RYAN
! e Silvanovich
tashenka

ol

About Me

Security Researcher at
BlackBerry

— (But | don’t represent them)
Studied electrical engineering,

out mostly into software
nacking

First-time hardware
nacker/reverse engineer

Tamagotchi enthusiast

What are Tamagotchis?

 The same virtual pet toys you remember from
the 90’s

* Functionality has evolved substantially

— Now they can go to school, have jobs, make
friends, get married and have kids!

* Newer versions have an IR interface
so that they can communicate with
other Tamagotchis

Tamalown Tama-Go

* The “Christmas” Tamagotchi from 2010
* Same functionality for smaller hands

e Supports detachable ‘figures’ with extra
games and stores

Goals

Dump Tamagotchi code

Answer the ‘deeper questions’ of Tamagotchi life
Make my gotchis rich and happy

Make a Tamagotchi development environment
Have fun!

Hardware Teardown

* Took apart a Tama-Go and Tamagotchi to
determine if code dumping was a possibility

* Looked for helpful interfaces
* Also took apart a figure

Tama-Go Board

AR
(5 (15]
e

LﬂlNEP "y~

r‘}\\uSﬁ
[] CLA1C &

o @)L

P2

N

o
j ’ gl“ ‘2‘{_‘1 “ cull‘—‘“%li:'
nifil

sy oy HUERN W (P

' by L o Yot : pan

- ‘._.' H ‘ . %@ lu : C »':: ” 'l. # oo “
b d ‘:v - -' - e s : "' ~‘ - -

-

Tama-Go Figure

Microcontroller
Identification

ldentifying the Microcontroller

* Considering the lack of external hardware,
MCU was likely under the ‘blob’

* Tried several methods to remove, including
acetone, heat, a razor blade and a chopstick

* Travis Goodspeed kindly offered to decap the

chip with acid 1{ r../\ —
£ /

&)

//
I ,.-\-8

* Eventually, success!

2o e~ unemue D S WM e D W =

i e O B I T B e A o Y e B A A oD i B i
[EEDFEIDEL DL LETL T Dk LGl

' If ’I irilepns Fo

(at-‘_i_I

TCEIT

rlill-

.Hli;—.

'nns;'.-

3 coeT B4

COvE B3

Hl'i‘i'_;

':no:

.\.".l:

CEMt2 58

rEvLInm

"""_.

‘F:t-h'} _-'-'1»’1‘”#":' g

-am -
T v N
e T

e -

" oo @

GPLB5X Series LCD Controller

8 bit 6502 microprocessor
1536 bytes RAM

320 or 640 kbyte mask ROM (depending on
model), baked to perfection for each customer

512 bytes LCD RAM

4 color grayscale LCD controller
SPI

Audio DAC

Generalplus

Dumping Mask ROM

* Not sure how to dump mask ROM, but had a
few ideas

— Restore a bad state from EEPROM
— Look for test functionality

— Exploit a vulnerability in figure or IR processing
— Read ROM with a microscope
— Pin manipulation

Test Program?

e GeneralPlus mask ROMs contain a GP test
program that can probably dump code

e Contacted GeneralPlus for a devkit
— Requires an NDA
* Looked around online

— No one seems to have a devkit or know the test
program

9
Q

.f-{

()

Figure ROM

* Decoding the figure ROM could be useful in a
few ways
— Making your own Tamagotchi games
— Executing code on the Tamagotchi
— Dumping mask ROM
— Understanding Tamagotchi behaviour

@ @ 9 % , W > LY 4 0 __ &
B q.\. ~ “ *x
N gy e AR

- e .
—— = T ¥y - P Y A
- ——

Figure ROM Pads

 The unpopulated PCBs in lite figures appear to
be the same boards used in regular figures

 Makes the mask ROI\/I pad Iayout visible

Figure ROM Chip

e GeneralPlus makes an SPI ROM with a similar
layout

* Assumed figures use this ROM

Figure ROM Pins

 Based on the GeneralPlus ROM datasheet,
was able to identify the figure pins

1, 4 and 8: Ground/Jumper
2: Serial clock (C)

3: Serial data input (D)

5: Power

6: Chip Select (SB)

7: Serial Data Output (Q)

ROM Dump

* Dumped the ROM using an Arduino as SPI
master

Decoding ROM

 The Tamagotchi has a four-tone display, so
looked for strings of 0x00, 0x55, OxAA and
OxFF, representing images

* Noticed that these strings were preceded by

values which were reasonable for length and
width

Decoding Images

* Tried decoding these images

-.1. .!..
~ "L
I:n.-"‘?ﬁ

* Eventually, it worked!

READY-

=t

(L

* The figure contained a lot of images
* Text displays appear to be images

im-2-61

Bl Bitmap Image

1.30 KB

im-2-65

SHIRT Bitmap Image

142 KB
im-2-69

oueratts | Bitrnap Image

lmages

im-2-62

'L-f&?'rmv‘«.;’l Image

147 KPR
L.as [ND

im-2-66

Bitmap Image

1.42 KB

im-2-70

'L-f&?'rmv‘«.;’l Image
ok =

14]
1.4/ LL

im-2-63
Bitma p I!'r:ﬁg*
1.42KB
im-2-67
Bitrmap Image

1.42 KB

im-2-71
Bitmap Image
1.42 KB

Animations are series of images

irm-2-161
Bitrmap Irmage
irm-2-165
Bitrmap Image
161 KE

irm-2-162
Bitrmap Itnage
1.61 KB
irm-2-166
Bitrmap Image
1.61 KB

itn-2-163
Bitrnap Image
1,61 KB
irm-2-1a7
Bitrnap Image

L6l KB

&

im-2-64
Bitmap Image
1.42 KB
im-2-68
Bitrap Image
142K
im-2-72

Bitmap Image

23 Kb

irm-2-164

Bitrnap Image

1.61FKE
irm-2-168

Bitrmap Image

161 KE

The Rest of the ROM

* The ROM contains a lot of non-image data
* None of this data is GeneralPlus code

— Wrote a dissasembler

* Likely logic information in some sort of
serialized format

o

ag y)

Simulating the ROM

Could not obtain compatible flash

Attempted to simulate the ROM using an
Arduino, but chip is too slow

Switched to a Chipkit Uno, this was also too
slow

Eventually used a STM32F4 Discovery board

Simulating the ROM

 Knew the image format, so could alter images

Game Logic

The Tama-Go reads less than 50 bytes of non-
image data during all figure functionality

Game logic is represented by a one byte code

— This logic is executed with images from figure

Changing this code can cause a jump to non-
game screens

— Stats, food, death, etc. Every screen was available

Many codes caused freezing

Evolve Demo

Flash Figures

Flash Figures

 MrBlinky ordered a
set of figures to
experiment with
— They contained flash!
— Built a figure

programmer

— The ability to re-flash
figures made testing
much easier

&y T 10
AN T A
Wig T A
-t & -~ 4‘".” ’,L /lmlli"’-&w’l‘ {1’
| - . p "“))U.'(ﬂ
B al -, -

* [tems are implemented using a byte code
format

— Instructions include showing images, playing
sounds and changing Tamagotchi stats

— Some unusual behaviour for invalid instructions
— Posted ‘dev tools’ on github

mer B &

Game Logic

The Tama-Go reads less than 50 bytes of non-
image data during all figure functionality

Game logic is represented by a one byte code

— This logic is executed with images from figure

Changing this code can cause a jump to non-
game screens

— Stats, food, death, etc. Every screen was available

Many codes caused freezing

6502 Facts

e Memory mapped into a single address space
* No MMU

— Unmapped addresses return O (usually)
— Invalid instructions execute undefined behaviour

e Reset s rare

— Great for explotation

First Attempt

* Assumed ‘game codes’ were indexes into a
jump table

— Invalid indexes would cause jumps (RTS) to non-
pointer data

* Only controllable RAM is LCD RAM
— 0x1000-0x1200

* Made a NOP sled and hoped

m o — - 2

¥ IBWYAT T Bandai 2010 CHINA "«

Code 0OxCC

* Did not work, but code 0xCC had interesting
behavior

— Buzzed when bit 3 of byte 68 was set and
detected figure detach

— Froze otherwise

e Also noticed that some middle indexes worked

= — 22 ()
T A A

- ." - ./\"'Vfo
40 o SO : i - SR

S}
% New Theory

* All indexes are valid, but the stack isn’t set up

correctly

* OxCC plays the noise when button pressed

/ LCD RAM

if |sound enabled:

plZy_s ound ()

jump to|a

else:

Game code jump
table address

jump to|b

New Theory
e Butif

— A pointer to the LCD RAM is on the stack
— Stack confusion is occurring

— There’s 255 possibilities
* Why isn’t it working? g

8
il

Command Prompt

wProgram Files <x86>>Sunplus“FortisIDE-U1.6.12>x2s ~P ~T8

HO: SYHTAR 6582: SYHTAX 2588: 6582 SUNH b ¢ type addressing modes
Al : ADC #dd ADC A.dd 67H S6H 2 2 cpuld ; immediate
AA2: ADC aa ADC A.<aa> 65H 17H 2 3 cpuld EEro page
AA3: AMD #dd AND nA.dd 29H 54H 2 2 cpuld ; immediate
AA4: AND aa AND A.<aa> 25H 15H 2 3 cpuld EEro page
AR5 : BCC 77 JR NG, 2?7 78H 28H 2 2 cpuld ; relative
AAG = BCS 77 JR C.?#7? BAH 38H 2 2 cpuld : relative
AAY: BEQ 77 JR .77 FAH 3AH 2 2 cpuld ; relative
AAg: BIT aa BIT <aa> 24H 11H 2 3 cpub ; EEro page
AR : BIT aaaa BIT <aaaa> 2CH 51H 3 4 cpub ; ahsolute
Ai@: BMI 77 JR M.?7? 3AH 18H 2 2 cpuld : relative
A11: BME 77 JR NZ, 2?7 DAH 2AH 2 2 cpuld ; relative
A12: BPL 77 JR P.?? 18H A8H 2 2 cpuld ; relative
A13: BRK BREK BAH AAH 1 7 cpuld ; implied
Ai4: BUC 77 JR HOu 77 56H @8AH 2 2 cpuld : relative
A15: BUS 77 JR oy, ?? YAH 1AH 2 2 cpuld ; relative
Ai6: CLC CCF 18H 48H 1 2 cpuld : implied
A17: CLI EI 58H 4AH 1 2 cpuld ; implied
A18: CLU CUF BBH 78H 1 2 cpuld : implied
A17: CHP #dd CP A.dd CIH 66H 2 2 cpuld ; immediate
A2@: CHP aa CP A.Caa> C5H 27H 2 3 cpuld EEro page
A21: CHP aa.H CP A, Caatl> DS5H 2FH 2 4 cpuld ;zero page indexed x
A22: CPH #dd CP ".dd EAH 32H 2 2 cpuld : immediate
A23: CPX aa CP H,.Caa> E4H 33H 2 3 cpul ; ZEPD page
A24: DEC aa DEC <aa> C&H AJH 2 5 cpuld EEro page
A25: DEC aa.H DEC <aati> D6H ABH 2 6 cpub ;zero page indexed x
A26: DEX DEC X CAH E2H 1 2 cpuld : implied
A27: EOR #dd HOR A.dd 49H 46H 2 2 cpuld ; immediate
A28: EOR aa HOR A.<aa> 45H @7H 2 3 cpuld EEro page
A29: EOR aa.H HOR A.<aatx> 55%H BFH 2 4 cpub ;zero page indexed x
A3@: INC aa INC <{aal EGH B3H 2 5 cpuld ; EEro page
A31: IMX ING X EBH 72H 1 2 cpuld ; implied
A32: JMP aaaa JP aaaa 4CH 43H 3 3 cpuld abzolute
A33: JHP <aaaa? JP Caaaar 6CH 53H 3 5 cpuld ; indirect abhsolut
A34: JER aaaa CALL aaaa 28H 18H 3 6 cpuld ; abzolute
A35: LDA #dd LD A.dd ATH 74H 2 2 cpuld ; immediate
A36: LDA aa LD A.Caa> ASH 35H 2 3 cpuld EEro page
A37: LDA aa.H LD A,.Caatl> BS5H 3DH 2 4 cpuld ;zero page indexed x
A38: LDA aaaa LD A.Caaaar ADH 75H 3 4 cpuld ; abzolute
A39: LDA aaaa.® LD A,.Caaaa+®?> BDH PDH 3 4 cpud ;absolute dindexed x
A48: LDA Caa.®H> LD A . Caa+R>> A1H 34H 2 6 cpuld ; indexed indirect x
Ad1: LDH #dd LD n.dd AZH BAH 2 2 cpuld ; immediate
A42: LDE aa LD H.Caa> AGH BiH 2 3 cpuld ; EEro page
A43: LDX aaaa LD #,.Caaaar AEH FiH 3 4 cpub ; abhsolute
Ad44: HOP HOP EAH F2H 1 2 cpuld : implied
A45: ORA fHdd OR A.dd A7H 44H 2 2 cpuld ; immediate
A46: ORA aa OR A.Caa> B5H B5H 2 3 cpuld EEro page
A47: PHA PUSH f 48H 42H 1 3 cpuld ; implied
A48: PHP PUSH F @WBH 48H 1 3 cpuld : implied
A47: PLA FOF n 6BH 52H 1 4 cpuld ; implied
At@: PLP POP F 28H 58H 1 4 cpuld : implied
A51: ROL A ROL A Z2AH DBH 1 2 cpuld ; accumulator
A%2: ROL aa ROL <aa> 26H 91H 2 5 cpuld EEro page
EEQ: ROR A ROR ﬂ 6AH EEH 1 g cpu§ H accumulator

PR PR

]

P

Code Execution

e Switched
Instruction sets

e Used simpler
shellcode

* Using the correct
Instruction set, it
worked on the T e W e
fourth index I tried, T =
Oxd4

Dumping Memory

* Wrote code to dump
entire memory space of
Tamagotchi

* Qutput memory over
SPI using port A
(buttons)

* Decoded output with
signal analyzer

Paging

The ROM is larger than the memory space
First page is always mapped

Other pages are mapped one at a time
Determined 0x3000 is page port
Dumped all 19 pages

Pages

* Quickly identified pages by inspection
— Pages O to 6 are code
— Pages 7 to 9 are blank
— Page 10 contains images and a image pointer table
— Pages 11 to 18 contain image data

— Page 19 contains audio

T

 Dumped images from image pages

lmages

& [y HPPLE FIE] o B SELLSE = =) = SHOOTHIE % % @ SUNDHE 2 Eve TF
p18picssl pl18picss1 pl18picss2 pl18pics93 pl18picss4 pl18pics85 p18picsS6 p18picss7 p18picss8 p18pics89 pllpics100 pl18pics101 plBpics102 plBpics103 pl8pics104 pl8pics105 pllpics1D6 pl8pics107
[HOEDLATE L el B vosuRT = & = CakE @] 2 Uen "k i et e e
218pics108 pl8pics109 pl8pics110 pldpics11l pldpics112 pl8pics113 pldpics114 pllpics113 pldpics116 pllpics117 pllpics118 pl8pics119 | pllpics120 pl8pics121 pldpics122 pllpics123 pllpics124 plidpics12s
s i I s, o o ol e iy s 4 o o
p18pics126 pl8pics127 pl8pics128 pl8pics12% pl8pics130 pl8pics131 pl8pics132 pldpics133 plipics134 pllpics13s pl8pics136 pllpics137 pl8pics138 pl8pics139 pl8pics140 pl8pics1dl pllpicsl4d pl8pics143
R R
Vg,) g g, i b g e o " 1 i i
pl8pics1dd plBpics14d pllpics146 plipics147 pl8pics148 pllpics148 pl8pics150 pl8pics131 plipics132 pllpics133 pllpics13d plBpics135 pl8pics136 pl8pics1sy 18pics158 pl8pics139 pl8pics1B0 pl18picsiel
Fai R R SLEEP ég'_‘n"""r" H B -
18pics162 pl8pics1ed pllpics1fd pl8pics1eS pl8pics16t pllpics167 § pl8pics168 pllpics160 pllpics170 pllpics17T1 pl8pics172 plBpics173 plipics1?4 plBpics175 pl8pics176 plpics1?7 pllpics178 pl8pics1T8
o i L3 ez £

ROM Reversing

e Started using IDA
— Learning curve was steep
— No paging support
* Eventually wrote a simulator
based on py65
— Added support for LCD and ports

— Slowly decoded the secrets of
Tamagotchi life

Trnecgsteh]

& & ‘%

) v 2 v
"‘f:.?.i,',ﬁgh ﬁ:w?d?o%
o 150s shags.

1
.

Better Emulator

* Asterick wrote a JavaScript-based emulator

— https://github.com/asterick/tamago

reset nmi

0:-TIMO | w irg

step stop

Mo Figure |
Flags

C Z I D V¥ W
H OB B

=
LD
75 sTR
JME

1 F M OEEE

(e e e i e I R e I

e B e Ot I e O e i O e 5 I e R
¥

Ly Wy

o Y e

[

k|

wiH e

o I o I e

g

o

P_CPU Bank Ctrl (0x3000)

bank [0:7] 01

Qoo o
QoI
0020 11
0030
0040
o050
0080 ¢
oo7o
0080 1E
oo80
o0ag
O0EBQ
ooca
Q0D0 =
O0EQ
QoF0
AT A0

0

https://github.com/asterick/tamago

Tamagotchi Internals

* After start-up, Tamagotchis cycle through a
single loop, driven by tm1 interrupts

* Always in one of 0x41 states
— Table determines state actions
— Can have substates and subsubstates and ...
— State entry behaves differently

— States are responsible for all behaviour (buttons,
sound) except for physical LCD update and SPI poll

— A LOT of pointer tables

Secrets So Far ...

* What makes a Tamagotchi a boy or a girl?

— Determined from entropy source C4, based on
how many times tm1 has fired since the
Tamagotchi started up

 What toddler a baby grows into is random
— Intentionally evened out

— Some toddlers are higher-maintenance than
others

Secrets So Far ...

e What teen a toddler becomes is based on care

— Two factors

 What adult a teen becomes depends on care
and training

— Toddler care matters

* You can potty train your Tamagotchi

Test mode

* Uncovered a test mode if figure ID is OxFE

¥
[
loc_EBE4:
LDA #
STh byte_C2
LDA #
SThA byte_C1
LDA #
STh byte CA
JSR sub_ECCY
LDA #
STh byte_C3
JSR top_read spi
BHE loc_EBFF
I
v
[
loc_EBFF:
LDA byte_78@
CHP i
BEQ loc_ECBC
I
¥
e B
CHP #
BEQ loc_ECHAC
I
vy
s 5
loc_ECHBC:

LDA % 1
BHE S0Pl 15

@
Test Mode & &

_,'/

Allows character and spouse to be selected

Allows all stats to be altered

Allows care factors to be viewed and altered
Two unused care factors

More Secrets

* |t doesn’t matter who your Tamagotchi
marries
— They’re just as happy
— The kids turn out just the same
* Unless you marry an Olditchi
* Figures don’t alter Tamagotchi functionality
outside of their functionality

— Special display for 100 figures

Reaction

]

EE} Just be aware user ar tamatalk cannot bhe held responcible if you do these tasks. These are your choice, at your own risk.
. Interesting.

o

*cough® Makiko and Shimashimatchi *cough..*

Guide=

er 05

Interesting, you are putting much effart in something that most consider not warth it, kudos to you &

F11

GeneralPlus Test Program

* Analyzed GeneralPlus Test Program

 Hoped it would make dumping other GP
ROMs easier

C01s
Co3a
COSF
cog4
COaSs
COCE
COF3
Clis
C13D
Clez
c187
Cl1aC
Cibl

48 |AD

wm N
m o m

0s
30

P

S0

88
Cs
1C
3C

FD
00

30
28
40

70
71

3C 4B

0800

88 AS
D3 DO
€0 70

Fe FB
07 10
0002
8D\ 70
37,28
30 4C
AZ 52
CA DO

€8 AR

(O]
w o tx
oW e
w o o @

D3
D8

ce
Fl
oc
14
8D
13
FO
30
48
48
48

GeneralPlus Test Program

* Polls port A for a code, runs test and outputs
results on port B

* Two interesting codes, 3 and Ox16

* Code 3 checksums custom address range
— Unfortunately contains a bug so it doesn’t work

- —&—ﬁ@@ﬁ>
o m s |MEO

Test Program Code Dump

* Code 16 fills RAM up with code from Port B
and jumps to it!
 Can dump code from any GeneralPlus LCD

controller so long as Port A, Port B and TEST
are bonded

P

TR
J ' | o

MORE INTERACTIVE

‘E:.L-g-.u(z?:, '[’;/ 2zl L“’"’f’

Dev Tools

Existing Tools

* Wrote two ‘dev’ tools in the process of
reversing

— portrait.py puts an image on the Tamagotchi
screen

— itemmake.py makes a ‘music video’ based on a
script

e Both have serious limitations

* Wanted to write a tools that allows generic
6502 execution

Reliable Exploitation

* The vulnerability used to dump the ROM was
30-40% reliable

— Worked better if the Tamagotchi had been running
awhile

 Needed 100% reliability for a useful dev tool

The ROM Dump Vuln (D4)

* The game indices in the figure ROM cause a
state change to 0x27 + the index

ceqBiy 4E2E LDA byte 1A4

seqdih: 431 BEID) loc 44FE39D
seqdok:4E33 LDA gameindex?2
ceqBBy:4E36 JHP loc 44E3C

seqd84:4g39 ; —-—--—-—-------------------"-"""--"~-"~-"~-"—~—~—~———
ceqBily:4E3D

ceqBBL-4E39 loc 44E39:

seqdok:4E3Y LDA gameindex
seqBdBhy i L4E3C

seqBBb:4E3C loc 44E3C:

ceqBil 4E3C CLC

seqdih:4E3D ADC it ;
ceqB@By:4E3F sTA current state 22
seqday:4Ei JHP locret 4A4ELL

e Valid indices are between 0 and 0x41
— No validity check

The ROM Dump Vuln (D4)

* On a state change

— Tamagotchi indexes into a state page table,
switches to the page at the index and jumps to
0x4000

— Code pages have code at 0x4000 that indexes into
a jump table for the page

— Invalid states could cause a jump to a non-code
page, or a jump to an unexpected address

The ROM Dump Vuln (D4)

e State is set to 0x27 + OxD4 (OxFB)
— Page table returns Ox3c (actually part of LCD table)

* Switching to page 0x3c makes memory at
0x4000 float

— No wonder this exploit is unreliable

Vulnerability Idol

* Finding a more reliable index required a lot of
tracing

* Eventually tried several indexes to find one
that seemed reliable
— OxCD was a good contender

Index OxCD

* State is set to Ox27 + OxCD (OxF4)
— Page table returns 0x4 (also part of LCD table)

* Loads page 4 and indexes jump table at OxF4
— This location is actually code: INC S11E
— As data, it resolves to location Ox1EEE
— LCD RAM addressing ignores bits 2-7 of byte 3
— Resolves to Ox10EE (in LCD RAM)

* This exploit will always work

tASMgotchi CIC
-
6502 Assembler for Tamagotchi =

Outputs binary ready to be loaded on figure

Loads code into RAM, and automatically
handles paging during execution

Contains convenience functions for common
functionality such as LCD writes and IR

— Largely from Tamagotchi ROM
Ophis based

Making the Dev Kit

* Lack of datasheet made writing some
functions difficult

— Limited knowledge of port locations
* Determined a lot of functionality from the test
program

e Still a lot of unknowns
— Power management, SPU, watchdog
— Contributions welcome!

Making the Dev Kit

* Egg Shell board

* SPI programmer and
IR for future RCE ©

e Also a Lilypad USB
Arduino

Tamagotchi Tools

https://qgithub.com/natashenka/Egg-Shell

Portrait maker
ltem maker

tASMgotchi
Board specs

https://github.com/natashenka/Egg-Shell
https://github.com/natashenka/Egg-Shell
https://github.com/natashenka/Egg-Shell

Workshop

Learn to hack Tamagotchis here at 30c3!

Today at 7:30pm in Hall E

Kit is €25 + VAT, and includes a Tamagotchi, figure and a
programming board

Egg Shell Boards

Boards €11, PCBs €2

http://natashenka.ca/boards/

http://natashenka.ca/boards/
http://natashenka.ca/boards/
http://natashenka.ca/boards/
http://natashenka.ca/boards/
http://natashenka.ca/boards/
http://natashenka.ca/boards/
http://natashenka.ca/boards/
http://natashenka.ca/boards/

Buttons

Conclusions @
7

Dumped Tamagotchi code
 earned about Tamagotchi internals

 earned the secrets of Tamagotchi life
Made Tamagotchis do new things

Most importantly, good times were had by
all...

xcept for the Tamagotchis

A New Tamagotchi!

-
R

Tamagotchi Friends

e Similar LCD and form factor

— No IR or figures

— Contains NFC
* Send gifts
* Visit
* Send messages
* Daily limits

Is it Hackable? @

/el

 Tamagotchi Friends probably uses the same
MCU as the Tama-Go

— Same form factor and LCD

 |fit does, code can be dumped using the
GeneralPlus test program
— Decapping may be required
— Reduced attack surface for code execution

* If not, who knows?

Intwtion s
averything in

mzking

Loves

Chinstehi A becutiful,

rardwacking

Always
blegs
chost hiz
frieads with
Amakutehi

Everythieg
=he cosks
is sweet | AURUS ;

AuwaEn P

t Stylists g RS o
blozded,
hosd
g\ workar
K| life 1e the

Runs the 1l
Salon of anmounzer
Dreems

\ the Caffrer
Hotshot e s Salen

preducer

Hates

unbrelias,

wants to

be loved

tune any
instrament

Excels
ot Smepi

everythin
thet happens

Cen boat
her stomoch

A ztubbzen
old bulder
of boats

Loves
Elaying
the leader -
£/ Loves his
students,
A total

tekisg ever
Temagateh
Plangt

A pleasast
genicz

Loves
Flaghy
feshien

msle

foncy lod

i/

cemputerized
kit entire
reuss!

<RI R TY HOWH0- 13 s Tarv o RaTe

sl

yousg ot

Mysterioos
fortune
teller

Smarn
followers of
Spozeytehi (Y

A refired
edult

sl S Designers i

More Info

I:' -
8 ¥ £
http://natashenka.ca

natalie@natashenka.ca
"" "‘ @natashenka

N

http://natashenka.ca/

