
20:03 NFC Exploitation with the RF430RFL152 and ’TAL152
by Travis Goodspeed and Axelle Apvrille

Lately we’ve been playing with the RF430FRL152H,
a delightful chip from Texas Instruments that com-
bines an MSP430 microcontroller with an ISO15693
NFC transponder. In this short paper, we’ll show
you a bit about how that chip works, and how to re-
program it over the air to emulator other NFC Type
V devices.

We’ll also learn a little bit about how to reverse
engineer medical products that use related chips,
such as the RF430TAL152H, getting code execution
and complete control of both devices. This article
hasn’t room for much background information on
these medical sensors, and for that you should see
our lecture The Inner Guts of a Connected Glucose
Sensor for Diabetes from Black Alps 2019.

– — — – — — — — – — –

First, a bit of background. The RF430, as we’ll
call these chips for short, uses an MSP430X core
running near 1.5 volts, which are often supplied by
an NFC reader, such as an Android phone. With no
need for a battery, the devices can be very small and
thin, and it’s not inconvenient to carry a complete
device in your wallet.

The chip has three memories: SRAM, ROM, and
FRAM.

Four kilobytes of SRAM at 0x1C00 are the RAM
you’ve known and loved for years. SRAM is nice
and fast with no requirements for being refreshed,
but its contents will be lost when the power is cut.
Surprisingly, most of this SRAM is unused because
of its volatility, and it seems to exist mostly for de-
velopment, where just over three kilobytes can be
remapped over the ROM.

At 0x4400 we find seven kilobytes of masked
ROM, which are hard coded into the chip by the
manufacturer. While this code can’t be changed in
the field, customers who find themselves in need of
hundreds of thousands of units can certainly make
their own arrangements with TI to have chips with
custom ROM contents produced. In the FRL152H,
this ROM contains a complete NFC stack and a sen-
sor data acquisition stack that reads samples into
FRAM for long term storage.

As SRAM is too volatile and ROM is too per-
manent for storing the application firmware of our
device, we find nearly two kilobytes of FRAM at
0xF840. FRAM, Ferroelectric RAM, is a strange
competitor to old fashioned core memory that re-
cently became viable for small devices. It does not
require power to retain its contents, and writes are
orders of magnitude cheaper than Flash memory,
with no requirements for expensive page erasures.
There is also some FRAM at 0x1A00, which stores
the device’s serial number and calibration settings.
The Interrupt Vector Table is stored as addresses at
the end of FRAM, ending with the RESET handler’s
address at 0xFFFE.

In addition to the three memories, there is an
IO region which begins at the null address, 0x0000.
There are no IO instructions in the MSP430 archi-
tecture, and IO is performed by movs to and from
this region. For more background information on
MSP430 exploitation and reverse engineering, see
PoC‖GTFO 2:5 and 11:8.

Tooling
Now that we know a little about the chip, it’s nec-
essary to write software tools and to order some
hardware. Trying to skip this step will only lead
to heartache and confusion.

On the software end, we first need a way to talk
to the chip. Modern phones have support for the
NFC Type V protocols used in this chip, so I tossed
together an Android app called GoodV to take care
of reading, writing, programming, and erasing these
chips.5 In addition to the standard command set,
it also supports backdoor commands unique to each
chip and the ability to execute temporary fragments
of shellcode from SRAM.

Because the RF430 uses an awkwardly low volt-
age, I ordered some RF430FRL152HEVM evalua-
tion boards and a matching MSP-FET debugger
from Texas Instruments. This allows me to com-
pletely wreck the chip’s FRAM contents, then re-
store the chip to functionality through JTAG. It’s
also handy for interactive debugging, provided your
breakpoints respect the timing requirements of the
NFC protocol.

5git clone https://github.com/travisgoodspeed/GoodV
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We also need firmware to run inside of the chips,
both from FRAM as a permanent application image
and from SRAM as temporary shellcode. For this, I
used TI’s branch of GCC8 for the MSP430. In past
projects Debian’s fork of GCC4 has been nicer for
this platform, but upgrading to GCC8 was neces-
sary to have the same calling convention in our code
as the ROM. This project is called GoodTag, and it
also includes a PCB design for the RF430 in Kicad.6
(Schematic on page 9.)

GoodV for Android
Before we begin to play with the parts, let’s take
a brief interruption to discuss how NFC tags work
in Android and how to write a tool to communicate
wirelessly with the RF430.

In Android, NFC Type V tags are accessed
through the android.nfc.tech.NfcV class, whose
transceive() function sends a byte array to the
tag and returns the result. Because tags have such
wildly varying properties as their command sets,
block sizes and addressing modes, these raw com-
mands are used rather than higher-level wrappers.

Commands are sent as first an option byte, which
is usually 02, and then a command byte and the op-
tional command parameters. An explicit address
can be stuck in the middle if indicated by the op-
tion bytes. Commands above A0 require the manu-
facturer’s number to follow, which for TI is 07.

You can try out the low-level commands your-
self in the NFC Tools app, whose Other/Advanced
function accepts raw commands after a scary dis-
claimer. Just set the I/O Class to NfcV and then
sent the following examples, before using them to
implement our own high level functions for the chip.

We’ll get into more commands later, but for
now you should pay attention to the general for-
mat. Here, 20 is the standard command to read a
block from an 8-bit block address and C0 is the se-
cret vendor command to read a block from a 16-bit
block address. The first byte of each reply is zero
for success, non-zero for failure.

1 02 : 20 : 00 −− Reads block 00 .
00 :E1 : 4 0 : 4 0 : 0 0 −− Success , 4 bytes o f data .

3
02 : C007 :0000 −− Reads block 0000

5 00 :E1 : 4 0 : 4 0 : 0 0 −− Success , same 4 bytes .

This particular tag is configured to 4-byte blocks,
and we might have gotten different results if config-
ured to 8-byte blocks. The secret block FF contains
these and other settings on the FRL152.

The C0 read command and matching C1 write
command can read from a 16-bit block address, but
they are still confined to a subset of FRAM and
SRAM. To get the ROM, we’ll go back to the hard-
ware.

RF430FRL152H

Once the parts have arrived, we can dump the
FRL152’s mask ROM through JTAG, and begin to
reverse engineer it.7 In the ROM, we aren’t yet very
interested in the taking of sensor measurements, but
we would very much like to understand what com-
mands are available and how they are implemented.

While IDA Pro, Radare2 or Binary Ninja would
work fine for this, we chose GHIDRA for its decom-
piler and version control. In addition to the ROM,
we also loaded dumps of SRAM and FRAM from an
unused chip, so that there would be accurate func-
tion pointer tables and global variables.

After opening the firmware and carving out func-
tions, we began by defining the RF13MTXF (0x0808)
and RF13MRXF (0x0806) IO registers as volatiles. By
searching for functions that access these registers,
or for constants used in commands, we can quickly
identify their implementations in the ROM.

; This handles a wr i t e to block 00FF, a
; r eg i on f o r j u s t the Firmware System
; Control Reg i s t e r byte at 0xF867 . When
; c a l l i n g t h i s over NfcV , you must send a
; password byte o f 0x95 be f o r e the value you
; intend to wr i t e . See page 57 o f SLAU603B .
rom_wr i te sysc t r l r eg :
5d2c CMP.B #0x95 ,&RF13MRXF

; I s 0x95 read from the RF13 modem?
5d32 JNE e a r l y r e t
5d34 MOV.B &RF13MRXF,R12
5d38 CALL #rom_wr i te sysc t r l r eg
e a r l y r e t :
5d3c RET

6git clone https://github.com/travisgoodspeed/goodtag
7See issue 86 on the Mspdebug github page if using that fine software. Uniflash is ugly and bloated, but it works with this

chip out of the box.
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Soon enough we had a nice little understand-
ing of how the ROM worked, and anything that was
missing could easily be looked up. As we’ll soon see,
that was handy both for making our own firmware
smaller and for injecting shellcode into SRAM to
quickly perform complicated functions.

Injecting Temporary Shellcode

So now that we understand the ROM, and we know
that the C1 command can write to SRAM, we can
have GoodV inject shellcode into the tag and exe-
cute it! Remote code execution is the name of the
game.

From our memory dumps, it was clear that most
of the little SRAM in use was used for a single table
of function pointers, which is loaded from a mas-
ter copy in ROM and then altered by patches which
are loaded from FRAM. While in other cases we’ll
change that table permanently through modifying
FRAM, for now we’d just like to be able to tem-
porarily change it to run our shellcode once, with
no permanent changes to the tag.

This was a better target than the call stack be-
cause it was a fixed target, and we could modify the
pointer long before calling it. In the end, we chose
the rom_rf13_senderror() function sends an error
in response to an illegal block address. The Java
code on page 11 calls a function at a given address
by overwriting that pointer, triggering the error, and
then restoring the original handler. It returns the
NFC message returned by the error, which might be
quite a few bytes.

Having the Java to run the shellcode is well and
good, but we also need the shellcode itself. Rather
than hand write it in assembly, we simply targeted
the GNU linker to SRAM and also gave it a small
region for parameters.

1 /∗ Parameters are loaded to 1E02 by the
l i n k e r . We take three 16− b i t words as

3 l i t t l e endian there f o r de s t ina t i on ,
source , and l eng t h .

5 ∗/
__attribute__ ( ( s e c t i o n ( " . params" ) ) )

7 uint16_t params [ 3 ] ;

9 /∗ This l i t t l e b i t o f s h e l l c o d e c a l l s
memcpy() with the g iven parameters ,

11 re turn ing 0 on success , 1 on f a i l u r e .
∗/

13 void __attribute__ ( ( no i n l i n e ) )
shel lcode_main ( ) {

15 //Return two by t e s f o r cont inuat ion .
RF13MTXF= memcmp( ( void ∗) params [ 0 ] ,

17 (void ∗) params [ 1 ] , params [ 2 ] ) ;
return ;

19 }

This shellcode can then be expressed in a mod-
ified form of the TI-TXT file format, where the x
keyword executes from the current working address.
Simply change the six bytes at 0x1E02 to contain
your destination, source, and length.

@1E02
00 00 00 00 00 00
@1E12
3C 40 02 1E 1E 4C 04 00 1D 4C 02 00 2C 4C B0 12
2A 1E 82 4C 08 08 30 41 0A 12 4B 43 0E 9B 03 20
4C 43 30 40 50 1E 0F 4C 0F 5B 6F 4F 1B 53 0A 4D
0A 5B 5A 4A FF FF 0F 9A F1 27 0C 4F 0C 8A 3A 41
30 41
@1E12
x
q
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public byte [ ] exec ( int adr ) throws IOException {
2 /∗ While we could overwr i t e the c a l l s tack , i t i s much ea s i e r to overwr i t e the

func t i on c a l l t a b l e in ea r l y SRAM with a po in t e r to our funct ion , because we
4 can only perform wr i t e s o f 4 or 8 by t e s at a time , and the c a l l s t ack wi th in a

wr i t e handler w i l l be qu i t e d i f f e r e n t from the one in a read handler .
6

There are p l en t y o f f unc t i on s to choose from , and an i d e a l hook would be one tha t
8 won ’ t be missed by normal f unc t i ons . We’d a l s o p r e f e r to have cont inua t ion wherever

po s s i b l e , so t ha t execu t ing the code doesn ’ t crash our t a r g e t .
10

The func t ion po in t e r we ’ l l o ve rwr i t e i s at 0x1C5C , po in t ing to rom_rf13_senderror ()
12 at 0x4FF6 . For proper cont inuat ion , you can j u s t wr i t e two by t e s to RF13MTXF and

return . Without proper cont inuat ion , an IOException w i l l be thrown in the r ep l y
14 t imeout . To unhook , wr i t e 0x4FF6 to 0x1C5C , r e s t o r i n g the o r i g i n a l handler .

16 As a handy s i d e e f f e c t , we re turn the two by t e s t ha t need to be t ransmi t t ed f o r
cont inuat ion , so you can ge t a b i t o f data back from your s h e l l c o d e .

18 ∗/

20 Log . v ( "GoodV" , S t r ing . format ( "Asked to c a l l s h e l l c o d e at %04x" , adr ) ) ;

22 // F i r s t we rep l ace the read error r ep l y handler .
wr i t e (0x1C5C , new byte [ ] { ( byte ) ( adr & 0xFF) , (byte ) ( adr >> 8) }) ;

24
// Then we read from an i l l e g a l address to t r i g g e r an error ,

26 // re turn ing the two by t e s o f i t s handler .
byte [ ] s h e l l c o d e r e t u r n = t r an s c e i v e (new byte [ ] {

28 0x02 , // Flags
(byte ) 0xC0 , // MFG Raw Read Command

30 0x07 , // MFG Code
(byte ) (0 xbe ) , (byte ) (0 xba ) //16− b i t b l o c k number , l i t t l e endian .

32 }) ;
Log . v ( "GoodV" , " She l l c ode returned : " + GoodVUtil . byteArrayToHex ( s h e l l c od e r e t u rn ) ) ;

34
//And f i n a l l y , we repa i r the o r i g i n a l handler address , l i k e nothing ever happened .

36 wr i t e (0x1C5C , new byte [ ] { ( byte ) (0 xf6 ) , (byte ) (0 x4f ) }) ;

38 return s h e l l c od e r e t u rn ;
}

Java Function to Execute RF430 Shellcode from Android
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RF430TAL152H

We’ll get back to programming the RF430FRL152H
in a bit, but now that we can reverse engineer, pro-
gram, and exploit that chip, let’s take a look at its
commercial variant, the RF430TAL152H.

The TAL152 is very similar in layout and ap-
pearance to the FRl152, with the principle differ-
ence being the contents of mask ROM and the JTAG
configuration. It can be found in a popular brand of
continuous glucose monitor,8 and there is preciously
little to be found about the chip online, with no pub-
lic datasheet and all conversation shut down in TI’s
E2E forums.

In this section, we’ll trace the long road from first
examining this chip to finally dumping its ROM and
then writing custom firmware to FRAM.

Reading, but not Writing, to FRAM

When first experimenting with the chip, we find that
there is one extra block of FRAM exposed by NFC,
and that there is no secret page of the configuration
at page FF. Every last page is write protected, and
we cannot change any of them with the standard
write command, 21.

But all is not lost! There is a table of func-
tion pointers on the final page, and the value of the
RESET vector tells us that this ROM is different from
the FRL152, so we know that the two devices have
different software in their ROMs.

We also see this table, which begins at 0xFFCE
with the magic word 0xABAB and then grows down-
ward to the same word at a lower address, 0xFFB8.9
Each entry in this table is a custom vendor com-
mand, and we see that much like the C0 and C1
commands that have been so handy on the FRL152,
the TAL152 has commands A0, A1, A2, A3, and A4.

We also see that A1 and A3 are in FRAM, where we
can read at least part of their code.

1 f f a c ab ab dw ABABh
f f a e 4a fb addr fram_e2

3 f f b 0 e2 00 dw E2h
f f b 2 3c fa addr fram_e1

5 f f b 4 e1 00 dw E1h
f f b 6 ae fb addr fram_e0

7 f f b 8 ab ab dw ABABh
f f b a 2c 5a addr rom_a4

9 f f b c a4 00 dw A4h
f f b e ca fb addr fram_a3

11 f f c 0 a3 00 dw A3h
f f c 2 56 5a addr rom_a2

13 f f c 4 a2 00 dw A2h
f f c 6 ba f9 addr fram_a1

15 f f c 8 a1 00 dw A1h
f f c a 24 57 addr rom_a0

17 f f c c a0 00 undef ined2 00A0h
f f c e ab ab dw ABABh

The table ends early, of course, with E0, E1, and
E2 being disabled by E0’s command number having
been overwritten by the table end marker. These
commands were available at some point in the man-
ufacturing process, and we can read their command
handlers from FRAM, but we cannot execute them.

Calling these functions is a bit disappointing. A1
returns the device status of some sort, but the other
Ax commands don’t even grace us with an error mes-
sage in reply. The reason for this is hard to see from
the partial assembly, but we later learned that they
require a safety password.

So not yet being able to run A3, we read its dis-
assembly. The function begins by calling another
function at 0x1C20 and then proceeds to read a
raw address and length before sending the requested
number of 16-bit words out the RF13 modem to the
reader. If we could just call this command, we could
dump the ROM and reverse engineer the behavior
of the other commands!

Sniffing the Readers

To get the password, we had to sniff a legitimate
reader’s attempts to call any Ax command other
than A1, so that we could learn the password and
us A3 to dump raw memory. We found this both
by tapping the SPI bus of the manufacturer’s dedi-
cated hardware reader and separately by observing
the vendor’s Android app in Frida.

8See our lecture, The Inner Guts of a Connected Glucose Sensor for Diabetes at Black Alps 2019 for details of the sensor
in a medical context.

9The location and format are the same as the FRL152, except that the magic word is ABAB instead of CECE.
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The 32-bit password came as a parameter to the
A0 command, which initializes the glucose sensor af-
ter injection into a patient’s arm. Trying this same
password in A3, followed by an address and length,
gave us the ability to read raw memory. Looping
this gave complete dumps of ROM and SRAM, as
well as a complete dump of the FRAM regions which
are not exposed by the standard read command, 20.

Inside the ROM

Loading this complete dump into GHIDRA shows
that the ROM is related to that of the FRL152H, but
that they have diverged quite a bit. The TAL152
implements no vendor commands directly; rather,
they must be added through the patch table. It has
no secret pages.

Lacking the ability to write directly to pages,
and finding no new commands, we explored the re-
maining commands. Sure enough, A2 write protects
every FRAM page that is exposed by NFC, and A4
unlocks almost all of those same pages!

Unlocking and Patching

Calling the A4 command, we can then unlock pages
and begin mucking around. A simple write to
0xFFB8 will re-enable the Ex commands, allowing
us to experiment with restoring old sensors. Or we
can compile our own firmware to run inside of the
TAL152, turning a glucose sensor into some other
device.

Some Other Unlocking Techniques
While trying to dump the TAL152, we hit a few dead
ends that might possible work for you on other tar-
gets.

First, the JTAG of the TAL152 appears to be
unlocked if it follows the same convention as the
FRL152. This might very well be caused by a cus-
tom activation key,10 but whether it is a different
locking mechanism or a different key, we were un-
able to get a connection.

We also tried to wipe these chips back to a
factory setting by raising them above their Curie
point, which Texas Instruments Application Report
SLAA526A, MSP430 FRAM Quality and Reliabil-
ity, leads us to believe is near 430◦C. Short exper-
iments involving a hot air gun and strong magnets

were unsuccessful, but by summer I hope to mill a
metal case for the RF430 then back a chip in a reg-
ulated kiln for many hours to look for bit failures.
Custom firmware might also allow visibility into the
error correcting bits of the FRAM, to better recog-
nize partial success at introducing errors.

There are also some test pins on the chip which
aroused our curiosity, as other chips use them to en-
ter a bootloader and these chips might use them to
reset to a factory state. This could be as effective
as overheating the FRAM, without the hassles of
extreme temperatures.

– — — – — — — — – — –
It’s also worth noting that our successful

method–using the A3 command with the manufac-
turer’s password–could be accomplished either by
tapping the hardware reader’s SPI bus or by reading
that same password out of the manufacturer’s An-
droid application. In reverse engineering, any tech-
nique that works is a good one, and there’s often
more than one way to win the game.

10See issue 86 on the Mspdebug project for details on the activation key.
https://github.com/dlbeer/mspdebug/issues/86
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