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Government intervention on consumer crypto hardware: A look at the

PX-1000 before and after the NSA’s involvement.

by Ben Brücker

”The PX-1000 is a device capable of transmitting encrypted text messages over telephone

lines. We show that the original version that was produced by TextLite implements the

DES algorithm correctly. In 1983, when Philips USFA distributed this device as the PX-

1000Cr, the NSA made a deal with Philips USFA to implement an alternative algorithm.

For this alternative version we show that it does implement a stream cipher instead of

the DES algorithm.”
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Chapter 1

Introduction

1.1 The goal of this bachelor thesis

In this bachelor thesis we will take a closer look at the cryptographic algorithms used

in the PX-1000 developed by TextLite and the PX-1000Cr by Philips.

First we will look at the PX-1000 version which is presumed to use the DES algorithm.

Then we will analyze the PX-1000Cr. This device implements unknown cryptography

supplied by the American National Security Agency (NSA) to Philips USFA.

Since this thesis deals with old material and a hands-on topic, there are very few aca-

demic references. Therefore this will be a one-off research instead of trying to further

already existing work.

1.2 Historical context of the PX-1000

The PX-1000 is a small hand-held device, capable of sending and receiving text messages

over phone lines. The PX-1000 was originally developed by the dutch company Text

Lite BV. They themselves distributed two versions [2]:

� Text Tell PX-1000: The standard version, featuring DES based encryption.

� Text Tell PX-1000 CALC E: This version forgoes the en/decryption feature in

favor of an arithmetic calculator.

The initial version of the Text Tell implemented the Data Encryption Standard (DES).

Therefore it was able to encrypt messages securely (for that time) for transmission over

phone lines [3].

1



Chapter 1. Introduction 2

Figure 1.1: The original Text Tell PX-1000 [1]

In the early 1980’s, Philips Electronics bought the right to distribute Text Lite’s Text

Tell in the Netherlands and re-branded it to the Philips PX-1000 [1].

Philips-USFA (UltraSoneFabriek) was Philips branch involved in military and crypto-

graphic research for NATO and the Dutch government. According to sources of the

Crypto Museum [1] they had already implemented an encryption scheme ”SAVILLE”

supplied by the NSA in the Spendex 40 secure phone. [1]

Research by Marcel Metze of the Groene Amsterdammer [4] presumes that in 1983,

the NSA began worrying about powerful encryption in the hands of the general public.

They shared this concern with Philips-USFA since they were selling the PX-1000 as a

relatively cheap device, available to anyone.

Since the NSA already had a relation with Philips-USFA [1], they requested that the

PX-1000 got replaced with a version that implements encryption that was supplied by

the NSA. It is unknown how exactly this new algorithm works since the details are not

disclosed to the general public. But the Text Lite engineers were told that the algorithm

could be in strength compared to DES. [1]

Again according to resources of the crypto museum [1], Philips then proceeded to buy

back all 12.000 ’old’ PX-1000 that were already produced, together with 20.000 already

produced firmware PROMS for PX-1000. All these were later sold to the NSA for NLG

16,6 million.

For this bachelor thesis we are in possession of memory dumps of both the original PX-

1000’s ROM, and the EPROM with the revised algorithm by the NSA. These memory
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dumps were created by the Crypto Museum by reading the original EPROM and ROM

with a specialized reader device. The dumps are available on request from the Crypto

Museum, or the author of this thesis.

1.3 Historical use of the PX-1000; Operation Vula

One case where the PX-1000 has been used in an important historical context is Opera-

tion Vula, as described by Conny Braam in her book ’Operatie Vula’ [5]. This operation

tells the story of the anti-apartheid revolutionary (and later President of South Africa)

Nelson Mandela [6].

Mandela was the leader of the South African organization ANC (African National

Congress). In 1962 he was arrested and convicted for conspiracy to overthrow the

state. He was sentenced to imprisonment for life. All over the world people fought for

his release and for his goal of abolishing Apartheid [6].

Operation Vula was an underground operation that was put into motion in 1986 [7].

It’s goal was to smuggle freedom fighters into South Africa and maintain open commu-

nication links between the ANC leaders at home, in prison and in exile. This plan was

set into motion by Mac Maharaj, ANC’s intelligence officer. Part of this operation was

preparing Mandela for his release.

Connie Braam is a Dutch anti-apartheid’s activist, and at the time she led the Dutch

contribution to Operation Vula [5]. Besides the more physical part of the clandestine

operation to communicate with Mandela, like finding make-up artists and undercover

couriers. Her task was also to ensure secure communication. When Connie Braam

contacted a Philips engineer, he suggested the PX-1000 to her [7]. London was the hub

for all communication between the Netherlands, South Africa, Great Britain and later

also Lusaka. The PX-1000 was then acquired and put to use to secure the communication

between Amsterdam, London and South Africa. Some presume that the PX-1000 link

might still have been in use, even after the end of operation Vula [1].

1.4 Was the encrypted link to Mandela secure?

There are doubts about the security of the NSA version of the PX-1000 [1]. Since the

NSA insisted that the ROM would be replaced by one of their own making, it raises the

suspicion that they might have been able to listen in on conversations encrypted by the

PX-1000. In order to find out if these claims have any merit, this bachelor thesis will

reverse engineer the code from both versions of the PX-1000.
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1.5 Reverse Engineering

The encryption scheme the NSA supplied is not common knowledge. But in order to

see how secure it really was, we have to recover the original code from the device itself.

Software reverse engineering is usually done to retrieve the source code of a program in

a number of cases [8]:

� The source code was lost,

� to improve the performance of a program,

� To fix a bug (correct an error in the program when the source code is not available),

� To identify malicious content in a program such as a virus,

� To identify malicious content in a program such as a virus or to adapt a program

written for use with one microprocessor for use with another.

We are dealing with the first case: The source code was lost (or more specifically, never

available to the public). Since this reverse engineering is done from legally obtained

material, it should not constitute a copyright violation [9].

In this case, we have the machine code [8], the executable representation of software. In

the current day and age, this is typically the result of translating a program written in

a high-level language, using a compiler, to an object file, a file which contains platform-

specific machine instructions. The object file is made executable using linker, a tool

which resolves the external dependencies that the object file has, such as operating

system libraries [8]. In the case of the PX-1000 source, a low level programming language

such as Assembly will probably have been used, because there are a number of interesting

low level bit manipulations that are used to save memory. But this is still considered

high level by a CPU [8].

Reverse engineering entails using several different tools. For example a Hex-Editor that

translates the binary file to a hexadecimal representation. This reveals human-readable

strings, and the hex representation can be matched to CPU opcodes. Another com-

mon tool is the disassembler. This tool reads the binary code and then displays each

executable instruction in text form. A disassembler cannot give contect to executable in-

structions and the data used by the program. Hench manual human labor is required [8].

Please see the method chapter for how reverse engineering was done in this theses.
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Research questions

2.1 Main question

Does the pocket computer PX-1000 by Philips contain a different and presumably weaker

encryption algorithm than DES after the intervention of the NSA in 1980?

2.2 Sub-question

The main question will be answered by answering the following sub-questions:

� Is it possible to reverse engineer the encryption algorithm from the original ROMS?

� Does the original version of this device implement the DES algorithm?

� How does encryption in the modified code work and compare to DES?

5
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Method

3.1 Overview of the method

The method to recover the crypto algorithms used in both versions of the PX-1000

consists of 4 distinct steps:

1. Recover assembly code of both the 1983 and 1984 version of the PX-1000 with the

DASMx disassembler [10]. And create a memory map,

2. Annotate the source code and create a rough description of the original code,

3. Show that the original code indeed implements DES,

4. Identify and describe the alternative algorithm and compare it to DES.

3.2 Recovering assembly

3.2.1 Disassembly with DASMx

Disassemblers are powerful tools for creating assembly, or assembly-like code from binary

images. DASMx, is a free microprocessor opcode disassembler created by Conquest

Consultants [10]. The most recent version, and the version used in this bachelor thesis

is version 1.30 from October 6th 1999. This program is old, but it has support for the

chip used in the PX-1000 and is well suited for the device from 1983 [11].

DASMx supports code-threading. This means that code entry points can be supplied.

For example interrupt, org and reset vectors. The disassembler will use each of these

6
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code entry points as known locations for code and will partially emulate the proces-

sor. This means that it executes instructions and follows all calls to subroutines and

branches. Together with DASMx’s multi-pass functionality it can find and disassemble

most sections of code from the binary image [10].

3.2.2 Disassembling the PX-1000 ROM and EPROM

The PX-1000 uses the Hitachi HD6303RP CMOS MPU. This 8-bit Micro Processing

Unit is completely compatible with the HD6301V1 instruction set. This in turn is

compatible with the Motorola 6800 series, and can be disassembled with the DASMx

disassembler. The difference between the Hitachi and the Motorola versions is that the

Hitachi includes a few additional instructions and optimized pipelining [12].

The Crypto Museum [1] was able to extract the original ROM and EPROM image from

both versions of the PX-1000.

The first stage in obtaining the disassembly is checking whether the ROM or EPROM

file does have the required size. According to the documentation [3] the PX-1000 has

8kb of ROM or EPROM. This corresponds to the filesizes of files supplied by the Crypto

Museum [1].

The next step is supplying known code entry points in a symbol file. The initial param-

eters used in this bachelor thesis can be found in Appendix A.

The memory categories and corresponding symbols are taken from the PX-1000 Service

manual [3]. The entry vectors were taken from the DASMx ebcgame example [10] which

incidentally also uses a Motorola 6803.

We can produce a listing and assembly file by running the following commands:

DASMx -t <infile.bin>

DASMx -t -a <infile.bin>

(-t = enable code threading, -a = Enable assembly output)

The listing output shows the details of every command, including all memory addresses

and the opcodes in hexadecimal form. An example snippet of the listing output can be

found in figure 3.1 The assembly output leaves out a lot of the detail, but creates code

that is easier to read for humans. The snippet in figure 3.2 covers the same code as the

listing snippet.
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E000 start:

E000 : 8E 03 10 " " lds #$0310

E003 : 0F " " sei

E004 : 4F "O " clra

E005 : 97 08 " " staa timerCSR

E007 : 86 CA " " ldaa #$CA

E009 : 97 02 " " staa ioPort1data

E00B : 86 DE " " ldaa #$DE

E00D : 97 00 " " staa ioPort1dataDirection

E00F : 86 14 " " ldaa #$14

E011 : 97 03 " " staa ioPort2data

E013 : 86 14 " " ldaa #$14

E015 : 97 01 " " staa ioPort2dataDirection

Figure 3.1: Example of the DASMx listing output

start:

lds #$0310

sei

clra

staa timerCSR

ldaa #$CA

staa ioPort1data

ldaa #$DE

staa ioPort1dataDirection

ldaa #$14

staa ioPort2data

ldaa #$14

staa ioPort2dataDirection

Figure 3.2: Example of the DASMx assembly output

3.2.3 Problems during disassembly

The code-threading of the disassembly might fail in a number of cases according to the

DASMx manual [10]:

1. Pushing an address onto the stack and later performing a return from subroutine,

2. Indexed branch instructions,

3. Use of undocumented opcodes,

4. Self-modifying code.

In both cases of the PX-1000 disassembly we encounter case 2: Indexed branch instruc-

tions. The relevant part of the code is shown in figure 3.3.
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LE195:

suba #$90

tab

ldx #$E1A3

abx

abx

ldx $00,x

jsr $00,x ;INFO: index jump

bra LE15E

Figure 3.3: Indexed branch instruction

In this case, the code uses 0xE1A3 as the starting point of a jump table and adds an

offset to the index register to find the correct table entry. Manual inspection shows that

this is a table of 36 addresses, and can therefore be defined as a vector table:

vectab 0xE1A3 Table:JumpTable 0x24

Another problem that we encounter, is the use of undocumented instructions. Undocu-

mented instructions are opcodes that should not be used and that are not documented

in the manuals and other documentation of a processor. This makes some parts of the

code much harder to analyze. One examples of this is the following instruction:

EEEA : 71 7F 02 "q " aim #$7FioPort1data

Opcode 0x71 or the mnemonic aim can not be found in the documentation. For each

of these instructions, manual research is required.

3.3 Annotating the source code and creating a rough de-

scription of the original code.

Creating readable code from the given assembly is very labor intensive, since it requires

the reader to understand the intention of the programmer.

The process of transforming the source code to a readable description of the original

code involves three steps [10]:

1. Running the disassembler on the binary file to produce a listing or assembly output.
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2. Manually inspect the listing or assembly file to find out what some of the code

does.

3. When a section of known code is identified, update the listing file to reflect the

discovered code.

These 3 steps are a iterative process, as shown in figure 3.4.

Figure 3.4: Schematic presentation of the disassembly process

3.3.1 Annotating source code by example

To show the methodology behind this, I will demonstrate the process of annotating and

describing source code by using an example.

The code snippet in figure 3.5 is part of the EPROM dump of the PX-1000 version.

This code is an entire function, starting at memory address FE21, and it runs until it

encounters the rts (return from subroutine) [12] command on either line 35 or line 38.

3.3.1.1 Manual Inspection, Round 1

During the manual inspection of the code in figure 3.5 we notice the following facts:

� There is a circular reference, usually representing some kind of loop:

On line 34, bls (branch if lower or same) jumps back to address LFE24. This

happens when the value in the index register is lower or same, as the value of

X0027 (line 34).
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1 LFE21: 20 bls LFE4C

2 ldx X0025 21 cmpa #$61

3 clrb 22 bcs LFE59

4 LFE24: 23 cmpa #$66

5 ldaa $00,x 24 bhi LFE59

6 anda #$7F 25 LFE4C:

7 cmpa #$0D 26 eorb #$01

8 beq LFE53 27 bra LFE53

9 cmpa #$20 28 LFE50:

10 beq LFE50 29 tstb

11 cmpa #$2C 30 bne LFE59

12 beq LFE50 31 LFE53:

13 cmpa #$30 32 inx

14 bcs LFE59 33 cpx X0027

15 cmpa #$39 34 bls LFE24

16 bls LFE4C 35 rts

17 cmpa #$41 36 LFE59:

18 bcs LFE59 37 sec

19 cmpa #$46 38 rts

Figure 3.5: Snippet of uncommented PX-1000 source code

The only other operations where the index register is used are on line 2 and on

line 32. On line 2, the index register becomes the value of X0025 and on line 32

the index register is increased by one.

From all these facts we can deduce that here is a loop that has as initial value the

value of X0025, increases by 1 every iteration and stops when it is greater then

the value of X0027.

Therefore we can add the following line to our symbol file:

code 0xFE24 whileX0025<=X0027_increase_x

� From earlier disassembly, we already know that X0025 represents the first character

of a string in memory. Therefore we can add this fact to the symbol file.

symbol 0x0025 BeginningOfString

� This function has two rts (return from subroutine) commands. On line 35 and line

38. The main difference between the two is that the second rts on line 38 first has

the carry-bit set by the sec (set carry) [12] command. Therefore we identify these

two sections as the following parts of the disassembly:

code 0xFE59 Sub:ReturnAndSetCarry

code 0xFE53 Sub:ReturnWithoutCarry

In order to identify what the rest of the function does, we will follow the disassembly

process described in figure 3.4. Therefore the next step is to update the symbol file.
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Now the disassembler is run again, and the findings are manually inspected. The result

of this action is figure 3.6.

1 LFE21: 20 bls LFE4C

2 ldx BeginningOfString 21 cmpa #$61

3 clrb 22 bcs Fnc:ReturnAndSetCarry

4 while:X0025<=X0027_increase_x: 23 cmpa #$66

5 ldaa $00,x 24 bhi Fnc:ReturnAndSetCarry

6 anda #$7F 25 LFE4C:

7 cmpa #$0D 26 eorb #$01

8 beq Fnc:ReturnWithoutCarry 27 bra Fnc:ReturnWithoutCarry

9 cmpa #$20 28 LFE50:

10 beq LFE50 29 tstb

11 cmpa #$2C 30 bne ReturnAndSetCarry

12 beq LFE50 31 Fnc:ReturnWithoutCarry:

13 cmpa #$30 32 inx

14 bcs Fnc:ReturnAndSetCarry 33 cpx X0027

15 cmpa #$39 34 bls LFE24

16 bls LFE4C 35 rts

17 cmpa #$41 36 Fnc:ReturnAndSetCarry:

18 bcs Fnc:ReturnAndSetCarry 37 sec

19 cmpa #$46 38 rts

Figure 3.6: Snippet of commented PX-1000 source code

3.3.1.2 Manual Inspection, Round 2

Continuing the manual inspection, we can identify the following parts:

� On line 26, the function eorb (exclusive-or on accumulator b) is called with the

hex value 0x01. The only other uses of accumulator b are on line 3 (clrb, clear

accumulator b) and on line 29 (tstb, test accumulator b and set status flags).

Following the logic in this part of the source, we see that b is used as some kind of

boolean, where 0 = false and 1 = true. Therefore we can update the symbol file

with:

code 0xFE4C Fnc:set_b_true

� Since this function loops through a number of memory addresses starting at ”Be-

ginningOfString” it is reasonable to assume that this function processes characters.

On line 6, an AND operation with 0x7F is performed. This results in setting the

most significant bit of the current byte stored in a to 0 (since 0x7F equals the bit-

mask 01111111). This is required because end-of-string characters in the PX-1000

source are identified by setting the most significant bit to 1. By stripping this bit,

we can read the actual character.
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� We are dealing with strings, so we suspect that the hexadecimal values given are

the hexadecimal representations of ASCII characters. By checking these, we find

that:

LineNr Hex Number ASCII representation

7 0x0D (CR)

9 0x20 (Space)

11 0x2C ,

13 0x30 0

15 0x39 9

17 0x41 A

19 0x46 F

21 0x61 a

23 0x66 f

� The last unknown part of this subroutine is now line 28, LFE50. This part tests

accumulator b and if it does not equal 0 (false) it branches to ReturnAndSetCarry.

This breaks the loop that checks all characters in the string. Therefore the follow-

ing symbol will be added to the symbol file:

code 0xFE50 break:if_b_not_false

3.3.1.3 Manual Inspection, Conclusion

Now that all parts of this routine are known, the next step is to identify what it actually

computes.

1. Loop through a string starting at BeginningOfString,

2. Ignore all spaces and comma’s at the start of the string,

3. After the first non-space and non-comma character is encountered, check the re-

maining characters one by one,

4. When all later characters (until end-of-string, or the first CR) represent a hex-

adecimal number (a-f,A-F,0-9) return from the subroutine without the carry-bit

being set. Otherwise set the carry-bit and return.

Conclusion: This function checks if a string holds a hexadecimal representation of a

number. If not so, it sets the carry-bit. Otherwise it leaves the carry-bit unset. So the

following symbol will be added to the symbol file:

code 0xFE21 Sub:TestIfStringIsHex

The final code is referenced in figure 3.7.
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1 TestIfStringIsHex: 20 bls Fnc:set_b_true

2 ldx BeginningOfString 21 cmpa #$61

3 clrb 22 bcs Fnc:ReturnAndSetCarry

4 while:X0025<=X0027_increase_x: 23 cmpa #$66

5 ldaa $00,x 24 bhi Fnc:ReturnAndSetCarry

6 anda #$7F 25 Fnc:set_b_true:

7 cmpa #$0D 26 eorb #$01

8 beq Fnc:ReturnWithoutCarry 27 bra Fnc:ReturnWithoutCarry

9 cmpa #$20 28 break:if_b_not_false:

10 beq break:if_b_not_false 29 tstb

11 cmpa #$2C 30 bne ReturnAndSetCarry

12 beq break:if_b_not_false 31 Fnc:ReturnWithoutCarry:

13 cmpa #$30 32 inx

14 bcs Fnc:ReturnAndSetCarry 33 cpx X0027

15 cmpa #$39 34 bls LFE24

16 bls Fnc:set_b_true 35 rts

17 cmpa #$41 36 Fnc:ReturnAndSetCarry:

18 bcs Fnc:ReturnAndSetCarry 37 sec

19 cmpa #$46 38 rts

Figure 3.7: Snippet of completed PX-1000 source code

3.4 Show that the original code implements DES

There is no formal method to identify a DES implementation, especially since the DES

standard only describes the algorithm and not the actual implementation. So we will

have to look for all the following identifying features of DES in the source itself [13]:

� Initial and final permutation steps,

� 16 identical rounds,

� Splitting of 64-bits of input into 2 32-bit halves,

� The signature Feistel scheme,

� A Feistel function implementing the following steps:

– Expansion: Expanding the 32-bit half-block to 48-bits,

– Key mixing: Using the XOR operation between the 48-bit input and the

48-bit round key,

– Substitution: Split the resulting 48-bits into 8 6-bit blocks. Then feed these

blocks to the S-boxes and transform each 6-bit block into a 4-bit block,

– Permutation: Permute the resulting 32 output bits according to a fixed per-

mutation scheme.
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� A key scheduling algorithm that generates the round keys from an initial 56-bit

key.



Chapter 4

Results of the PX-1000 analysis

For the original PX-1000 this bachelor thesis focused on the section of the source code

that implements the encryption. We were able to identify the DES function that takes

64 bits of plain- or cyphertext input and 56 bits of key material in order to create 64

bits of output [13]. Here we will describe the key features of the DES implementation

in the PX-1000 and show that this is implemented correctly.

4.1 DES Permutations

The PX-1000 makes use of a single function for all permutation operations in the DES

encryption. Specifically [13]:

� Initial permutation (IP). In the initial phase of DES, each bit of the 64 bits of

input is subject to the initial permutation. This rearranges the entire block.

� Final permutation (IP−1). In the final phase, the result is permuted with the exact

inverse of the initial permutation.

� Expansion function (E). Each round of the DES algorithm will expand the right

(Ri) half of the key (32 bits) to 48 bits by duplicating some bits. This is done in

order to match the length of (Ri) to the length of the Round Key (Ki).

� Permutation (P). After the S-Box substitution in every round of the DES algo-

rithm, the resulting 32 bits will be permuted. This permutation is designed so

that each of the four S-Box output bits are spread over 4 different S-Boxes in the

next round.

16
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� Permuted choice 1 (PC-1). Permuted Choice 1 selects the 56 key bits that will be

used from the initial 64 bits of key material.

� Permuted choice 2 (PC-2). Permuted Choice 2 is part of the Key Schedule and

will select the 48 bit subkey from the given 56 bit key.

The permutation function in the PX-1000 is located between address 0xF5AF and

0xF639. Before this function is called, the Permutation Table Index (0x0119) is set

to an offset for 0xF9CC that will reference a table holding all the parameters for the

current permutation. For an overview of these parameters see table 4.1.

Perm Table Index Input addr Output addr Perm Table addr Perm Table length

0xFF (PC-1) 003A 00C2 0xFA82 0x3F

0x08 (PC-2) 00C2 00CA 0xFAC2 0x2F

0x11 (IP) 010E 00D8 0xFA02 0x3F

0x1A (E) 00DC 00C2 0xFAF2 0x2F

0x23 (P) 00CA 00CA 0xFB22 0x1F

0x2C (IP−1) 00D8 010E 0xFA42 0x3F

Table 4.1: The parameters for the PX-1000 permutation function

The actual permutation table is different from the standard table because it uses another

form of encoding. While the normal DES table is a one to one match from an input

to an output bit, the PX-1000 choses a more specific approach. The lower three bits

denote byte offset for the input bytes and the next three bits indicate the bit position

in this input byte. See figure 4.1 for the corresponding code.
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Sub:DES_Permutation: asra

# Start of by referencing the end staa X00D7

# of the Permutation_Table_Index ldx PermutationInput

ldaa Permutation_Table_Index clr X00D4

adda #$09 ldab Temp

staa Permutation_Table_Index abx

staa Temp ldaa $00,x

ldaa #$08 ldx #$FB42

staa Counter ldab X00D7

abx

loop:Initilize_Perm_Param: anda $00,x

# Read the parameters in offset bne Fnc:Perm_bit_1

# by the Permutation_Table_Index ldab #$00

# from F9CC. orab Counter

# Store these parameters in bra Fnc:Perm_bit_0

# 0x00E0 - 0x00E8

clr X00D4 Fnc:Perm_bit_1:

ldx #$F9CC ldab #$01

ldab Temp orab Counter

abx

ldaa $00,x Fnc:Perm_bit_0:

clr X00D2 stab Counter

ldx X00D2 ldaa Counter

staa $E0,x dec PermutationTableLength

dec Temp bmi break:permutation_finished

dec Counter dec InnerLoopCounter

bge loop:Initilize_Perm_Param beq beq break:all_bits

asl Counter

for:Each_Output_Byte: bra for:Each_Output_Bit::

ldaa X00E7

staa InnerLoopCounter break:all_bits_finished:

clr Counter psha

jmp for:Each_Output_Byte

for:Each_Output_Bit:

# For each bit in the output, find break:permutation_finished:

# the matching pit in the input. psha

# See the figure about Permutation ldx PermutationOutput

# Encoding for details ldab X00E8

ldx PermutationTableLocation abx

ldab PermutationTableLength

abx Fnc:Store_Perm_Results:

clr X00D2 # Store the permutation results at

ldaa $00,x # loc starting in PermutationOutput

staa Temp # Specified in the parameters

anda #$07 pula

tab staa $00,x

ldaa Temp dex

stab Temp decb

asra bge Fnc:Store_Perm_Results

asra rts

Figure 4.1: PX-1000: The DES Permutations implementation
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4.2 S-Box Substitution

Once the right (Ri) side of the input for each round is expanded to 48 bits and exclusive-

OR’d with the Round Key (Ki), these 48 bits are split into 8 6-bit blocks. Each of

these 6-bit blocks is fed through one of the eight S-Boxes in order to get a non-linear

substitution [13].

Just as with the permutation, the PX-1000 uses a non-standard way to represent the

tables for the S-Boxes that are needed by the DES encryption.

The PX-1000 combines the following S-Boxes: 1 and 2, 3 and 4, 5 and 6, 7 and 8. Each

combination is represented by a vector of bytes. Where the left 4 bits of every byte

correspond to the odd S-Box and the right 4 bits correspond to the even S-Box (Figure

4.3).

Sub:S_Box_Substitution: tab

ldaa #$C0 #Offset S-Box 7&8 ldx S-Box_Table

staa S-Box_Offset abx

ldaa #$07 ldaa $00,x

clr Null anda #$F0

staa Counter oraa Temp

loop:From_SBox7&8_to_SBox1&2: psha

ldx Null ldaa S-Box_Offset

ldaa $C2,x suba #$40 #Decrease S-Box offset

oraa S-Box_Offset staa S-Box_Offset

tab dec Counter

ldx S-Box_Table bge loop:From_SBox7&8_to_SBox1&2

abx ldx #$0000

ldaa $00,x loop:Store_Substitutions:

anda #$0F pula

staa Temp staa $CA,x

dec Counter inx

ldx Null cpx #$0004

ldaa $C2,x bne loop:Store_Substitutions

oraa S-Box_Offset rts

Figure 4.2: PX-1000: The S-Box substitution function in assembly
(Address F690-F6D8).
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PX-1000 S-Box 1 and 2

0x E F 0x 3 9 0x 4 0 0x F 5

0x 0 3 0x A C 0x F D 0x 5 B

0x 4 1 0x A 7 0x 1 E 0x C 8

0x F D 0x 6 0 0x C 8 0x B 6

0x D 8 0x 6 2 0x E 7 0x 9 C

0x 7 4 0x C 1 0x 8 A 0x 3 7

0x 1 E 0x C D 0x 8 B 0x 7 6

0x 4 7 0x B A 0x 2 1 0x E C

0x 2 6 0x 5 C 0x D A 0x 3 9

0x E F 0x 9 6 0x 4 3 0x A 0

0x F B 0x 9 0 0x 6 4 0x A 3

0x 2 2 0x 5 9 0x 9 F 0x 0 5

0x B 3 0x 0 5 0x 2 D 0x 5 2

0x D 8 0x 3 B 0x 1 4 0x 6 E

0x 8 4 0x 7 A 0x B 1 0x 0 F

0x 1 E 0x 8 5 0x 7 2 0x D 9

S-Box 1 from DES specification

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 9 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Figure 4.3: The match between the PX-1000 S-Boxes and the DES specification
S-Boxes.
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Sub:DES: jsr Sub:S_Box_Substitution

... # Permutation

# Initial permutation jsr Sub:DES_Permutation

jsr Sub:DES_Permutation # END OF FEISTEL FUNCTION

...

# START OF THE 16 ROUNDS loop:XOR_halves:

loop:DES_Round_(16_times): ...

# Merge both halves together

# START OF FEISTEL FUNCTION bge loop:XOR_halves

# Expansion function ...

jsr Sub:DES_Permutation bra loop:DES_Round_(16_times)

... # END OF THE 16 ROUNDS

loop:DES_Key_mixin:

# Mix the key with expanded block # After the 16 rounds do the

... # final permutation

bge loop:DES_Key_mixin Fnc:Final_Permutations:

# S-Box substitution jmp Sub:DES_Permutation

\label{fig:16-rounds}

Figure 4.4: Snippets of code that make up the 16 DES rounds

Figure 4.5: Schematic description of the DES rounds
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res

4.3 16 identical rounds and the signature Feistel scheme

One of they key identifying features of DES are its 16 identical rounds. Each of those

rounds consists of the following stages [13]:

� The Feistel function,

– Expansion of (Ri) from 32 to 48 bits,

– Key Mixing of the Round key Ki and the expanded Ri,

– Substitution of the resulting 48 bits by use of the S-Boxes to produce 32 result

bits,

– Permutation of these 32 bits.

� Exclusive OR between thr result of the Feistel function and Li.

See figure 4.4 for the overview of how this is implemented in the PX-1000.

4.4 Splitting of 64-bits of input into 2 32-bit halves

Before the 16 DES rounds, the key is split into two 32 bit halves. This part is trivial in

assembly, because one can easily reference the lower and upper 4 bytes to get half the

plaintext/cyphertext.

4.5 A key scheduling algorithm that generates the round

keys from an initial 56-bit key.

Figure 4.8 shows the PX-1000 implementation of the DES key scheduling function. This

function discards 8 parity bits of the initial 64 bit key and devised the rest into two 28

bit halves by using the PC-1 permutation [13].

By rotating these halves by one or two positions between each round and then combining

them, all 16 round keys will be produced.
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4.6 The DES Shift Key function

Figure 4.9 illustrates the shift-key function a single round in the DES key-schedule algo-

rithm. This function takes the two 28-bit halfs of the 56 key bits selected by Permuted

Choice 1 (PC-1). In each of these rounds, all bits are rotated left by one or two bits,

depending on the current round.
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Figure 4.6: PX-1000: DES Key Schedule.

Sub:DES_keygen: staa X0118

ldx #$00D2 staa Temp

loop:Clear_Result_Location: ldaa #$07

clr $00,x staa Counter

inx clr X00D2

cpx #$00D7 clr X00D4

bls loop:Clear_Result_Location loop:Save_Result:

ldaa #$FF ldx X00D2

staa X0118 ldaa $CA,x

staa Permutation_Table_Index ldx X00D4

ldaa #$0F staa $42,x

staa DES_Round_Counter dec Temp

# Permuted Choice 1 dec Counter

jsr Sub:DES_Permutation bge loop:Save_Result

dec DES_Round_Counter

for:round1_to_round16: bmi break

# Shift 1 or 2 depending # Reset Permutation table

# on the round ldaa Permutation_Table_Index

jsr Sub:DES_Shift_Key suba #$09

# Permuted Choice 2 staa Permutation_Table_Index

jsr Sub:DES_Permutation jmp for:round1_to_round16

# Some administration break:

ldaa X0118 rts

adda #$08

Figure 4.7: The PX-1000 implementation of the DES Key Schedule

Figure 4.8: Schematic description of the DES key schedule
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Figure 4.9: PX-1000: DES Shift Keys implementation.

Sub:DES_Shift_Key:

ldx DES_key_schedule_rotations

ldab desRoundCounter

abx

ldab $00,x # Loads the value

# for the current round

Fnc:DES_Shift_Once:

ldaa LeftKey(Bit_4_1)

asla

rol LeftKey(Bit_12_5)

rol LeftKey(Bit_20_13)

rol LeftKey(Bit_28_21)

bcc Fnc:No_Circular_shift

oraa #$10 # Set pos 1 to 1

Fnc:No_Circular_shift:

staa LeftKey(Bit_4_1)

ldaa RightKey(Bit_4_1)

asla

rol RightKey(Bit_12_5)

rol RightKey(Bit_20_13)

rol RightKey(Bit_28_21)

bcc Fnc:No_Circular_shift

oraa #$10 # Set pos 1 to 1

Fnc:No_Circular_shift:

staa RightKey(Bit_4_1)

decb

bne Fnc:DES_Shift_Once

rts

DES_key_schedule_rotations:

db $01 #Round 16

db $02 #Round 15

db $02 #Round 14

db $02 #Round 13

db $02 #Round 12

db $02 #Round 11

db $02 #Round 10

db $01 #Round 9

db $02 #Round 8

db $02 #Round 7

db $02 #Round 6

db $02 #Round 5

db $02 #Round 4

db $02 #Round 3

db $01 #Round 2

db $01 #Round 1

(a) The DES Shift Keys function in assem-
bly (Address F6D9-F719

(b) The DES Shift table from the NIST
DES standard

Key layout in memory:

Left Half Shift:

(The last 4 bits of C5 are ignored for

the 28 bit subkey)

C2 C3 C4 C5

������������������������������

xxxxxxxx xxxxxxxx xxxxxxxx xxxxZZZZ

_ ^

|-----------------------------|

Right Half Shift:

(The last 4 bits of C5 are ignored for

the 28 bit subkey)

C6 C7 C8 C9

������������������������������

xxxxxxxx xxxxxxxx xxxxxxxx xxxxZZZZ

| ^

|-----------------------------|

(c) The layout of the roundkey in memory
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Results of the PX-1000Cr analysis

The first indication that the PX-1000Cr does not implement DES is that it is not

compatible with the older PX-1000 [1]. Also when looking at the disassembeled code,

it shows that there are not enough non-code bytes that might be used to store the DES

S-Boxes and permutation tables. (The original PX-1000 used more then 500 bytes for

these tables [13].)

When reading section 4.2, please keep the following two things in mind:

� There is an abundant use of figures to explain the encryption scheme. In these

figures, blue squares denote memory addresses, white squares denote operations

and numbers in white squares represent literal hexadecimal values.

� The source for the PX-1000Cr is not yet fully reverse-engineered. So the findings in

this chapter are representative of the current knowledge of this encryption scheme,

but might be subject to change when more of the code is understood.

5.1 Algorithm analysis part 1: Block- or Stream- cipher

The assumption was that the revised algorithm would be similar to DES, but possibly

weaker [4]. This assumption did not hold up when analyzing the code. We can see that

there are a lot of operations done on the key, but only one on the input text. Specifically

an X-OR (exclusive-or) operation between a key-byte and an input-byte. Therefore this

algorithm implements a stream cipher. See figure 5.1.

26
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Figure 5.1: PX-1000Cr: The final encryption step in the stream cipher

Fnc:FinalEncryptionStep:

ldx CurrentCharacterLocation

ldab $00,x

eora $00,x # Acc a holds the current key-byte

staa $00,x

inx

stx CurrentCharacterLocation

cpx EndOfStringLocation

bhi EndOfStringToEncrypt

tst EnCryptOrDecryptMode

bmi Fnc:ChangeSeedForPRNG

tba

5.2 Intermezzo: What is a stream cipher?

A stream cipher is a cipher where a pseudo-random keystream is produced and combined

with a plaintext. This keystream is usually generated by using a unique seed value (key)

and a pseudo-random function that can generate an infinite stream of pseudo-random

numbers [14].

The keystream and the plaintext are, in most cases, interpreted as binary strings that can

be easily combined. This combination is done by using the reversible X-OR function.

This approach can represent a security vulnerability when used incorrectly. Because

of the reversible nature of the X-OR operation, the same key should not be reused.

Consider the following example of what happens when a key is reused, where A and B

are tho different messages and C is the corresponding keystream [15]:

E(A) = A xor C

E(B) = B xor C

If someone intercepts both E(A) and E(B) he can calculate the following:

E(A) xor E(B) = (A xor C) xor (B xor C) = A xor B xor C xor C = A xor B [15]

When both A and B are representations of natural language, then retrieving both is

relatively trivial and can be done with paper-and-pencil methods [16].
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5.3 Algorithm analysis part 2: Key Scheduling

This stream cipher makes use of a 64 bits of key material. The key scheduling function

(Figure 5.2 combines this key in a number of ways, and creates a 32-bit ’round-key’ that

will be used to encrypt the current character.

5.4 Algorithm analysis part 3: Pseudo-Random Number

generator.

Stream ciphers need a pseudo-random number generator in order to generate their key-

stream. The algorithm used in the PX-1000Cr makes use of 2 times 16 rounds that mix

the key with a predefined vector that shifts one position for each iteration. See figure

5.4. Also, after each iteration, one of the used key-bytes, depending on the round will

be updated. See figure 5.3.
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Figure 5.2: PX-1000Cr: Key schedule function.
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Figure 5.3: PX-1000Cr: Pseudo-Random Number Generator (2 Rounds out of 2x16
rounds are shown) X008A – X0099 Are initially key bytes 0-15 plus the inverse in the

left 4 bits.
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Figure 5.4: PX-1000Cr: The rotating vector of bytes to mix in the Psudo-Random
Number Generator

06 0B 0A 78 0C E0 29 7B CF C3 4B 2B CC 82 60 80

80 06 0B 0A 78 0C E0 29 7B CF C3 4B 2B CC 82 60

60 80 06 0B 0A 78 0C E0 29 7B CF C3 4B 2B CC 82

82 60 80 06 0B 0A 78 0C E0 29 7B CF C3 4B 2B CC

CC 82 60 80 06 0B 0A 78 0C E0 29 7B CF C3 4B 2B

2B CC 82 60 80 06 0B 0A 78 0C E0 29 7B CF C3 4B

4B 2B CC 82 60 80 06 0B 0A 78 0C E0 29 7B CF C3

C3 4B 2B CC 82 60 80 06 0B 0A 78 0C E0 29 7B CF

CF C3 4B 2B CC 82 60 80 06 0B 0A 78 0C E0 29 7B

7B CF C3 4B 2B CC 82 60 80 06 0B 0A 78 0C E0 29

29 7B CF C3 4B 2B CC 82 60 80 06 0B 0A 78 0C E0

E0 29 7B CF C3 4B 2B CC 82 60 80 06 0B 0A 78 0C

0C E0 29 7B CF C3 4B 2B CC 82 60 80 06 0B 0A 78

78 0C E0 29 7B CF C3 4B 2B CC 82 60 80 06 0B 0A

0A 78 0C E0 29 7B CF C3 4B 2B CC 82 60 80 06 0B

0B 0A 78 0C E0 29 7B CF C3 4B 2B CC 82 60 80 06

5.5 Algorithm analysis part 4: Actual encryption

Before the actual encryption of the plaintext byte takes place, the result of the Pseudo-

Random number generator and the round-key will be mixed. See figure 5.5.

After this, the resulting pseudo-random byte will be rotated a number of times equal

to the current number of encrypted characters. Then this byte will be X-OR’d with

the current plaintext byte and stored at the same location of that plaintext byte. See

figure 5.6. Finally, the original round-key will be updated with the result byte of this

encryption to assure that the next round uses a different seed. See figure 5.7.

Figure 5.5: PX-1000Cr: Mix between the current round-key and the pseudo-random
byte.
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Figure 5.6: PX-1000Cr: Actual encryption of the plaintext byte.

Figure 5.7: PX-1000Cr: Update of the PRNG seed.

5.6 Algorithm analysis part 5: The unknown

A small part of the encryption scheme is still unknown. There seems to be a section of

code that has no purpose and where the result is discarded (Figure 5.8). This has one

out of two reasons:

� The code is not correctly interpreted,

� There is an error in the implementation.

This section is repeated 8 times. The results are saved in accumulator a. Right there-

after, another value is loaded in this accumulator a without first saving this somewhere.

Also, the value of X0086 gets rotated left 8 times, resulting in the original value.
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Figure 5.8: PX-1000Cr: Section with unknown use in the encryption scheme
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Discussion

6.1 Answers to research questions

This bachelor thesis shows that it is possible to reverse-engineer the crypto algorithms

used in both versions of the PX-1000 by Philips. No countermeasures against reverse

engineering were found. The deviations that were taken from the formal description of

DES do not influence its security, but do aid the actual implementation.

We can now say that the original version of the PX-1000 does undoubtedly implement

the DES algorithm, that was secure at the time of the PX-1000.

Also, it is shown that the revised crypto algorithm differs from DES. This confirms the

suspicion that the NSA supplied another crypto algorithm. Even though we are not

yet sure what this algorithm precisely is and if it is secure, the circumstantial evidence

described in chapter 1 hints that this will be easier to break then DES. Therefore, further

research is required.

6.2 Discussion about the method

The EPROM reader used by the crypto museum to extract the byte code was not meant

to be used in combination with the EPROM in the PX-1000. By pretending that it was

a related type of EPROM the reader could be tricked to read it anyway. This resulted

in the program being read two or four times. Therefore is no guarantee that the read

byte code is 100% correct. But it is very unlikely that in the case of an error this would

result into readable code. Therefore we can assume that this is no problem.

34
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The interpretation of the recovered disassembly is manual labor and there is the pos-

sibility of errors in the recovered code. One way to check this would be to create a

program from the reverse engineered code that is equivalent. Then one can test this

against a working PX-1000 and see if the results are the same.

6.3 Discussion about the PX-1000Cr encryption

The exact algorithm used in the PX-1000Cr is still unknown. When there is no existing

algorithm that matches the one used in the PX-1000Cr, then it might a good idea to

start looking for known vulnerabilities in stream ciphers of the same period.

6.4 Future Research

The encryption scheme used in the revised version is not yet fully recovered. It will be

very interesting to completely reverse engineer and cryptanalyze this. Once this is done

we can say with much more certainty if the PX-1000 was weakened (on purpose).



Appendix A

Initial listing for the PX-1000

; Symbol file for PX-1000 Original code (1983)

; ============================================

cpu 6303 ; Processor Type

org 0xE000 ; Origin address

numformat M ; Number Format: Motorola

; Memory Map

; Internal Registers 0x0000-0x001F

; -------------------------------------------

symbol 0x0000 ioPort1dataDirection

symbol 0x0001 ioPort2dataDirection

symbol 0x0002 ioPort1data

symbol 0x0003 ioPort2data

symbol 0x0008 timerCSR

symbol 0x0009 CounterHigh

symbol 0x000A CounterLow

symbol 0x000B OutputCompareHigh

symbol 0x000C OutputCompareLow

symbol 0x000D InputCaptureHigh

symbol 0x000E InputCaptureLow

symbol 0x0010 SerialRateAndModeControlRegister

symbol 0x0011 SerialControlAndStatusRegister

symbol 0x0012 SerialReceiverDataRegister

symbol 0x0013 SerialTransmitDataRegister

symbol 0x0014 RWMemoryControlRegister
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; External Memory Space 0x0020-0x007F

; -------------------------------------------

; Internal Ram 0x0080-0x00FF

; -------------------------------------------

symbol 0x0080 RAM

; Main External Ram 0x0100-0x01FF

; -------------------------------------------

; I/O 0x4000-0x4001 & 0x8000-0x8001

; -------------------------------------------

symbol 0x4000 KeyboardCommands

symbol 0x4001 KeyboardData

symbol 0x8000 DisplayCommands

symbol 0x8001 DisplayData

; Unused

; -------------------------------------------

; 0x2000-0x3FFF

; 0x4002-0x7FFF

; 0x8002-0xDFFF

; EPROM / ROM 0xE000-0xFFFF

; -------------------------------------------

vector 0xFFF0 sci_vector sci_entry

vector 0xFFF2 tof_vector tof_entry

vector 0xFFF4 ocf_vector ocf_entry

vector 0xFFF6 icf_vector icf_entry

vector 0xFFF8 irq_vector int_entry

vector 0xFFFA swi_vector swi_entry

vector 0xFFFC nmi_vector nmi_entry

vector 0xFFFE res_vector reset
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