JOHNS HOPKINS
APPLIED PHYSICS LABORATORY

A Code Pirate’s Cutlass:

Recovering Software Architecture from
Embedded Binaries

evm
@evm_sec

Motivation

» Much of infosec is built on top of reverse engineering (RE)

* RE is manually intensive and requires multi-domain expertise, particularly for
embedded systems

 Embedded systems
- Combine OS, libraries, and application code into a single program space
- Binary is fully linked with no symbols (usually)

* Previous research in RE has focused on
- Code-to-code translation: Binary -> Intermediate Language -> High Level Language
- Function-level matching

| 7] sub_80895F58
| 7] sub_80896448
| 7] sub_80896494
7] sub_808964E0
|#] sub_808968B0
| 7] sub_80897148
| 7] sub_808973E0

[F1 ek 2ngo7770

J—i—'l'l'l—'\ I
Line 11626 of 11779

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 21 January 2019

Towards Automated RE

o Objects / Libraries * Reverse engineers operate on
I at least 4 levels

« Usually when a new project

» Subroutines / Functions gets started we are spinning
our wheels a bit at the bottom
I in order to label enough
functions to start to make

. Statements / Constructs sense of the bigger picture

I * For ML/DL approaches — we
are going to need methods to
« Assembly / Opcodes chunk up a large binary — and

give a sense of context for
each function

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 21 January 2019

The CodeCut Problem

« Assumptions:
- Embedded developers organize code into multiple source files
- Source files are compiled into object files

- Linker produces final binary that is a linear concatenation of object
files

- No intentional obfuscation

main.c mp mano
math_lib.c ‘math_lbo Binary
: Q) .
net_lib.c g _ _ Program
cypt_lib.c 2 coptibe
D
std_lib.c sdlibe

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 21 January 2019 4

The CodeCut Problem

* Problem Statement: Given only call graph information for a large
binary, recover the boundaries of the original object files

 Notes:

- Essentially architecture independent (as long as a call graph can be generated
through disassembly)

- Inherent ambiguity: CodeCut algorithms might locate multiple functional clusters
within an original source file - or combine two files because they are highly related

main.c

math_lib.c

net_lib.c

crypt_lib.c

std_lib.c

a|idwo)

main.o

math_lib.o

net_lib.o

crypt_lib.c

std_lib.c

AU

Binary

Program

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

nospod

main.o

unk_mod1l.0

net_lib.o

unk_mod2.0

std_lib.o

21 January 2019

Local Function Affinity Concept

#include <stdio.h>
int helper_1() {
return helper_2()/100;

}
int helper_2() {

}

int more_complex() {

while (helper_1() < 100) {
foo = helper_2() % 20;

}

void main_functionality() {
more_complex();

while (helper_2() > 1000) {

foo = helper_1();
bar = more_complex();

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 21 January 2019 6

Local Function Affinity Concept

* |f we eliminate external calls...

int helper_1() {
return helper_2() / 100;

}
int helper_2() {

}

int more_complex() {

while (helper_1() < 100) {
foo = helper_2() % 20;
}

}

void main_functionality() {
more_complex();

while (helper_2() > 1000) {

foo = helper_1();
bar = more_complex();

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 21 January 2019 7

Local Function Affinity Concept

int helper_1() {.

return helper_2() / 100; l
}
int helper_2() { . . .

 Directionality of calls at the
; beginning of the module is In
int more_complex() { - . .

the positive direction

* |f we eliminate external calls...

while (helper_1() < 100) {
foo = helper_2() % 20;
}
}

void main_functionality() {
more_complex();

while (helper_2() > 1000) {

foo = helper_1();
bar = more_complex();

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 21 January 2019

Local Function Affinity Concept

10t * If we eliminate external calls...
[per_1() {

return helper_2() / 100;

}
int helper_2() {

 Directionality of calls at the
; beginning of the module is In
int more_complex() { - . .

the positive direction

\./\./‘hile (helper_1() < 100) {

foo = helper_2() % 20;
} : . .
 Directionality of calls generally
} switch to the negative

void main_functionality() {

more_complex(); direction towards the end of
the module

while (helper_2() > 1000) {
foo = helper_1();
bar = more_complex();

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 21 January 2019

Local Function Affinity Concept

int helper_1() {
return helper_2() / 100;

}
int helper_2() {

}

int more_complex() {

while (helper_1() < 100) {
foo = helper_2() % 20;
}
}

void main_functionality() {
more_complex();

while (helper_2() > 1000) {
foo = helper_1();
bar = more_complex();

If we eliminate external calls...

Directionality of calls at the
beginning of the module is In
the positive direction

Directionality of calls generally
switch to the negative
direction towards the end of
the module

We can detect edges by
finding the switch from
negative back to positive

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 21 January 2019

10

Local Function Affinity Concept

int helper_1() {
return helper_2() / 100;

}
int helper_2() {

}

int more_complex() {

while (helper_1() < 100) {
foo = helper_2() % 20;
}
}

void main_functionality() {
more_complex();

while (helper_2() > 1000) {
foo = helper_1();
bar = more_complex();

|

If we eliminate external calls...

Directionality of calls at the
beginning of the module is In
the positive direction

Directionality of calls generally
switch to the negative
direction towards the end of
the module

We can detect edges by
finding the switch from
negative back to positive

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 21 January 2019

11

Local Function Affinity Definition

Zx ereferences(f), Sign(x o f) * LOg(|X — fl)
|references(f)|

Af finity(f) =

Where references(f) is defined as the set of functions that call f
or are called by f for which the distance from f to the function is
below a chosen threshold. Multiple references are counted.

 Using fixed threshold of 4K*

« Edge Detection*:
General negative trend
Change to positive value (A > 2)

Treat calls to / calls from as separate scores — for functions without one of the
scores, interpolate from last score

* room for improvement!

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 21 January 2019

12

Call Directionality Metric

—ay

_test

SYS_I'I p

<

A

——Total
Edge

sys_uevents.

-

/ o ety

by

j5_self_stat
7

LY

——dy

sys_mp_test

<«

8T
BT

A\

—>

Y

lsys_ltc| =—— sys_m(

sys_pl

N ™~ LD

sys_upgrade

£ 60T

sys_led

=1l

1]

GLT

ot
SLT

AN

a1
Lat
hsaT

= fsys_lte| <— sys_mf

I
65T

5T
55T
£5T
18T
a3
as

sys_pl

6ET
LET

£ET
TET
A

h\’\ [\I\l

sys_upgrade

mmﬁﬁ
fAss

134

LN

j333
60T
£0T

sys_led

unk_med_6

AUPWN

nk_mod_5

—

unk_mod_3

iy
Tl
——

unk_mod_0

sys_up_config

JAITAN

V
R} N S
oo

20
1s

10

5
o
s

-10

-20

13

21 January 2019

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Module-to-Module Call Graph (Auto-Generated)

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. 21 January 2019 14

LFA Results to Date

Gnuchess (x86)

PX4 Firmware/NuttX (ARM)

GoodFET 41 Firmware (msp430)
Tmote Sky Firmware/Contiki (msp430)
NXP Httpd Demo/FreeRTOS (ARM)

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

Match / Gap / Underlap (%)

76.1
82.2
76.1
93.3
86.7

3.2
13.
0
0
1.4

20.7
6 4.2
23.9
6.7
11.9

21 January 2019 15

A Maximum Cut Graph Algorithm

e We

* Alg

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

lght(C) _ DEe crossings(C), |E|

|crossings(C)|

where crossings(C) is defined
as the set of edges (calls) that
“cross” the cut address

orithm;

For every possible cut C, calculate
Weight(C) and choose C with
maximum weight

Remove edges that cross C from
graph
Divide graph into two subgraphs

Recursively evaluate subgraphs, stop
when modules are below a chosen
threshold

21 January 2019

16

Show Me The Code!

CodeCut is available at:

http://github.com/jhuapl/CodeCut

(LFA only for now)

Contact Info:
@evm_sec

evm.ftw@gmail.com

w © 2018 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved.

21 January 2019

17

http://github.com/jhuapl/CodeCut

JOHNS HOPKINS

APPLIED PHYSICS LABORATORY

JOHNS HOPKINS
APPLIED PHYSICS LABORATORY

A Code Pirate’s Cutlass:

Recovering Software Architecture from
Embedded Binaries

evm
@evm_sec

