
20:09 RSA GTFO
by Ben Perez

I’d like to start off by saying: “Fuck RSA.” Fuck
the company RSA, fuck the conference, and fuck
these things:

To properly motivate why I have these feelings
about RSA, I’m going to have to introduce some
mathematical foundations. RSA was invented as a
result of a night of drinking “liberal quantities of
Manischewitz wine”39 in 1977, which was the same
year Elvis died. If you encode “Rivest,” “Shamir,”
“Adelman,” and “Elvis” using the Chaldean numerol-
ogy system and take their sum,

Rivest Shamir Adelman Elvis
21 16 23 18

78

the result is 78. Adding the proper RSA key size
in 2019, and subtracting the number of days Barack
Obama was president,

78 + 4096− 2920,

we arrive at 1254, the year in which the Catholic
church created the dogma surrounding purgatory.
Finally, divide this value by the number of felonies
to which Jeffrey Epstein pled guilty before he was
murdered, and add Buzz Aldrin’s age when he faked
the moon landing:

1254÷ 2 + 39 = 666.

That’s right: Mathematical proof that RSA is the
devil’s work. �

But if pure logic won’t convince you, perhaps we
could take a look at how RSA actually works.

What is RSA again?
RSA is a public-key cryptosystem that has two pri-
mary use cases. The first is public key encryption,
which lets a user, Alice, publish a public key that al-
lows anyone to send her an encrypted message. The
second use case is digital signatures, which allow Al-
ice to “sign” a message so that anyone can verify the
message hasn’t been tampered with. The convenient
thing about RSA is that the signing algorithm is ba-
sically just the encryption algorithm run in reverse.
Therefore for the rest of this post we’ll often refer
to both as just RSA.

To set up RSA, Alice needs to choose two primes
p and q that will generate the group of integers
modulo N = pq. She then needs to choose a pub-
lic exponent e and private exponent d such that
ed = 1mod (p − 1)(q − 1). Basically, e and d need
to be inverses of each other.

Once these parameters have been chosen, an-
other user, Bob, can send Alice a message M
by computing C = Me(mod N). Alice can
then decrypt the ciphertext by computing M =
Cd(mod N). Conversely, if Alice wants to sign a
message M , she computes S = Md(mod N), which
any user can verify was signed by her by checking
M = Se(mod N).

That’s the basic idea. We’ll get to padding–
essential for both use cases–in a bit, but first let’s
see why, during every step of this process, things can
go catastrophically wrong.

39The RSA Cryptosystem: History, Algorithm, Primes, 2007, by Michael Calderbank. unzip pocorgtfo20.pdf
historyofrsa.pdf

68



Devs Talking About TheirDevs Talking About Their
Custom RSA ImplementationCustom RSA Implementation

Their RSA ImplementationTheir RSA Implementation

Setting Yourself Up for Failure

RSA requires developers to choose quite a few pa-
rameters during setup. Unfortunately, seemingly in-
nocent parameter-selection methods degrade secu-
rity in subtle ways. Let’s walk through each param-
eter choice and see what nasty surprises await those
who choose poorly.

Prime Selection

RSA’s security is based off the fact that, given a
(large) number N that’s the product of two primes
p and q, factoring N is hard for people who don’t
know p and q. Developers are responsible for choos-
ing the primes that make up the RSA modulus. This
process is extremely slow compared to key genera-
tion for other cryptographic protocols, where simply
choosing some random bytes is sufficient. Therefore,
instead of generating a truly random prime number,
developers often attempt to generate one of a spe-
cific form. This almost always ends badly.

There are many ways to choose primes in such a
way that factoring N is easy. For example, p and q
must be globally unique. If p or q ever gets reused
in another RSA moduli, then both can be easily fac-
tored using the GCD algorithm. Bad random num-
ber generators make this scenario somewhat com-

mon, and research has shown that roughly one per-
cent of TLS traffic in 2012 was susceptible to such
an attack.40 Moreover, p and q must be chosen in-
dependently. If p and q share approximately half of
their upper bits, then N can be factored using Fer-
mat’s factorization method. In fact, even the choice
of primality testing algorithm can have security im-
plications.41

Perhaps the most widely-publicized prime selec-
tion attack is the ROCA vulnerability in RSALib
which affected many smartcards, trusted platform
modules, and even Yubikeys. Here, key generation
only used primes of a specific form to speed up com-
putation time. Primes generated this way are trivial
to detect using clever number theory tricks. Once a
weak system has been recognized, the special alge-
braic properties of the primes allow an attacker to
use Coppersmith’s method to factor N . More con-
cretely, that means if the person sitting next to me
at work uses a smartcard granting them access to
private documents, and they leave it on their desk
during lunch, I can clone the smartcard and give
myself access to all their sensitive files.

It’s important to recognize that in none of these
cases is it intuitively obvious that generating primes
in such a way leads to complete system failure. Re-
ally subtle number-theoretic properties of primes
have a substantial effect on the security of RSA. To
expect the average developer to navigate this mathe-
matical minefield severely undermines RSA’s safety.

Private Exponent

Since using a large private key negatively affects de-
cryption and signing time, developers have an incen-
tive to choose a small private exponent d, especially
in low-power settings like smartcards. However, it
is possible for an attacker to recover the private key
when d is less than the 4th root of N . Instead, devel-
opers are encouraged to choose a large d such that
Chinese remainder theorem techniques can be used
to speed up decryption. However, this approach’s
complexity increases the probability of subtle imple-
mentation errors, which can lead to key recovery. In
fact, last Summer Aditi Gupta modeled this class
of vulnerabilities with the symbolic execution tool
Manticore.42

People might call me out here and point out that
normally when setting up RSA you first generate a

40unzip pocorgtfo20.pdf weakkeys12.pdf
41unzip pocorgtfo20.pdf primeandprejudice.pdf
42https://blog.trailofbits.com/2018/08/14/fault-analysis-on-rsa-signing/

69



modulus, use a fixed public exponent, and then solve
for the private exponent. This prevents low private
exponent attacks because if you always use one of
the recommended public exponents (discussed in the
next section) then you’ll never wind up with a small
private exponent. Unfortunately this assumes de-
velopers actually do that. In circumstances where
people implement their own RSA, all bets are off
in terms of using standard RSA setup procedures,
and developers will frequently do strange things like
choose the private exponent first and then solve for
the public exponent.

Public Exponent

Just as in the private exponent case, implementers
want to use small public exponents to save on en-
cryption and verification time. It is common to use
Fermat primes in this context, in particular e = 3,
17, and 65537. Despite cryptographers recommend-
ing the use of 65537, developers often choose e = 3
which introduces many vulnerabilities into the RSA
cryptosystem.

When e = 3, or a similarly small number, many
things can go wrong. Low public exponents often
combine with other common mistakes to either allow
an attacker to decrypt specific ciphertexts or factor
N . For instance, the Franklin-Reiter attack allows
a malicious party to decrypt two messages that are
related by a known, fixed distance. In other words,
suppose Alice only sends “chocolate” or “vanilla” to
Bob. These messages will be related by a known
value and allow an attacker Eve to determine which
are “chocolate” and which are “vanilla.” Some low
public exponent attacks even lead to key recovery.
If the public exponent is small (not just 3), an at-
tacker who knows several bits of the secret key can
recover the remaining bits and break the cryptosys-
tem. While many of these e = 3 attacks on RSA en-
cryption are mitigated by padding, developers who
implement their own RSA fail to use padding at an
alarmingly high rate.

RSA signatures are equally brittle in the pres-
ence of low public exponents. In 2006, Bleichen-
bacher found an attack which allows attackers to
forge arbitrary signatures in many RSA implemen-
tations, including the ones used by Firefox and
Chrome.43 This means that any TLS certificate
from a vulnerable implementation could be forged.
This attack takes advantage of the fact that many

libraries use a small public exponent and omit a sim-
ple padding verification check when processing RSA
signatures. Bleichenbacher’s signature forgery at-
tack is so simple that it is a commonly used exercise
in cryptography courses.44

Parameter Selection is Hard

The common denominator in all of these parame-
ter attacks is that the domain of possible parameter
choices is much larger than that of secure param-
eter choices. Developers are expected to navigate
this fraught selection process on their own, since
all but the public exponent must be generated pri-
vately. There are no easy ways to check that the
parameters are secure; instead developers need a
depth of mathematical knowledge that shouldn’t be
expected of non-cryptographers. While using RSA
with padding may save you in the presence of bad
parameters, many people still choose to use broken
padding or no padding at all.

Padding Oracle Attacks, Everywhere

As we mentioned above, just using RSA out of the
box doesn’t quite work. For example, the RSA
scheme laid out in the introduction would produce
identical ciphertexts if the same plaintext were ever
encrypted more than once. This is a problem, be-
cause it would allow an adversary to infer the con-
tents of the message from context without being able
to decrypt it. This is why we need to pad messages
with some random bytes. Unfortunately, the most
widely used padding scheme, PKCS #1 v1.5, is of-
ten vulnerable to something called a padding oracle
attack.

Padding oracles are pretty complex, but the
high-level idea is that adding padding to a mes-
sage requires the recipient to perform an additional
check: whether the message is properly padded.
When the check fails, the server throws an invalid
padding error. That single piece of information is
enough to slowly decrypt a chosen message. The
process is tedious and involves manipulating the
target ciphertext millions of times to isolate the
changes which result in valid padding. But that one
error message is all you need to eventually decrypt a
chosen ciphertext. These vulnerabilities are particu-
larly bad because attackers can use them to recover

43https://www.imperialviolet.org/2014/09/26/pkcs1.html
44https://cryptopals.com/sets/6/challenges/42

70



pre-master secrets for TLS sessions. For more de-
tails on the attack, there is an excellent explainer
on StackExchange.45

The original attack on PKCS #1 v1.5 was dis-
covered way back in 1998 by Daniel Bleichenbacher.
Despite being over 20 years old, this attack contin-
ues to plague many real-world systems today. Mod-
ern versions of this attack often involve a padding
oracle slightly more complex than the one originally
described by Bleichenbacher, such as server response
time or performing some sort of protocol downgrade
in TLS. One particularly shocking example was the
ROBOT attack, which was so bad that a team of
researchers were able to sign messages with Face-
book’s and PayPal’s secret keys. Some might argue
that this isn’t actually RSA’s fault—the underlying
math is fine, people just messed up an important
standard several decades ago. The thing is, we’ve
had a standardized padding scheme with a rigorous
security proof, OAEP, since 1998. But almost no
one uses it. Even when they do, OAEP is notori-
ously difficult to implement and often is vulnerable
to Manger’s attack, which is another padding oracle
attack that can be used to recover plaintext.

The fundamental issue here is that padding is
necessary when using RSA, and this added com-
plexity opens the cryptosystem up to a large attack
surface. The fact that a single bit of information,
whether the message was padded correctly, can have
such a large impact on security makes developing se-
cure libraries almost impossible. TLS 1.3 no longer
supports RSA so we can expect to see fewer of these
attacks going forward, but as long as developers con-
tinue to use RSA in their own applications there will
be padding oracle attacks.

UsingUsing

SecureSecure

CryptoCrypto

LibrariesLibraries

RollingRolling
YourYour
OwnOwn
RSARSA

DevelopersDevelopers

So what should you use instead

People often prefer using RSA because they believe
it’s conceptually simpler than the somewhat con-
fusing DSA protocol or moon math elliptic curve
cryptography (ECC). But while it may be easier to
understand RSA intuitively, it lacks the misuse re-
sistance of these other more complex systems.

First of all, a common misconception is that
ECC is super dangerous because choosing a bad
curve can totally sink you. While it is true that
curve choice has a major impact on security, one
benefit of using ECC is that parameter selection
can be done publicly. Cryptographers make all the
difficult parameter choices so that developers just
need to generate random bytes of data to use as keys
and nonces. Developers could theoretically build an
ECC implementation with terrible parameters and
fail to check for things like invalid curve points, but
they tend to not do this. A likely explanation is
that the math behind ECC is so complicated that
very few people feel confident enough to actually
implement it. In other words, it intimidates peo-
ple into using libraries built by cryptographers who
know what they’re doing. RSA on the other hand
is so simple that it can be (poorly) implemented in
an hour.

Second, any Diffie-Hellman based key agreement
or signature scheme (including elliptic curve vari-
ants) does not require padding and therefore com-
pletely sidesteps padding oracle attacks. This is a

45https://crypto.stackexchange.com/questions/12688/can-you-explain-bleichenbachers-cca-attack-on-pkcs1-v1-5

71



major win considering RSA has had a very poor
track record avoiding this class of vulnerabilities.

We recommend using Curve25519 for key ex-
change and digital signatures. Encryption needs to
be done using a protocol called ECIES which com-
bines an elliptic curve key exchange with a symmet-
ric encryption algorithm. Curve25519 was designed
to entirely prevent some of the things that can go
wrong with other curves, and is very performant.
Even better, it is implemented in libsodium, which
has easy-to-read documentation and is available for
most languages.

Seriously, stop using RSA
RSA was an important milestone in the development
of secure communications, but the last two decades
of cryptographic research have rendered it obsolete.
Elliptic curve algorithms for both key exchange and
digital signatures were standardized back in 2005
and have since been integrated into intuitive and
misuse-resistant libraries like libsodium. The fact
that RSA is still in widespread use today indicates
both a failure on the part of cryptographers for not
adequately articulating the risks inherent in RSA,
and also on the part of developers for overestimat-
ing their ability to deploy it successfully.

The security community needs to start thinking
about this as a herd-immunity problem—while some
of us might be able to navigate the extraordinar-
ily dangerous process of setting up or implement-
ing RSA, the exceptions signal to developers that it
is in some way still advisable to use RSA. Despite
the many caveats and warnings on StackExchange
and Github READMEs, very few people believe that
they are the ones who will mess up RSA, and so they
proceed with reckless abandon. Ultimately, users
will pay for this. This is why we all need to agree
that it is flat out unacceptable to use RSA in 2019.
No exceptions.

Fuck RSA.

72


