a consumer appliance with no Turing
machine included. One might imagine that she would begin with
a text buffer, wiring its output to a 1970’s cathode-ray television
and its input to a keyboard. Special keys could navigate through
the buffer. Not very flashy by comparison to today’s tweety-
boxes, but it can be done.

After this typewriter hits the market, Ada Lovelace comes into
play. Ada’s unpaid gambling debts prevent her from buying on
the black market, so she has no way to purchase a computer.
Instead, her goal is to build a computer from scratch out of the
pieces of a Butlerian Typewriter. This won’t be easy, but it’s a
hell of a lot simpler than building a computer out of mechanical
disks or ticker-tape!

In playing this as a game of conversation with friends, we’ve
come to a few conclusions. First, it is possible for Serena to win if
(1) she’s very careful to avoid feature creep, (2) the typewriter is
built with parts that Ada cannot physically rewire, and (3) Ada
only has a single machine to work with. Second, Ada seems to
always win if (1) the complexity of the typewriter passes a certain
threshold, (2) she can acquire enough typewriters, or (3) the parts
are accessible enough to rewire.

As purpose of the game is to get an intuitive feeling for how
to build computers out of twigs and mud, let’s cover some of the
basic scenarios. (The game is little fun when Serena wins, so her
advocate almost always plays both sides.)

e If Serena builds her machine from 7400-series chips, Ada

51

1 Proceedings of the Society of PoC||GTFO

can rewire those chips into a general-purpose computer.

e If Ada can purchase thousands of typewriters, she can rewire
each into some sort of 7400-equivalent, like a NAND gate.
These wouldn’t be very power-efficient, but Ada could ar-
range them to form a computer.

o If Serena adds any sort of feedback from the output of the
machine to the input, Ada gets a lot more room to ma-
neuver. Spellcheck can be added safely, but storage or text
justification is dangerous.

e It’s tempting to say that Serena could win by having a
mask-programmed microcontroller that cannot execute RAM,
but software bugs will likely give a victory to Ada in this
case. This is only interesting because it’s the singular case
where academics’ stubborn insistence that ROP is different
from ret-to-libc might actually be relevant!

So how does a neighbor learn to build these less-than-computers,
and how does another neighbor learn to craft computers out of
them? If you are unfamiliar with hardware design languages,
start off with a tutorial in VHDL or Verilog, then work your way
up to crafting a simple CPU in the language. After that, sources
get a bit harder to come by.

A primitive sort of Butlerian Typewriter is described by Don
Lancaster in his classic article TV Typewriter from the Septem-
ber 1973 issue of Radio Electronics. His follow-up book, the TV
Typewriter Cookbook, is as complete a guide you could hope for
when designing these sorts of machines. Lancaster’s books as

52

1:3 Serena Butler’s TV Typewriter by Travis Goodspeed

well as his article are available for free on his website, but you’d
do well to spend 15¢ on a paperback from Amazon.

Lancaster’s TV Typewriter differs from Serena’s in a number
of ways, but chief among them is motivation. He avoided a CPU
because he couldn’t afford one, and he limited RAM because it
was hellishly expensive in 1973. By contrast, Serena is interested
in building what a brilliant engineer like Don might have made
with today’s endless quantities of memory and modern ASIC
fabrication, while still avoiding the CPU and hoping to avoid
Turing-completeness entirely.

In addition to Lancaster’s book, those wishing to learn more
about how to build fancy electronics without computers should
buy a copy of How to Design & Build Your Own Custom TV
Games by David L. Heiserman. Published in 1978, the book is
still the best guide to building interactive games around substan-
tially analog components. For example, he shows how the pad-
dles in a table-tennis game can be built from 555 timers, with
the controllers being variable resistors that increase or decrease

MAINFRAME

Figure 1.2: Don Lancaster’s 1973 TV Typewriter

53

1 Proceedings of the Society of PoC||GTFO

the time from the page blank to the drawing of the paddle.

To get some ideas for building computers out of twigs and mud,
take a look at the brilliant papers by Dartmouth’s Scooby Crew.
They’ve built thinking machines from DWARFEI ELFEI and even
the X86 MMUEI fully expect that by the end of the year, they’ll
have built a Turing-machine from Lancaster’s original 1973 de-
sign.

Let’s take a look at some examples of these fancy typewriters.
I hope you will forgive me for asking annoying questions for each,
but still more, I hope you will argue over each question with a
clever neighbor who disagrees.

Simple Butlerian Typewriter: As a starting point, the simplest
form of a Butlerian Typewriter might consist of a Keyboard that
feeds into a Text Buffer that feeds into a Font ROM that feeds
into an NTSC Generator that feeds into an analog TV. The Text
Buffer would be RAM alternately addressed by the keyboard on
the write phase and a line/row counter on the read phase. As the
display’s electron beam moves left to right, individual letters are
fetched from the appropriate row of the Text Buffer and used as
an address in the Font ROM to paint that letter on the screen.

This is roughly the sort described in Lancaster’s original arti-
cle. Note that it does not have storage, spell-check, justification,
I/0, or any other fancy features, although he describes a few such
extensions in his TV Typewriter Cookbook.

3Exploiting the Hard Working Dwarf from WOOT 2011

4Weird Machines” in ELF: A Spotlight on the Underappreciated Metadata
from WOOT 2013

5Page Fault Liberation Army from 29C3

54

1:3 Serena Butler’s TV Typewriter by Travis Goodspeed

BT with Storage: There are a few different ways to implement
storage. The simplest might be for Serena to battery-back the
character buffer and have it as a removable cartridge, but that
exposes the memory bus to Ada’s manipulations. It’s not hard
to rewire a parallel RAM chip to be a logic gate by making its
data a lookup table; this is how the first FPGA cells operated.

So if a removable memory isn’t an option, what is? Perhaps
Serena could make a removable typewriter module that holds
everything but the keyboard, but that wouldn’t allow for the
copying of documents. Serial memory, such as an SPI Flash or
EEPROM chip, is a possibility, but there’s no good reason to
think that it’s any safer than parallel RAM.

A pessimist might say that external storage is impossible unless
Ada is restricted to a small number of typewriters, but there’s
a loophole nearly as old as Mr. Edison himself. The trick is to
have the typewriter flush its buffer to an audio cassette through
a simple modem, and you’ll find handy schematics for doing just
that in Lancaster’s book. Documents can be copied, or even
edited, by splicing the tape in an old-fashioned recording studio.

Why is it that storage to an audio cassette is safer than storage
to a battery-backed RAM module? At what point does a modem
and tape become the sort of tape that Turing talked about?

BT with Spelicheck: Let’s consider the specific case in which
Serena has a safe design of a minimal typewriter and wishes to
add spell check. The trick here is to build a hardware associa-
tive memory with a ROM that contains the dictionary. As the
display’s electron beam moves left to right, the current word is
selected by division on spaces and newlines, and fed into the
Spellcheck ROM, a hardware associative memory containing a
list of valid words. The output of this memory is a single bit,
which is routed to the color input of the NTSC Generator. With

55

1 Proceedings of the Society of PoC||GTFO

matching words in white and suspicious words in red, the type-
writer could look much like Emacs’ f1yspell-mode.

So long as the associative memory is in ROM, this seems like a
rather safe addition. What sort of dangers would be introduced if
the associative spellcheck dictionary were in RAM? How difficult
would it be to build a CPU from nothing but a few associative
memory units, if you had direct access to their bus but could not
change any internal wiring? How few memories would you need?

BT with Printing: Printing turns out to be much easier than
electronic storage. The first method is to simply expose pho-
tographic film to the display, much as oscilloscopes were pho-
tographed in the good ol’ days.

Another method would be to include a daisy wheel, dot matrix,
or thermal print-head fed by a different Font ROM at a much
slower scan rate. While much more practical than taking a dozen
Polaroid photographs, it does give Ada a lot more room to work
with, as the wiring would be exposed for her to tap and rewire.

I don’t expect general purpose computing to be outlawed any

New KODAK ‘ For ONLY
INSTAGRAPHIC™ =] RN 0 s

GRT Imaging Outfit L . I

makes it simple ; . o ‘ -
and economical to _oe ~~uemen i o roomen
picture computer 1-800-328-5618.

or video displays
infull photographic color.

MINNESOTA RESIDENTS, CALL:
1-800-322-0493.

g = .»\ Or use this coupon

m and order by mail.

56

1:3 Serena Butler’s TV Typewriter by Travis Goodspeed

time soon, but I do expect that the days of freely sharing software
might soon be over. At the same time that app stores have
ruthlessly killed the shareware culture that raised me as a child,
it’s possible that someday exploit mitigations might finally kill
off remote code execution.

At the same time that we fight the good fight by developing
new and clever mitigation bypasses, we ought to develop new and
clever ways to build computers out of whatever scraps are left to
us when straight-jacketed in future consumer hardware. Without
Java, without Flash, without consistent library locations, with-
out predictable heap allocations, our liquored and lovely gang
continues to churn out exploits. Without general-purpose com-
puting, could we do the same?

Please share this article with a neighbor,

and also share a bottle of scotch,

and argue in the kitchen for hours and hours,
—Travis

o7

1 Proceedings of the Society of PoC||GTFO

1:4 Making a Multi-Windows PE

by Ange Albertini

Evolution of the PE Loader

The loader for PE, Microsoft’s Portable Executable format, evolved
slowly, and became progressively stricter in its interpretation of
the format. Many oddities that worked in the past were killed in
subsequent loader versions; for example, the notorious TinyPE
doesn’t work after Windows XP, as subsequent revisions of Win-
dows require that the OptionalHeader is not truncated in the
file, thus forcing a TinyPE to be padded to 252 bytes (or 268
bytes in 64-bit machines) to still load.

Windows 8 also brings a new requirement that the Entry Point
Address be less than or equal to the size of the header when the
entry point is non-zero, so old-school packers like F SGE] no longer
work.

So there are many real-life examples of binaries that just stop
working with the next version of Windows. It is, on the other
hand, much harder to create a Windows binary that would con-
tinue to run, but differently—and not just because of some ex-
plicit version check in the code, but because the loader’s interpre-
tation of the format changed over time. This would imply that
Windows is not a single evolving OS, but rather a succession of
related yet distinct OSes. Although I already did something sim-
ilar, my previous work was only able to differentiate between XP
and the subsequent generations of Windows[] In this article I
show how to do it beyond XP.

6Fast Small Good, by bart/xt
7See “TLS AddressOfIndex in an Imports descriptor” for differentiating OS
versions by use of Corkami’s t1s_aoiOSDET.asm.

58

1:4 Making a Multi-Windows PE by Ange Albertini

A Look at PE Relocations

PE relocations have been known to harbor all sorts of weirdness.
For example, some MIPS-specific types were supported on x86,
Sparc or Alpha. One type appeared and disappeared in Win-
dows 2000.

Typically, PE relocations are limited to a simple role: whenever
a binary needs to be relocated, the standard Type 3 (HIGH_LOW)
relocations are applied by adding LoadedImageBase-HeaderImage-
Base to each 32-bit immediate.

However, more relocation types are available, and a few of
them present interesting behavioral differences between operating
system releases that we can use.

Type 9 This one has a very complicated 64-bit formula under
Windows 7E| while it only modifies 32 bits under XP. Sadly,
it’s not supported anymore under Windows 8. It is mapped
to MIPS_JMPADDR16, TA64_IMM64 and MACHINE_SPECIFIC_9.

Type 4 This type is the only one that takes a parameter, which is
ignored under versions older than Windows 8. It is mapped
to HIGH_ADJ.

Type 10 This type is supported by all versions of Windows, but
it will still help us. It is mapped to DIR64.

So Type 9 relocations are interpreted differently by Windows XP
and 7, but they have no effect under Windows 8. On the other
hand, Type 4 relocations behave specially under Windows 8. In
particular, we can use the Type 4 to turn an unsupported Type 9
into a supported Type 10 only in Windows 8. This is possible
because relocations are applied directly in memory, where they
can freely modify the subsequent relocation entries!

8See Roy G Biv’s vcode2.txt from Valhalla Issue 3.
http://spth.virii.lu/v3/

59

1 Proceedings of the Society of PoC||GTFO

Implementation

Here’s our plan:

1.

60

Give a user-mode PE a kernel-mode ImageBase, to force
relocations,

. Add standard relocations for code,

. Apply a relocation of Type 4 to a subsequent Type 9 relo-

cation entry:

e Under XP or Win7, the Type 9 relocation will keep
its type, with an offset of 0£00h.

e Under Win8, the type will be changed to a supported
Type 10, and the offset will be changed to 0000h.

. We end up with a memory location, that is either:

XP Modified on 32b (00004000h),
Win7 modified on 64b (08004000h), or

Win8 left unmodifed (00000000h), because a completely
different location was modified by a Type 10 reloca-
tion.

1:4 Making a Multi-Windows PE by Ange Albertini

;relocation Type 4, to patch unsupported relocation
; Type~™9 (Windows ~8)
block_startl:
.VirtualAddress dd relocbase - IMAGEBASE
.Size0fBlock dd BASE_RELOC_SIZE_OF_BLOCK1

; offset +1 to modify the Type, parameter set to -1
dw (IMAGE_REL_BASED_HIGHADJ<<12)|(reloc4+1l-relocbase),
BASE_RELOC_SIZE_OF_BLOCK1 equ - block_startl

-1

; our Type 9 / Type 10 relocation block:
; Type 10 under Windows$,
; Type 9 under XP/W7, where it behaves differently
block_start2:
.VirtualAddress dd relocbase - IMAGEBASE
.S8ize0fBlock dd BASE_RELOC_SIZE_OF_BLOCK2

; 9d00h will turn into 9f00h or a0O00h
reloc4 dw (IMAGE_REL_BASED_MIPS_JMPADDR16 << 12) | 0dO0Oh
BASE_RELOC_SIZE_OF_BLOCK2 equ $ - block_start2

We now have a memory location modified transparently by the
loader, with a different value depending on the OS version. This
can be extended to generate different code, but that is left as an

exercise for the reader.

61

1 Proceedings of the Society of PoC||GTFO

1:5 This ZIP is also a PDF
by Julia Wolf

We the editors have lost touch with the author, who submit-
ted the following napkin sketches in lieu of the traditional ASCII
prose. Please note when forming your own submissions that we
do not accept napkins, except when they are from Julia Wolf or
from John McAfee. —PML

RIEGER’S
Monogram Whiskey

Purity and age guarantee Good Whiskey. Rieger's Monogram is ab-
solutely pure and wholesome. (iuaranteed under the Pure Food
Laws. Its exquisite, smooth, mellowflavor has made it a lasting favor-
ite with over 100,000 satisfied customers. We are U. S. Registered Dis-
tillers (Distillery No. 360, 5tk Dist. of Ky.) Why pay exhorbitant prices,
when you can buy Rieger’s Monogram Whiskey at the regular wholesale
dealer’s price and save money by ordering your goods shipped direct ?

WE PREPAY ALL EXPRESS CIIARGES

Qe RIEGER'S " § 5 00w
FAVAT Stock D= | pr o0

4 Qts. RIEGER’S § 3,00 g Whisky. Gola

PRICE LIST SENT FREE
UPON APPLICATION

MONOGRAM tipped Whiskey Glass
EXTRA FINE and Patent Corkserew.

No Marks on Packages to Indicate Contents

Send us an order, and when you get the Whiskey, testit for flavor,
smoothness. and all the essentials of GOOD Whiskey. Compare it with
other Whiskies (no matter what the price); test it for medicinal pur-
poses; let your friendstry it: use half of itif necessary to satisfy your-
self on these points—then if you are not thoroughly convinced that
“Rieger's Monogram " is as good as any Whiskey you ever drank, return
the balance to us. and we will pay return charges and at once send you
every cent of your money.

J. RIEGER & CO. 5i2SGenesee street

62

1:5 This ZIP is also a PDF by Julia Wolf

13
/o POF- L efe \n
7. PR \8o3 \oof etc. Nor CR,LE, au NUL
Zb metadety

oAy e
o5 Lo obj 2¢ ...
EC}“‘S‘I"’eqM LR

Deflate Stean,

24phys
C‘\ﬁ{ Suﬁ"'\
end oL}

7. PkNeo3t\0y (¢, alove)

('Kefe&‘f)
oz
END Protubly)
+ -
wTren 1 e 6T ToN 2
— {m;t;ap..‘\ev
i RREF
VS eof
Trailev “'.:f/, !z;p DIR |

KREF

% ecf

Figure 1.3: Napkins 1 and 2

63

1 Proceedings of the Society of PoC||GTFO

3/3
D,f’f)F—(. [r\‘/‘-
N b — V271 PIn
v pleiesioy ‘
/ P\)\,,/\\

-
obj - be s S¥rean,

o Bs S|

end obj

—
'/, Pic \o3\0y . .
045 - -

(Eﬂg!
(ko(a)‘

7 P RNOIOY - .o

XNEF

b},jm

€nd,l
AT

et;

My,

(Af foo. f’f/(€ bar-2i?p > bvz‘f‘u’)

2iP =A boa.pAf

oF .- .
cot .g‘.",{-{: Lor.ast ,F‘”_ri\" b4 va.p&*“
Zip~ A SuL.f’"I’”

O¢ .-
At 1
echo—gtranilec €< root /oo 27 4 Xref v anaas
ehe. U BOF T 5 ovinandt, 4y

Cat oo pd¥ basm 2ip ¥ by pd?f
00207 v ¥F
<z:r <2 com nent.tyt %Z;zws

Cane
2"? ~A buz, !‘A‘f

Figure 1.4: Napkins 3 and 4

64

1:6 Burning a Phone by Josh Thomas

1:6 Burning a Phone

by Josh “@mOnk” Thomas

Earlier this year, I spent a couple months exploring exactly
how power routing and battery charging work in Android phones
for the DARPA Cyber Fast Track program. I wanted to see
if I could physically break phones beyond repair using nothing
more than simple software tricks and I also wanted to share the
path to my results with the community. I'm sure I will talk at
some point about the entire project and its specific targets, but
tonight I want to simply walk through breaking a phone, see what
it learns us and maybe spur some interesting follow on work in
the process.

Because it’s my personal happy place, our excursion into ki-
netic breakage will be contained to the pseudo Linux kernel that
runs in all Android devices. More importantly, we will focus the
arch/arm/mach-msm subsystem and direct our curiosity towards
breaking the commonplace NAND Flash and SD Card hardware
components. A neighbor specifically directed me not to include
background information in this write-up, but we have to start
somewhere prior to frying and disabling hardware internals and
in my mind the logical starting point is the common power reg-
ulation framework.

The Linux power regulation framework is surprisingly well doc-
umented, so I will simply point a curious reader to the kernel’s
documentationﬂ For the purpose of breaking devices, all we re-
ally need to understand at the onset are these three things.

e The framework defines voltage parameters for specific hard-
ware connected to the PCB.

9Documentation/power/regulator/overview.txt

65

1 Proceedings of the Society of PoC||GTFO

e The framework regulates PMIC and other control devices
to ensure specific hardware is given the correct voltages.

e The framework directly interacts with both the kernel and
the physical PCB, as one would expect from a (meta) driver

It’s also worth noting that the PCB has some (surprisingly lim-
ited) hardwired protections against voltage manipulations. Fur-
ther, the kernel has a fairly robust framework to detect thermal
issues and controls to shut down the system when temperature
thresholds are exceeded.

So, in essence, we have a system with a collection of logical
rules that keep the device safe. This makes sense.

Glancing back at our target for attack, we should quickly con-
sider end result potentials. Do we want to simply over volt the
NAND chip to the point of frying all the data or do we want
something a little more subtle? To me, subtle is sexy, so let’s
walk though simply trying to ensure that any NAND writes or
reads corrupt any data in transit or storage.

On the Sony Xperia Z platform, all NAND Flash and all SD-
Card interactions are actually controlled by the Qualcomm MSM
7X00A SDCC hardware. Given we RTFM’d the docs above, we
simply need to implement a slight patch to the kernel:

project kernel/sony/apq8064/
diff --git a/arch/arm/mach-msm/board-sony_yuga-regulator.c
b/arch/arm/mach-msm/board-sony_yuga-regulator.c

-- RPM_LDO(L5, O, 1, O, 2950000, 2950000, NULL, O, 0),
++ RPM_LDO(L5, 0, 1, 0, 5900000, 5900000, NULL, O, 0),

-- RPM_LDO(L6, O, 1, 0, 2950000, 2950000, NULL, O, 0),
++ RPM_LDO(L6, O, 1, 0, 5900000, 5900000, NULL, O, 0),

Wow that was oddly easy, we simply upped the voltage sup-
plied to the 7X00A from 2.95V to 5.9V. What did it do? Well,
given this specific hardware is unprotected from manipulation

66

1:6 Burning a Phone by Josh Thomas

All Games and Good Times are more
fun for the boy with a

BROWNIE

This camera works just like its cousin, the Kodak. The same
men who make the Kodaks make the Brownies, in the Kodak fac-
tories. That’s why they are so well made and so easy to use. Of
course the Brownies are all by daylight cameras and any boy can
develop his own films in the Brownie developing box.

BROWNIES, $1.00 to $12.00.

EASTMAN KODAK COMPANY,

o oty o Brononis oot ROCHESTER, N.Y., 7% Kodak City.

67

1 Proceedings of the Society of PoC||GTFO

across the power band at the PCB layer and at the internal sili-
con layer, we just ensured that all voltage pushed to the NAND
or SD-Card during read / write operations is well above the de-
fined specification. The internal battery can’t actually deliver
5.9V, but the PMIC we just talked to will sure as hell try and
our end result is a NAND Flash chip that corrupts nearly every
block of storage it attempts to write or read. Sometimes the data
comes back from a read request normal, but most of the time it
is corrupted beyond recognition. Our writes simply corrupt the
data in transit and in some cases bleed over and corrupt neighbor
data on storage.

Overall, with two small values changed in the code base of
the kernel we have ensured that all persistent data is basically
unusable and untrustworthy. Given the PMIC devices on the
phone retain the last valid setting they’ve used, even rebooting
the device doesn’t fix this problem. Rather, it actually makes it
much worse by corrupting large swaths of the resident codebase
on disk during the read operation. Simply, we just bricked a
phone and corrupted all data storage beyond repair or recovery.

If instead of permanently breaking the embedded storage hard-
ware we wanted to force the NAND to hold all resident data un-
scathed and ensure that the system could not boot or clean itself,
we simply need to under-volt the controller instead of upping the
values.

68

1:7 Sermon on the Divinity of Languages by Manul Laphroaig

1:7 A Sermon concerning the Divinity
of Languages; or,
Dijkstra considered Racist

an epistle from the Rt. Rvd. Pastor Manul Laphroaig,
for the Beloved Congregation
of the First United Church of the Weird Machiness

Indulging in some of The Pastor’s Finest, I proclaim to my con-
gregation that there is divinity in every programming language.

“But,” they ask, “if there is divinity in all languages, where is
the divinity in PHP? Though advertised as a language for begin-
ners, it is impossible for even an expert to code in it securely.”

Pouring myself another, I say, “PHP teaches us that memory-
safe string concatenation is just as dangerous as any stupid thing
a beginner might do in C, but a hell of a lot easier to exploit. My
point is not in that PHP is so easy to write, as it isn’t easy to
write safely; rather, the divinity of PHP is in that it is so easy to
exploit! Verily I tell you, dozens of neighbors who later learned to
write good exploits first learned that one program could attack
another by ripping off SQL databases through poorly written
PHP code.

“If a language like PHP introduces so many people to pwnage,
then that is its divinity. It provides a first step for children to
learn how program execution goes astray, with control and data
so easy to mangle.”

“But,” they ask, “if there is divinity in all languages, where is
the divinity in BASIC? Surely we can mock that hellish language.
Its line numbers are ugly, and the gods themselves laugh at how
it looks like spaghetti.”

69

1 Proceedings of the Society of PoC||GTFO

Pouring myself another, I proclaim, “The gods do enjoy a good
laugh, but not at the expense of BASIC! While PHP is aimed
at college brogrammers, BASIC is aimed at children. Now let’s
think this through carefully, without jumping to premature con-
clusions.

“BASIC provides a learning curve like a cardboard box, in that
when trapped insider a clever child will quickly learn to break out.
In the first chapter of a BASIC book, you will find the standard
Hello World.

10 PRINT "Hello World"

“Groan if you must, but stick with me on this. In the sixth
chapter, you will find something like the following gem.

250 REM This cancels ONERR in APPLE DOS
260 POKE 216, O

“Sit and marvel,” T say, “at how dense a lesson those two lines
are. They are telling a child to poke his finger into the brain of the
operating system, in order to clear an APPLE DOS disk error.
How can C or Haskell or Perl or Python begin to compete with
such educational talent? How advanced must you be in learning
those languages to rip a constant out of the operating system’s

GENERATING SOUNDS
As you have seen,
PEEK (-16336>
clicks the speakers of the APPLE II.
POKE -16336.,8
will also click the speaker , and any program which repeatedly PEEKs or
POKEs the address — 16336 will produce a steady tone.

Figure 1.5: Excerpt from Apple |[Basic Programming (1978)

70

1:7 Sermon on the Divinity of Languages by Manul Laphroaig

brain, like PEEK(222) to read the error status or POKE 216, 0
to clear it?”

A student then asks, “But the code is so disorganized! Professor
Dijkstra says that all code should be properly organized, that
GOTO is harmful and that BASIC corrupts the youth.”

Pouring myself another, I say “Dijkstra’s advice goes well enough
if you wish to program software. It is true that BASIC is a hor-
rid language for writing complex software, but consider again the
educational value of spaghetti code.

“Dijkstra says that a mind exposed to BASIC can never become
a good programmer. While I trust his opinions on algorithms,
his thoughts on BASIC are racist horse shit.

“A mind which has *not* been exposed to BASIC will only
with great difficulty become a reverse engineer. What does a
neighbor who grew up on BASIC spaghetti code think when he
first reads unannotated disassembly? As surely as the Gostak
distims the Doshes, he knows that he’s seen worse spaghetti code
and this won’t be much of a challenge!

“Truly, I am in as much awe of the educational genius of BASIC
as I am in awe of the incompetence of the pedagogues who lock
children in a room with a literate adult for a decade, finding those
children to still be unable or unwilling to read at the end. Lock
a child in a room with an APPLE |[and a book on BASIC, and
in short order a reverse engineer will emerge.

“There is divinity in all languages, but BASIC might very will
be the most important for teaching our profession.”

“But,” they ask, “if there is divinity in all languages, where is
the divinity in Java?”

Pouring myself another, I drink it slowly. “The lesson is over
for today.”

71

1 Proceedings of the Society of PoC||GTFO

72

2 The Children’s Bible Coloring
Book of PoC|GTFO

2:1 Ring them Bells!

In PoC||GTFO Pastor Laphroaig preaches that in the tra-
dition of Noah and of Howard Hughes, we should build our own
fucking birdfeeders. Perhaps, dear reader, it will inspire you to
build your own Glomar Explorer and salvage a derelict Soviet
submarine from the ocean floor?

Brother Myron Aub takes a break from his evangelical promo-
tion of Graphitics to teach us a little about the PGP Message
format in PoC||GTFO It turns out that RFC 4880 gives him
just enough room to encode an LZ-compression quine within a
message, and the PGP interpreter is just “smart’ﬂ enough to

1Because things marketed as “smart” usually aren’t, at least not for the
buyer’s benefit. Truly, the world does occasionally need reminding that
stupid is as stupid does.

73

2 The Children’s Bible Coloring Book of PoC||GTFO

keep decoding it ’till the cows come home. Perhaps other weird
machines remain to be found?

Natalie Silvanovich shares in PoC||GTFO her techniques
for reliably dropping shellcode into the Tamagotchi’s 6502 con-
troller from malicious plugin cartridges. Her exploit requires a
number of nifty tricks, not least of which is that the some bits
of the program counter are ignored in this architecture, so her
victim executes the right code from the wrong address! It is
feared that this technology might be used by the Royal Cana-
dian Mounted Police to fuel a Cyber War of 1812 against the
State of New Hampshire and the People’s Republic of Vermont.
Both American and Canadian neighbors can rest assured that
this one would have the same winner as the original, Non-Cyber
War of 1812.

Travis Goodspeed shares a grab-bag of tricks for exploiting
microcontrollers in PoC||GTFO Learn how to combine a

Computer Music systems and peripherals for Apple
and Commodore.

We make the Computer work for the Musician.

Call us. We constantly update our computer information
and and we can answer any questions on systems and
peripherals.

415-994-2909
Computers
& Syntauri
H Midi S er
Music MusiCalc Eiied
1989 Junipero Serra E-mu Passport
Daly City, CA 94014

74

2:1 Ring them Bells!

Write and a Checksum primitive with weirder properties of Flash
memory into a bitwise Read primitive when exploiting micro-
controllers, how to NOP-out instructions without erasing Flash
pages, and how to use bootloader ROMs for a return-to-libc at-
tack.

Bx Shapiro had a nifty article in PoC||GTFO 0:5 in which she
showed how to return from ELF to libc. That article ended with
a challenge to our readers, asking you fine folks to figure out
how in living hell parameters could be passed to the function
being called. In PoC||GTFO she rises to her own challenge,
showing you how to call putchar () from an ELF Weird Machine
without having any of your own native code.

Dave Weinstein in PoC||GTFO [2:7| explains why POKE 62975,
0 will brick a Trash 80 Model 100 until that poor machine is put
out its misery by a cold reset. Feel free to try it out in your emula-
tor and consider that many Automatic Exploit Generators aren’t
very good at predicting the effects of a write-once-anywhere vuln.

Ange Albertini explains the internal organization of this is-
sue’s PDF in PoC||GTFO Curious readers might want to
run gemu-system-i386 -fda pocorgtfo02.pdf in order to ex-
perience all the neighborliness that this issue has to offer.

In PoC||GTFO Dan Kaminsky shared with us a 4-line
RNG for Javascript, challenging our readers to exploit it. It had
no whitening, no scrambling, and no other defenses, so any weak-
ness in the principle ought to have been exploitable. In proper
PoC||GTFO fashion, Joernchen demonstrates such a vulnerabil-
ity in PoC||GTFO by observing that some versions of Firefox
bias toward producing bytes of low Hamming weight.

PoC||GTFO contains Ben Nagy’s latest masterpiece, sure
to get you, dear reader, on all sorts of watchlists. We half-
heartedly apologize to any of our readers at spooky agencies who
have to explain having this poem to their employers.

75

2 The Children’s Bible Coloring Book of PoC||GTFO

2:2 A Parable on the Importance of

Tools; or,

Build your own fucking birdfeeder.

an epistle from the Rt. Rvd. Pastor Manul Laphroaig,
to the Beloved Congregation

of the First United Church

of the Weird Machiness

Grace and Peace to you!

Once there was a wine-maker named
Noah, the sort of fella you’d be happy to
share a beer with. He made damned good
wine, but one day he started building a
boat.

“Why are you building that?” they’d ask,
“Are the voices in your head telling you that
it’s gonna rain?”

“Nope,” he’d say, “Just toolin’ around.”

They showed him yacht catalogs and
boating magazines. “Look, man, you can
just buy one at the store.”

“Haven’t got the money,” he’d say and
then get back to building the frame or
bending boards for the hull.

Pictured above is the new OP-80A
High Speed Paper Tape Reader from
OAE. This unit has no moving parts,
will read punched tape as fast as you
can pull it through (0-5,000 c.p.s.),
and costs only $74.50 KIT, $95.00
ASSEMBLED & TESTED. It in-
cludes a precision optical sensor ar-
ray. high speed data buffers, and all
required handshake logic to interface
with any uP parallel 170 port.

To order, send check or money order
(include $2.50 shipping/handiing) to
Oliver Audio Engineering. 7330
Laurel Canyon Blvd., No. Holly-
wood, CA 91605, or call our 24 hr.
M/C-B/A order line: (213) 874-6463.

“Well, you could afford to rent a boat for the weekend.”
Now Noah was a patient guy, but everyone has his limit. “I'm
building my own fucking birdfeeder,” he’d say, “because they’ve

got wood at the store.”

And there was a fella named Howard Hughes, a crazy old mil-
lionaire. Back in the thirties, he built his own air force to film

76

2:2 Build your own birdfeeder. by Manul Laphroaig

a movie about the first World War, so during the forties, when
Roosevelt needed an air force of his own, he bought Howie’s.

Howie Hughes built other birdfeeders. He made the H4 Her-
cules, the world’s largest airplane and a damned big boat, out
of wood. It was five stories tall with a hundred meter wingspan.
First flying in 1947, nothing approaching its size was seen for
another forty years.

During the cold war, when the CIA wanted to recover a sunken
Soviet submarine, K-129, they called ol’ Howie up. “Howie,” they
said, “We’ve gotta keep this real quiet. Don’t tell anyone.”

So the next day, Howard Hughes held a press conference! “There
are giant blobs of copper on the ocean floor,” he lied, “and I'm
building a big-ass boat with a big-ass crane to pick them up and
drop them on the deck. It’ll be so efficient that I’ll put the other
copper mines out of business.”

So while folks were scrambling to invest in his copper company
and divest from the real ones, Howie built the Hughes Glomar
Explorer. True to his word it was a big-ass boat with a big-
ass crane, but instead of picking up copper blobs it lifted that
submarine off the ocean floor and dropped it on the deck.

How could he do these things? Because he built his own fucking
birdfeeders, that’s how.

So when you’re tooling around with a from-scratch tool, your
own hex editor or interactive disassembler, and your neighbors
tell you to use 010 or to use IDA or to use this or use that, do
what Noah and Howie would do. Look ’em in the eye and say,

“I'm building my own fucking birdfeeder.”

7

2 The Children’s Bible Coloring Book of PoC||GTFO

78

for NEW
Nation-Wide Setvice Program!

s

Await Qualified Technicians

. . . at BOTH the Junior and Senior Level, in the installation and
maintenance of Electronic Equipment.

These are definitely of interest to
exceptionally capable men of above
average intelligence who are anxious
to PROVE their capacity to advance
to posts of greater responsibilities in
he d-i-n-g, challenging field

p
of electronics.

Salaries commensurate with your ex-
perience plus liberal per diem living
costs & travel allowances, plus these
company benefits: Cooperative Educa-
tional Aid — Liberal Pension Plan and
all the usual Health and Hospitalization
Benefits for YOU and your Family.

BURROUGHS MEANS BUSINESS!
Get The Details Now. Call or Write The Burroughs Place-

ment Manager For An Appointment.

RESEARCH CENTER

Paoli, Pa. « Suburban Philadelphia + Paoli 3500

2:2 Build your own birdfeeder.

by Manul Laphroaig

ELECTRICAL ENGINEERS
o PHYSICS GRADUATES

with experience in
ELECTRONICS

or those desiring to enter these areas. ..

RADAR o

The time was never more opportune than now for becoming
associated with the field of advanced electronics. Because of military

emphas
of endeavor for the young e

Since 1048 Hughes Research and Devel-
opment Laboratories have been engaged
in an expanding program for design, de
velopment and manufacture of highly
complex radar fire control systems for
fighter and interceptor aircraft. This re-
quires Hughes technical advisors in the
field to serve companies and military
agencies employing the equipment.

As one of these field engineers you will
become familiar with the entire systems in-

Hughes Field Engineer
H. Heaton Barker (right)
discusses operation of fire
control system with Royal
Canadian Air Force tech
cians. Avro Canada CF-1
shown at right

Relocation of applicant must
not cause disruption of an
urgent military project.

s this is the most rapidly growing and promising sphere

ctrical engin,

or physicist.

volved, including the most advanced
electronic computers. With this advan-
tage you will be ideally situated to
broaden your experience and learning
more quickly for future application to
advanced electronics activity in either
the military or the commercial field.
Positions are available in the continen-
tal United States for married and single
men under 35 years of 2 Opverseas
assignments are open to single men only.

Scientific

and Enginecring
Staff
HUGHES

RESEARCH
AND
DEVELOPMENT
LABORATORIES
Culver City,

Los Angeles
County,

California

N

79

2 The Children’s Bible Coloring Book of PoC||GTFO

2:3 A PGP Matryoshka Doll
by Brother Myron Aub

Take out your favourite matryoshka doll, neighbour. Now piece
by piece, open it until you can open it no longer. Every piece
is smaller and closer to the end of the experience, and then—it
stops: you can open the smallest piece no more.

But beware, neighbour! Not all matryoshka dolls behave like
this. Some matryoshka craftsneighbours are tempted by the
devil’s lures. They see no farther than the devil’s unholy promises
of extensibility and compactness when they craft a matryoshka
doll that can compress a larger one to fit within it! And our good
neighbour Phil Zimmerman fell prey to this lure when designing
the PGP doll format Pl

When you want to send a message, you must first stuff it into
a literal doll. You can then enclose that in an encrypted doll,
a signed doll, or a compressed doll. How do you assemble these
together? However you please! You can put your literal doll
inside a signed doll inside an encrypted doll inside a compressed
doll. Naturally, ciphertext compresses poorly, so this would be
a stupid way to nest a PGP matryoshka doll. Normally you put
your literal doll inside a signed doll inside a compressed doll inside
an encrypted doll, but you can do it stupidly if you like.

And how do you open a PGP matryoshka doll? Since the
sender could have assembled it however they pleased, you must
be ready for anything. If you see an encrypted doll, you decrypt
it and open the enclosed smaller doll. If you see a signed doll,
you verify its signature—throwing it away if it fails to verify—
and open the enclosed smaller doll. If you see a literal doll, you're
done and you read the message.

2RFC 4880, OpenPGP Message Format

80

2:3 A PGP Matryoshka Doll by Myron Aub

But what if you get a compressed doll? You decompress it—
and hope there are no vulnerabilities in your system’s zlib—but
unless some idiot tried to compress ciphertext, the enclosed doll
will be bigger than the doll you just opened.

“Surely,” you say, “if someone assembled a PGP doll for me, it
must have a literal doll buried inside it!” But no, my poor, naive
neighbour! There is no rule that all PGP dolls be assembled like
that. With the help of our neighbourly neighbour Russ CoxEl
and with a dab of holy water to dispel the devil’s temptations to
misuse this black magic, we can craft a voodoo PGP doll from
a quine, a self-reproducing program written in the Lempel-Ziv
compression language, that bites any who naively try to open it
upEl

Our neighbour Tavis Ormandy discovered similar unholiness in
IPsecﬂ What other matryoshka dolls can you turn into voodoo
dolls, good neighbour?

3Russ Cox, Zip Files All the Way Down, 2010-03-18

4u.nzip pocorgtfo02.pdf ’pgpquine/*’

5Tavis Ormandy, BSD derived RFC 3173 IPcomp encapsulation will ex-
pand arbitrarily nested payload, CVE-2011-1547, posted to full-disclosure
2011-04-01.

'HEALTH “Run-down people find hexe the panacea for men-

¥ %% tal or physical ailment. The wonderful waters,

l{EST pure air, and above all, the restful quiet of this
% charmed spot pu 2 2

25

¥

quicken into
new life the tired
IVUCHIGAN_ senses. All the
facts about T'HE
ALMA are embodied 'md set forth in a hand-
; somely illustrated book which is sent free to
any address upon application.
THE AILMA SANITARIUM CO., - ALMA, MICH.
Special discount to clergymen, teachers, and their families.

k:

SEEELE L O 5 R O g g

BRBERRDRIAIRRANN

81

2 The Children’s Bible Coloring Book of PoC||GTFO

Hey kids!
Can you reverse engineer shellcode from the picture?

82

2:4 Code Execution on a Tamagotchi by Natalie Silvanovich

2:4 Reliable Code Execution on a
Tamagotchi

by Natalie Silvanovich

Tamagotchis are an excellent target for reverse engineering for
a number of reasons: They have a limited number of inputs and
outputs, they run on a poorly documented 6502 microcontroller
and they’re, well, Tamagotchis. Recently, I discovered a tech-
nique for reliably executing foreign code on a Tamagotchi.

Let’s begin at the beginning. Modern Tamagotchis run on a
GeneralPlus GPLB52X LCD controller, a lightweight 6502 con-
troller that uses an internal mask ROM for all code and some
data. This means that exploitation is necessary to free the Tam-
agotchi from the shackles of its read-only code. Also, in the
absence of any debug outputs, code execution provides valuable
insight into the internals of the Tamagotchi and its MCU.

There are four inputs into a Tamagotchi that can be manip-
ulated by the user. (1) The buttons, (2) the EEPROM that
saves the Tamagotchi state across resets, (3) the IR interface and
(4) certain accessories containing external SPI memory called
figures. Attempts to find useful bugs in the EEPROM and IR
interface were unsuccessful, so I moved onto the figures. Eventu-
ally I found an exploitable bug in how the Tamagotchi processes
figure data.

When attached to a Tamagotchi, figures add extra function-
ality, such as games or items. So attaching a figure might al-
low your Tamagotchi to play shuffleboard, purchase a vacuum
cleaner or attend 30C3. The bug I found was in the processing
of game data. Game logic is not actually included in the figure
data; rather, the figure provides an index to the game logic in

83

2 The Children’s Bible Coloring Book of PoC||GTFO

the Tamagotchi’s mask ROME Changing this index causes some
very strange behavior. If the index is an expected value, from 0
to about 0x20, a game will be played as expected, but for higher
indexes, the device will freeze, requiring a reset. Even stranger,
if the index is very high (0xD8 or higher), the Tamagotchi jumps
to a different, valid screen, such as feeding the Tamagotchi or
giving it a bath, and the Tamagotchi functions normally after-
wards. This made me suspect that the game index was used as
an index into a jump table and that freezing was due to jumping
to an invalid location.

With no way to gain additional information about the cause
of the behavior, and about 200 possible vulnerabilities, it made
sense to to fill up as much memory as possible up with a NOP
sled, try all possible indexes, and hope that one caused a jump to
the right location. Unfortunately, the only memory controllable
by the figure is the LCD RAM, so I filled that with NOPs and
shellcode. (The screen data starts at 0x1C80 in the figure mem-
ory, and maps to 0x1000 in the Tamagotchi memory, for people
trying this at home.) After several tries and some fiddling the
shellcode, index 0xD4 lead to very unreliable code execution. This
code execution allowed me to perform a complete ROM dump of
the Tamagotchi, which in turn led to the ability to better analyze
the bug.

The following code contains the vulnerability. Please note that
the current state (current_state_22) is set from the game index
without validation.

6The important index is located at address 0x18 in figure memory.

84

11

2:4 Code Execution on a Tamagotchi

by Natalie Silvanovich

seg004 :4E2E LDA byte_1A4
seg004:4E31 BEQ loc_44E39
seg004:4E33 LDA gameindex2
seg004:4E36 JMP loc_44E3C
seg004:4E39 LDA gameindex1
seg004:4E3C CLC

seg004 :4E3D ADC #$27

seg004 :4E3F STA current_state_22
seg004 :4E41 JMP locret_44E4C

The main Tamagotchi execution loop checks the state based
on a timer interrupt, then makes a state transition if the state

has changed. The state transition is as follows.

ROM:EFES8 LDX current_state_22
ROM:EFEA LDA $FOOE , X

ROM: EFED STA change_page
ROM:EFFO STA current_page
ROM: EFF2 BEQ loc_FO001
ROM:EFF4 LDA #0

ROM:EFF6 STA off_34

ROM:EFF8 LDA #$40 ; @’
ROM:EFFA STA off_34+1

ROM: EFFC LDA current_state_22
ROM: EFFE JMP (off_34)

In essence, the Tamagotchi looks up
the page of the state in a table at
0xFOOE, then jumps to address 0x4000 in
that page. Looking at this code, it is
clear why my first exploit was unreliable.
0xD4 + OxFOOE + 0x27 is 0xF109, which
resolves to a value of 0x3C. Since the Tam-
agotchi only has 19 pages, this is an invalid
page number. Testing what would happen
if the MCU was provided an invalid page,
addresses 0x4000 and up resolved to OxFF.

This means that there are two possibili-
ties of how this exploit works. Either the

CANADIANS!
Eliminate the Customs Hassles
Save Money and get Canadian
Warranties on IMSAI and S-100
compalible products.

IMSAI 8080 KIT § 838.00

ASS. $1163.00

(Can. Duty & Fed. Tax Included)
AUTHORIZED DEALER
Send $1.00 for complete IMSA|
Catalog
We will develop complete applica-
tion systems
Contact us for further information.

,»
P
Rotundra
Cybernetics
Box 1448, Calgary, Alta. T2P 2H9
Phone (403) 283-8076

85

=

w

wt

2 The Children’s Bible Coloring Book of PoC||GTFO

memory addresses are floating and some-
times end up with values that, when executed, send the instruc-
tion pointer to the LCD RAM, or the undefined instruction OxFF,
when executed, puts the instruction pointer into the right place,
sometimes. Barring bizarreness beyond my wildest imagination,
neither of these possibilities would allow for the exploit to be
made more reliable though manipulation of the figure data.
Instead, I looked for a better index to use, which turned out to
be 0xCD. 0xCD + OxFOOE + 0x27 is 0xF102, which maps to part
of the LCD segment table, which has a value of 4. Jumping to
0x4000 in page 4 immediately indexes into another page table.

seg004:4000 LDA #$D

seg004:4002 STA $34

seg004:4004 LDA #$40 ; @
seg004:4006 STA $35

seg004:4008 LDA $22

seg004:400A JMP jump_into_table_D27F

This index is also out of range, and indexes into a code section:

seg004 :41F5 INC $11E

Interpreted as a pointer, however, this value is Ox1EEE. The
LCD RAM range is from 0x1000 to 0x1200, but fortunately, bits
2-7 of the upper byte of addresses in the 0x1000-0x2000 range
are ignored, so reading Ox1EEE returns the value at 0x10EE. This
means that playing a game with the index of 0xCD will execute
code in the LCD RAM every time!

While reading PoC||GTFO obligates you to share a copy with
a neighbour, trying this on your own Tamagotchi is only strongly
recommended. Further instructions can be found by unzipping
pocorgtfo02.pdf.

86

2:4 Code Execution on a Tamagotchi by Natalie Silvanovich

“The ancient teachers of this science promised impossibilities
and performed nothing. The modern masters promise very
little; they know that metals cannot be transmuted and that
the elixir of life is a chimera but these philosophers, whose
hands seem only made to dabble in dirt, and their eyes to pore
over the microscope or crucible, have indeed performed
miracles. They penetrate into the recesses of nature and show
how she works in her hiding-places. They ascend into the
heavens; they have discovered how the blood circulates, and the
nature of the air we breathe. They have acquired new and
almost unlimited powers; they can command the thunders of
heaven, mimic the earthquake, and even mock the invisible
world with its own shadows.” — Shelley 3:16

87

2 The Children’s Bible Coloring Book of PoC||GTFO

2:5 Some Shellcode Tips for MSP430
and Related MCUs

by Travis Goodspeed

Howdy y’all,

I’'m writing this to introduce you as an exploiter of desktops
and servers to some of the tricks that I've used in writing shell-
code for microcontrollers, with examples from the MSP430 in
particular. You can try most of these examples on a GoodFET
or Facedancer board, and many of them are portable to other
embedded targets, such as AVR or the lower-end ARM devices.

Flash Patching is Weird

In Unix and Windows, you are used to processes operating within
virtual memory. On a microcontroller, they often run directly in
physical memory, so the rules are rather different. It helps to
take the German approach, learning all of the rules to get away
with things that ought to be illegal.

The first difference you’ll run into on the MSP430 is that code
runs in-place from Flash memory. Flash has some very different
rules from RAM, because it’s a different technology and a proper
programmer knows better than to rely on layers of abstraction.

e Flash is erased to ones as segments or globally, never as
bytes or words.

e Flash writes clear bits at word granularity, but can’t set
them.

e Flash writes require a safety password to be written into a
register.

88

2:5 Shellcode for MSP430 by Travis Goodspeed

Thus, to do a normal write to Flash, an MCU programmer is
taught to first disable the Flash write protection and configure
the right special-function registers, then erase the entire page,
then rewrite the entire page. Many programmers never bother,
opting for an external memory chip or relying on battery-backed
RAM.

To make smaller changes, there’s another option. After dis-
abling Flash, a neighbor could clear individual bits rather than
rewriting the entire page. This is handy for regular developers to
do what’s called EEPROM Emulation, which emulates memory
that can be written bytewise, but it’s also damned useful when
patching code in-place.

For example, Figures[2.1and [2.2]show that 0x3Cxx is an uncon-
ditional Jump while 0x38xx is a conditional Jump if Less Than in-
struction. If we overwrite a JMP instruction with 0x3BFF, it will
have the effect of bitwise ANDing that instruction with 0x3BFF,
changing the 3C opcode to 38 while retaining the jump offset.

Since MSP430 instructions are 16-bit word aligned, the 10-bit
PC offset is multiplied by two and then added to the program
counter. 0x3FFF is an unconditional jump backward by one word,
or an unconditional infinite while loop. If you zero-out the offset
by overwriting the instruction with 0x3C00, you can turn any
jump instruction into a NOP.

When attacking a poorly protected bootloader, you might find
yourself with the ability to write and to checksum, but not to
read. If you can write without erasing, then writing all 1’s with a
single 0 will change the checksum if and only if that bit previously
was a 1. Repeating for each bit of Flash is slow, but it might get
you a firmware dump.

89

2 The Children’s Bible Coloring Book of PoC||GTFO

000 040 080 O0CO 100 140 180 1CO 200 240 280 2CO 300 340 380 3CO

0xxx

Axxx

8XxXX

Cxxx

1xxx | RRC [RRC:B | swPB RRA | RRAB[sxT PUSH |PusH.B| CALL RETI
14xx

18xx

1Cxx

20xx JNE/UNZ

24xx JEQ/JZ

28xx JNC

2Cxx JC

30xx JN

34xx JGE

38xx JL

3Cxx JMP

Axxx MOV, MOV.B
5xxx ADD, ADD.B
6xxx ADDC, ADDC.B
7XXX SUBC, SUBC.B
8xxx SUB, SUBB
9XXX CMP, CMP.B
Axxx DADD, DADD.B
Bxxx BIT, BITB

Cxxx BIC, BIC.B
Dxxx BIS, BIS.B
Exxx XOR, XOR.B
Fxxx AND, AND.B

Figure 2.1: MSP430 Instruction Set, from the MSP430X2xx
Family User’s Guide

Efficient Shellcode

Quite often, the first thing you’ll do with shellcode is to dump
out the state of the microcontroller being attacked. It’s worth
studying ways to make that code in as few bytes as possible, as
a microcontroller generally processes very small packets and you
won’t have room for anything fancy.

To quickly dump memory on an architecture that you don’t
know very well, it helps to have simple code that already has its
environment configured. The code should be completely oblivious

90

2:5 Shellcode for MSP430 by Travis Goodspeed

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Op-code C 10-Bit PC Offset

Figure 2.2: MSP430 Jump Instructions, from the MSP430X2xx
Family User’s Guide

to timing, and it should access as few structures as possible.
It should also be portable, requiring neither knowledge of its
position in memory nor knowledge of the specifics of the rest of
the device motherboard at compile time.

My solution is to blink the LEDs, half with a clock and half
with data, to dump all of the memory to an SPI sniffer. The
LEDs that light up with consistent brightness are the clock, while
those that sporadically become very bright or very dim are the
data. Tapping one of each with my handy Saleae logic analyzer
gives me a firmware dump.

Mask ROMs have Useful Gadgets

In my WOOT ’09 paper with Aurélien Francillon, we toyed around
with using the MSP430’s BSL (BootStrap Loader) ROM to aid
in exploiting an unknown executablem That paper concerns ex-
ploiting firmware without having a copy, but I'll recount one of
its tricks here.

The MSP430 BSL has two entry points. The first is the Hard
Entry Point, whose address is always stored at 0x0C00. By twid-
dling the reset and test pins with proper timing, the chip will
boot from this address instead of from the RESET handler in
the interrupt table.

THalf-Blind Attacks: Mask ROM Bootloaders are Dangerous, WOOT 2009,
Goodspeed and Francillon

91

2 The Children’s Bible Coloring Book of PoC||GTFO

The second entry point is called the Soft Entry Point, and
it is rather poorly documented. The original idea was that a
program could return into the bootloader ROM by branching
to the address stored at 0x0C02, with some of the initialization
routines skipped. One of these routines is the instruction that
initializes the register holding password protection, so by setting
or clearing a bit in that register, the calling application can enable
or disable password checking.

While the soft entry point is sometimes useful to an MSP430
developer, it’'s damned useful for an attacker. On an MSP430-
F1612, my favorite shellcode for dumping firmware is a bit like
the following, which assembles to just six bytes of memory.

mov #OxFFFF, ri1 ;3 Disable BSL password protection.
br &0x0c02 ;3 Branch to the BSL Soft Entry Point

Unused RAM is Not Erased at Reboot

In larger machines, memory which is not used by a process is not
mapped into that process’s virtual memory. In microcontrollers,
it is still accessible, since the code is running with physical rather
than virtual memory. Rather than reset every RAM word during
a reboot, most microcontrollers simply leave it alone and let the
program take care of clearing its values.

Now an MSP430 application is compiled with a view of mem-
ory that it sparingly uses. GCC, for example, will allocate code
(.text) into Flash from the lowest Flash address in its linker
script.

RAM is only used by the compiler for data, never for code,
unless the linker script is carefully and intentionally hand-crafted.
It is divided into two segments by the linker, .data and .bss.
The .data region is initialized by copying the data over from

92

2:5 Shellcode for MSP430 by Travis Goodspeed

Flash, while the .bss region is initialized to zero through a simple
while() loop. This provides us with two nifty tricks.

The first trick is that, given a poor POKE gadget, we can
slowly place a large chunk of shellcode into upper regions of RAM.
For example, an MSP430F2618 has plenty of RAM, so a device
using that chip could have the GoodFET firmware itself act as
second-stage shellcode! Smaller chips, such as the MSP430F2274,
could have a Flash driver loaded into unused RAM, with third-
stage shellcode written into unused Flash.

Where Flash is Protected, RAM is Not

Recalling that unused RAM is never cleared by an application,
let’s abuse that behavior in a second way.

Back in 2010, Texas Instruments released their ZStack imple-
mentation of Zigbee for use with the Smart Energy Profile. I
found that the random number generator was crap, and they
patched that bug. So how was little o]’ me supposed to get more

93

2 The Children’s Bible Coloring Book of PoC||GTFO

Zigbee Smart Energy Profile keys without a Certicom license?

The remaining vulnerability was a combination of the BSL
ROM with the ZStack firmware. ZStack relied upon the BSL
ROM and the JTAG fuses to prevent keys and firmware from
being read out of the device, but the BSL ROM was only intended
to keep code from being read out of the device. A second bug in
that Zigbee stack was that keys were stored in the .data segment
instead of the .text segment, so the firmware would copy the key
from Flash into RAM during startup.

As a quick recap, the bootloader requires a password to run
most commands, but some are unprotected. Among them are
the ones to supply a password and the Mass Erase command,
which wipes all of Flash and resets the password, which is stored
in Flash, to 32 bytes of OxFF.

So to get keys out of locked ZStack devices, I just needed to use
the serial bootloader, first sending the command to Mass Erase
and then—without losing power—to supply a password of all OxFF
and then to dump all of RAM to disk. A little bit of RAM is
overwritten by the BSL’s call stack, but only the lowest 32 bytes.
Everything else is saved.

I hope you find these tricks to be handy. If you’d like to hear
more, buy me a nice India Pale Ale.
— Travis

94

2:5 Shellcode for MSP430 by Travis Goodspeed

Who would remember Noah,
if he had just bought a boat from the store?
Build your own fucking birdfeeder.

95

2 The Children’s Bible Coloring Book of PoC||GTFO

2:6 Calling putchar() from an ELF
Weird Machine.

by Rebecca .Bx Shapiro

Pastor’s Exordiumﬂ Behold the daily miracle of the loader:
it takes stored dumb bytes and makes them into a new process or
splices them into a running one. The Pharisees may dismiss it as
mere engineering, but verily I tell you, long after their textbooks
are forgotten the loader and its Phrack exegesis will shine on, for
there is more wisdom gathered in its metadata structures than
can be found in a dozen OS textbooks.

Yet there is more! The binary metadata structures consumed
by the loader are actually a program for the loader. A weird
machine devotee will readily recognize that these data drive all
the actions behind the loader’s miracle; they can be thought of as
executable bytecode for the loader, which can be thought of as a
virtual machine. And just as assembly with all its glorious movs,
adds, and calls is encoded in opcodes and offsets, ABI metadata
entries are encoded in types and addends, except that they are
split into symbols and relocation structures, residing in different
sections of the binary but cross-referenced by their entry numbers
in the respective sections.

In this follow-up to earlier work, Bx shares more nifty tricks of
programming the ELF loader with relocation and symbol data as
weird assembly. This work is as advanced as it is neighborly, so

8 How is a sermon like a binary file? Both have prescribed parts that follow
each other in a conventional order, but may be skipped or used creatively
by an extra neighborly preacher. Convention is there to help, but it’s the
result that matters. So just think of exordium as the ELF/ABI header
or vice versa and bear with the Preacher as you bear with your binary
toolchain! —PML

96

2:6 Calling putchar() from ELF by Rebecca .Bx Shapiro

please read her articles from WOOT 2013 and POC||GTFO
to learn how to build a Turing-complete virtual machine out of
an ELF loader and how to extend that VM to call native code.
In this sermon, Bx shows us how to make system calls from ELF
relocation and symbol data; full shellcode is left as an exercise to

the faithful! —PML

Welcome back, friends. In the first edition of PoC|GTFO, I
demonstrated how we can craft ELF relocation metadata to in-
struct the loader to make libc calls. The method I demonstrated
was fairly limited and lacked the ability to do useful things such
as control the arguments passed to the called function. Thus I
ended the article with an unsolved challenge: How can metadata
control the arguments passed to the metadata-initiated function
call?

In this sermon, I will partially answer that challenge by demon-
strating how to control a call to putchar () using relocation meta-
data.

One may ask “why focus on putchar()?” The answer is sim-
ple. Because putchar () is required in order to implement a full,
honest-to-Manul Brainfuck-to-ELF metadata compiler. You may
have noticed that putchar () requires only a single (byte-long)
argument and have thought to yourself, “I only have control over
one argument!? How will that help me take over the world?”
Don’t worry your pretty little nose off. I will provide insight on
how you can control not one, not two, but three (ish) arguments
to a function call!

Instead of asking how one can control the first argument to
a function call, one should really be asking how can we be the

9See PoC||GTFO on page

97

2 The Children’s Bible Coloring Book of PoC||GTFO

10

12

14

PUTCHAR (3) bx’s Programmer’s Manual PUTCHAR (3)

SYNOPSIS
#include <stdio.h>

int putchar (int c);

DESCRIPTION
putchar(c) writes the character c, cast to an unsigned char, to stdout.

RETURN VALUE
putchar () returns the character written as an unsigned char cast to

an int or EOF on error.

puts () and fputs() return a nonnegative number on success, or EOF on error.

98

1

2:6 Calling putchar() from ELF by Rebecca .Bx Shapiro

last to set the RDI register (the first argument to a function as
heralded by the System V amd64 ABI gospel 3:2:3, aka amd64
calling conventiorﬂ) before our metadata-driven libc function is
called.

It turns out that the loader generally processes each relocation
entry within a single function, although there are a few exceptions
to this rule. This means that, generally speaking, the arguments
that are in place during any metadata-driven function call are
the arguments that were passed to the currently executing func-
tion processing the relocation entries. An exception to this “rule”
occurs when relocation entries of type R_X86_64_COPY are pro-
cessed. These types of relocation entries cause the loader to make
a call to memcpy (), thus changing the values of RDI, RSI, RDX,
which by convention hold the first three arguments to a function
call, and in the case of a call to memcpy(void *dest, const
void *src, size_t n) hold dest, src, and size, respectively.

Now imagine that the dynamic loader has been processing our
relocation entries and now the next dynamic symbol, pointed to
by the next relocation entry rO to be processed, looks like this:

s0O = {..., st_value = &putchar, st_size = 0x0}

|

(Note: We have already shown how to calculate the address of
libc functions in past work and will not cover how to do that in
this sermon. See our WOOT articl@ and PoC||GTFO for a
thorough explanation.)

The following three relocation entries (represented here as C

Ohttp://www.x86-64.org/documentation/abi.pdf, pages 17-21, Fig. 3.4—
and don’t ask us in what world RDI, RSI, RDX might stand for A, B, C
or suchlike. This program may be brought to you by the register RDI
anyhow, but let’s just say if the Manul meets the amd64 Big Bird there
might be feathers flying.

W “Weird Machines” in ELF: A Spotlight on Unappreciated Metadata by
Shapiro, Bratus, and Smith.

99

2 The Children’s Bible Coloring Book of PoC||GTFO

structs, but of course encoded in a .rel section) will make a call
to putchar (), printing the character of our choice:

r0 = {r_offset=<&r2->r_addend>, r_symbol=0,
r_type=R_X86_64_64, r_addend=0x0}

rl = {r_offset=<char to print>, r_symbol=0,
r_type=R_X86_64_COPY, r_addend=0x0}

r2 = {r_offset=&r2, r_symbol=0, r_type=R_X86_64_IRELATIVE,
r_addend=<&putchar (filled in by r0)>}

The purpose of r0 is to write the address of putchar() into
r2’s addend. The purpose of ril is to setup RDI (the first argu-
ment) for r2’s function call. When it is processed, memcpy () is
called with the following arguments: memcpy (<char to print>,
&putchar, 0). More generally, the call to memcpy () looks like:
memcpy (r1->r_offset, sO0->st_value, sO—>st_size).

After r1 is processed, 0 bytes are copied from &putchar to
<char to print>|E|7 and RDI=<char to print>, RSI=&putchar,
and RDX=0. r2, of type R_X86_64_IRELATIVE, instructs the

12Note, memcpy would treat it as a destination pointer, but luckily nothing
gets copied here, and the memcpy implementation isn’t paranoid about
checking its arguments, since a bad pointer would trap anyway.

MULTIPLE DATA RATE INTERFACING FOR YOUR CASSETTE AND RS-232 TERMINAL
the CI-812 4 g
The Only S-100 Interface -
You May Ever Need

On one card, you get dependable “KC-
standard”’ /biphase encoded cassette inter-
facing at 30, 60, 120, or 240 bytes per
second, and full-duplex RS-232 data ex-
change at 300- to 9600-baud. Kit, includ-
ing instruction manual, only $89.95*.

pERGUM *Assembled and tested,
$119.95. Add 5% for

shipping. Texas resi-

PERCOM DATA COMPANY, INC. eri -
A1 WINDSOR GARLAND, TEXAS 78048 dents add 5% sales tax. PerCom ‘peripherals for personal computing’

(214) 276-1968 BAC/MC available.

100

2:6 Calling putchar() from ELF by Rebecca .Bx Shapiro

loader to treat its addend as a function pointer, making a call to
it! How’s that for a relocation-based weird assembly instruction?
But there’s one problem: relocation entries of type IRELATIVE
do not support functions that require arguments (meaning that
there is no conventional way to pass them). Still, the actual
function doesn’t care and will happily reach for its arguments in
RDI etc.—and, luckily, we were able to set up the arguments via
our relocation-entry crafted call to memcpy() via r1! Hence r2
will cause the loader to call putchar (), which will consult RDI
to determine what character to print to stdout.

You may see the potential downfalls of manufacturing a call
to memcpy () in order to put arguments in place for the following
library call. For example, if the third argument is not zero, you
need to start worrying about your first two arguments pointing to
read /writable memory. However, it may be comforting to know
that the value returned by the function call is written into a spot
of your choosing (in r2->r_offset).

If you would like to further your studies of metadata-driven
library calls, please refer to the elf-bf-tools repository on
githubE May the Great Manul keep and protect you from the
Weird Machine. And let us say, amen.

13See syscall/putchar in https://github.com/bx/elf-bf-tools .

101

2 The Children’s Bible Coloring Book of PoC||GTFO

446| case R_X86_64_IRELATIVE:

value = map->1_addr + reloc->r_addend;
448 value = ((E1f64_Addr (%) (void)) value) ();
*reloc_addr = value;

450 break;

case R_X86_64_COPY:

430| if (sym == NULL)
/* This can happen in trace mode if an object could not be
432 found. */
break;
434 memcpy (reloc_addr_arg, (void *) value,
MIN (sym->st_size, refsym—>st_size));
436 if (__builtin_expect (sym->st_size > refsym->st_size, 0)
Il (__builtin_expect (sym->st_size < refsym->st_size, 0)
438 && GLRO(dl_verbose)))
{
440 fmt = "%s: Symbol ¢%s’ has different size in shared"
" object, consider re-linking\n";
442 goto print_err;
}

444 break;

P.C. cards made simple=with COPYDAT!

. Prepare the 1X artwork, using an opaque layout aid such as Chartpak, Bishop Graphics, or other
similar product.

. Make a negative: Place the artwork face down, cover with the negative material colored film side

up (we recommend Scotchcal products), and expose with the Copydat. Typical exposure time is
1.5 minutes.

Develop the negative in developer proyided with negative material.

. Attach negative to pre-sensitized face of copper board. Place board and negative face down on
Copydat. Expose. Typical exposure time: 30 seconds.

5. Save the negative for reuse, and develop the board in the developer provided.

6. Etch the board.

7. As a finishing touch, tin the board to avoid oxidation of the copper and to improve solderability.
Result: a custom, high quality, single-sided P.C. board.

With careful alignment, you can make doublesided boards too!

Alternatively, buy high-quality hardware assemblers from us — and these are predrilled as well (and

feature plated-through holes):

N

> w

P.S. The Copydat does a lot more than make high-quality P.C. boards. It makes superior blueline,
blackline, sepia, and other diazo process copies, and you can make pressure-sensitive labels with it
and even instrument front panels from pre-sensitized metal plates | |

from $149.95 (B size prints) 5o oo in Asee.
Ambherst, N.H. 03031

102

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

2:6 Calling putchar() from ELF by Rebecca .Bx Shapiro

Breakpoint 6, elf_machine_rela (sym=0x601030,
reloc_addr_arg=0x601241, version=<optimized out>,
reloc=0x601318, map=0x5555556773228)
at ../sysdeps/x86_64/dl-machine.h:434
434 memcpy (reloc_addr_arg, (void *) value,

(gdb) print/x *reloc

$6 = {r_offset = 0x601241, r_info = 0x5, r_addend = 0x0}

(gdb) print refsym->st_size

$7 =0

(gdb) print sym->st_size

$8 = 0

(gdb)

(gdb) print/x reloc_addr_arg

$9 = 0x601241

(gdb) x/gx reloc_addr_arg
0x601241:0x0000000060103800

(gdb) x/gx value
Ox7ffff7ce1184:0x011d8b48£8894153

(gdb) print/x $rsi

$5 = O0x7ffff7cell184

(gdb) print $rdx

$10 = 0

(after memcpy)

(gdb) x/gx 0x601241
0x601241:0x0000000060103800

(gdb) print/x $rdi

$14 = 0x601241

(gdb) c

Continuing.

Breakpoint 5, elf_machine_rela (sym=0x601030,
reloc_addr_arg=0x6012e8, version=<optimized out>,
reloc=0x601330, map=0x555555773228)
at ../sysdeps/x86_64/dl-machine.h:448
448 value = ((E1f64_Addr (*) (void)) value) ();

(gdb) print/x $rdi

$15 = 0x601241

(gdb) print/x value

$16 = 0x7ffff7cell84

(gdb) x/10i value
0x7ffff7cel1184:push %rox

0x7ffff7cel185:mov %edi,%r8d

0x7ffff7cel188:mov 0x313c01 (%rip) ,%rbx
Ox7fff£f7£f£4d90

0x7ffff7cel118f :mov (%rbx) ,heax

103

2 The Children’s Bible Coloring Book of PoC||GTFO

48 Ox7ffff7cell91:test $0x80 ,%ah
0x7ffff7cel1194: jne 0x7ffff7cellea

50 0x7ffff7cel1196 :mov %fs:0x10,%r9
0x7ffff7cell19f :mov 0x88 (%rbx) ,%rdx

52 0x7ffff7cellab:cmp 0x8 (%rdx) ,%r9
Ox7ffff7cellaa: je O0x7ffff7celldf

54| (gdb) print/x $rsi
$4 = Ox7ffff7cell184

104

2:6 Calling putchar() from ELF by Rebecca .Bx Shapiro

Just as Jonah was told to preach in Nineveh,
Pastor Laphroaig was once called to preach
to the harlots and tax collectors at RSA=
Asked about the experience, he said that, like Jonah,
he’d rather be thrown overboard than go backs

105

2 The Children’s Bible Coloring Book of PoC||GTFO

2:7 POKE of Death for the TRS 80
Model 100

by Dave Weinstein

Figure 2.3: POKE 62975, 0

In his Epistle on the Divinity of Languages, PoC||GTFO
Pastor Manul Laphroaig wrote of the merits of PEEK and POKE
in teaching the youth of a previous generation how to fiddle with
hardware in ways the hardware did not want to be fiddled.

And so I offer to you a short example of the wonders of POKE
as applied to interrupt handlers.

In 1983, Radio Shack introduced the Model 100, a copy of the
Kyocera Kyotronic 85. With its 40 character wide 8-line screen,
built-in 300 baud modem, and up to 32k of RAM, it was a state
of the art laptop, capable of generating endless questions from
passengers and crew on any flight.

In high memory, there is a vector at OxF5FF, which allows a
program to hook the keyboard/clock interrupt. Every 4 ms or so,
the timer interrupt fires, and the keyboard is polled. By default,
the vector is a simple RET NOP NOP.

106

2:7 POKE of Death for the TRS 80/M100 by Dave Weinstein

As it happens, the very next vector in high memory is a JMP
to handle the low-power situation and shut the computer down.

Oxf5ff 0xc9 (RET)
0x£600 0x00 (NOP)

0xf601 0x00 (NOP)

0xf602 0xc3 (JMP 0x1451)
0x£f603 0x31

0xf604 0x14

The function at 0x1431 will turn the computer off, as the code
flows to the actual shutdown sequence at 0x1451:

0x1451 di
0x1452 in Oxba
0x1454 ori 0x10
0x1456 out Oxba
0x1458 hlt

Should we replace the RET at 0xF5FF (62975) with a NOP,
the Model 100 will power down every time the timer interrupt
fires. The only way to restore functionality is to do a cold restart
of the machine, which, if I recall correctly, in this case requires
removing the batteries, unplugging the machine, and disabling
the internal NiCad battery. All of the contents would be lost.
For those who do not know what has been done, the computer
shows every sign of having simply died.

POKE 62975, 0

The only way to prevent it is to prevent access to the BASIC
interpreter. Which is possible, but is a discussion for another
time.

107

2 The Children’s Bible Coloring Book of PoC||GTFO

Matthew Green "Research Team"

THE %8 SUN
Request $$3

) THEWIRE
Provide BBB = =

Matt flies to Africa.
Matt poaches a Rhino.
Matt kicks a Kitten.

Hey, do you sell mail-order brides?

Request Powdered Rhino Horn

(Provide Rhino Powder
N
Matt kidnaps Princess Peach.

Request $$3

I'm kinda shorton cash.

Provide ¢¢¢

Provide Princess Peach

N
Matt steals Christmas pro bono.
Man

Pastor Laphroaig tells us that the news is stranger than fiction,
because unlike the news, fiction requires an element of truth.

108

2:8 This OS is also a PDF by Ange Albertini

2:8 This OS is also a PDF

by Ange Albertini

A careful reader may have noticed that a bootable OS image
was hidden in pocorgtfoOl.pdf, as one of the files in its dual
PDF/ZIP structure. (If you haven’t, download and extract it
now!) This time, though, let’s hide it in plain sight. You will find
by running gemu-system-i386 -fda pocorgtfo02.pdf that a
PDF file can also be a bootable disk image!

Requirements

To combine two file types, we first need to list the requirements
of each format and then produce a single file that meets both sets
of requirements with no conflicts.

What makes a bootable disk image? An X86 machine begins
booting by copying the first 512 byte sector, the Master Boot
Record, into RAM and executing it. The requirements for a
functional MBR are simple:

e 16 bit x86 code starts at offset 0x00.
e It will be executing at 0000:7c00 address in RAM.

e It must be 512 bytes long, ending with the signature 55,
AA.

e Labels and primary partition tables are optional, but can
go within this sector.

e It must contain code that finds and loads into RAM the
code for the next boot stage, such as an OS loader.

109

2 The Children’s Bible Coloring Book of PoC||GTFO

PDF files are a mixture of text and binary fragments, which
are parsed from the start of the file and delimited by words and
newlines. The requirements for a valid PDF are also simple and
surprisingly flexible:

e It is initially parsed as text.

e The signature “%%PDF-" must be present within the first
1024 bytes. It can be present there twice or more.

e Comment lines begin with “%”, which is 0x25 in hex.

e Binary characters other than CRLF are acceptable in a
comment.

e Multi-line binary objects or simply larger objects can also
be stored in object streams, which are declared like this:

1| <obj number> <revision> obj
<<>>

3| stream

<stream content>

5| endstream

endobj

Strategy

In most cases, we can freely prepend anything at the start of the
file as long as the above requirements are fulfilled. Luckily, the %
comment character is 0x25, which encodes nicely as an x86 AND
instruction. Thus, the head of the file can be 25FFFF: and ax,
0xffff, which also starts a PDF comment. We can then add
a jump into the next part of the code, which will be stored in
a dummy object stream below, and then finish our first line.
Adding a PDF signature will prevent any potential problem in
case the stream object is too long: it can then contain anything,

110

10

2:8 This OS is also a PDF by Ange Albertini

of any length, as long as it doesn’t contain the “endstream” key-
word.

; this will encode as ‘%\xff\xfflxeb\x21’, a comment line
and ax, -1
jmp start

%PDF -1.5
999 0 obj
<<>>

stream

code:

12| ...

14

16

18

; put the 55AA signature at the end of the 512 block
times 200h - 2 - ($ - $$) db Occh
db 55h, Oaah

endstream
endobj

An Unexpected Challenge

This was almost too easy, but there is a caveat to keep in mind.
I’ll mention it here to save you the headache when reproducing
these results.

This new challenge emerged as I was testing the bootable PDF
files with different PDF readers. Since we pre-pend our MBR
without altering the contents of the original document, the orig-
inal’s cross-reference table XREF is no longer in sync with the
actual file offsets. Technically, this makes the XREF tables cor-
rupted.

Corrupted XREFs are so common that they are usually trans-
parently recovered by all PDF readers, even picky ones such
as PDF.JS. However, your pdflatex may generate a document
based on the optimized PDF 1.5 specification, where the XREF

111

2 The Children’s Bible Coloring Book of PoC||GTFO

is stored not in cleartext as in PDF 1.4, but rather as a separate,
compressed object. This configuration choice is made for the
user by the TeX distribution, so even a freshly updated pdflatex
installation may generate PDF 1.4 documents.

Even when compressed, corrupted XREFs are recovered by
some readers, such as GS and Sumatra. Unfortunately, Foxit,
Adobe, Firefox, Chrome, and Poppler-based readers—such as
Evince and Okular—would reject such a document. Although
rejecting corrupted documents out of hand is the best strategy,
even Pastor Laphroaig would be pretty pissed if folks couldn’t
read his epistles because of this.

A simple and elegant workaround that achieves 100% reader
compatibility with our MBR PDF is to make sure that, even if
your pdflatex distribution generates a 1.5 format document, it
doesn’t compress the XREF. This is easily done by adding the
following command to your I¥TEX source.

1| \pdfobjcompresslevel=0

This command will cause pdflatex to store non-objects uncom-
pressed while still taking advantage of other 1.5 features such as
reducing document bloat. I should add that, although the fix
looks trivial, finding the real cause and the most elegant solution
was a challenge.

Enjoy booting pocorgtfo02.pdf, and be sure to share copies—
both electronic and paper—so that your neighbors can enjoy it
as well!

112

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000a0
000000b0
000000c0
000000d0
000000e0
000000£0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
000001a0
000001b0
000001c0O
000001d0
000001e0
000001£0

2:8

25
39
73
54
62
6f
69
0d
65
20
69
69
74
65
6f
65
0d
of
db
b8
00
£5
31
31
75
44
cd
ff
cc
cc
cc
cc

This OS is also a PDF

ff e9 fc 00 O0a 25 50 44 46
39 39 20 30 20 6f 62 6a Oa
72 65 61 6d O0a Oa 50 6f 43
4f 20 49 73 73 75 65 20 30
20 52 74 2e 20 52 76 64 2e
20 4d 61 6e 75 6¢c 20 4c 61
20 61 6e 64 20 46 72 69 65
59 6f 75 20 68 61 76 65 20
74 65 6e 20 62 79 20 61 20
63 6f 72 72 79 2e¢ 0Oa 0d 54
3a 20 71 65 6d 75 2d 73 79
38 36 20 2d 66 64 61 20 70
6f 30 32 2¢ 70 64 66 Oa 0d
64 69 6e 67 20 6b 65 72 6e
20 64 69 73 6b 2¢ Oa 0d 00
75 74 69 6e 67 20 6b 65 72
be 27 7c e8 3e 00 31 cO 8e

10 02 b5 00 bl 02 b6 00 b2
7e 89 c6 e8 38 00 be eb 7c
07 e8 65 00 ac 3c 00 74 06
89 c3 cl e8 Oc e8 39 00 89
89 d8 cl1 e8 04 e8 29 00 89
ad e8 dc ff e8 2c 00 83 cl
c3 30 31 32 33 34 35 36 37
46 50 56 83 e0 Of 05 83 7d
5e 58 c3 b8 20 Oe cd 10 c3
fe ea 00 00 ff ff cc cc cc
CC CC CC CC CC CC CC CC cC
CC CC CC CC CC CC CC CC CcC
CC CC CC CC CC CC CC CC CcC
CC CC CC CC CC CC CC CC CcC

Hey kids!

by Ange Albertini

[/ %PDF-1.5. |
19999 0 obj.<<>>. |
|stream..PoC or Gl
|TFO Issue 0x02..|
Iby Rt. Rvd. Pastl|
|or Manul Laphroal
|ig and Friends..
|..You have been |
|eaten by a grue.
| Sorry...Try thl
|is: gemu-system-|
|i386 -fda pocorgl
|t£002.pdf...1) RI
|eading kernel fr|
lom disk....2) Ex|
|ecuting kernel..|
[...21.>.1...0...1

Can you color the bytes of this MBR to show what’s going on?

113

2 The Children’s Bible Coloring Book of PoC||GTFO

~. Calculator !. n

Edit Wiew Help

| 0. |

‘f‘Hex #Dec T Oct CBin Hr-“Deg CRad © Grad |

(¢ J[cE J(Back)[riv hHyp | H:H |
(s) (re) (L) e (7 (o)08)(7) (Moa)(ana

(ve) {ame) (Exp) (i J(1ar)(La)5)8)~ J(or)xer]
(sum]ain)y J (1o J(ms)(1)2)2))(ieh) (mer]
(e J{en) (o) Lo J e) (o))C)=) ()
(2ot (san J{ 2] (a0) e) (&)0))0)2)(F)

CALC.EXE||GTFO

114

2:9 A Vulnerability in Reduced Dakarand by Joernchen

2:9 A Vulnerability in Reduced
Dakarand from PoC|/GTFO 01:02

by Joernchen of Phenoelit

I’'m not a math guy, so this is a poor man’s RNG analysis. Try
it yourself at home!

Introduction

In PoC||GTFO Dan Kaminsky proposed the following code
for use as a Random Number Generator, arguing that the phase
difference between a fast clock and a slow clock is sufficient to
produce random bits in a high level languageF_T] Figure is a
reduced version of his Dakarand program, with the intent of the
reduction being that if there is any vulnerability within the code,
that vuln ought to be exploitable.

Actually the above code boils down to the function f1ip_coin,
which takes a boolean value n=0 and continuously flips it until
the next millisecond. The outcome of this repeated flipping shall
be a random bit. We neglect the get_fair_bit function mostly
in this analysis, as it just slows down the process and adds almost
no additional entropy. For gathering random bits we are just left
with the clock ticking for us.

A Naive Analysis

In order to analyze the output of the RNG we need some of its
output, so I simply put up a small HTML piece which would pull
out one hundred thousand random bytes out of the above RNG

14 See PoC||GTFO on page

115

11

13

15

17

19

21

23

25

27

2 The Children’s Bible Coloring Book of PoC||GTFO

// These functions form an RNG.
function millis () {return Date.now();}
function flip_coin(){
n=0; then = millis()+1;
while(millis () <=then) {n=!'n;}
return n;
}
function get_fair_bit(){
while (1) {
a=flip_coin();
if (at=flip_coin()) {return(a);}
}
}
function get_random_byte (){
n=0; bits=8;
while (bits--){
n<<=1;
nl=get_fair_bit ();
}
return n;

}

// Use it like this.
report_console = function() {

while (1) {console.log(get_random_byte());}
}

report_console();

Figure 2.4: Dakarand Crackme

116

11

13

15

17

2:9 A Vulnerability in Reduced Dakarand by Joernchen

and log it to the HTML document. Then a severe 90-minute DoS
on my Firefox 24 happened, after which I managed to copy and
paste one hundred thousand uint8_t results into a text file.

After messing with several tools like ministat, sort and uniq
I could show with the following ruby script that this RNG (on
my machine) has a strong bias towards bytes with low Hamming
weights:

#!/usr/bin/env rudy
f=File.open (ARGV [0])
h = Hash.new
f.each_line do |m|
n = m.to_1i
if h[n].nil?
h[n]l=1
else
hin] = hinl+1
end
end

t = h.sort_by do |k,v|l v end
t.each do |al
puts "Num:\t#{a[O0]}"+
"\tCount :\t#{al[1]}"+
"\tWeight:\t#{a[0].to_s(2).split("").reject{ljlj=="0"}.
count}"
end

The shortened output of this script on the 100k 8bit numbers
is shown in Table 2] Note that the heavy Hamming weights,
like 11111111 are least common and the light Hamming weights,
like 00000000 are most common.

Table [2.1] lists the Number which is the output of the RNG
along with this number’s Hamming weight as well as the count
of this number in total within one hundred thousand random
bytes. For a random distribution of all possible bytes we could
expect roughly a count of 390 for each byte. But as we see, the
number 0 with the Hamming weight 0 peaks out with a count of
3918, whereas 255 with the Hamming weight of 8 is generated 22

117

2 The Children’s Bible Coloring Book of PoC||GTFO

Value Count Hamming Weight

255 22 8
254 23 7
251 28 7
253 29 7
127 32 7
239 34 7
191 34 7
223 36 7
247 37 7
132 1173 2
64 1821 1
32 1881 1
16 1922 1
1 1934 1

8 2000 1

4 2042 1

2 2133 1
128 2145 1
0 3918 0

Table 2.1: RNG can be biased toward low hamming weights.

118

2:9 A Vulnerability in Reduced Dakarand by Joernchen

times by the RNG. That’s not fair!

My fair bit is not fair!

Real statistical analysis of an RNG is hard, and I will not attempt
it here. Still, looking at a few simple distributions might give us
a hint (alas, only a hint) of what might behind the unfairness.
First, a short recap on how this RNG works:
We’ve got a 1 millisecond timeslot from t0 to t1, where at t1 the
flip_coin method will stop. The first call to get_random_byte

can happen anywhere between t0 and t1:
ooy
£y

Somewheare hera the S engine jumps in

.

o}

Let’s say it is here:

8

to

Now the algorithm happily flips the bit until t1 and hands
over the result of this flipping as a random bit. (Note that we're
omitting get_fair_bit here.) Although we cannot predict the
output of a single run of £1ip_coin, things get a bit more pre-
dictable when we make a lot of consecutive calls to £1ip_coin.
Let’s say we need the time d to process and store the result of
flip_coin. So the next time we flip_coin we are at t1 + dl1:

))

:

119

2 The Children’s Bible Coloring Book of PoC||GTFO

MODEL CC-7 SPECIFICATIONS:

A. Recording Mode: Tape saturation binary.
This is not an FSK or Home type recorder.
No voice capability. No Modem. (NRZ)
Two channels (1) Clock, {2] Data. OR, Two
data channels providing four (4} tracks on
the cassette. Can aiso be used for Bi-Phase,
Manchester codes etc.

. Inputs: Two {2). Will accept TTY, TTL or
RS 232 digital.

D. Outputs: Two (2). Board changeable from
RS 232to TTY or TTL digital.

. Runs at 2400 baud or less. Synchronous or
Asynchronous. Runs at 4800 baud or less.
Synchronous or Asynchronous. Runs at
3.1 /sec. Speed regulation * 5%

@

O

m

interface any computer
or terminal with a serial 1/0. (Altair, Sphere,
M6800, PDP8, LS1 11, IMSALI, etc.

Other Data: (110-220 V), (50-60 Hz); 3
Watts total; UL listed 955D; three wire line
cord; on/off switch; audio, meter and light
operation monitors. Remote control of mo-
tor optional. Four foot, seven conductor
remoting cable provided. Uses high grade
audio cassettes.

. Warrantee: 90 days. All units tested at 300
and 2400 baud before shipment. Test cas-
sette with 8080 software program included.
This cassette was recorded and played back
during quality control.

ALSO AVAILABLE: MODEL CC-7A with vari-
able speed motor. Uses electronic speed control
at 4"'/sec. or less, Regulation * .2%

Runs at 4800 baud Synchronous or Asynchro-
nous without external circuitry.

Recommended for quantity users who ex-
change tapes. Comes with speed adjusting tape
to set exact speed.

2]

I

DIGITAL DATA RECORDER $149.95

FOR COMPUTER or TELETYPE USE
Any baud rate up to 4800

Uses the industry standard tape satura-
tion method to beat all FSK systems ten to
one, No modems or FSK decoders required.
Loads 8K of memory in 17 seconds. This
recorder, using high grade audio cassettes,
enables you to back up your computer by
loading and dumping programs and data fast
as you go, thus enabling you to get by with
less memory. Can be software controiled.

Model CC7 .. .$149.95
Model CC7A. .. $169.95

NATIONAL multiplex

CORPORATION

NEW — 8080 I/0 BOARD with ROM.
Permanent Relief from "“Bootstrap Chafing”

This is- our new “‘turnkey’’ board, Tum on
your Altair or Imsai and go (No Bootstrap-
ping). Controts one terminal (CRT or TTY)}
and one or two cassettes with all programs
in ROM, Enables you to turn on and just
type in what you want done, Loads, Dumps,
Examines, Modifies from the keyboard in
Hex. Loads Octal. For the cassettes, it is a
fully software controlled Load and Dump at
the touch of a key. Even loads MITS Basic.
Ends “Bootstrap Chafe”” forever, Uses 512
bytes of ROM, one UART for the terminal
and one USART for the Cassettes. Our
orders are backing up on this one. No. 2510
(R)

Kit form $140. — Fully assembled and
tested $170.00

Send Two Dollars for Cassette Operating
and Maintenance Manual with Schematics
and Software control data for 8080 and
6800. Includes Manual on
1/0 board above. Postpaid

Master Charge & BankAmericard accepted.

On orders for Recorders and Kits please add
$2.00 for Shipping & Handling.
(N.J. Residents add 5% Sales Tax)

3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080
{201) 561-3600

120

11

13

15

17

19

21

23

25

27

2:9 A Vulnerability in Reduced Dakarand by Joernchen

Now the RNG flips the coin until t2 in order to give us a
random bit. As we are calling the RNG more than twice in a
row, the next flip_coin is at t2+d2, and so on.

The randomness and fairness of the RNG’s random bit depends
on how fairly and randomly we get odd and even values of d,
since the same number of flips yields the same bit as we have a
static start value of 0/ falseE So it makes sense to look at the
distribution of d. To visualize this and to compare it with another
browser I came up with this slight modification of the RNG that
counts the flips and records them right inside the HTML page:

function flip_coin(){
i=0;
n=0;
then=millis () +1;
while(millis () <=then) {
n=!n;
i++3}
return [n,i];

}

function get_fair_bit(){
while (1) {
a=flip_coin();
if (al[0]!'=flip_coin () [0]) {
return(a);
¥
}
¥

function doit (){
var i = 10000;
while(i--){
var d = document.getElementById("target");
var content = document.createTextNode (
get_fair_bit () .toString ()+"\n");
d.appendChild(content);
}
}

15The second coin flip in get_fair_bit complicates it a bit, but it cannot
substantially improve the RNG’s entropy if it lacks in the first place.

121

2 The Children’s Bible Coloring Book of PoC||GTFO

Loading the page in Chromium and Firefox and throwing them
into gnuplot, we get the graphs shown in Figure [2.5

We can see that the graph for Chromium has a lot more vari-
ance in the number of coin flip within a millisecond than that for
Firefox. Although, strictly speaking, it might still be possible to
get good randomness with poor variance if the few frequent val-
ues were to alternate just so due to some underlying scheduling
magic, it seems reasonable to expect that the same magic would
also increase the variance in the flip numbers.

We can also see, with the help of simple UNIX tools, that
Chromium counts do not peak out to a certain value, unlike those
of Firefox:

$ sort iter_Firefox | 1|$ sort iter_Chromium |
2 uniq -c | sort -n uniq -c | sort -n
3
4 176 64683 15 45147
181 64671 5 15 45282
6 195 64673 16 44947
195 64684 ve.7 16 45004
8 207 64717 16 45010
217 64672 9 16 45076
10 286 64718 16 45086
318 64721 11 17 45059
12 393 64719 17 45107
405 64720 13 19 45092

Closing words

In conclusion we see that in Firefox under stress Dan’s RNG
appears to fail at exactly the point he wanted to use as the
main source of randomness. The tiny clock differentials used to
gather the entropy are not given often enough in Firefox. There
is still much room to stress this RNG implementation. Bonus
rounds would include figuring exactly what the significant differ-
ence between the Firefox and Chromium JavaScript runtime is
that causes this malfunction on Firefox. Also attacks on other

122

Occurrences

Occurrences

2:9 A Vulnerability in Reduced Dakarand by Joernchen

Firefox

450
400 |- .
350 - .

+ o+

300
250 =
200 =
150 - =
100
50

0
10000 20000 30000 40000 50000 60000 70000

Cycle Count

Chromium
20 T T
18 +

16 -
14 -
12 -
10 -

iii¥ﬁ$ﬁ$$+¢++ +4

HiH-
Tt #\+ | | | | |

1 1
000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Cycle Count

Figure 2.5: Coinflips in Firefox and Chromium

123

2 The Children’s Bible Coloring Book of PoC||GTFO

JavaScript runtimes would be interesting to see. It might even
be the case that this implementation has different results under
different conditions with respect to CPU load.

A broader question occurs: The Dakarand RNG relies on what
could be called a “code clock.” It may be that in many kinds of
environments stressed code clocks tend to go into phase with one
another. Driven by stress to seek comfort in each other’s rhythms,
their chance encounters may grow into something more close and
intimate, grinding into periodic patterns. Which, of course, is bad
for randomness. Can we learn to tell such environments from
others, where periodization with stress doesn’t happen? —PML

Put a Monkey Wrench | 8Kin30Seconds

into your ATARI 800 plibsdobsinon

y abwmeh hmdaﬁ!klﬂﬂb@m [V?;\Sne;\w'

Cmyour programmingime from hours fo seconds, and have 18 direct : Now I o
mandie Al o1 your linger s and oll mode easy by the o vm"a?&“""?f« %w‘"aﬂfﬂimmv

comi
TAORRE WRENCHIL
The MONKEY WRENCR Il plugs easily info the =
ighisol of your ATAR!and works with the]
RI BASIC cartridge.

Order your MONKEY WRENCH Il foday and
enjoy the. convemances ofthese 18 modes:

® Line numbering

© Ronumbering Basic line numbers

® Deletion ot line numbers

¢ Variable and curtant vals display

© Up and down scrolling of basic

Win ho g8 10U ConIoG 0o s 0 you CBM

tosatie on BK programn aimos 30 seconds, compare

{othe curent s mints o o ViC 2001 CBM 64.aimeslos
e 1541 cisk orve.

e msrr is sy to intal. clows o fo Appen
sasc ng: ks wilh or without Expcrwoﬂ
icndes o 0610 8 MoGes e
A i a5 Bl 100G
{The Rabbrfor he VIC 20 contains an expansion con-
your

mc) $3

o [ocdiion ot every string occurrence $59.95
o Shingexchange
: gé’;?«'.'ﬂe‘ FOR LESS!
® Spacial ine formats and page numbering 2 » For CBM 64, PET, APPLE, and ATARI
Disk directory disploy Now
® Margins change Assembler Ediior s used on Space Shullle projects.
© Momary fest Dosgne toimprove Programmes Poduciary

® Cursor exchange 4 @ Simikr synfax and commiands - Noneed fo reiean peculiar
® Upper case lock %"m and commands when you o from PET 1o APPLE fo.

® Hex conversion
ool

® Decimal conversion
@ Machine language monitor

@ Also ncludes Word Processar Relocating Loadet and much
Tne MONKEY WRENCH Il also convclnsu more. i ¥
machine language monifor with 16 commands @ Powerlul Ectitor, Mocros. Conditionol ond nferachive:
That con b0 (36016 IMerat wilh the powedul features Assembiy. and Auto - 2610 OGE OIeSsIg
of the 8502 microprocessor. Stilinot comnced. send fox out free spec sheel!

ASTErN) & . L
Winston- Salem . 27106
(919) 924-2889 (919)748 8446 R
I.I DUSES ..o -

124

2:10 Juggernauty by Ben Nagy

2:10 Juggernauty by Ben Nagy

‘Twas UMBRA, and the STUNT WORMS
Did ZARF and CIMBRI in the SUEDE:
All GUPY were the PUZZLECUBES,
And the DIRESCALLOP AQUACADE.
“Beware the JUGGERNAUT, my son!
The RONIN bytes, the IMSI catch!
Beware the TUSKATTIRE, and shun
EGOTISTICAL GIRAFFE!”

He brought his FERRET CANNON forth:
yet SKOPE he not the RUTLEY spoor —
So browsed he to an onion,

And surfed awhile in Tor.

And, as in BOOTY Tor he surfed,

The JUGGERNAUT, with eyes of FLAME,
Leapt from the EVOLVED MUTANT BROTH,
with DISHFIRE as it came!

One, two! One, two! And through and through
The FERRET CANNON'’s furred attack!

He left it dead, and with its LED

He rode his QUICK ANT back.

“And, has thou slain the JUGGERNAUT?
Come to my arms, my DANGERMOUSE!
OLYMPIC day! MESSIAH! MORAY!”
He TALKQUICK in his joy.

‘Twas UMBRA, and the STUNT WORMS
Did ZARF and CIMBRI in the SUEDE;
All GUPY were the PUZZLECUBES,
And the DIRESCALLOP AQUACADE.

125

2 The Children’s Bible Coloring Book of PoC||GTFO

This page intentionally left blank.
Draw your own damned picture.

126

2:10 Juggernauty

by Ben Nagy

A STUDY]
IN
[SCARLET] ﬁ

“He that is without sin among you,
let him first cast a stone at her.”

127

2 The Children’s Bible Coloring Book of PoC||GTFO

128

3 An Address to the Secret

Society of PoC||GTFO
Concerning the Gospel of the
Weird Machines and also the
Smashing of Idols to Bits and
Bytes

3:1 Fear Not!

We continue in PoC||GTFO in which our own Rt. Revd. Dr.
Pastor Manul Laphroaig condemns the New Math and its modern
equivalents. The only way one can truly learn how a computer
works is by smashing these idols down to bits and bytes.

Like our last two issues, this one is a polyglot. It can be in-
terpreted as a PDF, a ZIP, or a JPEG. In PoC||GTFO Ange
Albertini demonstrates how the PDF and JPEG portions work.
Readers will be pleased to discover that renaming pocorgtfo-
03.pdf to pocorgtfo03. jpg is all that is required to turn the
entire issue into one big cat picture!

Joshua Wise and Jacob Potter share their own System Man-
agement Mode backdoor in PoC||GTFO As this is a jour-
nal that focuses on nifty tricks rather than full implementations,
these neighbors share their tricks for using SMM to hide PCI de-

129

3 Address on the Smashing of Idols to Bits and Bytes

vices from the operating system and to build a GDB stub that
runs within SMM despite certain limitations of the IA32 archi-
tecture.

In PoC||GTFO Travis Goodspeed shares with us three
mitigation bypasses for a packet-in-packet defense that was pub-
lished at Wireless Days. The first two bypasses aren’t terribly
clever, but the third is a whopper. The attacker can bypass the
defense’s filter by sending symbols that become the intended mes-
sage when left-shifted by one eighth of a nybble. What the hell
is an eighth of a nybble, you ask? RTFP to find out.

Conventional wisdom says that by XORing a bad RNG with
a good one, the worst-case result will be as good as the better
source of entropy. In PoC||GTFO Taylor Hornby presents a
nifty little PoC for Bochs that hooks the RDRAND instruction
in order to backdoor /dev/urandom on Linux 3.12.8. It works by
observing the stack in order to cancel out the other sources of
entropy.

We all know that the Internet was invented for porn, but Assaf
Nativ shows us in PoC||GTFO[3:7how to patch a feature phone in
order to create a Kosher Phone that can’t be used to access porn.
Along the way, he’ll teach you a thing or two about how to bypass
the minimal protections of Nokia feature phone’s firmware.

130

3:1 Fear Not!

In the last issue’s CFP, we suggested that someone might like to
make Dakarand as a 512-byte X86 boot sector. Juhani Haverinen,
Owen Shepherd, and Shikhin Sethi from FreeNode’s #osdev--
offtopic channel did this, but they had too much room left
over, so they added a complete implementation of Tetris. In
PoC||GTFO you can learn how they did it, but patching that
boot sector to double as a PDF header is left as an exercise for
the loyal reader.

PoC||GTFO presents some nifty research by Josh Thomas
and Nathan Keltner into Qualcomm SoC security. Specifically,
they’ve figured out how to explore undocumented eFuse settings,
which can serve as a basis for further understanding of Secure
Boot 3.0 and other pieces of the secure boot sequence.

In PoC||GTFO Frederik Braun presents a nifty obfusca-
tion trick for Python. It seems that Rot-13 is a valid character
encoding! Stranger encodings, such as compressed ones, might
also be possible.

Neighbor Albertini wasn’t content to merely do one crazy con-
coction for pocorgtfo03.pdf. If you unzip the PDF, you will
find a Python script that encrypts the entire file with AES to
produce a valid PNG file! For the full story, see the article he
wrote with Jean-Philippe Aumasson in PoC||GTFO

'
|

The Narrow Bandwidth TV Association (founded [975) is dedicated to low definition and |
| mechanical forms of ATY and introduces radio amateurs to TV at an inexpensive level based on |
1 home-brew construction. NBTV should not be confused with SSTV which produces still pictures
l at a much higher definition. As TV base bandwidth is only about 7TkHz, recording of signals on I
| audiocassette is easily achieved. A quarterly 12-page newsletter is produced and an annual i
+ exhibition is held in April/May in the East Midlands. [f you would fike to join, send a crossed '
! cheque/postal order for £4 (or £3 plus a recent SPRAT wrapper) to Dave Gentle, G4RVL. | Sunny !

131

3 Address on the Smashing of Idols to Bits and Bytes

)
/,f

77

’ .my /

)

132

3:2 Greybeard’s Luck by Manul Laphroaig

3:2 Greybeard’s Luck

a sermon by the Rt. Revd. Dr. Pastor Manul Laphroaig

My first computer was not a computer;
rather, it was a “programmable microcal-
culator.” By the look of it, it was macro Hopa
rather than micro, and could double as " Tonapn
a half-brick in times of need. It had to
be plugged in pretty much all of the time § Mowea
(these days, I have a phone like that), and (L
any and all programs had to be punched
in every time it lost power for some rea-
son. It sure sounds like five miles uphill in e
the snow, both ways, but in fact it was the - Hai T
most wondrous thing ever.

The programmable part was a stack ma-
chine with a few additional named memory
registers. Instructions were punched on the
keyboard; besides the stack reverse Polish
arithmetic, branches, and a couple of con-
ditionals, there was a command for push-
ing a keyed-in number on top of the stack.
That was my first read-eval-print loop, and
it was amazing. Days were spent entering some numbers, hit-
ting go, observing the output, and repeating over and over. (A
trip from the Moon base back to Earth took almost a year, piece
by piece. A sci-fi monthly published a program for each trajec-
tory, from lift-off to refueling at a Lagrange point, and finally
atmospheric braking and the perilous final landing on good old
Earth.)

You see, I understood everything about that calculator: the
stack, the stop-and-wait for the input, reading and writing reg-

i~ SO T KM

133

3 Address on the Smashing of Idols to Bits and Bytes

isters (that is, pushing the numbers in them on top of the stack
or copying the top of the stack into them), the branches and the
loops. There was never a question how any operation worked:
I always knew what registers were involved, and had to know
this in order to program anything at all. No detail of the pro-
gramming model could be left as “magic” to “understand later”;
no vaguely understood part could be left glossed over to “do real
work now.” There were no magical incantations to cut-and-paste
to make something work without understanding it.

I did not recognize how lucky I had been until, many years
later, I decided to take up “real” industrial programming, which
back then meant C++. Suddenly my head was full of Inheritance,
Overloading, Encapsulation, Polymorphism, and suchlike things,
all with capital letters. I learned their definitions, pasted large
blocks of code, and enthusiastically puzzled over tricky questions
from these Grand Principles of Object Oriented Programming
such as, “if a virtual function is also overloaded, which version
will be called?” In retrospect, my time would have been better
spent researching whether Superman would win over Batman.

At about the same time I learned about New Math. It was
born of the original Sputnik Moment and was the grand idea to
reform the teaching of mathematics to school children so that
they would make better Sputniks, and faster. The earth-bound
kind of arithmetic that was useful in a shop class would be re-
placed by the deeper, space-age kind.

That Sputnik must have carried a psychotronic weapon. There
is no other sane explanation for why the schooling of American
engineers—those who launched the same kind of satellite just
four months later—suddenly wasn’t deemed good enough. A
whole industry arose to print new, more expensive textbooks,
with Ph.D.s in space-age math education to match; teachers were
told to abandon the old ways and teach to the new standards.

134

3:2 Greybeard’s Luck by Manul Laphroaig

Perfectly numerate parents could no longer comprehend the point
of grade school arithmetic homework.

Suddenly, adding numbers mattered less than knowing that
Addition was Commutative; as a result, school children learned
about Commutativity but could no longer actually add numbers.
They couldn’t add numbers in their heads or on paper, let alone
multiply them. Shop class became the only place in school where
one could actually learn about fractions—mnot that they were Ra-
tional Numbers, but how to actually measure things with them,
and why. College students thought an algebraic equation was
harder if it contained fractions.

Knowledge of math was measured by remembering special words,
rather than a show of skill. You see, a skill always involves a lot
of tricks; they may be nifty, but they are also too technical and
who has time for that in this space age? Important Concepts,
on the other hand, are nicely general, and you can have mid-
dle schoolers saying things straight out of the graduate program
within a few weeks! Is that not Progress? Indeed, only one other

$95 MORSE TRANSCEIVER

SEND: : 7 COPY:

© 1 to 150 WPM (set from e ©1 to 150 WPM with
terminal) Auto-Sync.

® 32 character FIFO buffer
with editing

».)
® Continuously computes
and displays Copy WPM

® Auto Space on word boundries ® 80 HZ Bandpass filter

© Grid/Cathode key output © Rekeyed Sidetone Osc.

© LED Readout for WPM and = ; with on-board speaker
Buffer space remaining © Fully compensating to
copy any ‘fist style'

SERIAL INTERFACE: g Sl

o ASCIT (110, 800, 500, 1200) MRS-100 CONFIGURATIONS: contact XITEX® direct

direct.
or Baudot (45, 50, 57, 74) compatible ® $95 Partial Kit (includes Microcomputer components
@ Simplex Hi V Loop or T*L and circuit boards; less box and analog components) MC/Visa accepted

electrical interface ® $225 Complete Kit (includes box, power supply,

® Interfaces directly with the XITEX® and all other components)

SCT-100 Video Terminal Board; i IXITEX CORP

Toletypes® Models 16, 28,38, etes ® $295 Assembled and tested unit (as shown) A)
or the equivalent Overseas Orders and dealer inquires welcome

135

3 Address on the Smashing of Idols to Bits and Bytes

Wonder of Progress can stand close to New Math: the way that
children are locked in a room with a literate adult for most of the
day, for years, and still emerge unable to read. People couldn’t
pull that off in the Dark Ages; this takes Science to organize.

What came after New Math was even worse. Some of the school
children who could barely count but knew the Important Con-
cepts became teachers and teachers of teachers. Others realized
that despite all the Big Ideas the skill of math was vanishing.
They saw the fruits of Big Idea pushers dismissing drill; they
concluded that drill was the key to the skill. So subsequent re-
forms barreled between repetitive, senseless rote and more Capi-
tal Letter Words. These days it seems that Discovery, Higher Or-
der, Critical Thinking are in fashion, which means children must
waste days of school time “discovering” Pi and suchlike, working
through countless vaguely defined steps, only to memorize what-
ever the teacher would tell them these activities meant in the
end. Now we have the worst of all: wasted time and boredom
without any productive skill actually learned. The only thing
than can be learned in such a class is helplessness and putting
up with pretentious waste of time, or worse!, mistaking this for
actual math.

I was beginning to feel pretty helpless in the world of C++
Important Concepts of Object Oriented Programming. I was
yearning for my old calculator, where I did not have to learn a
magical order of mystery buttons to press in order to get the
simplest program to work. Having had a book fetish since child-
hood, I hoped for a while that I just hadn’t found the right one to
Unleash or Dummify myself in 21 Days. I was like a school child
who could hardly suspect that the latest textbook with brightly
colored pictures is full of vague unmathematical crap that would
horrify actual mathematicians. (More likely, such mathemati-
cians of ages past would run the textbook authors through in a

136

3:2 Greybeard’s Luck by Manul Laphroaig

proper duel.)

Then one day that world was blown to bits. Polymorphism and
Inheritance blew up when I saw a vtable. After that, function
name mangling was a brief mop-up operation that took care of
Overloading. Suddenly, the Superman-vs-Batman contests and
other C++ language-lawyer interview fare became trivial. It was
just as simple as my calculator; in fact, it was simpler because
it did not have the complexity of managing a tiny amount of
memory.

There is an old name for what people do with Big Ideas and
Important Concepts that are so important that you cannot hope
to have their internal workings understood without special train-
ing by special people. It is called worshiping idols, and what we
ought to do with idols is to smash them to bits.

And if the bits do not make sense, then the whole of a Most
Modern Capitalized Fashion does not make sense, and the special
people are merely priests promising that supplicating the idol will
improve your affairs. Not that anything is wrong with priests,
but idols teach no skills, and if your trust is in your skill, then
you should seek a different temple and a different augur. Or,
better yet, build your own damned bird-feeder!

Verily I say to you that when they keep uttering some words
in such a way that you hear Capital Letters, look ’em in the eye
and ask ’em: “how does this work?” Also remember that “I don’t
really know” is an acceptable answer, and the one who gives it is
your potential ally.

I was brought to a place where they worshiped idols called
Commutativity and Associativity, or else Inheritance and Poly-
morphism, and where they made sacrifices of their children’s time

137

3 Address on the Smashing of Idols to Bits and Bytes

to these idols. They made many useless manuscripts that would
break a mule’s back but which these children had to carry to and
from school. And making a whip of cords, I drove them all out of
the temple, screaming “This is a waste of time and paper! Trees
will grow back hundredfold if you let them alone, for nature can-
not be screwed, but who will restore to the old the lost time of
their youth?”

They taught, “Lo this is Commutative and Higher Order, or
else this is a Reference, and this is a Pointer.” And when I
asked them, “How do you add numbers, and how does your linker
work?”, they demurred and spoke of Abstraction and Patterns.
Verily I tell you, if you don’t know how to do your Abstractions
on paper and what they compile into, you are worshiping idols
and wasting your time. And if you teach that to children, you
are sacrificing their time and their minds to your graven images.
Repent and smash your graven idols to bits, and teach your chil-
dren about the smashing and the bits and the bytes instead, for
these are the only skills that matter!

138

3:2 Greybeard’s Luck by Manul Laphroaig

i ‘,'/'(:’n—jnyr‘f?inlj-}x\j’:r
1444-,(:}11 5(2): @]
(1*3)3: XB_'_ya_t_ 315 ('\'*‘f\

(_I‘,‘l)’: 13_73_ ZXKJ (>L~\j)

XH4(29)" =

Quality physical education
equals academic success. LA

You do the math. “-‘1
e \ b —

Seriously, try to do the math.

139

3 Address on the Smashing of Idols to Bits and Bytes

3:3 This PDF is a JPEG; or,
This Proof of Concept is a

Picture of Cats

by Ange Albertini

In this short little article, I’ll teach you how to combine a PDF
and a JPEG into a single polyglot file that is legal and meaningful
in both languages.

The JPEG format requires its Start Of Image signature, FF
D8, at offset 0x00, exactly. The PDF format officially requires
its %PDF-1.x signature to be at offset 0x00, but in practice most
interpreters only require its presence within the first 1,024 bytes
of the files. Some readers, such as Sumatra, don’t require the
header at all.

In previous issues of this journal, you saw how a neighbor can
combine a PDF document with a ZIP archive (PoC|GTFO
or a Master Boot Record (PoC||GTFO [2:8)), so you should al-
ready know the conditions to make a dummy PDF object. The
trick is to fit a fake obj stream in the first 1024 bytes contain-
ing whatever your second file demands, then to follow that obj
stream with the contents of your real PDF.

To make these two formats play well together, we’ll make our
first insert object stream clause of the PDF contain a JPEG
comment, which will usually start at offset 0x18. Our PDF com-
ment will cause the PDF interpreter ignore the remaining JPEG
data, and the actual PDF content can continue afterward.

Unfortunately, since version 10.1.5, Adobe Reader rejects PDF
files that start like a JPEG file ought to. It’s not clear exactly
why, but as all official segment markers start with FF, this is what
Adobe Reader checks to identify a JPEG file. Adobe PDF Reader
will reject anything that begins with FF D8 FF as a JPEG.

140

3:3 This PDF is a JPEG. by Ange Albertini

FILE JPEG PDF

00000: ff d8 "START OF IMAGE™ MARKER

80002: (ff e@ <size.16> <content> "APP0' MARKER REQURED HEADER)

00014: ff fe <size.l16> "COMMENT" MARKER
+4: %PDF-1.5 COMMENT CONTENT PDF SIGNATURE

999 @ obj STARTING A DUMMY BINARY OBJECT

<>

stream
000839: ... (OTHER MARKERS, ORIGINAL JPEG DATA)
xx ¢ ff d9 “END OF IMAGE' MARKER
Xx+2 : endstream CLOSING THE DUMMY OBJECT

endob j

Xx+14: %PDF-1.5 ... ORIGINAL PDF CONTENTS (MULTIPLE SIGNATURES ARE IGNORED)

‘REPLACED WITH 00 00 TO BYPASS ADOBE FILTER

However, a large number of JPEG files start with an APPO
segment containing a JFIF signature. This begins with an FF EO
marker, so most JPEG viewers don’t mind this in place of the
expected APP0O marker. Just changing that FF EO marker at off-
set 0x02 to anything else will give will give us a supported JPEG
and a PDF that our readers can enjoy with Adobe’s software.

Some picky JPEG viewers, such as those from Apple, might
still require the full sequence FF D8 FF EO to be patched manu-
ally at the top of pocorgtfo03.pdf to enjoy our cats, Calisson
and Sarkozette.

141

01 02 03 04 05 06 07 08 09 OA OB 0C 0D OE OF

3 Address on the Smashing of Idols to Bits and Bytes

| S

0000 | d8J00 00[00 10 4a 46 49 46 00 01 01 0L 00 c7
0010 00 c¢7 00 00 [fe |00 22 0a 25 50 44 46 2d 31 2e
0020 35 0a 39 39 39 20 30 20 6f 62 6a 0a 3c 3c 3e 3e 59990 obj.<<>>
0030 Oa 73 74 72 65 61 6d Oa[ff db |00 43 00 03 02 02 stream....C....
0040 03 02 02 03 03 03 03 04 03 03 04 05 08 05 05 04 .
0050 04 05 0Oa 07 07 06 08 Oc Oa Oc Oc Ob Oa Ob Ob O0d
0060 Oe 12 10 0d Oe 11 0Oe Ob Ob 10 16 10 11 13 14 15 ...
0070 15 15 Oc Of 17 18 16 14 18 12 14 15 14 ff db 00 .
0080 43 01 03 04 04 05 04 05 09 05 05 09 14 0d Ob od
0090 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
00a0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 ...
00b0 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
00c0 14 14 ff ¢2 00 11 08 03 78 06 b3 03 01 11 00 02 ... Koo
00d0 11 01 03 11 01 ff ¢4 00 Ic 00 00 03 01 00 03 01 .
00e0 01 00 00 00 00 00 00 00 0O 0O 00 Ol 02 03 04 05
00f0 06 07 08 ff ¢4 00 la 0L OL 01 01 01 01 01 0L 00 .

0100 00 00 00 00 00 00 00 00 00 01 02 04 03 05 06 # .

142

3:4 Netwatch for SMM by Wise and Potter

3:4 NetWatch:
System Management Mode is not just
for Governments.

by Joshua Wise and Jacob Potter

Neighbors, by now you have heard of a well known state’s ex-
plorations into exciting and exotic malware. The astute amongst
you may have had your ears perk up upon hearing of SCHOOL-
MONTANA, a System Management Mode rootkit. You might
wonder, how can I get some of that SMM goodness for myself?

Before we dive too deeply, we’ll take a moment to step back
and remind our neighbors of the many wonders of System Man-
agement Mode. Our friends at Intel bestowed SMM unto us
with the i386SL, a low-power variant of the '386. When they
realized that it would become necessary to provide power man-
agement features without modifying existing operating systems,
they added a special mode in which execution could be trans-
parently vectored away from whatever code be running at the
time in response to certain events. For instance, vendors could
use SMM to dynamically power sound hardware up and down in
response to access attempts, to control backlights in response to
keypresses, or even to suspend the system!

On modern machines, SMM emulates classic PS/2 keyboards
before USB drivers have been loaded. It also manages BIOS up-
dates, and at times it is used to work around defects in the hard-
ware that Intel has given us. SMM is also intricately threaded
into ACPI, but that’s beyond the scope of this little article.

All of this sounds appetizing to the neighbor who hungers for
deeper control over their computer. Beyond the intended uses of
SMM, what else can be done with the building blocks? Around
the same time as the well known state built SCHOOLMONTANA

143

3 Address on the Smashing of Idols to Bits and Bytes

and friends, your authors built a friendlier tool, NetWatch. We
bill NetWatch as a sort of lights-out box for System Management
Mode. The theory of operation is that by stealing cycles from the
host process and taking control over a secondary NIC, NetWatch
can provide a VNC server into a live machine. With additional
care, it can also behave as a GDB server, allowing for remote
debugging of the host operating system.

We invite our neighbors to explore our work in more detail,
and build on it should you choose to. It runs on older hardware,
the Intel ICH2 platform to be specific, but porting it to newer
hardware should be easy if that hardware is amenable to loading
foreign SMM code or if an SMM vulnerability is available. Like
all good tools in this modern era, source code is availableﬂ

We take the remainder of this space to discuss some of the
clever tricks that were necessary to make NetWatch work.

A thief on the PCI bus.

To be able to communicate with the outside world, NetWatch
needs a network card of its own. One problem with such a con-
cept is that the OS might want to have a network card, too; and,
indeed, at boot time, the OS may steal the NIC from however
NetWatch has programmed it. We employ a particularly inele-
gant hack to keep this from happening.

The obvious thing to do would be to intercept PCI configu-
ration register accesses so that the OS would be unable to even
prove that the network card exists! Unfortunately, though there
are many things that a System Management Interrupt can be con-
figured to trap on, PCI config space access is not a supported trap
on ICH2. ICH2 does provide for port I/O traps on the South-

lgit clone https://github.com/jwise/netwatch
unzip pocorgtfo03.pdf netwatch-337f8bl.tar.gz

144

3:4 Netwatch for SMM by Wise and Potter

bridge, but PCI peripherals are attached to the Northbridge on
that generation. This means that directly intercepting and emu-
lating the PCI configuration phase won’t work.

We instead go and continuously “bother” PCI peripherals that
we wish to disturb. Every time we trap into system manage-
ment mode—which we have configured to be once every 64ms—
we write garbage values over the top of the card’s base address
registers. This effectively prevents Linux from configuring the
card. When Linux attempts to do initial detection of the card,
it times out waiting for various resources on the (now-bothered)
card, and does not succeed in configuring it.

Neighbors who have ideas for more effectively hiding a PCI
peripheral from a host are encouraged to share their PoC with
us.

Single-stepping without hardware breakpoints.

In a GDB slave, one of the core operations is to single-step.
Normally, single-step is implemented using the TF bit in the

THEMD@ THE INDUSTRY LEADER IN AFFORDABLE
HI-RES VIDEO ANALYSIS FOR ALL S-100

AND S-50 COMPUTERS

TS 2% » TR
The DS-80 features full compatibility with the proposed IEEE S-100 standard and all current S$-100 CPUs. New improved circuit
design enhances performance. The DS-80 offers random access video digitization of up to 256 X 256 spatial resolution and 64
levels of grey scale, plus controls for brightness, contrast and width. It is versatile enough to handle any video processing
task—from U.P.C. codes (above) and blood cell counting to computer portraiture and character recognition. The DS-80 comes
fully assembled, tested and burned in. Included is portrait software compatible with the Vector Graphic High Resoiution Graphics

Display Board.
Please altow two weeks for delivery. DS-80 for the S-100 bus $349.95
DS-65 FOR THE APPLE-- Master Charge and BankAmericard DS-68 for the S50 bus 169.95

COMING SOON!
P.0O. BOX 1110 DEL MAR, CA. 92014 714-756-2687

145

3 Address on the Smashing of Idols to Bits and Bytes

FLAGS/EFLAGS/RFLAGS register, which causes a debug ex-
ception at the end of the next instruction after it is set. The
kernel can set TF as part of an IRET, which causes the CPU
to execute one instruction of the program being debugged and
then switch back into the kernel. Unfortunately Intel, in all their
wisdom, neglected to provide an analog of this feature for SMM.
When NetWatch’s GDB slave receives a single-step command, it
needs to return from SMM and arrange for the CPU to execute
exactly one instruction before trapping back in to SMM. If Intel
provides no bit for this, how can we accomplish it?

Recall that the easiest way to enter SMM is with an I/O port
trap. On many machines, port 0xB2 is used for this purpose.
You may find that MSR SMI_ON_IO_TRAP_O (0xC001_0050) has
already been suitably set. NetWatch implements single-step by
reusing the standard single-step exception mechanism chained to
an I/0 port trap.

Suppose the system was executing a program in user-space
when NetWatch stopped it. When we receive a single step com-
mand, we must insert a soft breakpoint into the hard breakpoint
handler. This takes the form of an OUT instruction that we can
trap into the #DB handler that we otherwise couldn’t trap.

e Track down the location of the IDT and the target of the
#DB exception handler.

e Replace the first two bytes of that handler with E6 B2, “out
%al, $0xb2.”

e Save the %cs and %ss descriptor caches from the SMM
saved state area into reserved spots in SMRAM.

e Return from SMM into the running system.

Now that SMM has ceded control back to the regular system, the
following will happen.

146

3:4 Netwatch for SMM by Wise and Potter
The system executes one instruction of the program being
debugged.
A #DB exception is triggered.

If the system was previously in Ring 3, it executes a mode
switch into Ring 0 and switches to the kernel stack. Then
it saves a trap frame and begins executing the #DB handler.

The #DB handler has been replaced with out %al, $0xb2.

Finally, the OUT instruction triggers a System Management In-
terrupt into our SMM toolkit.

The SMI handler undoes the effect of the exception that
just happened: it restores RIP, CS, RFLAGS, RSP, and
SS from the stack, and additionally restores the descriptor
caches from their saved copy in SMRAM. It also replaces
the first two bytes of the #DB handler.

NetWatch reports the new state of the system to the de-
bugger. At this point, a single X86 instruction step has
been executed outside of SMM mode.

Places to go from here.

NetWatch was written as a curiosity, but having a framework to
explore System Management Mode is damned valuable. Those
with well-woven hats will also enjoy this opportunity to disas-
semble SMM firmware on their own systems. SMM has wondrous
secrets hidden within it, and it is up to you to discover them!

The authors offer the finest of greets to Dr. David A. Eckhardt
and to Tim Hockin for their valuable guidance in the creation of
NetWatch.

147

3 Address on the Smashing of Idols to Bits and Bytes

148

COMPUTERFEST

The Second Annual Midwestern Regional Computer Conference

* Major Attractions *

Flea Market

Seminars
Manufacturers’ exhibits
Technical Sessions

Court Hotel, Cleveland Ohio June 10, 11, 12

For Additional Information:

Gary Coleman

Midwestern Affiliation of Computer Clubs
PO Box 83

Cleveland OH 44141

P.S. To make life casier we are chartering

a jet to Dallas the next weekend.

3:4 Netwatch for SMM

by Wise and Potter

\“Om\

s, preozude®

i 3g
{OHnzrregn sdon A

149

3 Address on the Smashing of Idols to Bits and Bytes

3:5 An Advanced Mitigation Bypass for
Packet-in-Packet; or,

I'm burning Oday to use the phrase
‘eighth of a nybble’ in print.

by Travis Goodspeed
continuing work begun in collaboration
with the Dartmouth Scooby Crew

Howdy y’all,

This short little article is a follow-up to my work on 802.15.4
packet-in-packet attacks, as published at Usenix WOOT 2011.
In this article, I'll show how to craft PIP exploits that avoid
the defense mechanisms introduced by the fine folks at Carleton
University in Ontario.

As you may recall, the simple form of the packet-in-packet
attack works by including the symbols that make up a Layer
1 packet at Layer 7. Normally, the interior bytes of a packet
are escaped by the outer packet’s header, but packet collisions
sometimes destroy that header. However, collisions tend to be
short and so leave the interior packet intact. On a busy band like
2.4GHz, this happens often enough that it can be used reliably
to inject packets in a remote network.

At Wireless Days 2012, Biswas and company released a short
paper entitled A Lightweight Defence against the Packet in Packet
Attack in ZigBee Networks. Their trick is to use bit-stuffing of
a sort to prevent control information from appearing within the
payload. In particular, whenever they see four contiguous 00
symbols, they stuff an extra FF before the next symbol in order
to ensure that the Zigbee packet’s preamble and Start of Frame
Delimiter (also called a Sync) are never found back-to-back inside

150

3:5 Packet-in-Packet Mitigation Bypass by Travis Goodspeed

of a transmitted packet.

So if the attacker injects 00 00 00 00 A7 ... as in the orig-
inal WOOT paper, Biswas’ mitigation would send 00 00 00 00
FF A7 ... through the air, preventing a packet-in-packet injec-
tion. The receiving unit’s networking stack would then transform
this back to the original form, so software at higher layers could
be none-the-wiser.

One simple bypass is to realize that the receiving radio may
not in fact need four bytes of preamble. A tech reporﬂ from
Dartmouth shows that the Telos B does not require more than
one preamble byte, so 00 00 A7 ... would successfully bypass
Biswas’ defense.

Another way to bypass this defense is to realize that 802.15.4
symbols are four bits wide, so you can abuse nybble alignment
to sneak past Biswas’ encoder. In this case, the attacker would
send something like FO 00 00 00 OA 7..., allowing for eight
nybbles, which are four misaligned bytes, of zeroes to be sent in
a row without tripping the escaping mechanism. When the outer
header is lost, the receiver will automatically re-align the interior
packet.

But those are just bugs, easily identified and easily patched.
Let’s take a look at a full and proper bypass, one that’s dignified
and pretty damned difficult to anticipate. You see, byte bound-
aries in the symbol stream are just an accidental abstraction that
doesn’t really exist in the deepest physical layers, and they are
not the only abstraction the hardware ignores. By finding and
violating these abstractions—while retaining compatibility with

2Fingerprinting IEEE 802.15.4 Devices by Ira Ray Jenkins and the Dart-
mouth Scooby Crew, TR2014-746

151

11

13

15

17

3 Address on the Smashing of Idols to Bits and Bytes

the hardware receiver!—we can perform a packet-in-packet injec-
tion without getting caught by the filter.

You’ll recall that I told you 802.15.4 symbols were nybble-
sized. That’s almost true, but strictly speaking, it’s a comforting
lie told to children. The truth is that there’s a lower layer, where
each nybble of the message is sent as 32 ones and zeroes, which
are called ‘chips’ to distinguish them from higher-layer bits.

The symbols and chip sequences are defined like this in the
802.15.4 standard. As each chip sequence has a respectably large
Hamming distance from the others, an error-correcting symbol
matcher on the receiving end can find the closest match to a sym-
bol that arrives damagedEI This fix is absolutely transparent—by
design—to all upper layers, starting with the symbol layer where
SFD is matched to determine where a packet starts.

-- 11011001110000110101001000101110
-- 11101101100111000011010100100010
-- 00101110110110011100001101010010
-- 00100010111011011001110000110101
01010010001011101101100111000011
-- 00110101001000101110110110011100
-- 11000011010100100010111011011001
-- 10011100001101010010001011101101

~NOo O WP O
|
|

-- 10001100100101100000011101111011
-- 10111000110010010110000001110111
-- 01111011100011001001011000000111
-- 01110111101110001100100101100000
00000111011110111000110010010110
-- 01100000011101111011100011001001
-- 10010110000001110111101110001100
-- 11001001011000000111011110111000

MO QW= o0
|
|

3Note that Hamming-distance might not be the best metric to match the
symbol. Other methods, such as finding the longest stretch of perfectly-
matched chips, will still work for the bypass presented in this article.

152

3:5 Packet-in-Packet Mitigation Bypass by Travis Goodspeed

That is, the Preamble of an 802.15.4 packet can be written
as either 00 00 00 00 or eight repetitions of the zero symbol
11011001110000110101001000101110. While Biswas wants to
escape any sequences of the interior symbols, he is actually just
filtering at the byte level. Filtering at the symbol level would
help, but even that could be bypassed by misaligned symbols.

“What the hell are misaligned symbols!?” you ask. Read on
and I’ll show you how to obfuscate a PIP attack by sending ev-
erything off by an eighth of a nybble.

I took the above listing, printed it to paper, and cut the rows
apart. Sliding the rows around a bit shows that the symbols form
two rings, in which rotating by an eighth of the length causes one
symbol to line up with another. That is, if the timing is off by
an eighth of a nybble, a 0 might be confused for a 1 or a 7. Two
eighths shift of a nybble will produce a 2 or a 6, depending upon
the direction. You can see this for yourself in Figure 3.1

This technique would work for chipwise translations of any
shift, but it just so happens that all translations occur in four-chip
chunks because that’s how the 802.15.4 symbol set was designed.
Chip sequences this long are terribly difficult to work with in
binary, and the alignment is convenient, so let’s see them as hex.
Just remember that each of these nybbles is really a chip-nybble,
which is one-eighth of a symbol-nybble.

0 D9C3522E 8 8C96077B
2|1 ED9C3522 2|9 B8C96077

2 2ED9C352 A 7B8C9607
4/ 3 22ED9C35 “| B 77B8C960

4 522ED9C3 C 077B8C96
6|5 3522ED9C 6| D 6077B8C9

6 C3522ED9 E 96077B8C
8|7 9C3522ED 8| F C96077B8

So now that we’ve got a denser notation, let’s take a look at
the packet header sequence that is blocked by Biswas, namely,

153

3 Address on the Smashing of Idols to Bits and Bytes

MO QWE © 00N W~ O

11011001110000110101001000101110
11101101100111000011010100100010
00101110110110011100001101010010
00100010111011011001110000110101
01010010001011101101100111000011
00110101001000101110110110011100
11000011010100100010111011011001
10011100001101010010001011101101
10001100100101100000011101111011
10111000110010010110000001110111
01111011100011001001011000000111
01110111101110001100100101100000
00000111011110111000110010010110
01100000011101111011100011001001
10010110000001110111101110001100
11001001011000000111011110111000

Figure 3.1: 802.15.4 Symbols, in Hex and as Chip Patterns.

154

3:5 Packet-in-Packet Mitigation Bypass by Travis Goodspeed

the 4-bytes of zeroes. In this notation, the upper line represents
802.15.4 symbols, while the lower line shows the 802.15.4 chips,
both in hex.

0 0 0 0 0 0
D9C3522E D9C3522E D9C3522E D9C3522E DY9C3522E D9C3522E

As this sequence is forbidden (i.e., will be matched against
by Biswas’ bit stuffing trick) at the upper layers, we’d like to
smuggle it through using misaligned symbols. In this case, we’ll
send 1 symbols instead of 0 symbols, as shown on the lower half
of the following diagram. Note how damned close they are to
the upper half. At most one eighth of any symbol is wrong, and
within a stretch of repeated symbols, every chip is correct.

0 0 0 0 0 0
D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E D9C3522E
1 1 1 1 1 1
ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522 ED9C3522

So instead of sending our injection string as 00000000A7, we
can move forward or backward one spot in the ring, sending
11111111B0 or 7777777796 as our packet header and applying
the same shift to all the remaining symbols in the packet.

“But wait!” you might ask, “These symbols aren’t correct! Be-
tween 0 and 4 chips of the shifted symbol fail to match the orig-
inal.”

The trick here is that the radio receiver must match any in-
coming chip sequence to some output symbol. To do this, it takes
the most recent 32 chips it received and returns the symbol from
the table that has the least Hamming distance from the received
sample.

155

3 Address on the Smashing of Idols to Bits and Bytes

So when the radio is looking for A7 and sees B0, the error
calculation looks a little like this.

BO -- 77B8C960D9C3522E
[(RRRERRN <--Chips are nearly equal.
A7 -- T7B8C96079C3522ED

For the first symbol, the receiver expects the A symbol as
7B8CI9607 but it gets 7B8CI60D. Note that these only differ by the
last four chips, and that the Hamming distance between 0111 and
1101 is only two, so the difference between an A and a misaligned
B in this case is only two.

It’s easy to show that the worst off-by-one misalignment would
make the Hamming distance differ by at most four. Comparing
this with the distance between the existing symbols, you will see
that they are all much further apart from one other. So we can
obfuscate an entire inner packet, letting the receiver and a bit
of radioland magic translate our packet from legal symbols into
ones that ought to have been escaped.

Ain’t that nifty?

This technique of abusing sub-symbol misalignment to send
a corrupted packet-in-packet which is reliably transformed back
into a correct, meaningful packet should be portable to protocols
other than 802.15.4.

For example, most Phase Shift Keyed (PSK) protocols can
have phase misalignment that causes symbols to be confused for
each other. Frequency Shift Keyed (FSK) protocols can have
frequency misalignment when on neighboring channels, so that
sometimes one channel in 2 FSK will see a packet intended for a
neighboring channel, but with all or most of the bits flipped.

One last subject I should touch on is a fancy attempt by
Michael Ossmann and Dominic Spill to defend against packet-
in-packet attacks which was presented at Shmoocon 2014 and in

156

3:5 Packet-in-Packet Mitigation Bypass by Travis Goodspeed

a post to the Langsec mailing list. While they don’t explicitly
anticipate the bypass presented in this paper, it’s worth noting
that their example (5,2,2) Isolated Complementary Binary Lin-
ear Block Code (ICBLBC) does not seem to be vulnerable to my
advanced bypass technique. Could it be that all such codes are
accidentally invulnerable?

Evan Sultanik on the Digital Operatives Blog ported Mike and
Dominic’s technique for generating codes to Microsoft’s Z3 theo-
rem prover and came up with a number of new ICBLBC codes.

With so many to choose from, surely a clever reader could ex-
tend Evan’s Z3 code to search just for those ICBLBC codes which
are vulnerable to type confusion with misalignment? I'll buy a
beer for the first neighbor to demo such a PoC, and another beer
for the first neighbor to convincingly extend Mike and Dominic’s
defense to cover misaligned symbols. For inspiration, read about
how Barisani and Biancdﬂ were able to do packet-in-packet in-
jections against wired ethernet by ignoring Layer 1 and injecting
at Layer 2.

Cheers from Samland,
—Travis

4Fully Arbitrary 802.3 Packet Injection: Maximizing the Ethernet Attack
Surface by Andrea Barisani and Daniele Bianco at Black Hat 2013

157

3 Address on the Smashing of Idols to Bits and Bytes

_‘ 0 ’_111011861119088110101081860101118}_‘
11011001110000110101001000101110 0
_‘ 1 ’_111181161109111860811818160108918
11101101100111000011010100100010 1
‘ 2 ’[08181110118118811106081161816918}_‘
601011101101100111000011010100180 2
‘ 3 ’[08188810111911811801118860119181}_‘
001000101110110110011100600110181 3
‘ 4 ’[01918810801911161101188111809911
01010010001011101101100111060011 4
‘ 5 ’[08116161801088161118118110811188H
001101010010001011101101100111080 5
‘ 6 ’[11088011819188160818111811811081H
11000011010100100010111011011601 6
‘ 7 ’[1901116080118181081909181IIBIIBIH
10011100001101010010001011101101 7
‘ 8 ’[19081160109181160809011161111011H
10001100100101100000011101111611 8
‘ 9 ’[191116601190188101190988611191IIH
101110001100100101100000011108111 q
A ’_[’_lall11811109011861801011860809111
01111011108011001801011 111 A
‘ B ’[011181111011IBBBIIBBIBBIBIIBBBBBF
01110111101110001100100101100000 B |
‘ C ’/09088111811118111809118810819118F
000001110111101110001100100101180 C |
_‘ D ’_161186880811181111811180911801081H
e11 111e1111@8111000110081001 | D
_‘ E ’_118010116808081116111181110901186
10010110000001110111101110601100 E
_‘ F ’_111081081811080986111011116111086H
110010010110000001110111101110600 F

Hey kids!
Xerox this page and cut the paper strips apart.
You can write your own odd-alignment packet-in-packet
injection strings!

158

3:6 An RDRAND Backdoor in Bochs by Taylor Hornby

3:6 Prototyping an RDRAND Backdoor
in Bochs

by Taylor Hornby

What happens to the Linux cryptographic random number
generator when we assume Intel’s fancy new RDRAND instruc-
tion is malicious? According to dozens of clueless Slashdot com-
ments, it wouldn’t matter, because Linux tosses the output of
RDRAND into the entropy pool with a bunch of other sources,
and those sources are good enough to stand on their own.

I can’t speak to whether RDRAND is backdoored, but I can—
and I dol—say that it can be backdoored. In the finest tradition
of this journal, I will demonstrate a proof of concept backdoor
to the RDRAND instruction on the Bochs emulator that cripples
/dev/urandom on recent Linux distributions. Implementing this
same behavior as a microcode update is left as an exercise for
clever readers.

Let’s download version 3.12.8 of the Linux kernel source code
and see how it generates random bytes. The following is part
of the extract_buf () function in drivers/char/random.c, the
file that implements both /dev/random and /dev/urandom.

159

—

11

13

3 Address on the Smashing of Idols to Bits and Bytes

static void extract_buf (struct entropy_store *r, __u8 xout){
// ... hash the pool and other stuff
/* If we have a architectural hardware random number
* generator, miz that in, too. */

for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {

unsigned long v;

if (larch_get_random_long(&v))

break;

hash.1[i] ~= v;
}
memcpy (out, &hash, EXTRACT_SIZE);
memset (&hash, 0, sizeof (hash));

This function does some tricky SHA1 hashing stuff to the en-
tropy pool, then XORs RDRAND’s output with the hash before
returning it. That arch_get_random_long() call is RDRAND.
What this function returns is what you get when you read from
/dev/(u)random.

What could possibly be wrong with this? If the hash is random,
then it shouldn’t matter whether RDRAND output is random or
not, since the result will still be random, right?

That’s true in theory, but the hash value is in memory when
the RDRAND instruction executes, so theoretically, it could find
it, then return its inverse so the XOR cancels out to ones. Let’s
see if we can do that.

First, let’s look at the X86 disassembly to see what our modi-
fied RDRAND instruction would need to do.

c03a_4c80: 89 d9 mov ecx,ebx

c03a_4c82: b9 00 00 00 00 mov ecx,0x0 ;These become
c03a_4c87: 8d 76 00 lea esi,[esi+0x0] ;"rdrand eax"
c03a_4c8a: 85 c9 test ecx,ecx

c03a_4c8c: 74 09 je c03a4c97

c03a_4c8e: 31 02 xor DWORD PTR [edx],eax
c03a_4c90: 83 c2 04 add edx,0x4

c03a_4c93: 39 f2 cmp edx ,esi

c03a_4c95: 75 e9 jne c03a4c80

160

3:6 An RDRAND Backdoor in Bochs by Taylor Hornby

That mov ecx, 0,lea esi [esi+0x0] code gets replaced with
rdrand eax at runtime by the alternatives system. See arch-
random.h and alternative.h in arch/x86/include/asm/for de-
tails.

Sometimes things work out a little differently, and it’s best to
be prepared for that. For example if the kernel is compiled with
CONFIG_CC_OPTIMIZE_FOR_SIZE=y, then the call to arch_get_-
random_long() isn’t inlined. In that case, it will look a little
something like this.

c030_76e6: 39 fb cmp ebx ,edi

c030_76e8: 74 18 je c0307702

c030_76ea: 8d 44 24 Oc lea eax, [esp+0xc]
c030_76¢ee: e8 cd fc ff ff call c03073cO

c030_76f3: 85 cO test eax ,eax

c030_76f5: 74 Ob je c0307702

c030_76£f7: 8b 44 24 Oc mov eax ,DWORD PTR [esp+0xc]
c030_76fb: 31 03 xor DWORD PTR [ebx],eax
c030_76fd: 83 c3 04 add ebx ,0x4

c030_7700: eb e4d jmp c03076e6

Not to worry, though, since all cases that I've encountered have
one thing in common. There’s always a register pointing to the
buffer on the stack. So a malicious RDRAND instruction would
just have to find a register pointing to somewhere on the stack,
read the value it’s pointing to, and that’s what the RDRAND
output will be XORed with. That’s exactly what our PoC will
do.

I don’t have a clue how to build my own physical X86 CPU
with a modified RDRAND, so let’s use the Bochs X86 emulator
to change RDRAND. Use the current source from SVN since the
most recent stable version as I write this, 2.6.2, has some bugs
that will get in our way.

All of the instructions in Bochs are implemented in C++ code,
and we can find the RDRAND instruction’s implementation in
cpu/rdrand.cc. It’s the BX_CPU_C: :RDRAND_Ed () function. Let’s

161

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

3 Address on the Smashing of Idols to Bits and Bytes

replace it with a malicious implementation, one that sabotages
the kernel, and only the kernel, when it tries to produce random
numbers.

BX_INSF_TYPE BX_CPP_AttrRegparmN(l) BX_CPU_C::RDRAND_EA (
bxInstruction_c *i){
Bit32u

rdrand_output = 0;

Bit32u xor_with = 0;

Bit32u ebx = get_reg32(BX_32BIT_REG_EBX);
Bit32u edx = get_reg32(BX_32BIT_REG_EDX);
Bit32u edi = get_reg32(BX_32BIT_REG_EDI);
Bit32u esp = get_reg32(BX_32BIT_REG_ESP);

const char output_stringl[] =

"PoC||GTFO!\n";

static int position = 0;

Bit32u addr = O0;

static Bit32u last_addr = O0;

static Bit32u second_last_addr = 0;

/* We only want to change RDRAND’s output

if it’s being

used for thevulmerable XOR in eztract_buf ().

This

only happens in Ring 0.
*/
if (CPL 0 {

/* The address of the value our output will get XORed
with is pointed to by one of the registers, and 1is
somewhere on the stack. We can use that to tell 4if
we’re being executed in eztract_buf() or somewhere
else in the kernel. Obviously, the exzact registers
will wvary depending on the compiler, so we have to
account for a few different possibilities. It’s
not perfect, but hey, this is a PoC.

*# This has been tested on 32-bit wversions of
*# - Tiny Core Linuxz 5.1
¥ - Arch Linuz 2013.12.01 (booting from cd)
* - Debian Testing 1386 (retrieved December 6, 2013)
¥ - Fedora 19.1
*/
if (esp <= edx && edx <= esp + 256) {
addr = edx;
} else if (esp <= edi && edi <= esp + 256
&& esp <= ebx && ebx <= esp + 256) {
/* With CONFIG_CC_OPTIMIZE_FOR_SIZE=y, either:

* -

162

EBX points to the current

indezx,

3:6 An RDRAND Backdoor in Bochs by Taylor Hornby

A Run-Time Library
for Whitesmiths’ C 2.1

Benchmarks

W Fast execution 1. Int to ASCII conv.
mROMable 2. Long to ASCII conv.
mNo royalties 3. Long random number

generator

®Fully reentrant 4. Double 20 x 20 matrix
machine support multiply

B CP/M file support 5. File copy (16kb) ol
m Error checking M with RealTime C

B Usable with our AMX D without

Multitas kl ng EXeC UtiVe 4 Mhz Z80, 8" SD diskette. Times may vary with processor, disks, elc.
AMX and RealTime C are trademarks of KADAK Producls Lid.

A-Natural is TM of Whitesmiths Ltd. CP/M 1s TM of Digital Research Corp.
Z801sTM ol Zilog Corp.

Real-Time C $ 95
manvalonly 28 KADAK Products Ltd.

source code
’k 206-1847 W. Broadway Avenue
. Vancouver, B.C., Canada V6J 1Y5
Intel mnemonic $ 50 AF teiephone: (604) 734-2796
to A-Natural converter Telex: 04-55670

163

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

3 Address on the Smashing of Idols to Bits and Bytes

164

* EDI points to the end of the array.
* - EDI points to the current indez,

* EBX points to the end of the array.
* To distinguish the two, we compare them.

*/
if (edi <= ebx) {
addr = edi;
} else {
addr = ebx;
}
} else {

/* It’s not eztract_buf(), so cancel the
backdooring. */
goto do_not_backdoor;

}

/* Read what our output will be X0ORed with. */

xor_with = read_virtual_dword (BX_SEG_REG_DS, addr);

Bit32u urandom_output = O0;
Bit32u advance_length 4,
Bit32u extra_shift = 0;

/* Only the first two bytes get used on the third

RDRAND ezecution. */
if (addr == last_addr + 4
&& last_addr == second_last_addr + 4){
advance_length = 2;
extra_shift = 16;
}

/* Copy the next string portion into the output.

for (int i = 0; i < advance_length; i++) {
/* The characters must be added backwards,
because little endian. */
urandom_output >>= 8;

urandom_output |= output_stringl[position++]

if (position >= strlen(output_string)) {
position = 0

}

}

urandom_output >>= extra_shift;

second_last_addr = last_addr;
last_addr = addr;

rdrand_output = xor_with urandom_output;

*/

<< 24;

92

94

96

98

102

104

106

10

3:6 An RDRAND Backdoor in Bochs by Taylor Hornby

} else {
do_not_backdoor:

/* Normally, RDRAND produces good random output. */
rdrand_output |= rand() & Oxff;
rdrand_output <<= 8;
rdrand_output |= rand() & Oxff;
rdrand_output <<= 8;
rdrand_output |= rand() & Oxff;
rdrand_output <<= 8;
rdrand_output |= rand() & Oxff;

¥

BX_WRITE_32BIT_REGZ(i->dst(), rdrand_output);
setEFlags0SZAPC (EFlagsCFMask) ;

BX_NEXT_INSTR (i) ;

After you've made that patch and compiled Bochs, download
Tiny Core Linux to test it. Here’s a sample configuration to
ensure that a CPU with RDRAND support is emulated.

System configuration.

romimage: file=$BXSHARE/BIOS-bochs-latest
vgaromimage: file=$BXSHARE/VGABIOS-1lgpl-latest
cpu: model=corei7_ivy_bridge_3770k, ips=120000000
clock: sync=slowdown

megs: 1024

boot: cdrom, disk

CDROM
atal: enabled=1, ioaddr1=0x170, ioaddr2=0x370, irq=15
atal-master: type=cdrom, path="CorePlus-current.iso", status=

inserted

Boot it, then cat /dev/urandom to check the kernel’s random
number generation.

tc@box:~"$ cat /dev/urandom | head -n 3

PoC| | GTFO!
PoC| | GTFO!
PoC||GTFO!

165

3 Address on the Smashing of Idols to Bits and Bytes

3:7 Patching Kosher Firmware
for the Nokia 2720

by Assaf Nativ
D7 90 D7 A1 D7 A3 D7 AO D7 AA D7 99 D7 91
in collaboration with two anonymous coworkers.

This fun little article will introduce you to methods for patch-
ing firmware of the Nokia 2720 and related feature phones. We’ll
abuse a handy little bug in a child function called by the veri-
fication routine. This modification to the child function that we
can modify allows us to bypass the parent function that we cannot
modify. Isn’t that nifty?

A modern feature phone can make phone calls, send SMS or
MMS messages, manage a calendar, listen to FM radio, and play
Snake. Its web browser is dysfunctional, but it can load a few
websites over GPRS or 3G. It supports Bluetooth, those fancy
ringtones that no one ever buys, and a calculator. It can also
take ugly low-resolution photos and set them as the background.

Not content with those unnecessary features, the higher end of
modern feature phones such as the Nokia 208./ support Twitter,
WhatsApp, and a limited Facebook client. How are the faithful to
study their scripture with so many distractions?

A Kosher phone would be a feature phone adapted to the unique
needs of a particular community of the Orthodox Jews. The gen-
eral idea is that they don’t want to be bothered by the outside
world in any way, but they still want a means to communicate
between themselves without breaking the strict boundaries they
made. They wanted a phone that could make phone calls or cal-
culate, but that only supported a limited list of Hasidic ringtones
and only used Bluetooth for headphones. They would be extra
happy if a few extra features could be added, such as a Jewish

166

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ

calendar or a prayer time table. While Pastor Laphroaig just
wants a phone that doesn’t ring (except maybe when heralding
new PoC), frowns on Facebook, and banishes Tweety-bozes at the
dinner table, this community goes a lot further and wants no
Facebook, Twitter, or suchlike altogether. This strikes the Pastor
as a bit extreme, but good fences make good neighbors, and who’s
to tell a neighbor how tall a fence he ought to build? So this is
the story of a neigbor who got paid to build such a fenceﬂ

I started with a Nokia phone, as they are cost effective for
hardware quality and stability. From Nokia I got no objection
to the project, but also no help whatsoever. They said I was
welcome to do whatever helps me sell their phones, but this target
group was too small for them to spend any development time on.
And so this is how my quest for the Kosher phone began.

During my journey I had the pleasure of developing five gener-
ations of the Kosher phone. These were built around the Nokia
1208, Nokia 2680, Nokia 2720, Samsung E1195, and the Nokia
208.4. There were a few models in between that didn’t get to the
final stage either because I failed in making a Kosher firmware for
them or because of other reasons that were beyond my control.

I won’t describe all of the tricks I've used during the devel-
opment, because these phones still account for a fair bit of my
income. However, I think the time has come for me to share some
of the knowledge I've collected during this project.

It would take too long to cover all of the phones in a single

5Disclaimer: No one forces this phone on them; they choose to have it of
their own will. No government or agency is involved in this, and the
only motivation that drives customers to use this kind of phone is the
community they live in.

167

3 Address on the Smashing of Idols to Bits and Bytes

article, so I will start with just one of them, and just a single
part that I find most interesting.

Nokia has quite a few series of phones which differ in the
firmware structure and firmware protection. SIM-locking has
been prohibited in the Israeli market since 2010, but these pro-
tections also exist to keep neighbors from playing with baseband
firmware modifications, as that might ruin the GSM network.

Nokia phones are divided into a number of baseband series.
The oldest, DCT1, works with the old analog networks. DCT3,
DCT4 and DCT4+ work with 2G GSM. BB5 is sometimes 2G
and sometimes 3G, so far as I know. And anything that comes
after, such as Asha S40, is 3G. It is important to understand that
there are different generations of phones because vulnerabilities
and firmware seem to work for all devices within a family. Devices
in different families require different firmware.

T'll start with a DCT4+ phone, the Nokia 1208. Nowadays
there are quite a few people out there who know how to patch
DCT4+ firmware, but the solution is still not out in the open.
One would have to collect lots of small pieces of information
from many forum posts in order to get a full solution. Well, not
anymore, because I'm going to present here that solution in all
of its glory.

A DCT4+ phone has two regions of executable code, a flash-
able part and a non-flashable secured part, which is most likely
mask ROM. The flashable memory contains a number of impor-
tant regions.

e The Operating System, which Nokia calls the MCUSW.
(Read on to learn how they came up with this name.)

168

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ

0x0084_0000
Secured Rom
0x0090_0000
0x0100_0000

MCUSW

and PPM
0x01CE_0000
0x0218_0000

Image

0x02FC_0000
0x0300_0000

External RAM
0x0400_0000
0x0500_0000

API RAM

0x0510_0000

Figure 3.2: Nokia Memory Map

e Strings and localization strings, which Nokia calls the PPM.

e General purpose file system in a FAT16 format. This part
contains configuration files, user files, pictures, ringtones,
and more. This is where Nokia puts phone provider cus-
tomizations, and this part is a lot less protected. It is usu-
ally referred to as the CNT or IMAGE.

All of this data is accessible for the software as one flat memory
module, meaning that code that runs on the device can access
almost anything that it knows how to locate.

At this point I focused on the operating system, in my attempt
to patch it to make the phone Kosher. The operating system

169

3 Address on the Smashing of Idols to Bits and Bytes

contains nearly all of the code that operates the phone, including
the user interface, menus, web browser, SMS, and anything else
the phone does. The only things that are not part of the OS are
the code for performing the flashing, the code for protecting the
flash, and some of the baseband code. These are all found in the
ROM part. The CNT part contains only third party apps, such
as games.

Obtaining a copy of the firmware is not hard. It’s available
for download from many websites, and also directly from Nokia’s
own servers. These firmware images can be flashed using Nokia’s
flashing tool, Phoenix Service Software, or with NaviFirm+. The
operating system portion comes with a .mcu or .mcusw extension,
which stands for MicroController Unit SoftWare.

This file starts with the byte 0xA2 that marks the version of
the file. The is a simple Tag-Length-Value format. From offset
0xE6 everything that follows is encoded as follows:

e 1 Byte: Type, which is always 0x14.
e 1 Dword: Address

3 Bytes: Length

1 Byte: Unknown

1 Byte: Xor checksum

170

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ

Combining all of the data chunks, starting at the address 0x0100-
0000 we’ll see something like Figure 3.3

Note that some of the 0xFF in Figure[3.3]| bytes are just missing
data because of the way it is encoded. The first data chunk
belongs to address 0x01000000, but it’s just 0x2C bytes long,
and the next data chunk starts at 0x01000064. The data that
follows byte 0x01000084 is encrypted, and is auto decrypted by
hardware.

I know that decryption is done at the hardware level, because
I can sniff to see what bytes are actually sent to the phone during
flashing. Further, there are a few places in memory, such as the
bytes from 0x01000000 to 0x01000084, that are not encrypted.
After I managed to analyze the encryption, I later found that in
some places in the code these bytes are accessed simply by adding
0x08000000 to the address, which is a flag to the CPU that says
that this data is not encrypted, so it shouldn’t be decrypted.

Now an interesting question that comes next is what the en-
cryption is, and how I can reverse it to patch the code. My answer
is going to disappoint you, but I found out how the encryption
works by gluing together pieces of information that are published
on the Internet.

If you wonder how the fine folks on the Internet found the
encryption, I'm wondering the same thing. Perhaps someone
leaked it from Nokia, or perhaps it was reverse engineered from
the silicon. It’s possible, but unlikely, that the encryption was
implemented in ARM code in the unflashable region of memory,
then recovered by a method that I'll explain later in this article.

It’s also possible that the encryption was reversed mathemati-
cally from samples. I think the mechanism has a problem in that
some plaintext, when repeated in the same pattern and at the
same distance from each other, is encrypted to the same cipher-
text.

171

3 Address on the Smashing of Idols to Bits and Bytes

00 01 02 03 04 05 06 O7 08 09 OA OB OC OD OE OF
0000 AD T7E B6 1A 1B BE OB E2 7D 58 6B E4 DB EE 65 14
0010 42 30 95 44 99 18 18 38 DB 00 FF FF FF FF FF FF
0020 FF FF FF FF F8 1F 8B 22 50 65 61 4B |FF FF FF FF
0030 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0040 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0050 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
0060 | FF FF FF FF | FF FF FF FF FF FF FF FF F8 C4 AA C3
0070 8 CF C6 Er 00 04 8A G5F 01 00 O1 OO OO OO0 OO0 OO0
0080 00 00 00 00

Figure 3.3: TLV Header

172

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ

The ROM contains a rather small amount of code, but as it
isn’t included in the firmware updates, I don’t have a copy. The
only thing I care about from this code is how the first megabyte
of MCU code is validated. If and only if that validation succeeds,
the baseband is activated to begin GSM communications.

If something in the first megabyte of the MCU code were
patched, the validation found in the ROM would fail, and the
phone would refuse to communicate with anything. This won'’t
interrupt anything else, as the phone would still need to boot in
order to display an appropriate error message. The validation
function in the ROM is invoked from the MCU code, so that
function call could be patched out, but again, the GSM base-
band would not be activated, and the phone wouldn’t be able to
make any calls. It might sound as if this is what the customer is
looking for, but it’s not, as phone calls are still Kosher six days
a week. Note that Bluetooth still works when baseband doesn’t,
a handy communication channel for diagnostics.

Another validation found in the MCU code is a common 16 bit
checksum, which is done not for security reasons but rather to
check the phone’s flash memory for corruption. The right check-
sum value is found somewhere in the first 0x100 bytes of the
MCU. This checksum is easily fixed with any hex editor. If the
check fails, the phone will show a “Contact Service” message, then
shut down.

At this point I didn’t know much about what kind of validation
is performed on the first megabyte, but I had a number of samples
of official firmware that pass the validation. Every sample has a
function that resides in that megabyte of code and validates the
rest of the code. If that function fails, meaning that I patched

173

10

12

14

16

18

3 Address on the Smashing of Idols to Bits and Bytes

something in the code coming after the first megabyte, it imme-
diately reboots the phone. The funny thing is that the CPU is so
slow that I can get a few seconds to play with the phone before
the reboot takes place. Unfortunately, patching out this check
still leaves me with no baseband, and thus no product.

To attack this protection I had to better understand the in-
tegrity checks. I didn’t have a dump of the code that checks the
first megabyte, so I reversed the check performed on the rest of
the binary in an attempt to find some mistake. Using the Find-
Crypt IDA script, I found a few implementations of SHA1, MD5,
and other hashing functions that could be used—and should be
used!—to check binary integrity.

Most importantly, I found a function that takes arguments of
the hash type, data’s starting address, and length, and returns a
digest of that data. Following the cross references of that function
brought me to the following code:

FLASH:01086266 loc_1086266

FLASH:01086266 LDR R2, =0x300C8D2
FLASH:01086268 MOVS R1, #0x1C

FLASH:0108626A LDRB RO, [R2,RO]
FLASH:0108626C MULS R1, RO

FLASH:0108626E LDR RO, =SHA1l_check_related
FLASH:01086270 SUBS RO, #0x80

FLASH:01086272 ADDS RO, R1, RO
FLASH:01086274 MOVsS R4, RO

FLASH:01086276 ADDS RO, #0x80

FLASH:01086278 R1 = Start

FLASH:01086278 LDR R1, [RO,#0xC]
FLASH:0108627A LDR R2, [RO,#0x10]
FLASH:0108627C LDR RO, [RO,#0xC]
FLASH:0108627E DatalLength = DataStart - DataEnd;
FLASH:0108627E SUBS R3, R2, RO
FLASH:01086280 ADD R2, SP, #0x38+hashLength
FLASH:01086282 STR R2, [SP,#0x38+hashLengthCopy]
FLASH:01086284 LDRB RO, [R6,#8]

174

I9PROY] SIRMULIL] ¢ 2InS1

‘Lo oTTqnd ® pue ojur UOTSISA ATOYIT oxe Loyl -peSueys ATeaxy oq ued s83hq 8saYL
‘1oub1s ou smoys auoyd 2y} puv 34v3S 03 s11vf Ppuwvqasvq ayjy ‘pabuvyd [T

by Assaf Nativ

3:7 Kosher Firmware for the Nokia 2720

‘umop S1nys pue ,©OTAISG 10BAUO0Y),, sMoys ouoyd oYz ‘STTIRF STYL FI "UWNSYOSOUYD 1Tq 9T
¥0 V9 0z Oz 0O O0CZ T S 10 V9 Oz 0Z O OC 8> €49 | 02T0
0Z 0z 0z 0Z OJOL @ 10 V9 0 Oz 0 Oz 4D Qg | OTT0
0Z 0z 0z 0Z 0S5 VA %8 V9 dI 00 d9 A4 TO VI | 00T0
44 T0 VT S 09 46 ¥D 99 LT €9 AL dS 0T 09 0400
4 10 48 gL ad g AL €1 65 vE 6€ L4 OF 8Y 0HOO
0 S0 40 6% 6 0z GO ¢4 95 dY 96 60 OT ¥a 0d00
gd .4 G 19 L0 94 VS Lg d. 49 GV V6 €V HY 0000
@ # TT 8y E9 90 o0d 04 8 T0 86 6C €a g4 0800
00 L0 V4 g€ 60 4T Az €9 €€ 68 4 Td 00 00 OV0O
44 44 €V 00 %0 00 ¥ 00 %0 00 00 00 00 €0 0600
) 70 44 44 44 44 44 44 44 dd [o0 oo 00 00 | 0800
00 00 00 10 00 F0O 00 00 20 00 48 9§ rd ¥¥ | 0L00
g6 09 |44 44 44 44 44 44 44 A4 A4 44 44 44 0900
41 44 44 44 44 44 A4 44 44 44 44 A4 44 44 0500
41 44 44 44 44 44 A4 44 44 44 44 A4 44 A4 0900
41 44 44 44 44 44 A4 44 44 44 44 A4 44 A4 0800
41 44 gy 19 G9 0S5 [20 VWV | 4T 84 44 A4 44 44 0200
44 44 44 00 00 00 00 00 00 00 00 00 00 00 OTOO0
¢V 0z T0 %I S0 90 O €0 0T € g7 99 HL AV 0000
@ 00 €0 VO 60 80 L0 90 SO ¥ €0 O T0 00

175

20

22

24

26

28

30

32

34

36

10

12

14

16

18

20

22

24

26

3 Address on the Smashing of Idols to Bits and Bytes

FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:

FLASH

FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:

01086286 DatalLength += 1;

01086286 ADDS
01086288 ADDS
0108628A R2 = Datalength;
01086284 MOVS
0108628C ADD
0108628E BL
:0108628E

01086292 CMP
01086294 BNE
01086294

01086296 LDR
01086298 MOVS
01086294 BL
01086294

0108629E MOVS
010862A0 BL

R3, R3, #1

R7, R7, R3

R2, R3

R3, SP, #0x38+hashToCompare

hashInitUpdateNDigest_j

RO, #0
loc_10862A4

RO, =hashRelatedVar
R1, #1
MONServerRelated_overl

RO, #4
reset

The digest function is hashInitUpdateNDigest_j, of course.
The SHA1_check_related address had the following data in it:

FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:

176

01089DD4
01089DD8
01089DDC
01089DEO
01089DEO
01089DE4
01089DES8
01089DEC
01089DFO0
01089DF4
01089DF8
01089DFC
01089DFC
01089E00
01089E04
01089E08
01089E0C
01089E10
01089E14
01089E18
01089E18
01089E1C
01089E20
01089E24
01089E28
01089E2C

SHA1_check_info
#1

#2

#3

SHA1_check_related DCD 0xB5213665

DCD 3
DCD 0x200400AA

DCD
DCD
DCD
DCD
DCD
DCD
DCD

loc_1100100 ; Start
loc_13AFFFE+1 ; End
OxEE41347A 50\
0x8C88F02F 500\
0x563BB973 ; SHA1SUM
0x040E1233 HEA
0x8CO3AFFA Hvs

DCD
DCD
DCD
DCD
DCD
DCD
DCD

loc_13B0000
loc_165FFFE+1
0xCC29F881
0xA441D8CD
Ox7CEF5FEF
0xC35FE703
0x8BD3D4D6

DCD
DCD
DCD
DCD
DCD
DCD

loc_1660000
loc_190FFFC+3
0x77439E9B
0x530F0029
0xA7490D5B
0x4E621094

28

30

32

34

36

11

13

15

17

19

21

23

25

3:7 Kosher Firmware for the Nokia 2720

FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
:01089E48
FLASH:
FLASH:
FLASH:

FLASH

01089E30
01089E34
01089E34
01089E38
01089E3C
01089E40
01089E44

01089E4C
01089E50
01089E54

#4

DCD

DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD

by Assaf Nativ

0xC7844FE3

loc_1910000
dword _1BFB5C8+7
OxA87ABFB7
0xFB44D95E
0xC3E95DCA
0xE190ECCA
0x9D100390

0

0

This is SHA1 digest of other arrays of binary, in chunks of
about 0x002B0000 bytes. All of the data from 0x01000100 to
0x01100100 is protected by the ROM. The data from 0x0110-
0100 to 0x013AFFFF digest to EE41347A8C88F02F563BB973040E-
12338C03AFFA under SHA1. So I guessed that this function is the
validation function that uses SHA1 to check the rest of the binary.

Later on in the same function I found the following code.

FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:

010862E0
010862E0
010862E0
010862E0
010862E2
010862E4
010862E6
010862E8
010862EA
010862EA
010862EA
010862EA
010862EC
010862EC
010862EE
010862EE
010862F0
010862F0
010862F0
010862F0
010862F2
010862F2
010862F2
010862F4
010862F4

for(i

= 0; i < hashLength; ++i) {

loc_10862E0

ADDS
ADDS
ADD

LDRB
LDRB

if (hash[i]
return False;

}

CMP
BEQ

MOVS

loc_10862F0

loop

ADDS

CMP

BCC

R3, R4, RO
R3, #0x80
R2, SP, #0x38+hashToCompare
R2, [R2,RO]
R3, [R3,#0x14]
'= hashToCompare[i]) {

R2, R3
loc_10862F0

R5, #1
RO, RO, #1
RO, R1

loc_10862E0

177

27

29

31

33

35

37

3 Address on the Smashing of Idols to Bits and Bytes

FLASH:010862F4

FLASH:010862F6 CMP R5, #1
FLASH:010862F8 // Patch here to 0ze006
FLASH:010862F8

FLASH:010862F8 BNE 1loc_1086308
FLASH:010862F8

FLASH:010862FA LDR RO, =0x7D0005
FLASH:010862FC BL HashMismatch
FLASH:010862FC

FLASH:01086300 Movs RO, #4
FLASH:01086302 BL reset
FLASH:01086302

FLASH:01086306 B loc_1086310

This function performs the comparison of the calculated hash
to the one in the table, and, should that fail to match, it calls
the HashMismatch() function and then the reset function with

10

12

14

16

18

20

22

24

26

Error Code 4.
The HashMismatch() function looks a bit like this.

FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
:01085324
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:
FLASH:

FLASH

178

01085320
01085320
01085320
01085320
01085320
01085320
01085322
01085322
01085322
01085324

01085324
01085324
01085324
01085324
01085324
01085328
01085328
01085328
01085328
01085328
0108532C
01085330
01085330
01085330
01085330

; Attributes: thunk

HashMismatch

ALIGN 4
; End of function HashMismatch

CODE32

sub_1085324 ; CODE XREF: HashMismatch
LDR R12, =(sub_1453178+1)
BX R12 ; sub_1453178

; End of function sub_1085324

off_108532C DCD sub_1453178+1
CODE16

; =============== S UBROUTTINE ========

28

30

32

34

36

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ

FLASH:01085330 ; Attributes: thunk

FLASH:01085330

FLASH:01085330 sub_1085330

FLASH:01085330 BX PC

FLASH:01085330

FLASH:01085330 ; ---------mmmmmm o m o m e m e e e
FLASH:01085332 ALIGN 4

FLASH:01085332 ; End of function sub_1085330

FLASH:01085332

FLASH:01085334 CODE32

Please recall that ARM has two different instruction sets, the
32-bit wide ARM instructions and the more efficient, but less
powerful, variable-length Thumb instructions. Then note that
ARM code is used for a far jump, which Thumb cannot do di-
rectly.

Therefore what I have is code that is secured and is well checked
by the ROM, which implements a SHA1 hash on the rest of the
code. When the check fails, it uses the code that it just failed to
verify to alert the user that there is a problem with the binary!
It’s right there at 0x01453178, in the fifth megabyte of the binary.

From here writing a bypass was as simple as writing a small
patch that fixes the Binary Mismatch flag and jumps back to
place right after the check. Ain’t that clever?

How could such a vulnerability happen to a big company like
Nokia? Well, beyond speculation, it’s a common problem that
high level programmers don’t pay attention to the lower layers
of abstraction. Perhaps the linking scripts weren’t carefully re-
viewed, or they were changed after the secure bootloader was
written.

It could be that they really wanted to give the user some in-
dication about the problem, or that they had to invoke some
cleanup function before shutdown, and by mistake, the relevant
code was in another library that got linked into higher addresses,
and no one thought about it.

179

3 Address on the Smashing of Idols to Bits and Bytes

Anyhow, this is my favorite method for patching the flash. It
doesn’t allow me to patch the first megabyte directly, but I can
accomplish all that I need by patching the later megabytes of
firmware.

However, if that’s not enough, some neighbors reversed the
first megabyte check for some of the phones and made it public.
Alas, the function they published is only good for some modules,
and not for the entire series.

How did they manage to do it, you ask? Well, it’s possible
that it was silicon reverse engineering, but another method is
rumored to exist. The rumor has it that with JTAG debug-
ging, one could single-step through the program and spy on the
Instruction Fetch stage of the pipeline in order to recover the
instructions from mask ROM. Replacing those instructions with
a NOP before they reach the WriteBack stage of the pipeline
would linearize the code and allow the entire ROM to be read by
the debugger while the CPU sees it as one long NOP sled. As
I’ve not tried this technique myself, I'd appreciate any concrete
details on how exactly it might be done.

Now that I had a way to patch the firmware, I could go on to
creating a patched version to make this phone Kosher. I had to
reverse the menu functions entirely, which was quite a pain. I
also had to reverse the methods for loading strings in order to
have a better way to find my way around this big binary file.

Some of the patching was a bit smoother than others. For
instance, after removing Internet options from all of the menus, I
wanted to be extra careful in case I missed a secret menu option.

To disable the Internet access, one might suggest searching for
the TCP implementation, but that would be too much work, and

180

3:7 Kosher Firmware for the Nokia 2720 by Assaf Nativ

as a side effect it might harm IPC. One can also suggest searching
for things like the default gateway and set it to something that
would never work, but again that would be too much work. So I
searched for all the places where the word “GET” in all capitals was
found in the binary. Luckily I had just one match, and I patched
it to “BET”, so from now on, no standard HTTP server would ever
answer requests. Moreover, to be on the extra, extra safe side
I've also patched “POST” to “MOST”. Lets see them downloading
porn with that!

Be sure to read my next article for some fancy tricks involving
the filesystem of the phone.

181

3 Address on the Smashing of Idols to Bits and Bytes

3:8 Tetranglix:
This Tetris is a Boot Sector

by Juhani Haverinen, Owen Shepherd, and Shikhin Sethi

Since Dakarand in a 512-byte boot sector would have been too
easy, and since both Tetris and 512-byte boot sectors are the
perfect ingredients to a fun evening, the residents of #osdev--
offtopic on FreeNode took to writing a Tetris clone in the min-
imum number of bytes possible. This tetris game is available
by unzipping pocorgtfo03.pdf, through Githubﬁ by typing the
hex from page [186] or by scanning the barcode on page [185

There’s no fun doing anything without a good challenge. This
project presented plenty, a few of which are described in this
article.

To store each tetramino, we used 32-bit words as bitmaps.
Each tetramino, at most, needed a 4 by 4 array for representation,
which could easily be flatenned into bitmaps.

; All tetraminos in bitmap format.
tetraminos:
dw 0b0000111100000000
dw 0b0000111000100000
dw 0b0000001011100000

; -Z-- -S-- -0--
dw 0b0000011001100000 ;

0000 0000 0000
0110 0011 0110
0011 0110 0110
0000 0000 0000

dw 0b0000001101100000
dw 0b0000111001000000
dw 0b0000011000110000

NHH®notH oH

Instead of doing bound checks on the current position of the
tetramino, to ensure the user can’t move it out of the stack,
we simply restricted the movement by putting two-block wide
boundaries on the playing stack. The same also added to the
esthetic appeal of the game.

6git clone https://github.com/Shikhin/tetranglix

182

3:8 Tetranglix Boot Sector by Haverinen, Shepherd, and Sethi

q

183

3 Address on the Smashing of Idols to Bits and Bytes

To randomly determine the next tetramino to load, our imple-
mentation also features a Dakarand-style random number gener-
ator between the RTC and the timestamp counter.

; Get random number in AX.
rdtsc ; The timestamp counter.
xor ax, dx

; (INTERMEDIATE CODE)

; Yayy, more random.
add ax, [0x046C] ; And the RTC (updated via BIOS).

The timestamp counter also depends on how much input the
user provided. In this way, we ensure that the user adds to the
entropy by playing the game.

Apart from such obvious optimizations, many nifty tricks en-
sure a minimal byte count, and these are what make our Tetran-
glix code worth reading. For example, the same utility function
is used both to blit the tetramino onto the stack and to check for
collision. Further optimization is achieved by depending upon
the results of BIOS calls and aggressive use of inlining.

While making our early attempts, it looked impossible to fit
everything in 512 bytes. In such moments of desperation, we
attempted compression with a simplified variant of LZSS. The
decompressor clocked at 41 bytes, but the compressor was only
able to reduce the code by four bytes! We then tried LZW,
which, although it saved twenty-one bytes, required an even more
complicated decompression routine. In the end, we managed to
make our code dense enough that no compression was necessary.

Since the project was written to meet a strict deadline, we
couldn’t spend more time on optimization and improvement.
Several corners had to be cut.

The event loop is designed such that it waits for the entirety
of two PIT (programmable interval timer) ticks—109.8508 mS—

184

3:8 Tetranglix Boot Sector by Haverinen, Shepherd, and Sethi

—before checking for user input. This creates a minor lag in the
user interface, something that could be improved with a bit more
effort.

Several utility functions were first written, then inlined. These
could be rewritten to coexist more peacefully, saving some more
space.

As a challenge, the authors invite clever readers to clean up
the event loop, and with those bytes shaved off, to add support
for scoring. A more serious challenge would be to write a decom-
pression routine that justifies its existence by saving more bytes
than it consumes.

; IT°S A SECRET TO EVERYBODY.
db "ShNoXgSo"

185

3 Address on the Smashing of Idols to Bits and Bytes

00 01 02 03 04 05 06 07 08 09 0A 0B ocC 0D OE OF
0000 ea 05 Tc 00 00 31 db 8e d3 be 00 Tc 8e db 8e c3
0010 fc bf 04 05 b9 bé 01 31 c0 £3 aa bo 03 cd 10 bS
0020 26 b0 03 fe c4d cd 10 b8 00 b8 8e c0 31 ff b9 do
0030 07 b8 00 of £3 ab be 2a 05 66 b8 db db db db 66
0040 89 44 fd 89 44 01 83 c6 10 81 fe ba 06 76 f0 30
0050 d2 be 24 05 bf b8 7d b 8b le 6¢c 04 83 c3 02 39
0060 1le 6c 04 75 fa 84 d2 75 37 fe c2 60 of 31 31 do
0070 31 d2 03 06 6¢c 04 b9 07 00 £7 f1 89 d3 do e3 8b
0080 9f e8 7d bf 04 05 be db 00 b9 10 00 30 c0 d1 e3
0090 of 42 cé 88 05 47 e2 fa 61 c7 04 06 00 e9 ab 00
00a0 b4 01 cd 16 74 59 30 ed cd 16 8b ic 80 fc 4b 75
00b0 06 fe Oc ff d7 72 46 80 fc 4d 75 06 fe 04 ff d7
00c0 72 3b 80 fc 48 75 38 31 c9 fe cl 60 06 1le 07 be
00d0 04 05 b9 04 00 bf 13 05 01 cf b2 04 ad 83 c7 03
00e0 fe ca 75 8 e2 ef be 14 05 bf 04 05 bl 08 3 ab
00£0 07 61 e2 d7 ff d7 73 07 b9 03 00 eb ce 89 1ic fe
0100 44 01 ff d7 73 3f fe 4c 01 30 d2 60 06 1le 07 ba
0110 99 7d e8 87 00 31 c9 be 2a 05 b2 10 30 db ac 84
0120 c0 of 44 da fe ca 75 6 84 db 75 Ob fd 60 89 £7
0130 83 ee 10 £3 a4 61 fc 83 cl 10 81 9 90 01 72 da
0140 07 61 e9 f1 fe 60 bf 30 00 be 2a 05 b9 10 00 ac
0150 aa 47 aa a7 e2 9 83 c7 60 81 ff a0 of 72 ed 61
0160 60 8a 44 01 bl 50 6 el of b6 3c d1 e7 83 c7 18
0170 01 c7 d1 e7 bl 10 be 04 05 b4 of 84 c9 74 16 fe
0180 c9 ac 84 c0 26 of 44 05 ab ab f6 cl 03 75 ec 81
0190 c7 90 00 eb e6 61 e9 bf fe 08 05 c3 60 e8 35 00
01a0 bl 10 84 c9 74 10 fe c9 ac ff d2 a7 6 cl 03 75
01b0 f1 83 c7 Oc eb ec 61 c3 60 £8 ba c2 7d e8 dc ff
01c0 61 c3 3c db 75 Oe 81 ff ba 06 73 04 3a 05 75 04
0140 83 c4 12 9 c3 of b6 44 01 cl el 04 of b6 ic 8d
01e0 78 06 01 c7 be 04 05 c3 00 of 20 Oe e0 02 60 06
01£0 60 03 40 Oe 30 06 53 68 4e 6f 58 67 53 6f 55 aa
This is a complete Tetris game.

New KODAK For ONLY

INSTAGRAPHIC™ s

GRT Imaging Outfit I

makes it SIII!II|E “Listprce

and economical to ToORDER,

CALL NOW TOLL-FREE:

picture computer

or video displays
in full photographic [:l]l(ll'

186

1-800-328-5618.
MINNESOTA RESIDENTS, CALL:
1-800-322-0493.
Or use this coupon
and order by mail.

3:9 Defusing the Qualcomm Dragon by Josh Thomas

3:9 Defusing the Qualcomm Dragon
a short story of research by Josh “mOnk” Thomas

Earlier this year, Nathan Keltner and I started down the cu-
rious path of Qualcomm SoC security. The boot chain in partic-
ular piqued my interest, and the lack of documentation doubled
it. The following is a portion of the results[]

Qualcomm internally utilizes a 16kB bank of one time pro-
grammable fuses, which they call QFPROM, on the Snapdragon
S4 Pro SoC (MSM8960) as well as the other related processors.
These fuses, though publicly undocumented, are purported to
hold the bulk of inter-chip configuration settings as well as the
cryptographic keys to the device. Analysis of leaked documenta-
tion has shown that the fuses contain the primary hardware keys
used to verify the Secure Boot 3.0 process as well as the cryp-
tographic information used to secure Trust Zone and other se-
curity related functionality embedded in the chip. Furthermore,
the fuse bank controls hardwired security paths for Secure Boot
functionality, including where on disk to acquire the bootable
images. The 16kB block of fuses also contains space for end user
cryptographic key storage and vendor specific configurations.

These one time programmable fuses are not intended to be di-
rectly accessed by the end user of the device and in some cases,
such as the basic cryptographic keys, the Android kernel itself is
not allowed to view the contents of the QFPROM block. These
fuses and keys are documented to be hardware locked and ac-
cessible only by very controlled paths. Preliminary research has
shown that a previously unknown 4kB subset of the 16kB block is
mapped into the kernel IMEM at physical location 0x0070_0000.
The fuses are also documented to be shadowed at 0x0070_4000

7"Thanks Mudge!

187

no

W~

10

12

14

16

3 Address on the Smashing of Idols to Bits and Bytes

in memory. Furthermore, there exists somewhat unused source
code from the Code Aurora project in the Android kernel that
documents how to read and write to the 4kB block of exposed
fuses.

Aside from the Aurora code, many vendors have also created
and publicly shared code to play with the fuses. LG is the best of
them, with a handy little kernel module that maps and explores
LG specific bitflags. In general, there is plenty of code available
for a clever neighbor to learn the process.

The following are simple excerpts from my tool that should
help you explore these fuses with a little more granularity. Please
note, and NOTE WELL, that writing eFuse or QFPROM values
can and probably will brick your device. Be careful!

One last interesting tidbit though, one that will hopefully en-
tice the reader to do something nifty. SoC and other hardware
debugging is typically turned off with a blown fuse, but there
exists a secondary fuse that turns this functionality back on for
RMA and similar requests. Also, these fuses hold the blueprint
for where and how Secure Boot 3.0 works as well as where the
device should look for binary blobs to load during setup phases.

/il
// Before we can crawl, we must have appendages

/e il
static int map_the_things (void) {

uint32_t i;
uint8_t stored_data_temp;

// Stage 1: Hitting the eFuse memory directly.
// (This %is not supposed to work.)

pr_info("mOnk -> we run until we read: %i lovely bytes\n",
QFPROM_FUSE_BLOB_SIZE);

for (i = 0; i < QFPROM_FUSE_BLOB_SIZE; i++) {
stored_data_temp=readb_relaxed(QFPRDM_BASE_MAP_ADDRESS+i);

if (!stored_data_temp) {

188

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

3:9 Defusing the Qualcomm Dragon by Josh Thomas

pr_info("mOnk -> location: , byte number:"

"%i, has no valid value\n", i);

base_fuse_map[i] = 0;
Yelsed{
pr_info ("\tmOnk -> location: , byte number:"

"%i, has value: %x\n", i, stored_data_temp);
base_fuse_values[i] = stored_data_temp;
base_fuse_map[i] = 1;

}
¥
stored_data_temp = 0;
A e e
// Stage 2: Hitting the eFuse shadow memory
// (This is supposed to work.)
R e e
// for (% = 0; 4% < QFPROM_FUSE_BLOB_SIZE; i++) {
// stored_data_temp = readb_relazed(
// QFPROM_SHADOW_MAP_ADDRESS+1);
// if (!stored_data_temp) {
// pr_info ("mOnk -> location: , byte number:"
// "J/i, has no wvalid walueln", %);
// shadow_fuse_map [i] = 0;
// Jelsed
// pr_info ("\tmOnk -> location: , byte number:"”
// "/i, has wvalue: Jz\n", 1,
// stored_data_temp);
// shadow_fuse_values[i] = stored_data_temp;
// shadow_fuse_map[i] = 1;
// }
/7 }
return O;
}
A e e
// Now we can crawl, and we do so blindly
R e e
static int dump_the_things (void) {

// This should get populated with code to dump the

// arrays to a file for offline use.

uint32_t i;

pr_info ("\n\nmOnk-> Known QF-PROM Direct Contents!\n");

for (i = 0; i < QFPROM_FUSE_BLOB_SIZE; i++) {

189

3 Address on the Smashing of Idols to Bits and Bytes

if (base_fuse_map[i] == 1)
pr_info ("mOnk -> offset: Ox%x (%i), has value:"
"0x%x (%i)\n", i, i, base_fuse_valuesl[il,
base_fuse_values[i]);

}
// pr_info ("\n\nmOnk-> Known Q@F-PROM Shadow Contents!\n");

// for (i = 0; 4% < QFPROM_FUSE_BLOB_SIZE; i++) {

// if (shadow_fuse_map[i] == 1)

// pr_info ("mOnk -> offset: Oz/z,"

// "has wvalue: Ozfz (/i)\n",
// i, shadow_fuse_values[i],
// shadow_fuse_values[i]);
/7 }

return O;

Writing a fuse is slightly more complex, but basically amounts
to pushing a voltage to the eFuse for a specified duration in order
for the fuse to blow. This feature is included in my complete fuse
introspection tool [

Have fun, break with caution and enjoy.

A

The Microsounder is an S-100 compatible sound generat-
ing card that can be programmed in BASIC or assembly
language. Three to five lines of code generates such sounds
as: organ music, sirens, phasers, shotguns, explosions, trains,
bird calls, helicopters, race cars, airplanes, machine guns,
barking dogs, and many thousands more. Only a few minutes
of time is needed to patch the sound code into existing
programs.

e Microsounder is assembled and tested, and comes

complete with sample code, two game programs, and two
utility programs for creating almost any soun

O g ™% " %5 New and Unusual SOUNDS
v i (— = b Leiz? for your Computer $149.95 ;w@
1 3) e

Zip
Add $4.95 for Postage & Handling

Texas Residents add 5% Sales Tax
Ovisa#

[Check Enclosed

100 North Central Expwy., Richardson, TX 75080

(214) 238-9262

[MASTERCHARGE #
Exp.Date

BOOTSTRAP ENTERPRISES INC.

Namq

Address
City

State

8git clone https://github.com/monk-dot/DefusingTheDragon
unzip pocorgtfo03.pdf defusing.zip

190

3:10 Tales of Python’s Encoding by Frederik Braun

3:10 Tales of Python’s Encoding

by Frederik Braun

Many beginners of Python have suffered at the hand of the
almighty SyntaxError. One of the less frequently seen, yet still
not uncommon instances is something like the following, which
appears when Unicode or other non-ASCII characters are used
in a Python script.

SyntaxError: Non-ASCII character ... in ..., but no encoding declared;
see http://www.python.org/peps/pep-0263.html for details

The common solution to this error is to place this magic com-
ment as the first or second line of your Python script. This tells
the interpreter that the script is written in UTFS, so that it can
properly parse the file.

encoding: utf-8

I have stumbled upon the following hack many times, but I
have yet to see a complete write-up in our circles. It saddens me
that I can’t correctly attribute this trick to a specific neighbor,
as I have forgotten who originally introduced me to this hackery.
But hackery it is.

The background

Each October, the neighborly FluxFingers team hosts hack.1lu’s
CTF competition in Luxembourg. Just last year, I created a
tiny challenge for this CTF that consists of a single file called
“packed” which was supposed to contain some juicy data. As
with every decent CTF task, it has been written up on a few
blogs. To my distress, none of those summaries contains the full
solution.

191

3 Address on the Smashing of Idols to Bits and Bytes

The challenge was in identifying the hidden content of the file,
of which there were three. Using the liberal interpretation of the
PDF formatEI one could place a document at the end of a Python
script, enclosed in multi-line string quotesE

The Python script itself was surrounded by weird unprintable
characters that make rendering in command line tools like less
or cat rather unenjoyable. What most people identified was an
encoding hint.

00000a0: 0cOc 0cOc 0cOc OcOc 2364 6973 6162 6c65 #disable
00000b0: 642d 656e 636f 6469 6e67 3a09 5f72 6f74 d-encoding:._rot

0000180: 5f5f 5f5f 5f5f 5fb6f 5f5f 5f5f 5f5f 5f5f

0000190: 3133 037c 1716 0803 2010 1403 lelb 1511 13.|....

Despite the unprintables, the long range of underscores didn’t
really fend off any serious adventurer. The following content
therefore had to be rot13 decoded. The rest of the challenge made
up a typical crackme. Hoping that the reader is entertained by a
puzzle like this, the remaining parts of that crackme will be left
as an exercise.

The real trick was sadly never discovered by any participant of
the CTF. The file itself was not a PDF that contained a Python
script, but a python script that contained a PDF. The whole file
is actually executable with your python interpreter!

Due to this hideous encoding hint, which is better known as a
magic commentﬂ the python interpreter will fetch the codec’s
name using a quite liberal regex to accept typical editor set-
tings, such as “vim: set fileencoding=foo” or “-*- coding:

9 As seems to be mentioned in every PoC||GTFO issue, the header doesn’t
need to appear exactly at the file’s beginning, but within the first 1,024
bytes.

10w This is a multiline Python string.
It has three quotes."""
1See Python PEP 0263, Defining Python Source Code Encodings

192

3:10 Tales of Python’s Encoding by Frederik Braun

foo”.

With this codec name, the interpreter will now import a
python file with the matching nam@ and use it to modify the

existing code on the fly.

The PoC

Recognizing that cevag is the Rot13 encoding of Python’s print
command, it’s easy to test this strange behavior.

% cat poc.py

#! /usr/bin/python
#encoding: rotil3
cevag ’Hello World’
% ./poc.py

Hello World

b

Caveats

Sadly, this only works in Python versions 2.X, starting with 2.5.
My current test with Python 3.3 yields first an unknown encod-
ing error. (The “rot13” alias has sadly been removed, so that
only “rot-13” and “rot 13 could work.) But Python 3 also dis-
tinguishes strings from bytearrays, which leads to type errors
when trying this PoC in general. Perhaps rot_13.py in the
python distribution might itself be broken?

There are numerous other formats to be found in the encodings
directory, such as ZIP, BZip2 and Base64, but I've been unable
to make them work. Most lead to padding and similar errors,
but perhaps a clever reader can make them work.

And with this, I close the chapter of Python encoding stories.
TGSB!

12See /usr/1ib/python2.7/encoding/__init__.py near line 99.

193

3 Address on the Smashing of Idols to Bits and Bytes

You can use the versatile new BETSI
to plug the more than 150 S-100 bus
expansion boards directly into your PET*!

On a single PC card, BETSI has both interface circuitry and a 4-slot S-100 motherboard. With
BETSI, you can instantly use the better than 150 7:._&, N_Siovﬁ for the S-100 bus. For
C:E_a_:m %:E _um_

. And "~ when f:_

le with virtually all of the S-100 boards on the market, including memory and
san on-board nc::c:nq :r: E _os the use of th density low-power
. This means expand your
you :5_: reduce P peed when
Additionally, BETSI
four os.coEﬁ dnra; and mcno 2
(to make use of future PET software available on PROM). BETSI jumpers will address the
PROMSs anywhere within your PETs ROM area, too.

The BETSI Interface/ Motherboard Kit includes all
components, a 100-pin connector, and complete
assembly and operating instructions for $119.

MAIL ORDERS ARE
NORMALLY SHIPPED The Assembled BETSI board has four 100-pin
WITHIN 48 HOURS. connectors, complete operating instructions and a
VISA AND MASTER- full 6-month Warranty for just $165.

CHARGE ORDERS ARE
BOTH ACCEPTED. FORETHOUGHT PRODUCTS

87070 Dukhobar Road #K
Eugene, Oregon 97402
Phone (503) 485-8575.
© 197§ Forethought Products

1 is the new Interface/Motherboard from Forethought
Products—the makers of KIMSI™—which allows users of
Commodore's PET Personal Computer to instantly work
with the scores of memory and 1/ O boards developed for the

v Altair 3 1 is available from stock
circuit card.

1 is available off-the-shelf from your local dealer or (if
oy 're out) directly from the manufacturer.

Ask about our
memory prices, too!

owp

194

3:11 Angecryption by Albertini and Aumasson

3:11 A Binary Magic Trick,
Angecryption

by Ange Albertini and Jean-Philippe Aumasson

There is a magic trick in pocorgtfo03.pdf. If you encrypt it
with AES in CBC mode, it becomes a PNG image! This brief ar-
ticle will teach you how to perform such a trick on your own files,
combining PDF, JPEG, and PNG files that gracefully saunter
across cryptographic boundaries.

Given two arbitrary documents S (source) and T (target), we
will create a first file F} that gets rendered the same as S and
a second file Fy = AESk v (F1) that gets rendered the same
as T by respective format viewers. We’'ll use the standard AES-
128 algorithm in CBC mode, which is proven to be semantically
securd™] when used with a random IV.

In other words, any file encrypted with AES-CBC should look
like random garbage, that is, the encryption process should de-
stroy all structure of the original file. Like all good magicians,
we will cheat a bit, but I tell you three times that if you encrypt
the PDF with an IV of MISSING IV and a key of “MISSING KEY”,
you will get a valid PNG file.

When the Format Payload Starts at Any Offset

First let’s pick a format for the file F; that doesn’t require its
payload to start right at offset 0. Such formats include ZIP, RAR,
7z, etc. The principle is simple:

I34IND-CPA” in cryptographers’ jargon.

195

3 Address on the Smashing of Idols to Bits and Bytes

First we encrypt S, and get apparent garbage Enc(S). Then we
create Fy by appending T to Enc(S), which will be padded, and
we decrypt the whole file to get Fy. Thus F} is S with apparent
garbage appended, and F5 is T with apparent garbage prepended.

This method will also work for short enough S and formats
such as PDF that may begin within a certain limited distance of
offset 0, but not at arbitrary distance.

Formats Starting at Offset 0

We had it easy with formats that allowed some or any amount
of garbage at the start of a file. However, most formats mandate
that their files being with a magic signature at offset 0. Therefore,
to make the first blocks of F} and F3 meaningful both before
and after encryption, we need some way to control AES output.
Specifically, we will abuse our ability to pick the Initialization
Vector (IV) to control exactly what the first block of F} encrypts
to.

In CBC mode, the first 16-byte ciphertext block Cj is com-
puted from the first plaintext block Py and the 16-byte I'V as

C() = ETLCK(_P(] D IV)

where K is the key and Enc is AES. Thus we have Decg (Cp) =
Py @ IV and we can solve for

IV = DSCK(C(]) 5] Po

As a consequence, regardless of the actual key, we can easily
choose an I'V such that the first sixteen bytes of F} encrypt to the
first sixteen bytes of Fy, for any fixed values of those 2x16 bytes.
The property is obviously preserved when CBC chaining is used
for the subsequent blocks, as the first block remains unchanged.

196

3:11 Angecryption by Albertini and Aumasson

So now we have a direct AES encryption that will let us control
the first sixteen bytes of Fj.

Now that we control the first block, we’re left with a new prob-
lem. This trick of choosing the IV to force the encrypted contents
of the first block won’t work for latter blocks, and they will be
garbage beyond our control.

So how do we turn this garbage into valid content that renders
as T'? We don’t. Instead, we use the contents of the first block to
cause the parser to skip over the garbage blocks, until it lands at
the ending region which we control. This trick is similar to the
one I used to combine a PDF and JPEG in PoC||GTFO and
it’s a damned important trick to keep handy for other purposes.

i ¢ chuak
: signature | ignored chunk iguored chunk: ini
F2: 2 2 remaining blocks of Enc(S) remaining contents of T’

first block of Enc(S)

Let’s take a look at some specific file formats and how to im-
plement them with Angecryption.

Joint Photographic Experts Group

According to speciﬁcationﬂ JPEG files start with a signature
FF D8 called “Start Of Image” (SOI) and consist of chunks called
segments. Segments are stored as

(marker : 2)(variablesize(data + 2) : 2){(data :7?)

In a typical JPEG file the SOI is followed by the APP0 segment
that contains the JFIF signature, with marker FF EO. The APPO
segment is usually sixteen bytes.

So we need to insert a COMment segment (marker FF FE)
right after the SOI. As we know the size of S in advance, we

4 JPEG File Interchange Format Version 1.02, Sept. 1, 1992

197

3 Address on the Smashing of Idols to Bits and Bytes

can already determine the start of F5, and then the AES-CBC
IV. T will then contain the APP0 segment, and its usual JPEG
content.

Portable Network Graphics

PNG files are similar to JPEGs, except that their chunks contain
a checksum, and their size structure is four bytes long.

A PNG file starts with the signature “\x89PNG\x0D\x0A\x1A\x0A”
and is then structured in TLV chunks.

(length(data) : 4){chunktype : 4)
(chunkdata :?){crc(chunktype + chunkdata) : 4)

These are typically located right after the signature, where an
IHDR (ImageHeaDeR) chunk usually starts.

For F5 to be valid, we need to start with a chunk that will
cover the len(S) — 16 garbage bytes of Enc(S). We can give it
any lowercase chunk typeE and luckily, at the end of the chunk
type, we're right at the limit of sixteen bytes, so no brute forcing
of the next encrypted block is required.

At that point of F5 the uncontrolled garbage portion may start.
We then calculate its checksum, append it, then resume with all
the chunks coming from 7. Our F, is now composed of (1) a
PNG signature, (2) a single dummy chunk containing Enc(S),
and (3) the T chunks that make up the meaningful image. This
is a valid PNG file.

151f the first letter in the type field of a PNG block is lowercase, then that
chunk will be ignored by the viewer, which interprets it as a custom
dummy block.

198

3:11 Angecryption by Albertini and Aumasson

Portable Document Format

PDF may include dummy objects of any length. However, we
need a trick to make the signature and the first object declaration
fit in the first sixteen bytes.

A PDF starts with “%PDF-1.5” signature. This signature has
to be entirely within the first 1024 bytes of the file, and every-
thing after the signature must be a valid PDF file. Because the
uncontrolled portion of the file appears as a lot of garbage after
the first block, it needs to be enclosed in a dummy stream object.

1 0 obj
<L >>

stream

Unfortunately, the PDF signature followed by a standard stream
object declaration take up thirty bytes. Choosing the IV only
gives us sixteen bytes to play with, so we must somehow com-
press the PDF header and opening of a stream object into slightly
more than half the space it would normally take.

Our trick will be to truncate both the signature and the object
declaration by inserting null bytes “%PDF-\0obj\Ostream”’. The

NEW SOFTWARE FOR:

TRS-80 PET

[kERsooRPaT]ico0]

[4]5]6 7 jo[1} 2]3]4] Bl
an IIEBE

(2 T AR 7soN OERNT 200]

IIBEE EJ Jslel7/ool2}
Head B3 EEIE an
B029 O3 BRER 03
Begn B3 EJEEE an
Eo2il O Coue ea

Hitsh up your horee senise, wind up your wits load the computer.and If you enjoyed Microchss, you'llovo Bulls Hits™. A
get ready 10 play Bulls e Hits™. It means spellbinding, sopfisticated, NEW game of logic and luck doveloped by Michael
slimuiating fun for the entire family. One, two players, o partners will O'Toole for the TRS-80 Lev ol 13nd Lovel I Agple or
@ 3t odds rying o beat each omerorlne Computer. The sction s st pet_ploace specify computer model...Only $14. 95
and furious. Completely inf ioy. rograms and cassettes 100% guaranteed. 30

ORDERS: SEND CHECK OR MONEY ORDER TO: money back guarantee it not completely satistied,

Dealer inquirles invited.

the COMPUTER BUS™ r.0.80x397D GRAND RIVER, OHIO 44045

199

3 Address on the Smashing of Idols to Bits and Bytes

signature is truncated by a null bytem and we also omit the ob-
ject reference and generation, and the object dictionary. Luckily,
this reduced form takes exactly sixteen bytes, and still works!

Now the uncontrolled remainder of Enc(S) will be ignored as
a valid but unused stream object. We then only need the start
of T to close that object, and then T' can be a valid PDF. So F;
is a valid PDF file, showing T”’s content.

Conclusion

Provided that the format of our source file tolerates some ap-
pended garbage, and that the file itself is not too big, we can
encrypt it to a valid PNG, JPEG or PDF.

This same technique can work for other ciphers and file for-
mats. Any block cipher will do, provided that its standard block
size is big enough to fit the target header and a dummy chunk
start. This means we need six bytes for JPEG, sixteen bytes for
PDF and PNG.

An older cipher such as Triple-DES, which has blocks of eight
bytes, can still be used to encrypt to JPEG. ThreeFish, which
can have a block size of 64 bytes, can even be used to encrypt
a PE. The first block would be large enough to fit the entire
DOS_HEADER, which allows you to relocate the NT_Headers wher-
ever you like, up to 0xOFFF_FFFF.

So you could make a valid WAV file that, when encrypted with
AES, gives you a valid PDF. That same file, when encrypted with
Triple-DES, gives you a JPEG. Furthermore, when decrypted
with ThreeFish, that file would give you a PE. You can also
chain stages of encryption, as long as the size requirements are
taken care of.

16This part of the trick was learned from Tavis Ormandy.

200

by Albertini and Aumasson

3:11 Angecryption

7

‘V g
K5

e

201

3 Address on the Smashing of Idols to Bits and Bytes

202

4 Tract de la Société Secréete

de PoC||GTFO sur

I'Evangile des Machines Etranges
et autres Sujets Techniques

par le Predicateur

Pasteur Manul Laphroaig

4:1 Let me tell you a story.

We begin in PoC||GTFO where Pastor Laphroaig presents
his first epistle concerning the bountiful seeds of Oday, from which
all clever and nifty things come. The preacherman tells us that
the mechanism—not the target!—is what distinguishes the inter-
esting exploits from the mundane.

In PoC||GTFO Shikhin Sethi presents the first in a series
of articles on the practical workings of X86 operating systems.
You’ll remember him from his prior boot sectors, such as Tetran-
glix in PoC||GTFO 3:8 and Wadscipe, a 512-byte Integrated De-
velopment Environment for Brainfuck and ///. This installment
describes the A20 address line, virtual memory, and recursive
page mapping.

The first of two 6502 articles in this issue, PoC||GTFO de-
scribes Peter Ferrie’s patch to rebuild Prince of Persia to remove

203

4 Tract de la Société Secréte

copy protection and fit on a single, two-sided 16-sector floppy
disk. (Artwork in this section advertises the brilliant novella
Prince of Gosplan by Bukrop ITesesun. You should read it.)

The author of PoC||GTFO [4:5|provides a quick introduction to
fuzzing with his rewrite of Sergey Bratus and Travis Goodspeed’s
Facedancer framework for USB device emulation.

In PoC||GTFO Natalie Silvanovich continues the Tam-
agotchi hacking that you read about in PoC|GTFO 2:4. This
time, there’s no software vulnerability to exploit; instead, she
loads shellcode into the chip’s memory and glitches the living
hell out of its power supply with an AVR. Most of the time, this
causes a crash, but when the dice are rolled right, the program
counter lands on the NOP sled and the shellcode is executed!

In PoC||GTFO Evan Sultanik presents a provably plausi-
bly deniable cryptosystem, one in which the ciphertext can de-
crypt to multiple plaintexts, but also that the file’s creator can
deny ever having intended for a particular plaintext to be present.

In PoC||GTFO Deviant Ollam shares a forgotten trick for
modifying normal locks with a tap and die to make them pick
resistant.

In PoC||GTFO Travis Goodspeed presents an introductory
tutorial on chip decapsulation and photography. Please research

204

4:1 Let me tell you a story.

and follow safety procedures, as chemical accidents hurt a lot
more than a core dump.

In PoC||GTFO Colin O’Flynn exploits a pin-protected
external hard disk and a popular AVR bootloader using timing
and simple power analysis.

In Sections and our own Funky File Formats Poly-
got Ange Albertini shows how to hide a TrueCrypt volume in a
perfectly valid PDF file so that PDF readers don’t see it, and
how to attach feelies ZIPs to PDF files so that Adobe tools do
see them as legitimate PDF attachments. Yes, Virginia, there is
such a thing as a PDF attachmentﬂ

In PoC||GTFO our Poet Laureate Ben Nagy presents his
Ode to ECB accompanied by one of Natalie Silvanovich’s brilliant
public service announcements. Don’t let your penguin show!

One last thing before you dig in. This issue is brought to you by
Merchants of PoC. Are you a Merchant of PoC, neighbor? Have
you what it takes to follow the Great PoC Road, bringing the
exotic treasures of Far and Misunderstood Parts to your neigh-
borhoods? Or are you a Merchant of Turing-complete Death and
Cyber-bullets? Fret not, neighbor: the only Merchants we fear
are the Merchants of Ignorance, who seek to ban or control what
they don’t understand, and know not the harm they cause to the
trade of Knowledge and Understanding.

150 now you can put your attachments inside your attachments—but I
digress. —PML

205

4 Tract de la Société Secréte

4:2 First Epistle Concerning the
Bountiful Seeds of 0Day

by Manul Laphroaig, Merchant of Dead Trees

Dearly Beloved,

Are the last days of Oday upon us? Is Oday becoming so sparse
as to grace the very few, no matter how many of the faithful
strive for its glory? Not so.

For what is the seed of Oday? Is it not a nugget of under-
standing what those of little faith ignore as humdrum? Is it
not liberating the computing power of mechanisms unnoticed by
those who use them daily? Is it not programming machines that
others presume to be set in stone or silicon?

Verily, when the developer herds understand the tools that
drive them to their cubicled pastures every day, then shall the
Oday be depleted—but not before. Verily, when every tender of
academic pigeonholes reads the papers he reviews and demands
to see their source, then might the Oday begin to deplete—but
not before.

For how can the sum of programs grow faster than St. Moore
foresaw without increasing the sum of Oday? Have we prophets
and holy ones who can cure the evil of using tools without un-
derstanding? Have layers of abstractions stopped breeding blind
reliance? Verily, on such sand new castles are being erected even
now.

So, beloved brethren, seek after Oday wherever and whenever
the idolaters say “this just works” or “you don’t need to under-
stand this to write great code” or yet “write once, run anywhere.”
Most of all, look for it where the holy PEEK and POKE are
withheld from those who crave them—for no righteousness can
survive there, and the blind there are leading the blind to the

206

4:2 Epistle on the Bountiful Seeds of 0Day by Manul Laphroaig

pits of eternal pwnage.

Similarly, pay no attention to the target of an exploit. The
mechanism, not the target, is where an exploit’s cleverness lies.
Verily, the target, the pwnage, and the press release are all just
a side show. When the neighbors ask you about BYOD, rebuke
them like this: “It is not my job to sell you a damned iPad!”

So preach this good news to all your neighbors, and to their
neighbors:

If the Oday in your familiar pastures dwindles, de-
spair not! Rather, bestir yourself to where program-
mers are led astray from the sacred Assembly, neither
understanding what their programming languages com-
pile to, nor asking to see how their data is stored or
transmitted in the true bits of the wire. For those who
follow their computation through the layers shall gain
Oday and pwn, and those who say “we trust in our
APIs, in our proofs, and in our memory models and
need not burden ourselves with confusing engineering
detail that has no scientific value anyhow” shall surely
provide an abundance of Oday and pwnage sufficient
for all of us.

Go now in peace and pwnage,
—PML

207

4 Tract de la Société Secréte

4:3 This OS is a Boot Sector
by Shikhin Sethi, Merchant of 3.5” Niftiness

Writing an Operating System is easy. Explaining how to write
one isn’t. Most introductory articles obfuscate the workings of
the necessary components of an OS with design paradigms the
writer feels best complement the OS. This article, the first in my
PoC||GTFO series on just how a modern OS works, is different—
it tries to properly, yet succinctly, explain all the requisite com-
ponents of an OS—in 512 bytes per article.

The magic begins with the processor starting execution on reset
at the linear address OxFFFFFFFO. This location contains a jump
to the Basic Input/Output System (BIOS) code, which starts
with the Power On Self Test (POST), followed by initialization
of all requisite devices. In a predetermined order, the BIOS then
checks for any bootable storage medium in the system. Except
for optical drives, a bootable disk is indicated via a 16-bit 0xAA55
identifier at the 510-byte mark, ending the first 512-byte sectorE|

If a bootable medium is found, the first sector is loaded at the
linear address 0x7C00 and jumped to. If none is found, the BIOS
lovingly displays “Operating System not found.’EI

Real Mode

The first ancestor of today’s x86 architecture was the 8086, in-
troduced in 1978. The processor featured no memory protection

20xAA55 is 0b1010101001010101. The alternating bit pattern, with 0x55 be-
ing an inversion of 0xAA, was taken as an insurance against even extreme
controller failure. The same identifier is also used in other parts of the
BIOS interface.

3 There is no deep reason behind 0x7C00 being the load address. This is
how programming usually works (and standards proliferate).

208

4:3 This OS is a Boot Sector by Shikhin Sethi

Kirk 3 Dusky Dlamond Scap, best for adler TolleL

209

4 Tract de la Société Secréte

or privilege levels. By 1982, Intel had designed and released the
80286, which featured hardware-level memory protection mech-
anisms, among other features. However, to maintain backward
compatibility, the processor started in a mode compatible with
the 8086 and 80186, known as real mode. (Feature wise, the mode
lacks realness on all accounts.)

Real mode features a 20-bit address space and limited seg-
mentation. The mode featuring memory protection and a larger
address space was called the protected mode.

Note that the 16-bit protected mode introduced with the 80286
was enhanced with the 80386 to form 32-bit protected mode. We
will be targeting only the latter.

Segmentation

The 8086 had 16-bit registers, which were used to address mem-
ory. However, its address bus was 20-bit. To take advantage of
its full width and address the entire 1MiB physical address space,
the scheme of segmentation was devised.

In real-mode segmentation, 16-bit segment registers are used
to derive the linear address. The registers CS, DS, SS, and ES
point to the current Code Segment, Data Segment, and Stack
Segment, with ES being an extra segment.

The 80386 introduced the FS and GS registers as two more
segment registers.

The 16-bit segment selector in the segment register yields the
16 significant bits of the 20-bit linear address. A 16-bit offset is
added to this segment selector to yield the linear address. Thus,
an address of the form:

(Segment) : (Offset)

can be interpreted as

210

11

13

4:3 This OS is a Boot Sector by Shikhin Sethi

(Segment << 8) + Offset

This, however, can yield multiple (Segment):(Offset) pairs for
a linear address. This problem persists during boot time, when
the BIOS hands over control to the linear address 0x7C00, which
can be represented as either 0x0000:0x7C00 or 0x07C0:0x0000.
(Even the very first address the processor starts executing at
reset is similarly ambiguous. In fact, 8086 and 80286 placed
different values into CS and IP at reset, OxFFFF:0x0000 and
0xF000: 0xFFFO respectively.) Therefore, our bootloader starts
with a far jump to reset CS explicitly, after which it initializes
other segment registers and the stack.

; 16-bit, 0xz7C00 based code.

org 0x7C00
bits 16
; Far jump, reset CS to 0z0000.
; CS cannot be set wia a ’mov’, and requires a far jump.
start:

jmp 0x0000:seg_setup
seg_setup:

Xor ax, ax

mov ds, ax

mov ss, ax

Stack

The x86 also offers a hardware stack (full-descending). SS:(E)SP
points to the top of the stack, and the instructions push/pop
directly deal with it.

; Start the stack from beneath start (0z7C00).
mov esp, start

211

4 Tract de la Société Secréte

Flags

A direction flag in the (E)FLAGS register controls whether string
operations decrement or increment their source/destination regis-
ters. We clear this flag explicitly, which implies that all source/des-
tination registers should be incremented after string operations.

; Clear direction flag.
cld

The A20 Line

On the original 8086, the last segment started at 0xFFFFO (seg-
ment selector = 0xFFFF). Thus, with offset greater than 0x000F,
one could potentially access memory beyond the 1MiB mark.
However, having only 20 addressing lines, such addresses wrapped
around to the OMiB mark. An access of 0xFFFF:0x0010 would
yield an access to 0x0000 (wrapped around from 0x10000) on
the 8086.

The 80286, however, featured twenty-four address bits. De-
lighted hackers, on the other hand, had already exploited the
wrap-around of addresses on the 80(1)86 to its fullest extent. In-
tel maintained backwards compatibility by introducing a software
programmable gate to enable or disable the twenty-first address-
ing line (called the A20 line), known as the A20 gate. The A20
gate was disabled on-boot by the BIOS.

; Read the 0z92 port.

in al, 0x92

; Enable fast 420.

or al, 2

; Bit 0 is used to specify fast reset, ’and’ it out.
and al, OxFE

out 0x92, al

212

4:3 This OS is a Boot Sector by Shikhin Sethi

Protected mode
Segmentation Revisited

The introduction of protected mode featured an extension to the
segmentation model, to allow rudimentary memory protection.
With that extension, each segment register contains an offset
into a table, known as the global descriptor table (GDT). The
entries in the table describe the segment base, limit, and other
attributes—including whether code in the segment can be exe-
cuted, and what privilege level(s) can access the segment.

At the same time, Intel introduced paging. The latter was
much easier to use for fine-grained control and different pro-
cesses, and quickly superseded segmentation. All major oper-
ating systems setup linear segmentation where each segment is
a one-on-one mapping of the physical address space, after which
they ignore segmentation.

As paging was extended to cover most cases, segmentation
was left with only an empty shell of its former glory. However,
it inspired OpenWall’s non-executable stack patch and PaX’s
SEGMEXEC—both of which couldn’t have been implemented
with vanilla x86 paging.

Note that the new segment selectors are only valid for 32-bit
protected mode, and we’ll reload them after the switch to that
mode.

; Disable interrupts.

cli

; Load the GDTR - the pointer to the GDT.
lgdt [gdtr]

; The GDT.
gdt:
; The first entry in the GDT is supposed to be a
; null entry, but we’ll substitute it with the
; ’pointer to gdt’.
gdtr:

213

13

17

19

21

23

25

27

29

31

33

35

37

39

41

4 Tract de la Société Secréte

; Size of GDT - 1.

; 3 entries, each 8 bytes.
dw (0x8 * 3) - 1

; Pointer to GDT.

dd gdt

; Make it 8 bytes.

dw 0x0000

; The code entry.

dw OxFFFF ; First 16-bits of limit.

dw 0x0000 ; First 16-bits of base.

db 0x00 ; Nexzt 8-bits of base.

db 0x9A ; Read/writable, ezecutable, present.
db O0xCF ; 0b11001111.

; The least significant four bits are
; next four bits of limit.

; The most significant 2 bits specify
; that this is for 32-bit protected

; mode, and that the 20-bit limit <s
; in 4KiB blocks. Thus, the 20-bit

; 0b11111111111111111111 specifies a
; limit of OxzFFFFFFFF.

db 0x00 ; Last 8-bits of base.

; The data entry.

dw OxFFFF, 0x0000

db 0x00

db 0x92 ; Read/writable, present.
db O0xCF

db 0x00

No More Real (Mode)

The switch to protected mode is relatively easy, involving merely
setting a bit in the CRO register and then reloading the CS reg-
ister to specify 32-bit code.

mov eax, cr0

or eax, 1 ; Set the protection enable bit.
mov crQO, eax

jmp 0x08:protected_mode

bits 32
protected_mode:

214

10

12

4:3 This OS is a Boot Sector by Shikhin Sethi

; Selector 0x10 is the data selector offset.
mov ax, 0x10

mov ds, ax

mov es, ax

mov ss, ax

Paging

“Paging is called paging because you need
to draw it on pages in your notebook to succeed at it.”
—Jonas ‘Sortie’ Termansen

Virtual Memory

The concept of virtual memory is to have per-process virtual
address spaces, with particular virtual addresses automatically
mapped onto physical addresses for each process. Compared with
segmentation, such a technique offers the illusion of contiguous
physical memory and fine-grained privilege control.

To brush up the concept of virtual memory, follow along with
the hand-drawn illustration in Figure

Virtual Memory (x86)

On the x86, the task of mapping virtual addresses to physical
addresses is managed via two tables: the page directory and the
page table. Each page directory contains 1,024 32-bit entries, with
each entry pointing to a page table. Each page table contains
1,024 32-bit entries, each pointing to a 4KiB physical frame. The
page table in entirety addresses 4MiB of physical address space.
The page directory, thus, in entirety addresses 4GiB of physical
address space, the limit of a 32-bit address space.

215

4 Tract de la Société Secréte

\
NIl

VIRTUAL PRYSICAL

Figure 4.1: Virtual Memory

I ey " .
(R3
—
N
PAGE BIRECTORY PAGE TABLE

Figure 4.2: X86 Paging

PAGE FRAME

The first page table pointed to by the page directory maps the
first 4MiB of the virtual address space to physical addresses, the

next to the next 4MiB, and so on.

The address of the page directory is loaded into a special reg-

ister, CR3.

; 028000 will be our page directory, 0z900
the
; page tabdble.

; From 0x8000, clear one 0z1000-long frame
mov edi, 0x8000

mov cr3, edi

Xor eax, eax

216

0 will be

10

12

14

16

18

20

22

24

26

28

4:3 This OS is a Boot Sector by Shikhin Sethi

mov ecx, (0x1000/4)

; Store EAX - ECX numbers of time.
rep stosd

; The page table address, present, read/write.
mov dword [edi - 0x1000], 0x9000 | (1 << 0) | (1 << 1)

; Map the first 4MiB onto ditself.
; Each entry is present, read/write.
or eax, (1 << 0) | (1 << 1)
.setup_pagetable:
stosd
add eax, 0x1000 ; Go to mext physical
address.
cmp edi, 0xA000
jb .setup_pagetable

; Enable paging.
mov eax, cr0

or eax, 0x80000000
mov cr0, eax

Extensions to the paging logic allowed 32-bit processors to ac-
cess physical addresses larger than 4GiB, in the form of Physical
Address Extension (PAE). The same also added a NX bit to
mark pages as non-executable (and trap on instruction fetches

SWTP 6800 OWNERS-WE HAVE A CASSETTE i/O FOR YOU!

The CIS-30+ allows you to record and playback, data using an
ordinary cassette recorder at 30, 60 or 120 Bytes/Sec.! No Hassle! BB
Your terminal connects to the CIS-30+ which plugsjimo either the
Control {MP-C) or Serial (MP-S) Interface of your SWTP 6800
Computer. The CIS-30+ uses the self clocking ‘Kansas City’/Biphase
Standard. The CIS-30+ is the FASTEST, MOST RE?LIABLE CAS-

SETTE 1/0 you can buy for your SWTP 6800 Computer. Kit — $69.95*
i Assembled — $89.95*

PerCom has a Cassette 1/0O for your coTnputer! {manual included)

Call or Write for complete spec«fica(ior}s * plus 5% f/shipping

m S M =
P.O. Box 40598 « Garland, Texas 75042 « (214) 276-1968 SANKAMERICARD
.

PerCom — ‘peripherals fof personal computing’ TEXAS RESIDENTS ADD % SALES TAX

217

4 Tract de la Société Secréte

3% f/ Y
i FRAME
r‘

I—
I
— 1
C—J M
os. e, As BT to. AS

FRAME

Figure 4.3: Recursive Page Mapping

from them).

Recursive Map

In our simplistic case, the entire first four megabytes were mapped
onto themselves, to so-called identity map. In the Real World ™
however, it is often the case that the physical memory containing
the page directory/tables is not mapped into the virtual address
space. Instead of creating a different page table to point to the
existing paging structures, a neat trick is deployed.

Before I explain the trick, note how the page directory and the
page table has the exact same structure, including the attributes.
What happens, then, if an entry in the page directory were to
point to itself? The page directory will be interpreted as a page
table. This page table will have entries to actual page tables.
However, the CPU will interpret them as entries corresponding to
page frames, allowing you to access them via the virtual address
the page directory was self-mapped to. If that makes your head
hurt, the illustration in Figure [£.3 might help.

218

4:3 This OS is a Boot Sector by Shikhin Sethi

Translation Lookaside Buffer (TLB)

When a virtual memory address is accessed, the CPU is required
to walk through the page tables to determine the page table entry
for the specified virtual address. However, walking through the
page tables is slow. In the worst case, a walkthrough requires
the processor to do a lookup from RAM for the page directory,
followed by a lookup from RAM for the page table, where a
RAM lookup latency is in the order of 100 times that of a cache
lookup latency. Instead, the CPU maintains a cache of the virtual
address to physical address translation, known as the Translation
Lookaside Buffer (TLB).

When a virtual address is accessed, the CPU first determines
if a mapping is present in the TLB. Only if the CPU fails to
find one there, it walks through the actual page tables and then
populates the TLB with the translation.

A problem with the TLB is that changes across the page table
don’t get reflected in it automaticallyﬂ On the x86, there exist
two mechanisms to flush particular entries in the TLB:

1. The invlpg instruction invalidates the TLB entry for the
page that contains address.

2. Reloading CR3 with the address of a page directory flushes

4 This is how PaX’s PAGEEXEC emulates the NX bit by memory trapping
with very little performance overhead: it sets the page table entries for
the “data” pages to always trap, but allows a data access (i.e., EIP not
in the accessed page) to go through. After this, it immediately resets the
page table entry, but relies on the TLB for repeated page accesses to not
trap. Truly, it is a work of art! —PML

219

4 Tract de la Société Secréte
all the entries in the TLB.]

Till Next Time

The article got us through the backward-compatibility mess that
defines the x86 boot process, into protected mode with paging
enabled. In the next issue, we’ll look at x86 interrupt handling,
the programmable interrupt timer, multiprocessor initialization,
and then the local APIC timer. We’ll also answer some unan-
swered questions (like what happens if a page table entry doesn’t
exist) and conclude with a (hopefully) nifty proof-of-code.
Till then,

hlt:
hlt
jmp hlt

5CR3 is usually reloaded to change the process context (will be covered
across future articles). However, a change of process does not require
that the entries for the kernel pages in the TLB get flushed. To avoid
this, the global bit in the page table entry can be set, and global pages
can be enabled in CR4. Doing so ensures that the entry for the specific
page in the TLB can only be invalidated via a invlpg.

6The x86-64 architecture saw the introduction of tags as a part of the TLB
entry, in 2008. Thus, each TLB entry is associated with a particular tag,
and context switches can only involve changing of the current tag.

220

4:4 Prince of PoC by Peter Ferrie

4:4 Prince of PoC; or,
A 16-sector Prince of Persia
for the Apple][.

by Peter Ferrie

Just in time for the 25th anniversary of Prince of Persia on
the Apple |[, I present to you the first ever two-sided 16-sector
version!

The funny thing is that I never played it on the real Apple ||,
only on the PC. Even after I acquired an Apple][.nib version
in 2009, I didn’t play it. Of course, this was because I was still
using ApplePC as my Apple || emulator; it had a fatal memory-
corruption bug that crashed the game. Finally in 2014, I made
the switch to AppleWin. AppleWin had its own bugs, but noth-
ing that I couldn’t work around.

The retail version of Prince of Persia for Apple || came on
two sides of a single disk. The sectors were stored in 18-sector
format, and they were full. As a result, the 16-sector cracked
versions all made use of an additional side to store those extra
sectors. In 2013, about a year after the source code was recovered,
Roland Gustafsson was interviewed and expressed the opinion
that the three-side version “was silly and really not impressive.”
Taking this as a challenge, I decided to make a two-sided 16-
sector version.

I started with the “rebuilt from source” version. The first thing
that you will notice is that it looks different in one particular
place. The reason is that whoever built it used the 3.5” settings
but placed it in the 5.25” format. It means that it never asks to
turn over the disk when you reach Level 3. It prompts to “insert”
the disk instead, as though it is a single disk.

221

4 Tract de la Société Secréte

222

4:4 Prince of PoC by Peter Ferrie

If you build it, they will come

So I decided to build it myself in an emulated Apple |[. As no
one seems to have ported Git to this platform, I went through a
rather round-about ritual of converting and compiling the code.

First, I started AppleWin and formatted a DOS 3.3 disk. Onto
this disk, I saved some binary files the same size as the source
files, then exited AppleWin. Now that the disk was ready, I used
a hex editor to change the file types to text, to avoid the need to
carry the load address and size.

I converted the source code by changing all line endings from
LF to CR, setting the high bit on every character and inserting
them in my own tool. (I really need to port that tool to ProDOS.)

Starting AppleWin again, I used Copy |[Plus to move the
files from a DOS 3.3 disk to a ProDOS disk. Using the Merlin
assembler, I loaded and assembled the source files, saving object
files to disk. Now that the object files were ready, I copied them
back to the DOS 3.3 disk with Copy |[Plus and exited AppleWin.

Finally, I extracted the files with another of my own tools that
needs a ProDOS port, inserted images at the appropriate loca-
tions in the track files, and used a hex editor to place those track
files onto the disk image.

Try Try Again, and Again and Again

The first thing that I noticed is that it won’t boot, as building
the 5.25” version enabled the copy-protection, which began in the
boot phase. I worked around that one by bypassing the failure
check.

The second thing that I noticed is that—thanks to another
layer of copy protection—you couldn’t play beyond Level 2. The
second-level copy protection relied on two variables, named red-
herring and redherring2. The redherring variable was set

223

4 Tract de la Société Secréte

indirectly during the boot-time copy protection check. However,
the variable redherring2 was never set in the source code ver-
sion. Presumably someone removed the code (but did not no-
tice that the declaration remained in the header file) because it
wasn’t used in the 3.5” version, because that version was not
copy-protected. Unfortunately, without that value in the 5.25”
version, you couldn’t start the later levels. It was set in the re-
tail 5.25” version, however, and thus we also found out that the
source code was only for the 3.5” version. I bypassed this problem
by writing the proper value to the proper place manually.

The third thing I noticed was that the graphics become cor-
rupted on Level 4. The reason was yet another layer of copy-
protection, which was executed before starting Level 1, but the
effect was delayed until after starting Level 4. Nasty. :-) The
end sequence was similarly affected. If the copy-protection failed,
then the graphics became corrupted and the game froze on Level
14, the reunion scene. This was an interesting design decision. If
the protection was bypassed in the wrong way—by skipping the
check on Level 4, instead of fixing the variable that was being
compared—then that second surprise awaited. I worked around
that one in the correct way, by bypassing the failure check.

The fourth thing I noticed is that the graphics became cor-
rupted and then game crashed into text mode when starting
Level 7. The reason was the final layer of copy-protection, which
was executed after completing Level 1, but the effect was delayed
until the start of Level 7. Very nasty. ;-) I worked around that
one by bypassing the failure check.

Finally, I checked the rest of the “rebuilt from source” version.
The most important thing (depending on your point of view) was
that all of the hidden parts were missing—the hidden routines
(see page [228) and the hidden message (which was the decryp-
tion key for the original code). T also found that track $11 was

224

4:4 Prince of PoC by Peter Ferrie

completely missing from side B, so the side B ‘A’ routine caused
a hang. Some of the graphics data were truncated, too, when
compared to the retail version which I acquired in the meantime.
Even though I didn’t notice any difference when I played it, I
gave up on that idea, and just ripped the tracks from the 5.25”
retail version instead.

Turn Disk Over

Another interesting thing is how the game detects which side of
the disk is in the drive. The protected version uses a unique
value in the prologue data for the two sides ($A9 and $AD), and
uses an API to specify which one to expect. Since a standard
16-sector disk also has a standard prologue, which is identical on
both sides, that was no longer an option for me. Instead, I chose
to find a free sector in a location that was common to both sides,
and placed the special byte there. When the prologue API was
used, I redirected my read routine so that the next read request
would first seek to the free sector and read the byte. If they
matched, then the proper side was inserted already. Otherwise,
the routine would read the sector periodically until that became
true.

Size Does Matter

At a high level, the solution to the size problem is compression—
technically, further compression, since some of the data are com-
pressed already. However, I required a compression algorithm
that packed well, was fast to decompress, and most importantly,
small. The size limitation was significant. The game requires
128kb of memory, and uses almost all of it. I was fortunate
enough to find a small (4,096 bytes) region at $d000 in main

225

4 Tract de la Société Secréte

memory, in which to place my loader and the read buffer. This
was the location of the original loader for the game. I simply re-
placed it with my own. I needed a read buffer within that region,
because I had to load the compressed data somewhere before de-
compressing it into its final destination. I wanted the read buffer
to be as large as possible, in order to reduce the number of read
requests that I had to make. Shown in Figure [£4] I managed to
fit the loader code and data into under 1,280 bytes: 752 bytes of
code, 202 bytes for the sector table, the rest was dynamic data.
That left me with 2,816 bytes for the read buffer.

That space was so small that the write routine (for saving the
game after you reach side B) would not fit in memory at the
same time. To work around that problem, I separated the write
routine, and loaded and executed it dynamically when a save
request was made. It was discarded after it has done its job.

Back to the choice of compression.

I have written Apple |[implementations for two well-known
algorithms: LZ4 and aPLib. I did not want to write another one,
so I was forced to choose between them. LZ4 was both fast and
small (my implementation was only 152 bytes long), but it did
not pack well enough. It had to be aPLib. aPLib packs well
(about 20kb smaller than LZ4), is fast enough when factoring
in the reduced number of sectors to read, and small. (My im-
plementation is only 228 bytes long, so less than one sector.)

Some of the sectors are read only individually, some of them
are read only as part of an entire track, and some of them are
read using both methods, depending on the context. Once I de-
termined how each of the sectors was loaded, I grouped them
according to the size of the read, and then compressed the re-
sulting block. I gave myself only two days total for the project,
but it ended up taking two weeks. Most of that time was spent

226

4:4 Prince of PoC by Peter Ferrie

finding an appropriate data structure.

I finally chose a variable length region set to describe the place-
ment of the sectors within a track. This yielded a huge advan-
tage for the sectors which were read only in track mode, when
the packed size of the single region was too large for the read
buffer. In that case, the file could be split into two smaller vir-
tual regions, compressed separately to fit. The split point was
determined by splitting into all 17 pairs (1 and 17, 2 and 16, 3
and 15 ...), compressing the pairs, then identifying the smallest
pair. The smallest pair was chosen by the minimum number of
sectors and then the minimum number of bytes. The assumption
was that it costs more to decompress fewer bytes in more sectors,
than to decompress more bytes in fewer sectors, even if the de-
compression was faster in the first case, because of the time to
read and decode the additional sector. However, the flexibility
of the region technique allowed the alternative case to be used
without any changes to the code.

The support for the sector reads was flexible, too. Since the re-
gions were defined only by their start and length, I could erase the
individual addresses from the 18-sector requests. This allowed me
to move sectors within a track, and to make the corresponding
change in the 18-sector request packet. This was actually needed
for track 4. For track 4, the region that began at sector $0a did
not fit into six sectors even after compression. Fortunately, the
region that began at sector 0 needed only seven sectors, so the
region at sector $0a could move to sector 9. This was enough
to get it to fit. For track $13, the first two sectors were never
accessed, so I could have moved sector 2 to sector 0, but there
was no benefit to it.

Overall, my technique saved over eleven tracks on the first
side, and over sixteen tracks on the second side. Not enough for

227

4 Tract de la Société Secréte
a single-side version, thoughm)

And Now for Dessert: Easter Eggs!

While digging through the game code, I found several hidden
routines. When playing side B, press “A” after completing a level
to see an animation of Jordan waving, press a key at the end to
view it again. In the Byte Bastards version, type “RAMROD” at
the crack page for a hidden message.

Before booting, hold both Apple keys, then press one of the
following to activate hidden modes.

DEL Only on //GS, displays an oscilloscope.

! Displays a message, and then a lo-res animation.
ENTER | Continually draws a fractal, press ‘c’ to change colors.
@ Displays a bouncing, spinning cube.

A Pulses the drive head.

Move joystick to change tone, sounds like a motorcycle.

Neighbors, is this not a tale of Shakespearean proportions and
passions? A young prince, a mystery of code broken by under-
handed blows in the dark, the poisoned daggers of copy-protection
that even perpetrators forgot about—all laid bare by a contrived
play of PoC! Is the Play the Thing, or is PoC the Thing, or are
they the Thing together? You decide! —PML

7As a point of interest, I experimented with concatenating the entire data
together, and including the sector offset in the table. That decreased the
space quite significantly, but at a cost of increasing the size of the code,
and making updating the data extremely difficult. That version saved
over thirteen tracks on the first side, and over eighteen tracks on the
second side. However, this was still not enough for a single-side version.
In the end, it was not worth the effort, and it will not be released.

228

4:4 Prince of PoC

by Peter Ferrie

Side A Side B

00 trk

01 trk trk

02 | sectors (00-0d) trk

03 trk trk

04 | sectors (00-09, Oa-11) sectors (00-05, 06-11)
05 | trk sectors (00-0Ob)

06 trk trk

07 | trk trk

08 trk trk

09 trk trk

Oa | trk trk

0b | trk sectors (00-05 / 06-11)
Oc | sectors (00-05, 06-11) sectors (00-Ob / Oc-11)
0d | sectors (00-Ob / Oc-11) trk

Oe trk trk

of trk trk

10 trk trk

11 trk trk

12 trk trk

13 | sectors (02-11) trk

14 | sectors (04-11 / 00-03) trk

15 trk trk

16 trk trk, sector 01

17 trk sector 01

18 trk trk

19 trk trk

la | trk trk

1b | trk sectors (00-08)

lc trk, sectors (0d-11) sectors (00-08 / 09-11)
1d | trk sectors (00-08 / 09-11)
le | trk sectors (00-08 / 09-11)
1f | trk sectors (00-08 / 09-11)
20 | sectors (00-08, 09-11) sectors (00-08 / 09-11)
21 | sectors (00-08 / 09-11) sectors (00-08 / 09-11)
22 | sectors (02-11), trk trk

Figure 4.4: Tracks and Sectors

229

4 Tract de la Société Secréte

4:5 A Quick Introduction to
the New Facedancer Framework

by Gil

The Facedancer is a nifty piece of hardware for USB emula-
tion, begun as a quick proof of concept by Travis Goodspeed and
Sergey Bratus at Recon 2012.

Recently, I rewrote the Facedancer’s software stack with the
goal of making it easier to write new emulators for both well-
behaved and poorly-behaved devices. In this post I'm going
to give an introduction to doing both. I assume you've got a
Facedancer board, python3, the pyserial library, and a current
revision of the code. T’ll start with a very brief overview of the
USB protocol itself, then show how to modify the existing USB
keyboard emulator code to emulate a different (yet still well-
behaved) device, and finally show how to take a well-behaved
device and make it misbehave in specific ways.

usSB

The USB protocol defines a bunch of abstractions: Devices, Con-
figurations, Interfaces, and Endpoints. Some of these terms are
a bit counterintuitive, understanding of which is not at all aided
by how they're referred to by users.

A Device is a physical thing that gets plugged into a USB
port. A single physical device may present itself to the operating
system as multiple logical devices. (Think of a keyboard with
built-in trackpad or one of those annoying USB sticks that pre-
tends it’s both a USB mass storage device and a USB CD-ROM
so it can install adware.) In USB parlance, each of the logical
devices is not a Device, but rather an Interface. I’ll get to those
in a couple paragraphs.

230

4:5 New Facedancer Framework by Gil

—— THE BETTER BUG TRAP ——
DEBUG
AND

CONGQUER

Altair/IMSAl compatible board catches program bugs and
provides timing for real-time applications.

Four hardware breakpoint addresses. Software breakpoints
only possible at instructions in RAM. Better Bug Trap
breakpoints can be in ROM or RAM, and at data or
instructions in memory, input/output channels, or stack
locations.

Board can stop CPU or interrupt CPU at a breakpoint.’

Real-time functions: watchdog tin.er, real-time clock {(for
time of day clock], interval timer.

Sophisticated timesharing made possible!

Unique interrupt structure: generates a CALL instruction to
your subroutine anywhere in memory, not a RST!

Addressed as memory. All parameters set easily by software.

All this and more for about the price of a real-time clock
board, but nothing else does the job of the Better Bug Trap.

$160, assembled and tested. 2 manuals plus software. 90 day
warranty. Shipped UPS. Delivery from stock.

fcronicsg o

BOX 3514, 123 WEST 3RD ST., SUITE 8
GREENVILLE, NC 27834 e (919) 758-7757

231

4 Tract de la Société Secréte

When a device is connected to a host, the host begins the enu-
meration process, in which it requests and the device responds
with a bunch of descriptors that describe how the device can
and/or wants to behave. The device presents to the host a set
of “configurations;” the host chooses exactly one of these and the
device, er, configures itself accordingly. But what’s a configura-
tion? It’s a set of interfaces!

An Interface is a single logical device as mentioned above: a
keyboard XOR a trackpad XOR an external hard drive XOR
an external CD-ROM XOR. .. From the perspective of writing
software emulators for these things, this architecture is actually
kinda helpful: we can write a single interface implementing a
keyboard and then include it in various device implementations.
Code reuse FTW.

Each interface contains multiple “endpoints,” which are the ac-
tual communication channels to and from the host. Only one
endpoint is required: endpoint 0 (EP0) is the bidirectional “con-
trol” endpoint, used for exchange of descriptors on connection
and optionally for asynchronous communication thereafter. (The
various ways a device and host can communicate are beyond the
scope of this post and, considering the tendency of device manu-
facturers to fabricate their own protocols to run over USB, prob-
ably intractable to cover in any single document. Your best bets
to gain understanding are either to fuzz it or to read the device
driver code.)

Endpoints other than EPO are unidirectional so, in the case of
something like an external hard drive that needs to both send
and receive large amounts of data, the interface will define two
endpoints: one for host-to-device (“OUT”) transfers and another
for device-to-host (“IN”) transfers.

Lastly, the USB protocol (up to and including USB 2.0) is
“speak when spoken to”: all device communication is initiated by

232

4:5 New Facedancer Framework by Gil

the host, which means even more state machines and callbacks
than you might have been expecting.
With that, let’s go to the code.

A Simple Device

All of the source files are in the “client” subdirectory of the SVN
tree. You can tell the new stuff from the old:

—_

. The old libraries are named GoodFETx.

[\

. The old programs are named goodfet. *.

3. The new libraries are named USB* (plus MAXUSBApp.py,
Facedancer.py, and util.py.)

4. The new programs are named facedancer-x*.

Start by looking at facedancer-keyboard.py. It’s pretty sim-
ple: we import some stuff, open a connection to the serial port,
say we want to talk to a Facedancer on the serial port, then
we want to talk to the MAXUSBApp on the Facedancer, and we
hand this to an instance of the USBKeyboardDevice class, which
connects the emulated device to the victim and we're off to the
races. Easy enough.

The good news here is that you shouldn’t have to ever worry
about what goes on in the Facedancer and MAXUSBApp classes;
the entirety of the logic specific to any given USB device is con-
tained with the USBDevice class, of which (in this case) USB-
KeyboardDevice is a subclass. To create your own device, just
create a new class that inherits from USBDevice and customize
it as you see fit. As an example, look at USBKeyboardDevice.py
for the implementation of the USBKeyboardDevice class.

233

4 Tract de la Société Secréte

Way at the bottom of USBKeyboardDevice.py, you'll find the
definition for the USBKeyboardDevice class. It’s fairly short: we
define a single configuration (notice the configurations are num-
bered from 1) that contains a single interface, then we send that
configuration on to the superclass initializer along with a bunch
of magic numbers. These magic numbers are primarily used by
the host operating system to figure out which driver to use with
the attached device. From the Facedancer side, however, the key-
board functionality is implemented in the USBKeyboardInterface
class, which takes up most of the file. Scroll back up to the top
and look at that now.

The hid_descriptor and report_descriptor are hard-coded
as opaque binary data specific to HID devices. (I may abstract
away their details at some point, but it’s not a particularly high
__, there’s a dictionary mapping descrip-
tor ID numbers to the actual descriptor data, which is sent to
the superclass initializer. (T'll get into more detail on this in
the section on misbehaving devices.) Also in __init__, a single
USBEndpoint is instantiated, which includes a callback (self.-
handle_buffer_available).

Remember that the device never initiates a data transfer: the
host will ask the device if it has any data ready. If it doesn’t, the
device (in our case, the MAX3420 USB chip on the Facedancer
board itself) will respond with a NAK; if it does have data ready,
the device will send the data on up. Thus whenever the host asks
for data for this particular endpoint, the callback will be invoked.
(“Whenever” is a bit misleading because the host will likely send
polls faster than we can deal with them, but it’s close enough for
the time being.)

The handle_buffer_available method calls type_letter,
which sends the keypress over the endpoint. (This abstraction
as it stands right now is messy and is high on my list to fix—

priority.) In __init

234

4:5 New Facedancer Framework by Gil

the USBEndpoint class should have “send” and “receive” methods,
rather than having to climb up through the abstraction layers to
the send_on_endpoint call currently in type_letter.)

To make a very long story short, writing an emulator for a new
device should be straightforward:

1. Subclass USBInterface (eg, as MyNewInterface), define
your set of endpoints and pass them to the superclass ini-
tializer, and define endpoint handler functions.

2. Subclass USBDevice (eg, as MyNewDevice), define a config-
uration containing MyNewInterface, and pass it along to
the superclass initializer.

A Misbehaving Device

If you subclass USBDevice and USBInterface as described above,
the rest of the class hierarchy should do the Right Thing (TM)
with regards to the USB protocol itself and talking to the Face-
dancer to perform it: appropriate descriptors will be sent when
requested by the host, correct callback functions will be called
when endpoints are polled by the host, etc. But if you want to
test how systems react in the face of devices that don’t perform
exactly as expected, you're going to have to dig in a bit.

The pattern I've tried to follow (though there are certainly de-
viations, which T intend to deal with—patches appreciated!) is
for the USBDevice class to handle control messages over endpoint
0 and dispatch them to the appropriate instance of (subclasses
of) USBConfiguration, USBInterface, or USBEndpoint. For ex-
ample, if the host sends a GET DESCRIPTOR request for the
configuration, the request is dispatched to USBConfiguration. -
get_descriptor, which returns the data to be sent in response.

235

4 Tract de la Société Secréte

If you want your custom misbehaving device to do weird stuff
for every incoming request, override the USBDevice.handle_re-
quest method. If, on the other hand, you're looking to mess with
just descriptors for a specific abstraction, you’re better off over-
riding the get_descriptor method of the USB* classes. If you
want to send non-standard responses to any of the other con-
trol messages (eg, CLEAR_FEATURE, GET STATUS, etc),
you should override the associated handle_*_request method
of USBDevice. (Note that USBDevice.handle_request is the
method that dispatched to the handle * request methods.)

Each of the top-level USB* classes (USBDevice, USBConfig-
uration, USBInterface, and USBEndpoint) has a self.descrip-
tors member that maps from descriptor number to a descriptor
or a function that returns a descriptor. Thus you are not con-
strained to hard-coding values, you can instead provide a function
that creates whatever descriptor you want sent.

To make a somewhat less-long story short, modifying an emu-
lated device to misbehave should be similarly straightforward.

1. Subclass whichever of USBDevice, USBConfiguration, USB-
Interface, or USBEndpoint contains the behavior you want
to modify.

2. Override the descriptor dictionary in your subclass to
change what descriptors get sent in response to requests.

3. Override the handle_*_request methods in your subclass
of USBDevice to change how your device responds to indi-
vidual requests.

4. Over the USBDevice.handle_request method to change
how your device responds to all requests.

Happy fuzzing!

236

4:5 New Facedancer Framework by Gil

Littlefone with
4" Loud Speaker

Littlefone Central
Station Antenna

Mobile Littlefone

CIVIL DEFENSE

.

®

[]
allicratters

Chicago 24, lllinois

2-way FM radio telephone for 30 to 54 Mc. and 144 to 173 Mc.

237

4 Tract de la Société Secréte

4:6 Dumping Firmware from
Tamagotchi Friends by Power
Glitching

by Natalie Silvanovich, Tamagotchi Merchant of Death
with the kindest of thanks to Mr. Blinky.

The Tamagotchi Friends is the latest addition to the Tam-
agotchi series of virtual pet toys. Released on Boxing Day of
2013, it features NFC messaging and games as a part of a tra-
ditional Tamagotchi toy. Recently, I used glitching to dump the
code of the Tamagotchi Friends.

The code for the Tamagotchi Friends is stored in mask ROM
internal to its GeneralPlus GPLB series LCD controller. In the
previous Tamagotchi version (the Tamatown Tama-Go), I used
a vulnerability in the processing of external data from a flash
accessory to dump the codeE| but this is not possible for the
Tamagotchi Friends, as it does not support flash accessories. In
fact, the Tamagotchi Friends has a substantially reduced attack
surface compared to the Tamatown Tama-Go, as it also does not
support infrared communications. The only available inputs on
the Tamagotchi Friends are the buttons, the EEPROM (which is
used to store important persistent data, like the number of slices
of carrot cake your Tamagotchi has on hand) and NFC.

After eavesdropping on and simulating the NFC, and dumping
and rewriting the EEPROM, I determined that they both had
limited potential to contain exploitable bugs. They did both
appear to fill buffers in RAM with user-controlled data in the
course of normal operation though, which meant they both could
be useful for creating shellcode buffers in the case that there was a

8See PoC||GTFO on page

238

4:6 Power Glitching Tamagotchi by Natalie Silvanovich

Lo

Figure 4.5: These sprites were among many dumped from the
Tamagotchi Friends ROM.

bug that allowed the program counter to be moved to the buffer.

One possible way to move the program counter was glitching,
basically driving unexpected signals into the microcontroller and
hoping that they would somehow cause that program counter to
change and by chance land in the shell code buffer. Considering
that memory space of the microcontroller is 65,536 bytes, and
the largest buffer I could fill with a NOP slide is roughly 60
non-contiguous bytes this sounds like a long shot, but the 6502
architecture used by the microcontroller has some properties that
makes random program counter corruption more likely to lead
to code execution compared to other architectures. To start,
it has no memory validation, so any access of any address will
succeed, regardless of whether any memory is mapped to the
location. This means that execution will not stop even if an
invalid address is accessed. Also, invalid opcodes on 6502 are

239

4 Tract de la Société Secréte

guaranteed to execute in a finite amount of timd?] with undefined
behaviour, so they also will not stop execution. Together, these
properties make it very unlikely that execution will ever stop on
a 6502 processor, giving shellcode a lot of chances to get executed
in the case that the program counter is corrupted.

Another useful feature of this particular microcontroller is that
the RAM starts at address zero, and the lowest hundred bytes or
so of RAM is used by the SPU and is often zero. In 6502, zero
is the opcode for BRK, which acts like NOP if a debugger is not
attached, so this RAM could potentially act as a NOP slide. In
addition, in the Tamatown Tama-Go (and I assumed the Tam-
agotchi Friends), the EEPROM is copied to address 0x300, which
is still fairly low in RAM addresses. So if the program counter
got set to zero, there is a possibility it could slide through RAM
up to the EEPROM. Of course, not every value in RAM before
0x300 is zero, but if enough are, it is likely that the other values
will be interpreted as instructions that don’t alter the program
counter’s course some portion of the time.

Since setting the program counter to zero seemed especially
likely to cause code execution, I started by glitching the input
power, as this had the potential to clear the program counter.
The Tamagotchi Friends has three types of volatile memory: reg-
isters like the program counter, DPRAM (used for the LCD) and
SRAM. DPRAM and SRAM both have fairly long persistence
after they stop being powered, so I hoped if I cut the power to
the microcontroller for a short period of time, it would corrupt
the registers, but not the RAM, and resume execution with the
program counter at address zero.

I tried this using an Arduino to switch the power on and off

9A few people have mentioned to me that there are some 6502 processors
for which this is not true, but this is definitely the case for GeneralPlus
controllers.

240

4:6 Power Glitching Tamagotchi by Natalie Silvanovich

Protect Your Copies of BYTE

NOW AVAILABLE: Custom-designed library files or
binders in elegant blue simulated leather stamped in
gold leaf.

Binders—Holds
6 issues, opens
flat for easy
reading.

$9.95 each, two
for $18.95, or
four for $35.95.

T E¥e\\ Order Now!

Mail to: Jesse Jones Industries, CALL TOLL FREE (24 hours):

Dept. BY, 499 East Erie Ave., 1-800-972-5858

Philadelphia, PA 19134

Please send files; Name:
binders for BYTE magazine.

Enclosedis S Address:
Add S1 per file/binder for posmge and

handling. Outside U.S.A. add $2.50 per City:
file/binder (U.S. funds only please).

Charge my: (minimum S15) State: Zip:
— American Express

_ Visa__ MaswerCard
Diners Club

Files—Holds 6
issues.

$7.95 each, two
for $14.95, or
four for $27.95.

(No Post Office Box)

Sansfaction guaraneed, Rnnsylvana cadns add 6% saks wx.
Allow 5-6 weeks delivery in the US.

Card #

BVIE &
Signature I.H .

241

4 Tract de la Société Secréte

at different speeds. For very fast speeds, the Tamagotchi didn’t
react at all, and for very slow speeds, it would reset every cycle. I
eventually settled on cycling every five milliseconds, which had a
visible erratic impact on the Tamagotchi after each cycle. At this
rate, the toy was displaying an unexpected image on the LCD,
corrupting the LCD, playing Yankee Doodle or screeching loudly.

I filled up the EEPROM with a large NOP slide and some code
that caused a write to the LCD screen, reset the Tamagotchi so
the EEPROM was downloaded into RAM, and cycled the power.
Roughly one out of every ten times, the code executed and wrote
the LCD.

I then moved the code around to figure out the size of the
available code buffer. Two things limited the size. One is that
only a small part of the EEPROM is copied into RAM at once,
and the rest is only loaded if needed. The second is that some
EEPROM addresses are validated. For some of these addresses,
containing very critical values, the EEPROM is wiped immedi-
ately if the Tamagotchi detects an invalid value. These addresses
couldn’t be used for code at all. Some other less critical values
get overwritten if they are invalid. For example, if a Tamagotchi
is a child, but is married, the “is married” flag will be reset to the
correct value. These addresses could be changed, but there was
no guarantee they would stay the correct value, so I ended up
jumping over them. This left exactly 54 bytes for code. It was
tight, but I was able to write code that dumped the ROM over
SPI through the Tamagotchi buttons in that space

242

11

13

15

17

19

21

23

25

27

29

31

The following is the 6502 shellcode I used:

4:6 Power Glitching Tamagotchi

by Natalie Silvanovich

SEI
LDA
STA
STA
STA
STA
LDX
LDA
ASL
LDY
BCC
LDY
BNE

NOP
NOP
NOP
NOP
NOP
STY
LDY
STY
DEX
BNE
INC
BNE
INC
BNE
LDA
STA
BNE

; disable the low battery interrupt

#$FF
$3011
$1109
$00C5
$00C6
#$08

; port direction

; LCD indicator

($C5),Y

A
#$01
$001A
#$03
$0020

$3012
#$00
$3012

$0013
$00C5
$000F
$00C6
$000F
#$00

$3000
$000F

H

; These 4 bytes get altered before execution.

No room to initialize Y.
it will be set to O at the end of the loop.

; Jump over them.

; Branches are shorter than jumps,
; so use implied conditions.

Worst case,

In memory, this shellcode is as follows:

300:
310:
320:
330:
340:
350:
360:
370:

32 17
20 FF
777
FF FF
03 78
A2 08
03 EA
DO DE

02
06
77
40
A9
B1
8C
EE

01
10
77
EA
FF
C5
12
Ccé

02
01
77
EA
8D
0A
30
00

01
FF
05
EA
11
A0
AO
DO

09
FF
04
EA
30
01
00
D9

00
02
FF
EA
8D
90
8C
4C

1A
77
77
00
09
02
12
4B

00
77
77
00
11
AO
30
03

1A
77
55
00
8D
03
CA
15

1A
77
00
00
Cc5
DO
DO
11

1A
77
77
00

04
E7
4C

1A
77
77
00
8D
EA
EE
38

1A
77
7F
00

00
C5
00

1A
77
00
00

00
00
00

243

4 Tract de la Société Secréte

The code begins at 341 and ends at 376, which are the bounds
of the buffer copied from the EEPROM. The surrounding values
are typical values of the surrounding RAM which are not con-
sistent across each time code is executed. The 0x03 before the
beginning of the code is written after the buffer, and is an unde-
fined instruction in 6502. Unfortunately, this means that there
isn’t room for any NOP sled, the program counter needs to end
up at exactly the right address.

One useful feature of this shellcode is that the first seven in-
structions aren’t strictly necessary! The registers are often the
right value, or an acceptable value by chance, which gives the
program counter a bit more leeway in the case that it jumps a
bit beyond the beginning of the code.

I dumped all thirty-two pages of ROM using this shellcode,
and they appear to be accurate. Figure |[4.5| shows the highlights
of the dump, sorted by cuteness in descending order.

Educate Your Child

at Home

Under the direction of

CALVERT SCHOOL, Inc.

(Established 1897)

A unique system by means of which chil-
dren from kindergarten to 12 years of age
may be educated entirely at home by the best
modern methods and under the guidance
and supervision of a school with a national
reputation for training young children. For
information write, stating age of child, to

THE CALVERT SCHOOL, 14 Chase St., Baltimore, Md.
V. M. HILLYER, A.B. (Harvard), Headmaster.

244

4:7 A Plausibly Deniable Cryptosystem by Evan Sultanik

4:7 Lenticrypt: a Provably Plausibly
Deniable Cryptosystem; or,

This Picture of Cats is

Also a Picture of Dogs

by Fvan Sultanik

Deniable cryptosystems allow their users to plausibly deny the
existence of the plaintext content of their encrypted data. There
are many existing technologies for accomplishing this (e.g., True-
Crypt), which usually accomplish it by having multiple separate
encrypted volumes in the ciphertext that will decrypt to different
plaintexts depending on which decryption key is used. Key ky
will decrypt to innocuous volume v; whereas key ko will decrypt
to high-value volume vs. If an adversary forces you to reveal your
secret key, you can simply reveal k1 which will decrypt to v1: the
innocuous volume full of back-issues of PoC||GTFO and pictures
of cats. On the other hand, if the adversary somehow detects the
existence of the high-value volume vy and furthermore gains ac-
cess to its plaintext, the jig is up and you can no longer plausibly
deny its contents’ existence. This is a serious limitation, since
the high-value plaintext might be incriminating.

An ideal deniable cryptosystem would allow the creator of the
ciphertext to plausibly deny having created the plaintext regard-
less of whether the true high-value plaintext is revealed. The
obvious use-case is for transmitting illegal content: Alice wants
to encrypt and send her neighbor Bob a pirated copy of the Cole-
coVision game George Plimpton’s Video Falconry. She doesn’t
much care if the plaintext is revealed, however, she does want to
have a plausible legal argument in the event that she is prosecuted
whereby she can deny having sent that particular file, even if the

245

4 Tract de la Société Secréte

GEORGE FLIMPTOHM'S ™

246

4:7 A Plausibly Deniable Cryptosystem by Evan Sultanik

high-value file is revealed. In the case of systems like TrueCrypt,
she can’t really deny having created the alternate hidden volume
containing the video game since the odds of it just randomly oc-
curring there and a key happening to be able to decrypt it are
astronomically small. But what if, using our supposed “ideal”
cryptosystem, she could plausibly claim that the existence of the
video game was due to pure random chance? It turns out that’s
possible, and we have the PoC to prove it!

Before we get to the details, let’s first dispel the apparent ne-
fariousness of this concept by discussing some more legitimate
use-cases. For example, we could encrypt a high-value document
such that it decrypts to either a redacted or unredacted version
depending on the key. If the recipients are not aware that they
have unique keys, one could deliver what appears to be a single
encrypted message to multiple recipients with individualized con-
tent. The individualization of the content could also be very sub-
tle, allowing it to be used as a unique watermark to identify the
original source of a leaked document: a so-called “canary trap.”
Finally, “deep-inspection” filters could be evaded by encrypting
an innocuous payload with a common, guessable password.

Running Key Ciphers

A running key cipher is one of the most basic cryptosystems,
yet, if used properly, it can be one of the most secure. Be-
ing avid PoC||GTFO readers, Alice and Bob both have a pen-
chant for treatises with needlessly verbose titles that are edited
by Right Reverend Doctors. Therefore, for their secret key they
choose to use a copy of a seminal work on cryptography by the
Rt. Revd. Dr. Lord Bishop John Wilkins FRS.

247

4 Tract de la Société Secréte

They have agreed to start their running key on the first line of
the book, which reads:

(¢ Every rational creature, being of an imperfet
and dependant Happinefs, if therefore naturally
endowed with an Ability to communicate its
own Thoughts and Intention{ ; that {fo by mu-
tual Services, it might better promote it felf in
the Profecution of its own Well-being. 7)

The encryption algorithm is then very simple: Each character
from the running key is used as a rotation to permute the asso-
ciated character of the plaintext. For example, say that the first
character of our plaintext is “A”; we would take the first charac-
ter of our running key, “E”, look up its numerical index in the
alphabet, and rotate the plaintext by that much to produce the
ciphertext.

PLAINTEXT: AN ADDRESS TO THE SECRET SOCIETY OF POC OR GTFO...

Runnine KEY: EV ERYRATI ON ALC REATUR EBEINGO KA NIM PE RFEC...
CIPHERTEXT: EI EUBIELA HB TSG JICKYK WPGQRZM TF CWO DV XYJQ...

There are of course many other ways the plaintext could be com-
bined with the running key, another common choice being XOR-
ing the bits. If the running key is truly random then the re-
sult will almost always be what is called a “one-time pad” and
will have perfect secrecy. Of course, my expository example is
nowhere near secure since I preserved whitespace and used a run-
ning key that is nowhere near random. But, in practice, this type
of cryptosystem can be made very secure if implemented prop-
erly.

248

4:7 A Plausibly Deniable Cryptosystem by Evan Sultanik

Meecuep :

OR THE
SECRET AND SWIFT

Meffenger.

SHEWING,

How a Man may with Privacy and

Speed communicate his Thoughts
to a Friend at any diftance.

Th Second Coition

By the Right Reverend Father in God,
Jou~Nn WiLki1Ns,late Lord
Bithop of CHES TER.
sz 47” {%/ dﬂﬁ%xﬂ &7)%?
LONDON,

Printed for Rid). Balvwin, near the
Oxford-Arms in Warwick-lane. 1694.

249

4 Tract de la Société Secréte

Book Ciphers

Perhaps the most basic type of cryptosystem—one that we’ve
all likely independently discovered in our early childhood—is
the substitution cipher: Each letter in the alphabet is stati-
cally mapped to another. The most common substitution cipher
is ROT13, in which the letters of the alphabet are rotated 13
steps.

= Q.
n<—— o0
o+ ——
2« 0
<——F
Mo/
T —B
o — T
—_-—

OQ¢—
T— T

c i Il m o
T
In fact, we can think of the running key cipher we described above
as a sort of substitution cipher in which the alphabet mapping
changes for each byte based off of the key.

Book Ciphers marry some of the ideas of substitution ciphers
and running key ciphers. First, Alice and Bob decide on a shared
secret, much like the book they chose as a running key above. The
shared secret needs to have enough entropy in order to have at
least one instance of every possible byte in the plaintext. For each
byte in the shared secret, they create a lookup table mapping all

256 possible bytes to lists containing all indices (i.e., file offsets)
of the occurrences of that byte in the secret:

S — =
D — O
QW
= e— o+

with open(secret_key_file) as s:
indexes = dict ([(b, []) for b in range(256)1)
for i, b in enumerate (map(ord,s.read())):
indexes [b].append (i)

Then, for each byte encountered in the plaintext, the ciphertext
is simply the index of an equivalent byte in the secret key:

def encrypt(plaintext, indexes):
for b in map(ord, plaintext):
print random.choice(indexes[bl),

250

4:7 A Plausibly Deniable Cryptosystem by Evan Sultanik

To decrypt the ciphertext, we simply look up the byte at the
specified index in the secret key:

def decrypt(ciphertext, secret_key_file):
with open(secret_key_file) as s:
for index in map(int, ciphertext.split()):
s.seek (index)
sys.stdout.write(s.read (1))

In effect, what is happening is that Alice opens her book (the
secret key), finds indices of characters that match the characters
she has in her plaintext, writes those indices down as her cipher-
text, and sends it to Bob. When Bob receives the ciphertext, he
opens up his identical copy of the book, and for each index he
simply looks up the letter in the book and writes that down the
letter into the decrypted plaintext. There are various optimiza-
tions that can be made, vié., using variable-length codes within
the key similar to LZ77 compression (e.g., using words from the
book instead of individual characters).

Lenticular Book Ciphers

In the previous section, I showed how a book cipher can be used
to encrypt plaintext p; to ciphertext ¢ using secret key ki. In
order for this to be useful as a plausibly deniable cryptosystem,
we will need to ensure that given some other secret key ko, the
same ciphertext ¢ will decrypt to a totally different plaintext ps.
In this section I'll discuss an extension to the book cipher which
achieves just that. I call it a “Lenticular Book Cipher,” inspired
by the optical device that can present different images to the
viewer depending on the lens that is used. I was unable to find
any description of this type of cryptosystem in the literature,
likely because it is very naive and practically useless ... except
for in the context of our specific motivating scenarios!

251

t

4 Tract de la Société Secréte

Given a set of plaintexts P = {p1,p2,...,pn} and a set of keys
K = {k1,ka,...,kn}, we want to find a ciphertext ¢ such that
decrypt(c,k;) — p; for all i from 1 to n. To accomplish this,
let’s consider an individual byte within each of the plaintexts
in P. Let p;[j] represent the j™ byte of plaintext i. Similarly,
let’s define k;[j] and c[j] to refer to the j** byte of a key or
the ciphertext. In order to encrypt the first byte of all of the
plaintexts, we need to find an index m such that k;[m] = p;[0]
for ¢ from 1 to n. In general, c[¢] can be any unsigned integer m
such that

Viel,...,n: km]=pl.

We can relatively efficiently find such an m by modifying the way
we build the indexes lookup table:

def build_index(secret_keys):
indexes = {}
for i, key_bytes in enumerate(zip (*secret_keys)):
key_bytes = tuple(map(ord, key_bytes))
if key_bytes not in indexes:
indexes [key_bytes] = [i]
else:
indexes [key_bytes].append (i)
return indexes

Encryption then happens similarly to the regular book ciper:

def encrypt(plaintexts, secret_keys):
indexes = build_index (secret_keys)
for text_bytes in zip(*plaintexts):
text_bytes = tuple(map(ord, text_bytes))
print random.choice(indexes[text_bytesl]),

Decryption is identical to the regular book cipher.
So, in fewer than twenty lines of Python, we have coded a PoC
of a cryptosystem that allows us to do the following:

encrypt (
[open("plaintextl").read (), open("plaintext2").read()],
[open("keyl").read (), open("key2").read()1)

252

4:7 A Plausibly Deniable Cryptosystem by Evan Sultanik

If we pipe STDOUT to the file “cipher.enc”, we can decrypt it
as follows:

with open("cipher.enc") as enc:
decrypt (enc.read (), "keyl") # This will print plainteztl
decrypt (enc.read (), "key2") # This will print plaintexzt2

There do seem to be a number of limitations to this cryptosys-
tem, though. For example, what keys should Alice use? The keys
need to be long enough such that every possible combination of
bytes that appears across the plaintexts will occur in indexes;
the length of the keys will need to increase exponentially with re-
spect to the number of plaintexts being encrypted. Fortunately,
in practice, you're not likely to ever need to encrypt more than
a few plaintexts into a single ciphertext. One possible source of
publicly available keys to use would be YouTube videos: Alice
could simply download a video and use its raw byte stream as
the key. Then all she needs to do is communicate the name of or
link to the video to Bill off-the-record.

I have created a complete and functional implementation of
this cryptosystem, including some optimizationsm (e.g., variable
block length, compression, length checksums, error checking, éc.)

Proving a Cat is Always Also a Dog

So far, I've gone through a lot of trouble to describe a cryp-
tosystem of dubious information securityE whose apparent func-
tionality is already available from tools like TrueCrypt. In this
section I will make a mathematical argument that provides what
I believe to be a legal basis for the plausible deniability provided

0git clone https://github.com/ESultanik/lenticrypt

HWhile I do have a few letters after my name that suggest I know a thing
or two about Computer Science, cryptography is not my specific area of
specialization.

253

4 Tract de la Société Secréte

by lenticular book ciphers, enabling its use in our motivating
scenarios.

Laws and contracts aren’t interpreted like computer programs;
legal decisions are often dictated less by the defendant’s actions
than by his or her intent. In other words, if it appears that Alice
intended to send Bob a copy of Video Falconry, she will be found
guilty of piracy, regardless of how she conveyed the software.

But what if Alice legitimately only knew that key k1 decrypted
c to a picture of cats, and didn’t know of its nefarious use to
produce a copy of Video Falconry from k2? How likely would it
be for ks to produce Video Falconry simply by coincidence?

For sake of this analysis, let’s assume that the keys are doc-
uments written in English. For example, books from Project
Gutenberg could be used as keys. I am also going to assume that
each character in a document is an independent random variable.
This is a rather unrealistic assumption, but we shall see that the
asymptotic properties of the problem make the issue moot. (This
assumption could be relaxed by instead applying Lovész’s local
lemma.)ﬁ

First, let’s tackle the problem of figuring out the probability
that decrypt(c,ks) — p2 completely by chance. Let n be the
length of the documents in characters and let m < n be the
minimum required length of a string for that text to be considered
a copyright violation (i.e., outside of fair use). The probability
that decrypt(c,ks) contains no substrings of length at least m
from po is

(1 =g

)

12Paul Erdés and Laszlé Lovasz. Problems and results on 3-chromatic hy-
pergraphs and some related questions. Infinite and finite sets (Collog.,
Keszthely, 1973; dedicated to Paul Erdés on his 60th birthday), Volume
II, North-Holland, Amsterdam, 1975, pp. 609-627. Colloq. Math. Soc.
Janos Bolyai, Volume 10.

254

4:7 A Plausibly Deniable Cryptosystem by Evan Sultanik

where ¢ is the probability that a pair of characters is equal. Here
we have to take into account letter frequency in English. Using a
table from WikipediaEI calculate ¢ to be roughly 6.5 percent.
(It’s the sum of squares of the values in the table.) According to
Google, there are about 130 million books that have ever been
WrittenE Let’s be conservative and say that two million of them
are in English. Therefore, the probability that at least one pair
of those books will produce a copyrighted passage from c is

(2000000)
2

1— ((1 . qm>(”*m+1)) ,
which is extremely close to 100% for all m < n < 2000000.

Therefore, for any ciphertext ¢ produced by a lenticular book
cipher, it is almost certain that there exists a pair of books one
can choose that will cause a copyright violation! Even though we
don’t know what those books might be, they must exist!

Proving that this is a valid legal argument—one that would
hold up in a court of law—is left as an exercise for the reader, or
more likely, the reader’s defense attorney.

3http://en.wikipedia.org/wiki/Letter_frequency
14Leonid Taycher. Books of the world, stand up and be counted! All
129,864,880 of you. August 5, 2010. Retrieved March 21, 2014.

255

4 Tract de la Société Secréte

4:8 Hardening Pin Tumbler Locks
against Myriad Attacks
for Less Than a Sawbuck

by Deviant Ollam, Merchant of Dead Locks

In 1983, the renowned locksmith and physical security icon
Gerry Finch submitted a brief article to Keynotes magazine, a
publication of the Associated Locksmiths of America. In it, he
described why it was his belief that serrated pins within a lock
were superior to spool pins, mushroom pins, or any other kind
of manipulation-resistant pins commonly-used in locks. Despite
being very popular and well-received at the time, such wisdom
appears to have faded away somewhat among locksmithing cir-
cles. This article is a re-telling of Finch’s original advice with
updated diagrams and images, in the hopes that folk might re-
alize that some of the old ways are often still some of the best
ways of doing things.

Pick-resistant pins are designed to interfere with the most com-
mon methods of attacking pin tumbler locks. Conventional op-
eration of a lock involves first pushing the pin stacks to their
appropriate positions and then turning the plug. Lockpicking,
however, is performed by first applying turning pressure to the
plug, then—subsequent to that—the pushing of the pins stacks is

256

4:8 Hardening Pin Tumbler Locks by Deviant Ollam

performed, with pick tools instead of a key. The following images
document this process.

Pick-resistant pins make such an attack difficult by interfering
with the easy movement of pin stacks if a lock’s plug is already
subject to turning pressure. While standard operation of the lock
is still possible (in the absence of any turning pressure, the blade
of a user’s key will still push the pin stacks smoothly) attempts to
turn, then lift (which is how picking is performed) become much
more complicated. If inclined, one may acquire entire pinning kits
consisting of such special pins from locksmiths supply companies.
Seen in Figure[£.0]is the tray of an “S-pin” security kit from LAB.

The following images show how the ridges of a serrated pin
make for additional friction during a typical lock-picking attack.

While other styles of pick-resistant pins are available on the
market (such as the spool style or mushroom style seen in an

257

4 Tract de la Société Secréte

Figure 4.6: Tray of S-Pins from LAB.

258

4:8 Hardening Pin Tumbler Locks by Deviant Ollam

earlier diagram) it was the serrated style which captured Gerry
Finch’s attention and became his favorite means of bolstering a
lock’s ability to resist attack. Part of his reason pertained to
the fact that the ridges on a serrated pin are far less pronounced
than on a spool or mushroom style pin. When performing the
picking process, a skilled attacker can often discern quite clearly
the moment when they have encountered a spool or mushroom
driver pin. Due to the large ridge present and the very noticeable
way in which a lock’s plug will tend to turn (but the lock will fail
to open) this information leakage will offer up valuable insight to
an attacker. Serrated pins give away far less detail to someone
who is using lockpicks.

The very small ridges found on serrated pins also lend them-
selves to another, more substantial, means of preventing attacks
against pin tumbler locks, however. Although it was not com-
mon practice at the time, Gerry Finch proposed something in
the early 1980s which dazzled the locksmith community. Specif-
ically, he advocated the process of using a thin thread-tapping
tool to create additional ridges inside of a lock’s plug, within the
chambers where the pins are installed. See Figure [£.7]

By cutting these threads into the pin chambers, a much greater
degree of friction and positive lock-up between the pins and the
plug can be achieved. If there is turning pressure on the plug—
as there is with a lockpicking attack—and any attempt to push
the pin stacks is made, the serrations will bite together. This is
remarkably robust for a number of reasons:

e Even if a dedicated lockpicker gets past one region of fric-
tion, serrated edges offer repeated additional blockades to
progress. Spool pins or mushroom pins typically offer only
one point of resistance in each pin stack.

e The positive lock-up between pins and the plug is achieved

259

4 Tract de la Société Secréte

3n[J pepeaIyT, :LF oINS

260

4:8 Hardening Pin Tumbler Locks by Deviant Ollam

by the driver pins and also by the key pins (if serrated key
pins are installed) and for this reason this style of config-
uration should also offer some resistance to impressioning
attacks, as well.

The following images show the mechanism by which serrated
pins and thread-tapped plug chambers work in concert to resist
picking attacks.

It is those particular points indicated by the small arrows where
the ridges and threading jam together tightly. NOTE—As seen
in the earlier photo of the field-stripped plug, I did not opt to run
a tap through all of the pin chambers. The front-most chamber
was left plain and no serrated pins would be installed there. This
not only conceals the presence of such pins in the lock (at least

261

4 Tract de la Société Secréte

from cursory inspection) but it affords one the opportunity to
install hardened anti-drill pins in that front chamber.

Gerry Finch suggested that course of action, as well. He also
cautioned locksmiths against working a tapping tool too deeply
in each chamber. He recommends a maximum of three turns per
chamber, no more.

Finch’s ideas proved so effective, and locks prepared in this
manner tend to be so resistant to against even dedicated attacks,
that the LAB company started including a 6/32” tap in some of
their S-pin kits. But perhaps a little surprisingly, after all these
years the practice has become so uncommon that few locksmiths
with whom I have spoken nowadays even know what the tap tool
is for.

262

4:8 Hardening Pin Tumbler Locks by Deviant Ollam

If you have the knowledge of even basic lock field-stripping, it is
quite possible to upgrade a pin tumbler lock using this technique
for very little cost. The LAB company’s S-pins are available for
less than a dime eacHEl and hardware tool suppliers sell both the
6/32” tap and a suitable tap handle for four dollars apiece.

Best of luck upgrading your security if you try this yourself.
With a little care and dedication and for less than one Hamilton
you could make your locks a great deal more resistant to attacks
by someone like me.

15While this is technically true, such pins are commonly sold in packages of
100. So you're often out six to seven dollars for the bag, and a variety
of sizes of key pins and driver pins are needed to do the job properly.
It’s best to find a friendly locksmith who might sell you a handful of
individual pins for a few dollars.

263

4 Tract de la Société Secréte

Gerry Finch was a legend in the lockpicking and
locksmithing community, developing tools, tech-
niques, instructional courses, and published works
throughout his career. A veteran of the US Air
Force (ret 1964) he also worked with the US Army
Technical Intelligence Center teaching their De-
fense Against Methods of Entry course. Finch is the recipient
of the Locksmith Ledger’s Hall of Fame Award, The California
Locksmith Association’s Golden Key Award, Associated Lock-
smiths of America’s President’s Award, the Lee Rognon Award,
the Gerald Connelly Pioneer Award, and the Philadelphia Award.
He retired officially in 1996, but I still wouldn’t want to go head-
to-head with him in a picking contest.

264

4:9 Intro to Chip Decapsulation by Travis Goodspeed

4:9 Introduction to Reflux
Decapsulation and Chip
Photography

by Travis Goodspeed

Howdy y’all,

Unlike my prior articles for PoC||GTFO, this one is an intro-
ductory tutorial. If you are already stripping and photographing
microchips, then there will be little for you to learn here. If,
however, you want to photograph a chip and don’t know where
to begin, this is the article for you.

I’'m also required by my own conscience and by good taste to
warn you that if you attempt to follow these instructions, you
will probably get a little bit hurt. Please be very fucking careful
to ensure that you only get a little bit hurt. If you have any
good sense at all, you will do this in a proper chemistry lab with
the assistance of professionals rather than rely on this hobbyist
guide. If you don’t know whether to add water to acid or acid
to water, and why you will hurt yourself a lot if you don’t know,
please stop reading now and take a community college course
with a decent lab component.

265

4 Tract de la Société Secréte

=0

go

PoC || GTFO

/

| N

I

- > =
e TN —

266

4:9 Intro to Chip Decapsulation by Travis Goodspeed

Chemistry Equipment

At a bare minimum, you will need high-strength nitric acid (HNO3)
and sulfuric acid (H2SOy4). Laws for acquiring these vary by coun-
try, and if you’re in a jurisdiction that cares too much about the
environment, you might need to use a different methodE In
addition to the two acids, you will need isopropyl alcohol and
acetone as solvents for cleaning.

Beyond the chemicals, you will need a bit of glassware. Luckily,
the procedure is simple, so some test-tubes, beakers, and a ring
stand with utility clamps will do. If you get second-hand clamps,
be aware that metal should not directly touch the glass of the
test tube; your clamp might be missing a rubber or cloth piece
to prevent scratches.

The acids that you are working with can attack metals, so
get several acid-resistant tweezers. I learned a while ago that
tweezers get lost or bent, so buy a dozen and you won’t have to
worry about it again.

Because the acid fumes, particularly the nitric acid fumes, are
so noxious, you will need a fume hood to properly contain the
acid gas that boils out of the test tube when you screw up the
heat.

As a handy indicator of where the acid fumes are going, I save
thermal paper cardstock from air and rail tickets. They turn red
or black in the presence of nitric acid, and by balancing one above
the test tube I get a visual warning that the fumes have spread
too far.

You could get by with a toothbrush and solvent for cleaning
the chip surface, but an ultrasonic bath with solvent is better.
Cheap ultrasonic cleaners are available for cleaning jewelry, and

16T've heard that the Germans get good results with kolophonium, better
known as rosin.

267

4 Tract de la Société Secréte

they work well enough, but be careful not to let your cleaning
solvents dissolve their exposed plastic.

Finally, you will need a source of regulated heat. At this point,
you’re probably itching to strike off a Bunsen burner, but those
are really a terrible choice. Instead, I use a cheap SMD rework
soldering station, the Aoyue 850A. By turning the airflow near
maximum and slowly raising the temperature, I can heat the test
tube to a consistent temperature.

Chemistry Procedure

Your sample should be the smallest package of the target chip
you can purchase. For a specific example, the Texas Instruments
MSP430F2012 is available as PDIP (Plastic Dual Inline Package)
and QFN (Quad Flat No-leads) among other packagings. While
this procedure works for either, the QFN package is much smaller
and has less plastic to be etched away, so it will consume far less
of your nitric acid.

Begin by connecting the clamp to your ring stand as shown
in Figure [£.8 with the SMD rework station’s wand held just
beneath the bottom of where the test-tube will be. Do not turn
on the heat yet.

Place the chip into the test-tube with enough nitric acid to
cover the chip and optionally add just a splash of sulfuric acid
to make it attack the plastic instead of the bonding wires. For
safety reasons, you will very quickly learn to do this while the
glass is cold, just as you will very quickly and rather painfully
learn that cold glass looks exactly like hot glass.

Place the test tube into the clamp. The tube should be slightly
tilted, with the bottom closer to you than the top so that any
explosive eruptions of boiling acid go away from your face.

With the chip covered in acid, turn the SMD rework station

268

4:9 Intro to Chip Decapsulation by Travis Goodspeed

Figure 4.8: The clamp stand holds the test-tube next to the SMD
rework station.

269

4 Tract de la Société Secréte

Air

HNOs
Gas

: : HNO;

\O/L:(iuw[

Figure 4.9: HNO3 under reflux. It’s important that the vapor
column not rise above the lip of the test tube.

270

4:9 Intro to Chip Decapsulation by Travis Goodspeed

on with high speed and low heat. Slowly raise the temperature
while watching the well-lit column of the test tube. The idea
here is to create a poor man’s reflux, in which the acid boils but
the column of acid vapor above it remains beneath the lid of the
test tube, unable to spill out. Shining a laser pointer into the
tube will reveal the exact height of the column, as the laser is
scattered by the acid but not by clean air.

Overheating the test tube will cause the acid to steam out,
filling either the fume hood or your lab with acid fumes. All of
the iron in the room will rust, your lungs will burn, and the fire
alarm will trigger. Don’t do this.

As the chip boils in nitric acid, the packaging will crumble off
in chunks. This crumbling should continue until either the chip’s
die is exposed or the acid is spent.

You might notice the acid solution changing color. HNO3 turns
green or blue after dissolving copper, which greatly reduces its
ability to break apart the plastic. Once the acid is spent, let the
test-tube cool and then spill its contents into a beaker.

At this point, the acid might not be strong enough to further
break apart the packaging, but it’s still strong enough to burn
your skin. HNOg3 burns don’t hurt much at first, and light ones
might go unnoticed except for a yellowing of the skin that takes
a week or so to peel off. Sometimes you’ll notice them first as an
itch, rather than a burn, so run like hell to the sink if a spot on
your hand starts itching. H3SO4 burns more like you’d expect
from Batman cartoons, with a sharp stinging pain. It results in
a red rash instead of yellowed skinm

17Here’s a handy rhyme to remember safety:

Johnny was a Chemist’s Son,
but Johnny is No More.

What Johnny thought was H2O,
was HoSOy4!

271

4 Tract de la Société Secréte

So now that you know better than to stick your fingers into the
beaker of acid, use tweezers to carefully lift the die out of the acid
and drop it into a second beaker of acetone. This beaker—the
acetone beaker—goes into the ultrasonic bath for a few minutes.
At this point the die will be partially exposed with a bit of gunk
remaining, but sometimes larger chips will still be covered.

For best quality, the HNO3 should be repeated until very little
of the gunk is left, then a bath of only HoSO4 will clean off the
last bits before photography.

These two acids are very different chemicals, and you will find
that the HoSOy4 bath behaves nothing like the HNOg3 baths you’ve
previously given the chip. HoSO4 has a much higher boiling point
than HNOg, but it’s also effective against the chip packaging well
beneath its boiling point. You will also see that instead of flaking
off the packaging, HoSOy4 dissolves it, taking on an ink-black color
through which you won’t be able to see the sample.

After the final H,SO,4 bath, give the chip one last trip through
the ultrasonic cleaner and then it will be ready to photograph.

Photographic Equipment

Now that you've got an exposed die, it’s time to photograph it.
For this you will need a metallurgical microscope, meaning one
that gives an image by reflected rather than transmitted light.

Microscope slides work for samples, but they aren’t really nec-
essary, because no light comes up from the bottom of a metal-
lurgical microscope anyways. Small sample boxes with a sticky
surface are handier, as they are less likely to be damaged in a fall
than a case full of glass microscope slides.

For photographing your chip, you can either get a microscope
camera or an adapter for a DSLR. Each of these has its advan-

272

by Travis Goodspeed

4:9 Intro to Chip Decapsulation

“diy) ddir) 82-MAN Aw woxy ¢Ly*T jo ojoyd duQ QT 9ISt

273

4 Tract de la Société Secréte

tages, but the microscope cameras are very often just cheap we-
bcams with awkward Windows-only software, so I go the DSLR
route. Through either sort of camera, you can take individual
photos like the one in Figure [1.10]

Photographic Procedure

Whichever sort of camera you use, you won’t be able to fit the
entire chip into your field of view. In order to get an image of the
whole chip, you must first photograph it piecemeal, then stitch
those photos together with panorama softwarelEI

Begin at a known corner of the chip and take a series of pho-
tographs while moving in the same direction and keeping the top
layer of your sample in focus. Each photograph should overlap
by roughly a third its contents with the image before and after
it, as well as those on adjacent rows. Once a row has been com-
pleted, move on to the next row and move back in the opposite
direction.

Once you have a complete set of photos, load them in Hugin
on a machine with plenty of RAM. Hugin is a GUI frontend to
Panorama Utilities, and it allows you to correct mistakes made
by those tools if there aren’t too many of them.

Hugin will do its best to align the pictures for you, and its
result is either a near-perfect rendering or a misshapen mess. If
the mess is from a minor mistake, you can correct it, but for
serious errors such as insufficient overlap or bad focus, you will
need to do a new photography session. With plenty of overlap, it
sometimes is enough to simple delete the offending photographs
and let the others fill in that part of the image.

18For fancy things like recovering gates in delayered chips, more sophisti-
cated software is needed, but panorama software suffices when only the
top layer is being photographed.

274

4:9 Intro to Chip Decapsulation by Travis Goodspeed

Yo 8 ey i o
— - on

e K

3 == 144

lIILLLl
—
|

20 e e

5.0 0 0 0 0 5

? EVSE (O I |

i i

il 6 i
2 s 8 o

Figure 4.11: This is the complete die photograph of the Clipper
Chip at reduced resolution.

275

4 Tract de la Société Secréte

Figure shows the complete, but reduced resolution, die
photograph that I took of the Clipper Chip. This was built from
1,475 surface photographs that were stitched together by Hugin.

Further Reading

While you should get a proper chemistry education for its own
sake, textbooks on chemistry as written for chemists don’t cover
these sorts of procedures. Instead, you should pick up books on
Failure Analysis, which can double as coffee table books for their
nifty photographs of disassembled electronics.

After mastering surface photography, there are all sorts of av-
enues for continuing your new hobby. Using polishing equipment
or hydrofluoric acid, you can remove the layers of the chip in or-
der to photograph its internals. The neighbors at the Visual6502
project took this so far as to work backward from photographs
to a working gate-level simulation in Javascript!

Additionally, you can decap a chip while it’s still functional to
provide for invasive or semi-invasive attacks. For invasive attacks,
take a look at Chris Tarnovsky’s lectures, as he’s an absolute
master at sticking probe needles into a die in order to extract
firmware. Dr. Sergei Skorobogatov’s Ph.D. thesis describes a
dozen tricks for semi-invasively shining lasers into chips in order
to extract their secrets, while Dmitry Nedospasov’s upcoming
thesis is also expected to be nifty.

Neighborly thanks are due to Andrew Q. Righter and everyone
who was polite enough not to yell at me for the die photos that
I posted with improper exposure or incomplete decapsulation.

Cheers from Samland,
—Travis

276

11

13

4:10 Forget Not the Humble Timing Attack by Colin O’Flynn

4:10 Forget Not the Humble Timing
Attack

by Colin O’Flynn

Judge not your neighbour’s creation, as you know not under
what circumstances they were created. And as we exploit the
creations of those less fortunate than us, those that were forced
to work under conditions of shipping deadlines or unreasonable
managers, we give thanks to their humble offering of naive secu-
rity implementations.

For when these poor lost souls aim to protect a device using a
password or PIN, they may choose to perform a simple compar-
ison such as the following.

int password_loop(void){
unsigned char master_password[6];
unsigned char user_password[6];

read_master_password_from_storage (master_password) ;
wait_for_pin_entry(user_password);

for (int i = 0; i < 6; i++){
if (master_password[i] != user_password[i]){
return O;
¥
}
return 1;

Which everyone knows are subject to timing attacks. Such
attacks can be thwarted of course by comparing a hash of the
password instead of the actual password, but simple devices or
small codes such as bootloaders may skip such an operation to
save space.

277

4 Tract de la Société Secréte

A PIN-Protected Hard Drive

Let’s look at a PIN-protected hard drive enclosure, which the
vendor describes as a “portable security enclosure with 6 digit
password.” This enclosure formats the hard drive into two parti-
tions, the Public partition and the secured Vault partition. The
security of the Vault is entirely given by sacrilegious changes to
the partition table, such that if you remove the hard disk from
the enclosure and plug into a computer the OS won’t recognize
the disk, thinking it tainted. The data itself is still there however.

The PCB contains four ICs of particular interest: a Mar-
vell 88SA8040 Parallel ATA to Serial ATA bridge, a JMicron
JM20335 USB to PATA bridge, a WareMax WM3028A (no pub-
lic information), and an SST 39VF010 flash chip connected to
the WM3028A. There’s also a number of discrete logic gates in-
cluding two 74HCT08D AND devices and one 74HC0O0D NAND
device. These logic gates are used to multiplex multiple parts
from apparently limited IO pins of the WM3028A. It would ap-
pear that the system passes the Parallel ATA data through the
WDM3028A chip, which is presumably some microcontroller-based
system responsible for fixing reads of the partition table once the
correct password is put in.

The use of discrete logic chips for multiplexing IO lines ulti-
mately makes our life easier. In particular one of the 74HCT08D
chips, U10, provides us with a measurement point for determin-
ing when the password has failed the internal test.

Pin 3 of the switch is the multiplexing pattern from the micro-
controller. Remember we must determine when the microcon-
troller has read the pin, not simply when the user pushed the
pin. Knowing that this button was pressed, and thus caused the
“Wrong PIN” LED to come on, we can measure the time between
when the microcontroller has read in the entire PIN and when

278

4:10 Forget Not the Humble Timing Attack by Colin O’Flynn

g wgEam T !i
FiRiET witetten

Figure 4.12: Pin-Protected Hard Disk

279

4 Tract de la Société Secréte

the LED goes on.

We then break the system one digit at a time by measuring the
time after the last button is pressed. First we enter 0-6-6-6-6-6,
then 1-6-6-6-6-6, 2-6-6-6-6-6, etc. The delay between reading the
button press and displaying the LED will be shortest if the first
digit is wrong, longer if the first digit is right. A moving-picture
version of this is available on the intertubes[™]

An example of the oscilloscope capture of this is shown in Fig-
ure [£13] where the correct password is 1-2-3-4-5-6. Note the
jump in time delay between 0-6-6-6-6-6 and 1-6-6-6-6-6. This
continues for each correct digit. Thus for a 6-digit pin, we guess
only a worst case of 10 x 6 = 60 attempts, instead of the million
that would be required for brute-forcing the full pin.

TinySafeBoot for the Atmega328P

But what if the clever developer decided to not tell the user when
they’ve entered a wrong password? A security-conscious boot-
loader might wish to avoid being vulnerable to timing attacks,
but is attempting to avoid adding hash code for size reasons.
An example of this is pulled from a real bootloader which has a
password feature. When a wrong password is entered jumps into
an endless loop, effectively avoiding providing information that
would be useful for a timing attack.

In particular, let’s take a look at TinySafeBoot, which is a
very small bootloader for most AVR microcontrollersPY] This
wonderful bootloader has many features, such as using a single
IO pin, auto-calibrating baud rate, and automatically build a
bootloader image for you. And, as already mentioned, it contains
a password feature.

Yhttp://tinyurl.com/pintiming
20nttp://jtxp.org/tech/tinysafeboot_en.htm.

280

4:10 Forget Not the Humble Timing Attack by Colin O’Flynn

" 0-6-6-6-6-6

1388

1189 |

e L

115:

1-6-6-6-6-6

"
100

7834

6545

sssss 754 n 4539 a8

-
100 £ I
'1-2-6-6-6-6 = ’
a3 . |

65

szse

3067

267

1389

2478
1155 e 3042 w29 538 287 1035 71671 2258
el

"1.2:3-666 T]

|
|
,,,,,) 4
1155 e 204 <201 4539 2 1035 2187 2188 a22
[

Figure 4.13: Disk Pin Timing Results

281

4 Tract de la Société Secréte

wm‘ mmm W - m’qm»« mnwmmm—-mm
B R W MFLH-JL »ij b

< p - — 3
L) I e O - e

Figure 4.14: Above is correct. Below is a mismatch.

But compare the measurements of the power signatures shown
in Figure[£.14] which is the bootloader running on an AtMega328P.
The correct password is {0x61, 0x52, 0x77, Ox6A, 0x73}. If
we measure the power consumption of the device, we observe
clear differences between the correct and incorrect guesses. This
can be done by using a resistor in-line with the microcontroller
power supply, such as by lifting a TFQP package pin.

The code for the password feature looks as in the following
listing. Note when you receive an incorrect character the system
jumps into an infinite loop at the chpwl label, meaning a reset is
required to try another password.

282

10

12

14

16

18

20

4:10 Forget Not the Humble Timing Attack by Colin O’Flynn

CheckPW:
chpwi:
lpm tmp3, z+ load character from Flash
cpi tmp3, 255 byte value (255) indicates
breq chpwx end of password -> exit
rcall Receivebyte else receive next character
chpw2:
cp tmp3, tmpl compare with password
breq chpwl 1f equal check nexzt char
cpi tmpl, O or was it 0 (emerg. erase)
chpwl: ©brne chpwl ; 4f not, loop infinitely
rcall RequestConfirmation ; 1f yes, request confirm
brts chpa ; not confirmed, leave
rcall RequestConfirmation ; request 2nd confirm
brts chpa ; cannot be mistake now

rcall EmergencyErase H
rjmp Mainloop

go, emergency erase!

chpa:

rjmp APPJUMP ; start application
chpwx:
; rjmp SendDevicelnfo ; go on to SendDevicelnfo

We can immediately see the jump to the infinite loop in the
power trace! It happens as soon as the device receives an incor-
rect character of the password. Thus despite the original timing
attack failing, with a tiny bit of effort we again find ourselves
easily guessing the password.

Measuring the power consumption of the microcontroller re-
quires you to insert a resistor into the power supply rail. Ba-
sically, this requires you to perform the schematic as shown in
Figure [£.15] Note you can insert it either into the VCC or the
GND rail. It may be that the GND rail is cleaner for example,
or it may be that it’s easier to physically get at the VCC pin on
your device.

For a regular oscilloscope you may need to build a Low Noise
Amplifier (LNA) or Differential Probe. I've got some details of
that in my previous talk and Whitepaperﬂ You can expect to

2lnttp://newae.com/blackhat

283

4 Tract de la Société Secréte

make a probe for a pretty low cost, so it’s a worthwhile invest-
ment!

In terms of physically pulling this off, the easiest option is to
build a breadboard circuit with the AVR and a resistor inserted
in the power line. Be sure to have lots of decoupling after the
resistor, which will give you a much cleaner signal. If you're
looking to use an existing board, you can make a “cheater” socket
with a resistor inline, as in Figure which was designed for
an Arduino board.

Real devices are likely to be SMD. If you’re attacking a TQFP
package, you might find it easiest to lift a lead and insert a 0603
or 0402 resistor inline with the power pin. You might wish to find
a friendly neighbour with a steady hand and a stereo microscope
for this if you aren’t of strong faith in your soldering!

Thus when attacking embedded systems, the timing attacks of-
ten present a practical entry method. Be sure to carefully inspect
the system to determine the ‘correct’ measurement you need to
use, such as measuring the point in time when the microcontroller
reads an I/O pin, not simply when an external event happens.

When designing embedded systems, store the hash of the users
password, lest ye be embarrassed by breaks in your device.

284

4:10 Fe
Orget Not
the H
umble Timing Attack
ac. b
y Colin O
'Flynn

T
Voo 0 Scope

e it
L 10uF 13,:

Figure
4.15: T
- Tanpi
pping VCC for Pow
er Analysi
ysis

PCY: ACC Versio® Qisa complet® 1 anguag® exi ene BR
Pevelop™ L Env! ent that gena!a(es ANSH C sourc® code Quic e ysis OPY 0
from input Lang- Descriptio® s for puilding - Op('\ona\ Abstact Syt e
Assert ers, C “\p\\ers,\merp(c(&(s Bmwse(s,?age . Adv:m:edﬁr(ot ecover’ Suppou?wv‘\ded
Desl‘.npt\on\,a“uu pe Lax\g\.\ageTmr\s\mors, yneax D\mc[ed anual “Compilet Cor\stmcf\onwth pCS’ mc\udcd
Dor and) B guaes: % Al exampt P lude FU SOURCE
Complet® gra 5, Lexica\ Am\vzers,and Sy‘mbo\ u 30day y ack guara?
D Pascab TASE " R charge o7 pommetilig adevedd

mmar
Ta\:\eMznagemenlior ANS'\C,K&RC, pascal A
TIPS and‘V,SQL,C++,Sma\\ta\\o80, APPLE e, DS A
vaeﬂa\\(hC&N;-Yro\og,:CCC,LEX, and?f\)g;YSCR“"\' < order, DS
ed. anc ersions a:eavn' able-
e 1,800,347,5214
progra™s, Ezcamp\cs include Jesktop
\x(o\’ostf\x’“ans\amr,a SoE and S
) imy \emcmat'\on of the ?\C\(me\ anguaB®
aCAH o wansla” ABRAXA.
SOFT 5™
WA
RE, INC.

7033SW|
‘Macad:
adam Ave. Portland, OR 97
3 219USA

TEL (50
penaararcly
pleLink D2205 '3ME:I\§§33’ Senanrs
AXAS

285

4 Tract de la Société Secréte

4:11 This Encrypted Volume is also a
PDF; or,

A Polyglot Trick for Bypassing

TrueCrypt Volume Detection

by Ange Albertini

In this article I will show you a nifty way to make a PDF that
is also a valid TrueCrypt encrypted volume. This Truecryption
trick draws on Angecryption from PoC||GTFO so if you
missed it you can go back in PoC-time now or later, and enjoy
even more common file format schizophrenia!

What is TrueCrypt?

If you open a TrueCrypt container in a hex editor, you’ll see that,
unlike many binary formats, it looks like entirely random bytes.
It does in fact have a header that starts with the magic signature
string TRUE at file offset 0x40, but this header is stored encrypted,
and thus you can’t spot it offhand. To decrypt the header, one
needs both the correct password and the hopefully random salt
that is stored in bytes 0-63, just before the encrypted header.

So, a TrueCrypt file starts with 64 bytes of randomness, used
as salt to derive the header key from the password. This key is
used to decrypt the header. If the result of the decryption starts
with TRUE, then it means the password was correct, and the now
decrypted header is parsed further. In particular, this header
contains volume keys, which are, in turn, used to encrypt/decrypt
the blocks and sectors of the encrypted drive.

Importantly, the salt itself is only used to decrypt the header.
This is to defend against rainbow table-like precomputing at-
tacks.

286

4:11 This Truecrypt is a PDF by Ange Albertini

[Troecoypt =[5 =]

Volumes Systemn Favontes Tools Settings Help Homepage

Drive | Wolume: E..| Type .
@ R #e picturepng - IfanView [

S
0
“#P: dijpocorgtfold.pdf AES Normal
Qi difpicture,pg AES Normal
R
s
T
S
G
-
Py
e
Sz

File Edit Inage Options View Help

Create Yolume] Yalume P

[Wolume: 170%216 x 24 BPP 21/27 100% 30644 K

E =T SeRcEEle...

™ Mever save histary
Woltme: ook |

Select Device. J

Dismourt | Auto-Mourt Devices ‘ Digmount Al I Exlt J

Let’s start with an existing TrueCrypt volume file for which
we know the password. We are not going to change its actual
contents or the header’s plaintext, but we are going to re-encrypt
the header so that the whole becomes a valid PDF file while
remaining a valid TrueCrypt volume as well.

Because the salt is supposed to be random, it can be anything
we choose. In particular, it can double as any other file format’s
header. Using the original salt and password, we can decrypt the
header. By choosing a new salt—which starts with the header
of our new binary target—we derive new keys, and can thus re-
encrypt the header to match our new salt.

So, our new file contains the new salt, the re-encrypted header,
and the original data sectors of the TrueCrypt container. But
where will the new PDF binary content go?

For merging in the new content, we are going to use the trick
that readers familiar with Angecryption must have guessed al-

287

4 Tract de la Société Secréte

ready. As we showed there, in many binary formats it is possible
to reserve a big chunk of space filled with dummy data right af-
ter the format’s header, and have the binary format’s interpreters
simply skip over that chunk. This is exactly what we are going to
do: all of the TrueCrypt volume data would go into the dummy
chunk, followed by the new binary content.

If we want a valid binary file to be a TrueCrypt polyglot, we
must fit its header and the declaration for the dummy chunk
within 64 bytes, the size of the salt. For Angecryption, we man-
aged with only 16 bytes to play with, so having 64 bytes almost
feels like sinful and exuberant waste.

An elegant PDF integration

So far, our PDF /TrueCrypt polyglot looks easy. To add a bit of
challenge, let’s make it with standard PDF-making tools alone.
We’ll ask pdflatex nicely to include the TrueCrypt volume into
our polyglot.

Specifically, we’ll create a dummy stream object directly inside
the document, using the following pdflatex commands:

\begingroup
\pdfcompresslevel=0\relax
\immediate\pdfobj stream
file {pocorgtfo/truecryption/volume}
\endgroup

The bytes between the start of the resulting PDF file and our
object that contains the TrueCrypt container will depend on the
PDF version and its corresponding structure. Luckily, the size of
this PDF head-matter data is typically around 0x20, well below
0x40. Plenty of legroom on this polyglot flight!

288

4:11 This Truecrypt is a PDF by Ange Albertini

So our PDF will start with its usual header, followed by this
standard stream object we created to play the role of a dummy
buffer for the TrueCrypt data. We now need to readjust the
contents of this buffer so that the encrypted TrueCrypt header
matches its salt, which contains the PDF header, and we then
get a standard PDF that is also a TrueCrypt container.

Conclusion

This technique can naturally be applied to any other file format
where we can fit the header and a dummy space allocation within
its first 64 bytes, the size of TrueCrypt’s initial salt.

Moreover, inserting your encrypted volume into a valid file—
while keeping it usable—also has the benefit of putting it under
the radar of typical TrueCrypt detection heuristics. These heuris-
tics rely on encrypted TrueCrypt volumes having a round file
size, uniformly high entropy, and no known header present. Our
method breaks all of these heuristics, and, on top of that, leaves
the original document perfectly valid and plausibly deniable@

For a concrete example of this technique, open pocorgtfo-
04.pdf as a TrueCrypt volume with a password of “123456”.

220f course, this advice is legally worth exactly what you paid for it, and
likely less. No warranty intended or implied, void where prohibited by
law, etc., etc., etc. Not endorsed by any lawyers real, imaginary, or
played-on-TV, but may be considered “digital cyber-bullets” by some. You
may be called a merchant of digital cyber-polyglot death, too—you have
been warned! -PML

289

4 Tract de la Société Secréte

4:12 How to Manually Attach a File to
a PDF

by Ange Albertini

If you followed PoC||GTFO’s March of the Polyglots to date,
you may have noticed that until now the feelies were added in a
dummy object at the end of the PDF document. That method
kept unzip happy, and Adobe PDF tools were none the wiser.

Yet Adobe in its wisdom created its own way of attaching files
to a PDF!

One of the great features of PDF is its ability to carry
attached files, just as e-mail messages can carry at-
tached files. Any kind of file, and any number of files,
can be sucked into a PDF file. These are held internal
to PDF as “stream” objects, one of the basic 8 object
types from which all PDF content is built (numbers,
arrays, strings, true, false, names, dictionaries and
streams). Streams start with a dictionary object but
then carry along an arbitrarily long sequence of ar-
bitrary 8-bit bytes. Stream objects meet the generic
description for disk files quite well.

—Jim King at Adobe

So, dear reader, prepare to be sucked in into PDF feature(creep)
greatnessﬁ

23 Some alarmist neighbors predict that the Universe will gravitationally col-
lapse upon itself due to uncontrolled PoC||GTFO expansion. Fear not,
neighbors: an international action on PoC footprint is coming! On a
second thought, though, since you are all Merchants of Dire PoC now,
maybe fear twice as hard? —PML

290

4:12 How to Manually Attach a File to a PDF by Albertini

%] pocorgtfold.pdf - Adobe Reader |1 [

File Edit View Window Help *

Attachments [1]

T

e 7 B <H
&
MName
_I = . I . = L,
= = | feelies.zip.pdf

Of course, we could use Adobe software to attach the feelies,
but this is not the Way of the PoC. Instead, we’ll use our trusty
pdflatex.

PDFRETEX allows us to directly create our own PDF objects
from the TeX source, whether they are stream or standard ob-
jects. For Adobe tools to see a PDF attachment, we need to
create three objects:

e The stream object with the attached file contents;

e a file specification object with the filename used in the doc-
ument; and,

e an annotation object with the /FileAttachment subtype.

There are a couple of things to keep in mind. First, Adobe
Reader refuses to extract attachments with a ZIP extension, so
we’ll need to use a different one. For plain old unzip to work
on the resulting PDF file (after a couple of fixes), we must make
sure our attachment is stored in the PDF byte-for-byte, without
additional PDF compression.

291

11

13

4 Tract de la Société Secréte

FACTS ABOUT LEARNING € O D E

Wow— A PROFESSIONAL TELEPLEX IN
THE NOVICE PRICE RANGE

GENDS correctly timed signals from $ words to 70 words per minute. Sixteen essons.
Tts 110 volt A"C. motor makes it hold an even, steady speed. Code is received on the
air over headphones; thercfore, it should be learned with oscillator and headphones. Further-
more, an oscillator is an excellent device with which to learn sending

?OU get TELEPLEX TWO PHASE, STEP BY STEP instruction. That means first you train your EAR to HEAR
the signals in the same manner you hear spoken words. You learn only a few letters at a time. You advance step by
step in an orderly manner. You may select for concentrated practice characters that give you trouble. You are never
confused by jumping from one character to another without sufficient time to thoroughly learn the sound

You get plenty of cipher groups that you will never memorize. Speed up to 25 words is child’s play with TELEPLEX.
Forty to fifty words certainly is within reason :

Send postcard for brochure describ- NOVICE SPECIAL with 16 Lessons $15.95 prepaid.
Built-in oscillator with radio tube $6.00 extra

ing MASTER TELEPLEX, the only Completeoscillator kit with tubes you wire it up $4.00

Code Teacher that records your own (Oscillator or kit not sold separately.) Get it from
_ 3 your dealer or order direct. State your present code

signals so that you can see and hear speed if any.

just how you make your signals. (See 415 G. Street

it at Blan’s, 64 Dey St., New York.) T!lEPlEX CO. Modesto, California
LA AR R R RRRERERERERERERERRRRRRERERERERERERERETRIETNT

Here is the code we need. Note that after creating our PDF
objects, we can refer to them via \pdflastobj; to output the
actual value, we prepend that reference with the \the keyword.

\begingroup
\pdfcompresslevel=0\relax
\immediate\pdfobj stream
attr {/Type /EmbeddedFile} file {feelies.zip}
\immediate\pdfobj{<<
/Type /Filespec /F (feelies.zip.pdf) /EF
<</F \the\pdflastobj\space 0 R>>
>>}
\pdfannot{
/Subtype /FileAttachment
/FS \the\pdflastobj\space 0 R
/F 2 J, Flag: Hidden
}
\endgroup

Finally, for some reason Adobe software fails to see an anno-
tation object when it’s the last one in the file. To work around
this, we’ll just have to make sure we have some text after that
object.

292

4:12 How to Manually Attach a File to a PDF by Albertini

Increasing compatibility

Sadly, after we use this method and put the (extension-renamed)
ZIP into PDF as a standard attachment, plain old unzip will fail
to unpack it. To unzip, the file doesn’t look like a valid archive:
the actual ZIP contents are neither located near the start of the
file (because it’s a TrueCrypt polyglot) nor at the end (because
our document is big enough so the XREF table is bigger than
the usual 64Kb threshold). Let’s help unzip to find the ZIP
structures again!

Luckily, this is easy to do. All we need is to duplicate the last
structure of the ZIP file—the End of Central Directory—which
points to the body, the Central Directory. This structure is just
twenty-two bytes long, so it won’t make a big difference. When
duplicating, we change the offset to the Central Directory so that
it’s pointing to the correct place in the PDF body. We then need
to adjust the offsets in each directory entry so that our files’ data
is still reachable—and voila, we have an attachment that is visible
both to the fancy Adobe tools and to the good old classic unzip!

MB-4 Improved MB-2 designed for 8K
“'piggy-back” without cutting traces

4K x8 Static Memories 1/0 Boards 1702A* $10.00 8223 $3.00
MB-1 MK-8 board, 1 usec 2102 or eq. 1/0-3 8 oit parallel input & output ports, [2101 $ 450 MM5320 $5.95

PC Boad. . $22 Kit . 5100 common address decoding jumper | 21111 $ 450 8212 $5.00

selected, Altair 8800 plug compatible. | 2111.1 $ 450 8131 $2.80

MB-2 Altair 8800 or IMSAI compatible Kit842 PCBoardonly..525 | e1L02A $ 285 MWS262 $200

switched address and wait cycles. 1/0-2 1/0 for 8800, 2 ports committed, 32 ea. $ 240 1103 $1.25

PCBoard. . $25 Kit (1usec) . . $112 | pads of 3 more, other pads for EROMs Programming send Hex List $5.00

Kit (91L02A 0r 21L02:1) $132 | UART, etc. AYB1013 ot 5100

Kit . .. $47.50
Misc.

PC Board only. . $25

PCBOAM. . o $ 30 | Alair compatible mother board and ICs.
KitdK 05 usec $137 | 15sockets T17x11%" $40
KitBK 05 uee oo 5200 | Attair extenderboara. ... s 8 MIKOS

ww K 125" i
MB3 1702A's EROMs, Altair 8800 & | |00 P WW soekets 126 419 Portofino Dr.

. centers56 San Carlos, Caif. 94070
Imsai 8080 compatible switched address 2102 4 0.65 0.5
& wait cyelos 26 oy be expaned w0 s { Sussc | 0.65uee L 050850] e o oy ns o ot e 6% s 20
-) orders postpald in ences testcd price 10 sale

AK, Kit less Proms . $ 66 | ea $195| S 2.25 $ 2.50 Money back 30 day Guarantee. S10 min. order. Prices
2K kit .. $145 4K kit $226 32 $59,00 | $68.00 $76.00 subject to change without notice.

All kits by Solid State Music
Please send for complete list of products

293

4 Tract de la Société Secréte

4:13 Ode to ECB

294

by Ben Nagy

Oh little one, you’re growing up
You'’ll soon be writing C

You’'ll treat your ints as pointers
You’ll nest the ternary

You’ll cut and paste from github
And try cryptography

But even in your darkest hour
Do not use ECB

CBC’s BEASTIly when padding’s abused

And CTR’s fine til a nonce is reused

Some say it’s a CRIME to compress then encrypt

Or store keys in the browser (or use javascript)

Diffie Hellman will collapse if hackers choose your g
And RSA is full of traps when e is set to 3

Whiten! Blind! In constant time! Don’t write an RNG!
But failing all, and listen well: Do not use ECB

They’ll say “It’s like a one-time-pad!

The data’s short, it’s not so bad

the keys are long—they’re iron clad

I have a PhD!”

And then you're front page Hacker News
Your passwords cracked—Adobe Blues.
Don’t leave your penguin showing through,
Do not use ECB

4:13 Ode to ECB by Ben Nagy

Sometimes it can seem like there’s ECB everywhere. ECB on TV,
ECB in music, it's endless. But that doesn’'t make it safe. Or right.
So tune out and avoid ECB, no matter what your friends, the TV,

or your favourite cryptographer tells you.

You'll be glad you did!

%\% @natashenka
Truwe Bugy Wait @

#truebugswait

Canadian Joke
Council

295

4 Tract de la Société Secréte

296

5 Address to the
Inhabitants of Earth

on the following and other
Interesting Subjects

written for the edification of
All Good Neighbors

5:1 It started like this.

In PoC||GTFO Laphroaig checks his privilege and finds it to
be in excellent shape! We are incredibly lucky that our science
is mostly pwnage, and that our pwnage is mostly science.

In PoC||GTFO Philippe Teuwen continues our journal’s
strange obsession with ECB mode antics. You see, there’s a
teensy little bit of intellectual dishonesty in the famous ECB
Penguin, in that the data is encrypted but the metadata is kept
in the clear, so there’s no question as to the dimensions of the
image. To amend this travesty, Philippe has composed a series of
scripts for turning an ECB-encrypted image into a coloring book
puzzle by automatically correcting the dimensions, applying a
best-guess set of false colors, and then walking a human operator
through choosing a final set of colors.

In PoC||GTFO Jacob Torrey shares a quirky little PoC

297

5 Address to the Inhabitants of Earth

easter egg that relies on the internals of PCI Express on recent
x86 machines. By reflecting traffic through the PCI Express bus,
he’s able to map the x86’s virtual memory page table into virtual
memory!

PoC||GTFO explains the trick by Alex Infiihr that makes
a PDF file that is also an SWF file. We only hope that if Adobe
decides—yet again!—to break compatibility with our journal af-
ter publication, that they at least be polite enough to whitelist
pocorgtfo05.pdf or cite this article.

Shikhin Sethi continues his series of x86 proofs of concept that
fit in a 512 byte boot sector. In this installment, he explains
how the platform’s interrupts and timers work, then finishes with
support for multiple CPUs. You will find his neighborly creation
in PoC||GTFO

Joe FitzPatrick shares some hard earned PCI Express wisdom
in PoC||GTFO presenting a breakout board for the Intel
Galileo platform that allows full-sized cards to be plugged into
the Mini-PCle slot of this little guy.

In PoC||GTFO Matilda puts her own spin on the RDRAND

298

5:1 It started like this.

backdoor that Taylor Hornby presented in PoC||GTFO Whereas
he was peeking on the stack in order to sabotage Linux’s random
number generation, she instead uses the RDRAND instruction
to leak encrypted bytes from kernel memory. A userland pro-
cess can then decrypt these bytes in order to exfiltrate data, and
anyone without the key will be unable to prove that anything
important is being leaked.

In PoC||GTFO neighbor Mik will guide you from spotting
an unknown protocol to a PoC that replaces a physical disk in
a remote server’s CD-ROM with your own image, over an un-
encrypted custom KVM session. Bolt-on cryptography is bad,
m’kay?

PoC||GTFO presents a nifty alternative to NOP sleds by
Brainsmoke. The idea here is that instead wasting so much space
with nop instructions, you can instead load a canary into a reg-
ister at the beginning of your shellcode, branching back to the

AT LAST...

SOFTWARE THAT TEACHES READING

PAL is the only diagnostic/remediation program ever written
for. reading education. PAL actually diagnoses the cause of
reading problems, and provides di directly targeted at
those problems.

PAL covers the entire scope and sequence of reading educa-
tion for each grade 2 through 6, and evaluates up to 40 major
skills and 160 subskills per grade level

The PAL MASTER DISK PACKAGE (required for use with the
Curriculum Packages) operates the PAL system. It includes an
upper/lower case chip for the Apple II, so that lessons are
presented in a ‘real world” format. $99.95

The PAL READING CURRICULUM PACKAGES provide the
diagnosis and remediation. $99.95 per grade level. A two-disk
d ion package is ilable for only $9.95.

If you are uncertain about which grade level to purchase for
your child, order the PAL PLACEMENT TEST (includes a $10.00
coupon good on your next PAL purchase). $29.95

System Requirements: Apple I with Applesoft, 48K RAM.
one or two disk drives
VISA. Mastercard, checks, COD accepted. Colorado
residents add 3% sales tax
Universal Systems for Education, Inc.
2120 Academy Circle, Suite £
Colorado Springs, Colorado 80509
® oy seasTs

299

5 Address to the Inhabitants of Earth

beginning if that canary isn’t found at the end.

In PoC||GTFO[5:11] we have Michele Spagnuolo’s Rosetta Flash
attack for abusing JSONP. While surely you’ve heard about this
in the news, please ignore that Google and Tumblr were vulner-
able. Instead, pay attention to the mechanism of the exploit.
Pay attention to how Michele abuses a decompression routine to
produce an alphanumeric payload, which even in isolation would
be a worthy PoC!

We all know that hash-collision vulns can be exploited, but the
exact practicalities of how to do the exploit or where to look for a
vuln aren’t as easy to come by. That’s why, in PoC||GTFO
Ange Albertini and Maria Eichlseder teach us how to write sexy
hash-collision PoCs. When our director of funky file formats
teams up with a cryptographer, all sorts of nifty things are pos-
sible.

In PoC||GTFO Ben Nagy gives us his take on Coleridge’s
masterpiece. Unfortunately, to comply with the Wassenaar Ar-
rangement on Export Controls for Conventional Arms and Dual-
Use Goods and Technologies, this poem is redacted from our
electronic edition.

Solved: That when tongues turn white, breath feverish, stomach sour and
bowels constipated, that our mothers give us tiny portions of love and
sugar, we claim pills and shells in exotic architectures in order to port the
thing everywhere.

No need to wait more for this to happen! The cra of personal reverse
engineering has finally arrived. No taxes or country restrictions
involved! Free radare2 licenses is a commodity that 2
everybody can enjoy

With radare2 you can disassemble, analyze, debug,
patch any binary for a wide range

of CPUs and OSs even for your @4 ;Z‘?\\ ez
shiny 4004 running PC/M!

@ o

300

5:2 A Sermon on Hacker Privilege. by Manul Laphroaig

5:2 Stuff is broken,
and only you know how.

by Rvd. Dr. Manul Laphroaig

Gather around, neighbors. We will talk of science and pwnage,
and of how lucky we are that our science is (mostly) pwnage, and
our pwnage is (mostly) science.

I say that we are lucky, and I mean it, despite there being
no lack of folks who look at us askance and would like to build
pretty bonfires out of our tools or to set regulators upon us to
stand over our shoulders while we work. (Weird reprobates as
we are, surely some moral supervision from straight-and-narrow
bureaucrats will do us good!)

But consider the bright and wonderful subject-matter with
which we work. An exploit is like a natural law: either it works,
here and now, or it’s bullshit. Imagine our incredible luck, neigh-
bors: in order to find out something clever about the world, we
just need to run a program! Then, if it works, we know immedi-
ately that this is how things work. It’s even better than proving
a theorem, because every mathematician knows that an excit-
ing freshly-baked proof might contain a mistake; but with a root
shell there can be no mistake. Indeed, few are so privileged to
discover natural laws just by phrasing them rightEI

Now while we puzzle out the secrets of unexpected machines
inside machines, other neighbors are after other secrets of the
universe, human life, and everything—and consider their plight!

1This turn of phrase has been shamelessly stolen from Meredith L. Pat-
terson’s essay “When nerds collide,” where she writes about our strange
tribe of people brought together by the power to translate pure thought
into actions that ripple across the world merely by the virtue of being
phrased correctly—but that is another story.

301

5 Address to the Inhabitants of Earth

One day there’s a promise of insight into the biochemical mecha-
nisms that make humans selfish or hypocritical—from not just a
professor of a respected university, but a DeanEI of such. This is a
huge and unexpected step forward, and even newspapers like The
New York Times write about it. That research connected selfish-
ness with meat-eating. The connection seemed a bit too simplis-
tic, but sometimes Nature does favor simple answers. Now this
is knowledge, neighbor, and you had to work it in—except, as it
turns out, it’s likely bullshit, just as the Dean Diederik Stapel’s
entire career, built on his many “scientific studies” of record was
bullshit. (Look him up in Wikipedia, neighbor!) It was bullshit
made up to play on educated people’s stereotypes, to make head-
lines, to be featured in the Times of New York and of LA, and it
totally worked for over a decade. It would’ve worked longer, too,
if the fraud wasn’t aiming so high so fast.

Imagine the plight of all the students, underlings, colleagues,
and co-authors—all victims of Stapel’s bullshit—who have wasted
time building their careers on his crock of bullshit as if it were
true insights into what makes humans tick. Some may have had
their own research papers rejected by peer reviewers for not hav-
ing cited Stapel’s flagship results—which were, as you recall, ac-
cepted science for over ten years.

Verily I tell you, neighbors, we are so much more fortunate,
for in the domain we call ours truth runs and pwns, and bullshit
doesn’t run and doesn’t pwn, and nothing can be built on top of
bullshit in good faith or in bad faith that would stand to even
casual scrutiny. (Well, possibly nothing other than a VC pitch—

24Leaps tall buildings in a single bound”—look it up on the internets under
“academic structure,” neighbor! The only finer bit of college-land folklore
is the one that starts with “Biologists think they are biochemists...” and
it is mostly found pinned to doors of rather squalid-looking offices around
math departments.

302

5:2 A Sermon on Hacker Privilege. by Manul Laphroaig

but judge and be judged, neighbors.) We may be distracted from
pwnage by one too many debates, but at least none of these de-
bates are about something called “replication bullying.” If you
think this is funny, neighbor, consider that this is a real term,
taken from complaints by actual and successful professional sci-
entists. These complaints are about some other scientists who
staged the same experiments without involving the original au-
thors and published a paper about how they failed to replicate
the original findings. They call this “bullying,” neighbor, and
you might want to remember this when you hear that “scientists
have shown X” or “linked X and Y.” Verily I tell you, even the
hallowed halls of science, blessed with peer-review, are no refuge
from bullshit.

We have another tremendous bit of luck, neighbors. In our
domain of knowledge, whether 75%, or 99%, or 99.99% of us
agree, paid or unpaid, expert or amateur, industry or academic—
means nothing. Let me repeat, the consensus of all of us taken
together—for whatever definitions of “all” and “together”—means
ezactly nothing. We may all be wrong, and whoever comes up
with an exploit will be right, and that will be that. It happened
before, and it will all happen again. We progress by someone
noticing what the rest of us have overlooked to date, and if some
group of people started counting our publications to learn some-
thing about security of computers, we’d tell them to stop wast-
ing their time and ours. Pwnage laughs at majority vote and
“consensus’—for these two are, in fact, flagstones on the royal
road to being royally pwned.

Is this luck undeserved and unfair, as some would like us to
believe? Not so. It is like the luck of a fisherman that he has to
spend time on the water, or maybe the luck of a fish that has to
live in the water; or the luck of a hunter that he needs to hang
out where Mother Nature is constantly munching upon herself.

303

5 Address to the Inhabitants of Earth

(Stand quietly some late afternoon in a summer meadow, watch
dragonflies zip back and forth, and listen. You are hearing the
sound of a million lunches, neighbor!)

We see through bullshit because we hunt in its fields and jun-
gles, and we know that wherever there is bullshit that’s where
stuff will be badly pwned. Bullshit and pretending that things
are understood when they are not are like a watering hole in a
parched steppe; ecologies of breakage are ecologies of bullshit and
pretense. A good hunter knows to pay attention to the watering
holes.

Some of us are hunters of bullshit, others care more about
bullshit sneaking into their villages at night, carrying away a pet
project here, a young 'un there. But no matter whether a hunter
or a guardian, one knows the beast, and where the beast comes
from. However you reckon the number of the beast, you all know
the names of the beast: Bullshit and Pretense.

Paul Phillips, who walked away after having written a million
lines of code for Scala and having closed nine hundred bugs, got
to the bottom of this. He spoke of deliberate lies that stayed in
the documentation for over three years, as an attempt to make
things look less complicated, but in reality making it hard for
programmers to be sure whether a bug was in their program or
in the language itself:

This is the message it sends: your time is worthless.
... I don’t want to be a part of something that thinks
your time is worthless.

[..]

It’s too complicated, people say it’s too complicated—
let’s just not let them see that complicated thing.
... They told me I'd never have to know. Well, obvi-
ously, you do have to know, there’s no way to avoid

304

5:2 A Sermon on Hacker Privilege. by Manul Laphroaig

knowing. It’s only a question of how much you are
going to suffer in the course of acquiring this knowl-
edge.

That is a fine sermon against the kind of engineering that ends
in bullshit and pretense, neighbors, but it also reveals a deep
truth about us. We don’t want to be a part of things that treat
people’s time as worthless. More to the point, we cannot stand
such things, we simply cannot operate where they rule. We fight,
we flee, or we walk away, but in the end we are by and large a
community of refugees with an allergy to bullshit.

In the end, neighbors, our privilege may just be an allergy,
an allergy to useless waste of time and busy work that makes
no sense and brings no improvement. We find ourselves in this
oasis of no-bullshit we-don’t-care-what-other-people-think repro-
ducibility for a simple reason that has little to do with luck.
We simply fled here from the dark lands where Bullshit reigned
supreme, where the very air was laden with its reek, and where
we would succumb to our allergy in fairly short order, but not
before being branded as disagreeable, lazy, or hubris-prone. We
defied the gods of these places (which was what hubris originally
meant,) and we are a nation of immigrants in our Chosen Vale
of No-Bullshit.

Rejoice, then, and give a thought to neighbors who still suffer—
and reach out to them with a good word, a friendly PoC, or a
copy of this fine journal when you feel extra neighborly! For
your allergy to bullshit, your hubris, your impatience, and your
distaste for busy-work may make poor privilege, but that is what
we’ve got to share, and share it we shall.

Go now in pwnage, share your privilege,

and help deliver neighbors from bullshit.
—P.M.L.

305

5 Address to the Inhabitants of Earth

5:3 ECB as an Electronic Coloring Book

by Philippe Teuwen

Hey boys and girls, remember Natalie and Ben’s warnings in
PoC||GTFO about ECB? Forbidden things are attractive, I
know, I was young too. Let’s explore that area together so that
you’ll have fun and you’ll always remember not to use ECB later
in your grown-up life.

But first of all let me clarify one thing: the ubiquitous ECB
penguin is a kind of a fraud, brandished like a scarecrow! The
reality when you get an encrypted image in ECB mode is that
you’ve no clue of its characteristics, its size, its pixel representa-
tion. Let’s take another example than the penguin (as the source
image of this fraud seems to be lost forever). A wrong guess,
such as assuming a square format, will render just a meaningless
bunch of static.

306

5:3 ECB: Electronic Coloring Book by Philippe Teuwen

V‘
L2

CBC MODE
SAME IV
SAME KEY

IDENTICAL UNTIL
FRST DIFFERENCE

‘ CTR MODE

Bl O
e

ECB MODE

»
(

SAME KEY
SAME NONCE

XOR

Ange Albertini’s extensions to the ECB Penguin.

307

5 Address to the Inhabitants of Earth

So to get the penguin back, the penguin’s author cheated and
encrypted only the pixel values, but not the description of the
image, such as its size. Moreover he probably tried different keys
until he got the tuxedo as black as possible as he has no control
on the encrypted result.

Does it mean ECB is not that bad? Don’t get me wrong, ECB
is a very bad way to encrypt and we’ll blow it apart. But what’s
ECB? No need to understand the underlying crypto, just that the
image is being sliced in small pieces—sixteen bytes wide in case
of AES-ECB—and each piece is replaced by random garbage.
Identical pieces are replaced by the same random data and if two
pieces are different their respective encrypted versions are too.
That’s why we can distinguish the penguin.

But we can do much better; instead of displaying directly
the mangled pixels we can paint them! We know that identi-
cal blocks of random data represent the encrypted version of the
same initial block of color, so let’s pick a color ourselves and
paint over those similar pieces. That’s what this little program
does. You'll find it as ElectronicColoringBook.py by unzip-
ping pocorgtfoOB.pdfﬂ It also tries to guess the right ratio
by checking which one will give columns of pixels as coherent as

possible.
$ ElectronicColoringBook.py test.bin

3git clone https://github.com/doegox/ElectronicColoringBook

308

5:3 ECB: Electronic Coloring Book by Philippe Teuwen

Already better! The lines are properly aligned but the image
is too flat. That’s because we painted each byte as one pixel
but the original image was probably created with three bytes per
pixel, so let’s fix that.

$ ElectronicColoringBook.py test.bin -pixelwidth=3

As we don’t know the original colors, the tool is choosing some
randomly at each execution. Now that the ratio and pixel width
are correct we can observe vertical stripes. That’s what happens
when you can’t have an exact number of pixels in each block and
that’s exactly the case here. We guessed that each pixel requires
three bytes and the blocks are 16-byte wide so if some pixels of
the same color—let’s say #AABBCC—are side by side we get three
types of encrypted blocks. See Figure [5.1]

309

5 Address to the Inhabitants of Earth

[\

AABBCCAABBCCAABBCCAABBCCAABBCCAA
BBCCAABBCCAABBCCAABBCCAABBCCAABB
CCAABBCCAABBCCAABBCCAABBCCAABBCC
AABBCCAABBCCAABBCCAABBCCAABBCCAA
BBCCAABBCCAABBCCAABBCCAABBCCAABB
etc

->
->

->

81E49040C91E64A8F2EB52EB313EADF4
769B3981E49040C9164A83B6CBFB12BF
12B4502017A19CO0EB313EADF47638FB2
81E49040C91E64A8F2EB52EB313EADF4
769B3981E49040C9164A83B6CBFB12BF

Figure 5.1: Three ways to encrypt the same color pattern.

310

5:3 ECB: Electronic Coloring Book by Philippe Teuwen

So we’ve got three types of encrypted data for the same color,
repeating over and over. Still one last complication: Pluto’s tail
is visible on the left of the image, because before the encrypted
pixels there is the encrypted file header. So we’ll apply a small

offset to skip it, and as before we’ll group blocks by three.

$ ElectronicColoringBook.py test.bin -p 3 -groups=3 -offset=1

Give him a Leedawl Com-
§ pass for Christmas and let
him lead ‘‘the boys?”
through the woods, over a trail or on a tramp.

It ’s the only Guaranteed Jeweled o
Compass for $1.00. S
[fyowrdealerdoes ot lrave tiem,write usforfolder C-12. |

Taylor Instrument Companies, Rochester, N. Y. Jil
Makers of Scientific Instruments of Superiority.

311

5 Address to the Inhabitants of Earth

And now let’s make it a real coloring book by choosing those
colors ourselves! We’ll draw the ten most frequent colors in white
(#£f££ff) and the remaining blocks, which typically contain all
kinds of transitions from one color area to another one, in black
(#000000).

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -o 1 -palette=\
fossdsdtossdstsosssssiostdssiostssaiostdsaiossdsaiosddsatossdasiandsed 0ol

Kids, those colors are encoded with their RGB values. If this
is confusing, ask the geekiest of your parents; she can help you.
Colors are sorted by largest areas, so let’s keep the white color
for the background. Let’s paint Pluto in orange (#fcb604) and
Mickey’s head in black.

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -0 1 -P \
THELEEEE#E CLB604#000000# L fffff#EfFEfffHEFEFEFRELEFEFHFLLLELHELFLLLHELLLFEH000000

312

5:3 ECB: Electronic Coloring Book by Philippe Teuwen

If you don’t know which area corresponds to which color in the
palette, just try it out with a flashy color. Eventually, we wind
up with something like this.

$ ElectronicColoringBook.py test.bin -p 3 -g 3 -0 1 -P \

) #ELELEE#ECbE04#000000#£9f a00#£ cedccHEc1b23#ab1604#a61604#E cBEI1#ITEe3THO00000”

313

5 Address to the Inhabitants of Earth

Note to copyright owners:

We were careful to disclose only images encrypted with
AES-256 and a random key that was immediately de-
stroyed. This should be safe enough, right?

Much better than the ECB penguin, don’t you think? So re-
member that ECB should really stand for “Electronic Coloring
Book.” They should therefore should be only used by kids to
have fun, never by grown-ups for a serious job!

Maybe Dad is wondering why we didn’t use a picture of Lenna
as in any decent scientific paper about image processing? Tell him
simply that it’s for a coloring book, not Playboy! There are more
complex examples and explanations in the project directory. It’s
even possible to colorize other things, such as binaries or XORed
images!

When no one has your
_floppy disks in stock...

here’s a new

four letter word
touse:

w The word is KYBE. Because KYBE can ship any model

floppy disk, data cassette or mag card in only two days.

7

sistent qua 1]1[\ xmdn rhar meets
g specifications. The full line is

cumpennvely pric bad\ei by an unconditional 90 day

warranty and inventoried for fast delivery.

Call toll free (800) 225-8715

. Dealer inquiries invited

K] KYBE

Dennison KYBE oration

& | 132Calvay sucet waitham. Mass. 02154
Tel. 6 9

314

5:4 An Easter Egg in PCI Express by Jacob Torrey

5:4 An Easter Egg in PCIl Express

by Jacob Torrey

Dear Pastor Laphroaig,

Please consider the following submission to your church newslet-
ter. I hope you think it worthy of your holy parishioners and
readers.

Our friends at Intel are always providing Easter eggs for us to
enjoy, and having stumbled across a new one for x86, the most
neighborly option was naturally to share with all interested par-
ties. This PoC uses a weird quirk in which a newer x86 feature-set
breaks security guarantees from older version. Specifically, the
newer PCI Express configuration space access mechanism breaks
virtual memory. Virtual memory is orchestrated by the CR3 reg-
ister (storing the physical address of the page tables) and the
page tables themselves. An issue with kernel shell-code and live
memory forensics is that unless the virtual address of the page
tables is known, it is impossible to map them (or any other phys-
ical address for that matter) into virtual memory, resulting in a
chicken-and-egg problem. Luckily, most operating systems keep
the page tables at a known virtual address (0xC0000000 on many
Windows systems), but this Easter egg allows access to the page
tables on any OS.

In kernel space, CR3 can be read, providing the physical ad-
dress of the OS page tables; however, due to Intel’s virtual mem-
ory protections, there is no way to create a recursive virtual map-
ping to that physical address. All that is needed is a way to write
an arbitrary 32 bits (which will become a PDE mapping in the
page tables) to a known physical address. This is the crux of the
issue, and the security of virtual memory depends on it. Luck-
ily, with the advent of PCI Express, there is now the “Enhanced

315

5 Address to the Inhabitants of Earth

316

We Recommend

CHAMBARD'S TEA

To All Persons Sufferlng from

CHRONIC CONSTIPATION,

Caused Either by Their Temperament or by Their Sedentary Octupations.

Without necessitating gny change in the habits, or in the regime, and
without cansing any fatigne, CHA lumn’ A ruulﬂlr restores the
funetions of the (lll!muvptrm'l mnd malntale min thelr
ditlon. “1he trade-marlk, ||I‘1<.l ENTAU} on each genuine hox.

cenis; Hmr-pm:! H5 e Ask for free samples.
Ask your drugegist for it,][o wl lll get ll for you.

LEG(}LL’S PHARMACY 286 7ih Avenue, New York.

And Leading Druggists.

VIN URANE PESQUI

(Pesqui's Ueanated Wine)

FOR THE CURE OF DIABETES,

It has been shown by medical statistics that there are in France every
TRADE maRx Year 10,000 deaths, or more, due to Diabetes through a deficient

treatment, whilst they could hive been cured by taking the VIN
URANE PESQUI This scientific p:eparation allays at once the unquenchable thirst,
decreases rapidly the sugar. It strengthens, restores health and vigor, and prevents

* | diabetic complications, such as gangrene, anthrax, etc. Pamphlet free.

LEGOLL'S PHARMACY, 286 7th Avenue, New York.

Rational Treatment of obesity with

Bald Alobecia. Di Flourens' Thyroidine Pills and Tablets
Hness, opecta, iseases of bave been successful in all cases. They are
the Scalp, Beard, Evebrows, perfectly harmless, and never fail.

and Evelashes, By mail, $1.00.
Scurf, Scald, Psoriasis, Pityriasis,| LEGOLL'S PHARMACY,
Dﬂﬂd”hﬁ chmg, Efc.. 2_8_6_7*2 Ave., - - New Yorik.

iy e U o the ULCERATED LEGS

i DEQUEANT LOT[ON Resulting from WVaricose Veins, Eczemas,

Ask for Free Pamphlet. and other diseases of the skin,are surely
! and rapidly cured by the use of the

L. DEQUEANT, Chemist, . .
Q ! Eau Preciecuse,

38 Rue Clignancourt, - - PARIS.
| DEPENSIER, Chemist, ROUEN (France).
DEPOT:
| LEGOLL'S PHARMACY, LEGOLL'S PHARMACY,
IZBB 7th Ave,, - - New York.' 286 7th Ave,, = = New York,
xxiv

New Scientific Discovery! OBES”‘Y Mtlg ;‘—:aahteg aty.|

NO MORE BALD HEADS. | %< ena fufope in- the. trestoment ot |

normal con- |

[=2)

0

10

12

14

16

18

20

22

24

5:4 An Easter Egg in PCI Express by Jacob Torrey

Configuration Access Mechanism” (ECAM), which shadows PCI
configuration space registers into physical memory at an address
kept in the PCIEXPBAR register (DO:FO offset: 0x60). This is
typically enabled on all the systems the author has come across,
but your mileage may vary. With this ECAM, changes made
to the configuration space via the legacy port I/O mechanism
(0xCF8/0xCFC) will be reflected in physical memory. Now all
that is needed is a register in configuration space that is at least
32 bits wide and can be changed to an arbitrary value without
impacting the system. Again, Intel is looking out for our church,
and through their grace, they provide a “Scratchpad Data” reg-
ister (DO:FO offset: 0xDC) that has no semantic meaning, just a
location for software to store data. Now we have the function
ModifyPM() for physical memory. (This is for 32-bit Windows
without PAE, running as driver code.)

VAZ]
Sets up the PDE to map in the real PDT wusing the
MMIO rTanges of PCI Configuration space
@return The PCIEXPBAR for comparison
*/
ULONG ModifyPM()
{
ULONG MMIORange = O;
__asm
{
pushad
// Utilize the scratch pad register
// as our mini-PDE
mov ebx, cr3
// This is going to hold our new PDE
// (The bits in CR3 with the least
// significant stuff removed)
and ebx, O0xFFC00000
or ebx, 0x83 // P | RW | PS
mov dx, 0x0cf8
mov eax, 0x800000DC // Offset 0xz37 (0zDC / 4)
out dx, eax

mov dx, OxOCFC

317

26

28

30

32

34

36

38

40

42

44

46

11

13

15

17

5 Address to the Inhabitants of Earth

mov eax, ebx
out dx, eax // Write our PDE

// Determine where in physical memory
// we can find the PDE

mov dx, 0x0cf8

mov eax, 0x80000060

out dx, eax

mov dx, O0xOCFC
in eax, dx
mov MMIORange, eax //Save walue and BAN!

popad
}
if (VDEBUG)
DbgPrint ("MMIO Base Address: %x",
MMIORange) ;

return MMIORange;

Once the scratchpad register is primed and ready, and the
physical address of the ECAM is known, the next step is to treat
the register as a PDE mapping in the OS page tables to add a
recursive mapping at a known location.

/xx
Sets up a recursive mapping to the 0S page directory
I commented <t very thoroughly because it’s quite complex.

Basically it:
-> Saves the current (real) CR3 walue
-> Creates a new PDE to map in the (real) PDT
-> Creates a virtual address using the (fake) PDE we
inserted in ModifyPM
-> Switches to the (fake) CR3 and utilizes the constructed
virtual address to insert the new recursive mapping
into the (real) PDT
-> Switches the CR3 back and continues on smugly
*/
ULONG recurMap ()
{
ULONG MMIORange

= 0;
ULONG PDEBase = O0;

318

19

21

23

25

27

29

31

33

35

37

39

41

43

47

49

51

53

57

59

61

63

65

5:4 An Easter Egg in PCI Express by Jacob Torrey

ULONG PDEoffset = 0;

// Sets up the (fake) PDE and
MMIORange = ModifyPM();
MMIORange &= 0xF0000000;

if (VDEBUG)
DbgPrint ("Mapping PDT to itself");

__asm {
cli

pushad

// Save the current CR3,
// seems like owerkill, but it makes sense

mov ebx, cr3 // Copy to conmstruct our wirtual address
mov ecx, cr3 // Save a copy so we don’t mess up things

mov edx, MMIORange // Our new CR3 wal

// Setup our wvirtual address

and ebx, O0x003FFFFF // Gets wus our offset into stuff

or ebx, 0x0DC00000 // Reference the PDE offset

// of (037 << 22)
// EBX should now have our virtual address :)

// Tests to see if the PDE is free for use
test_pde:

add ebx, 0x4 // Offset to unused PDE

// Keep the offset war up to date
// (but uint32 aligned, not uint8)
mov eax, PDEoffset

add eax, Ox1

mov PDEoffset, eax

//¥* k¥ k¥ k¥ *¥xkx%x BEGIN CRITICAL SECTION
mov cr3, edx // Inject our new CR3

mov eax, [ebx] // 4dd our mirthful PDE entry,

// which should map in the PD

invlpg [ebx] // Invalidates the virtual address we

// used just in case it could cause

// later problems.

mov cr3, ecx // Restore everything nicely

319

67

69

71

73

75

s

79

81

83

87

89

91

93

95

97

99

101

103

105

107

109

113

5 Address to the Inhabitants of Earth

//**¥*xxkkxxxkkxx% END CRITICAL SECTION

cmp eax, 0 // Can we use this entry?

je inject_pde // Try the nezt one

jmp test_pde // Found an empty one, w00t!

// Injects our recursive PDE into the PDT
inject_pde:

}

// Setup our recursive PDE (again)

mov eax, cr3 // A copy to mod for new recursive PDE

and eax, OxFFC00000 // 0Only the most significant bits
// stay for 4M pages

or eax, 0x93 // P | RW | PS | PCD

// EAX now has the same PDE to put into the real PDT

//*¥*xxxxxkkkkkk** BEGIN CRITICAL SECTION

mov cr3, edx // Inject our new CR3

mov [ebx], eax // Add our mirthful PDE entry which
// should map in the PD

invlpg [ebx] // Invalidates the virtual address we
// used just in case it could cause
// later problems

mov cr3, ecx // Restore everything nicely
// kkxxxxxxkkkxxxx END CRITICAL SECTION

// Determine the v. address of the base of the PDT
// (remembering the differences in alignment)
mov eax, cr3 // A4 copy to modify for
// our new recursive PDE
and eax, OxO003FFFFF // Only the most significant
// bits stay for 4M pages
mov ebx, PDEoffset
shl ebx, 22 // Offset into the PDT
or eax, ebx
mov PDEoffset, eax

popad

sti

if (VDEBUG)

DbgPrint ("Mapping complete."
"should be mapped in at Ox%x!",
PDEoffset);

return PDEoffset;

320

5:4 An Easter Egg in PCI Express

by Jacob Torrey

This code, on a 32-bit non-PAE system, will return the virtual
address that maps in the page directory and allows you to map

in arbitrary physical memory as a known location.

It should

be noted that kernel privileges are needed (to access CR3) and
to operate on a kernel page marked as Global so as to persist

through the CR3 changes.

The author hopes you enjoyed this

weird machine and remember to treat your input data as formally

as code, for only you can prevent vulnerabilities!

Sincerely,
@JacobTorrey

"N f Y
w Produced and widely used in England and U.S.A.
COMPLETE BUSINESS PACKAGE

-

INCLUDES EVERYTHING FROM INVENTORY TO SALES SUMMARY
PROMPTS USER, VALIDATES EACH ENTRY, MENU DRIVEN

60-100 require only 2-4 hours weekly and your entire business is under controt.

PROGRAMS ARE INTEGRATED- SELECT FUNCTION BY NUMBER-
=ENTER NAMES/ADDRESS, ETC \3 PRINT CUSTOMER STATEMENTS

02 ENTEF{/PFHNT INVOICES

03 = ENTER PURCHASI

04 ENTER AC RECEIVABLES

05=ENTER A/C PA’
06 = ENTER/UPDATE INVENTORV
07 = ENTER/UPDATE
08 = ENTER/UPDATE BANKS
09 = EXAMINE/MONITOR SALES LED
10 = EXAMINE/MONITCR PURCHASE 22=PRINT CASH W Ft
11=EXAMINE/MONITOR (INCOMPLETE RECORDS) 28= ENTER/UPDATE PAYROLL (NOT YET AVAILABLE)
12 = EXAMINE PRODUCT SALES 24 = RETUI
WHICH ONE? (ENTER 1- 24)
01 SUB. MENU EXAMPLE: 01 = EXAMINE: 02 = INSERT: 03 = AMEND 04 = DELETE
= PRINT (1,2,3): 06 = NUMERIC COMBINATIONS: 07 =
VERY FLEXIBLE ADD YOUR OWN FUNCTIONS. EASY TO INTEGRATE
il programs in BASIC for CP/M. PET. 8800

G. W. COMPUTERS LTD, the producers of this beautiful package in U.K.

16= FRINT TAX STATEMENTS

17 =PRINT WEEK/MONTH SALES

18 = PRINT WEEK/MONTH FURCHASES
19=PRINT YEAR AUDIT

20 = PRINT PROFIT/LOSS ACCOUNT

21=UPDATE END MONTHOFILES MAINTENANCE

J

CONTACT TONY WINTER 01-636-8210
BARCLAYCARD ACCEPTED
CBM APPROVED

N

CALLERS BY APPOINTMENT ONLY
89 Bodford Court Manslons

WE EXPORT TO ALL COUNTRIES:
BARCLAYCARD ACCEPTED
CBM APPROVED Bediord Avenue
London WC1, UK.
CPIM Ver. 9.00 Is one 16 K core program
using random access releasing both drives for
data storage, and 250 word vocabulary is
translatable In any forelgn language.

CP/M Ver. 9.00 is one 16 K core program
using random access releasing both drives for

data storage, and 250 word vocabulary is
translatable In any foreign language.

PRICES: Programs 1-23 EXC (19,20,22,23) £475 £575 Stock Integrated Option + £100 Bank Integrated Option + £100

321

5 Address to the Inhabitants of Earth

5:5 A Flash PDF Polyglot

by Alex Infihr

PDF and SWF Reunited

I had the idea of creating a nice little file, one which is both a
valid PDF and a valid Flash file. Such a polyglot can cause a
lot of trouble, because they can smuggle active content like Flash
in a harmless file type, PDFE] The PDF format is a really good
container format, because the Adobe PDF parser is not very
strict. The PDF header “%PDF-" does not have to be at offset
0; the parser will search the first 1,017 bytes for the header.
Recently, however, Adobe decided to stop supporting PDF files
that start either with CWS or FWS at offset 0. Both are possible
headers for a Flash file. This should make it harder to create such
polyglots.

Main File Structure

Unlike PDF, Flash files always need their header at offset 0. It
is not possible to insert any data before it. To fulfill this re-
quirement, we need to find a way to bypass Adobe’s prohibition
of Flash headers. The next step requires the PDF header to be
embedded in the first 1,017 bytes without destroying the Flash
file. If we meet all these requirements, we will be able to append
the rest of the PDF data at the end of the file.

4As harmless as PDF can be, at least!

322

5:5 A Flash PDF Polyglot by Alex Infiihr

Bypassing the Header Restriction

The bypass was rather simple, all you have to do is open the
SWF file format specification to page 27E]

The specification mentions three possible headers: “FWS”, “CWS”
and “ZWS”. FWS is used for uncompressed Flash files, CWS for
ZLIB compressed files and ZWS for LZMA compressed files.
Maybe you've guessed it already, but Adobe forgot to block the
ZWS header. For now the file structure looks like this:

>>> structure [0:3]

ZWS

>>> structure [4:]

[...Flash data...][...PDF data...]

The Missing PDF Header

The last thing missing is the PDF header. Let’s look in the
Flash specification for a place. In the header the length of the
uncompressed Flash file is stored at offset 0x04, requiring four
bytes. It seems to be useless, as no Flash parser seems to use
this field! This means we can overwrite it with the PDF header,
but we are missing one byte. The SWF specification defines the
Flash version at offset 0x03. Combined with the following four-
byte length field, we have a perfect place for the PDF header!
Our header structure looks like this.

>>> structure [0:3]

ZWS

>>> structure [3:8]

%PDF -

>>> structure [8:]

[...Flash data...][...PDF data...]

This is all it requires, but there is more!

5Search for SWF-file-format-spec.PDF.

323

5 Address to the Inhabitants of Earth

The Madness

For unknown reasons the Flash file needs to be bigger than a
certain size. I hard coded this size in my script. If the Flash file
is too small, the created polyglot won’t be rendered by the Adobe
PDF reader, which makes no sense. I tested the PDF /Flash
polyglot across a number of different browsers, and the results
are very interesting. Please test it with your own systems.
e Windows 8 32 Bit:

— IE 11: PDF parsed, Flash not parsed

— Chrome: PDF parsed, Flash not parsed

— Firefox: PDF not parsed, F<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>