21:11 Windrose Fingerprinting of Code Architecture

Often we come across a firmware from a device
that we don’t have in hand, and don’t know any-
thing about beyond pictures or sales glossies on a
vendor website. We’d like to be able to load this
firmware into a disassembler and analyze it anyway.

ELF firmware files will happily tell you and your
disasssembler the CPU architecture, but what do
we do when analyzing a flat binary firmware file?
We need a method to determine the architecture by
comparing the file to previous samples from known
architectures.

THE HQ-140-X...

'&;

-says W4VPU

After trying out his new Hammarlund HQ-140-X receiver, Harry H. Harris, Jr,,
of Charlottesville, Va., W4VPU commented, “This is truly a Ham’s dream.”
Creating ‘dream’ equipment for hams is the Hammarlund goal. How well this goal
has been achieved is proven by the enthusiastic ived from satisfied
Hams. They appreciate the little extras in design, circuitry and construction built
into every Hammarlund product.
For example, the HQ-140-X—the built to prof;
—is rated XFB by Hams everywhere because of its—
FREQUENCY STABILITY — less than .01% frequency drift after
warmup anywhere from 540 Kc. to 31 Mc.
EXTREME SELECTIVITY — sharp signal separation even in the most
crowded bands.
LOW NOISE LEVEL — o noise limiter that really works.
RUGGED CONSTRUCTION — built for easy use for many years.

1 standards

‘The HQ-140-X is available either as a cabinet model or for rack mounting. For
complete details, write to The Hammarlund Manufacturing Co., Inc., 460 West
34th Street, New York 1, New York. Ask for Bulletin R-3.

3lnttps://allstar. jhuapl.edu

55

by EVM

Each processor architecture has a unique byte
histogram fingerprint, which others have described
previously. This is because in machine code
some types of opcodes are used more frequently
than others (Register/memory move, comparison,
jump /branch/call are usually the most common.)
This gives each architecture a unique balance of
bytes reflecting the designer’s choice of representa-
tion of common and uncommon opcodes.

What I'm adding to the toolbox here is the con-
cept of visualizing byte histograms as a windrose
diagram. Byte histograms can be compared using a
chi-squared test, but windrose diagrams may allow
for a more-nuanced, visual comparison.

The following diagrams were generated from
samples, mostly Linux kernels and Busybox bina-
ries, and the occasional random large firmware file.
Linux kernels and Busybox binaries work well be-
cause they are very large and contain a mix of lots
of different kinds of code.

Here is a Python script that outputs a windrose
diagram for a sample that you can compare against
the fingerprints shown. This code bins the bytes in
groups of four for more readable diagrams, and ig-
nores bytes 0x00, 0x40, 0x80 and 0xCO (to avoid
over-representing top address bytes). Note that for
best results you need to only map the text section
of a binary, and remove any padding. Normally in a
flat firmware binary the text section appears before
the data section, and depending upon where you
make the cut, your mileage may significantly vary
on very small binaries.

As an example, Figure 12 presents windrose dia-
grams from the .text section of two 32-bit MIPS bi-
naries. These are the first two MIPS binaries in the
ALLSTAR dataset3! whose .text section is greater
than 64KB, 7kaa from Debian’s 7kaa package, and
jmdlx from Debian’s aajm package. Notice their
largest three spikes (the 0x00, 0x20, and 0x8C bins)
match the 32-bit MIPS fingerprint well. The dou-
ble spike (0x20 and 0x24 bins) appears in all three
prints. jmdlx has a shorter spike at 0x00, and a
longer spike at 0x08, but we can still easily see that
its best match is 32-bit MIPS.

10

12

14

16

18

20

22

24

26

28

30

7kaa MIPS binary jmdix MIPS binary
0x00 0x00

0x40 0xCO0

Figure 12: Fingerprints of two sample MIPS executables.

0x40

#! /usr/bin/python
import sys
import struct

fname = sys.argv|[1]
bytes=][]

entries =[]

total=0

for i in xrange(0,256):
bytes.append (0)

with open(fname,’rb’) as f:
while True:
b=f.read (1)
if b:llll:
break
bint = struct.unpack(’<B’,b)[0]
bytes[bint]+=1

for i in xrange(0,256,4):
entry=0
for j in xrange(0,4):
if (((i+j) % 0x40) != 0):
entry+=int (bytes[i+]j])
entries.append(entry)
total+=entry

for i in xrange(0,0x40):
print "%f,%f" % (100%xentries|[i]|/1.0/max(entries), i*360/1.0/0x40)

56

x86 32-bit x86 64-bit ARM 32-bit
0x00 0x00 0x00

MIPS 64-bit PowerPC 32-bit PowerPC 64-bit
0x00 0x00 0x00

o7

68HC16 ARC4 Blackfin
0x00 0x00 0x00

58

