
Caml Virtual Machine — File & data formats

Document version: 1.4

http://cadmium.x9c.fr

Copyright c© 2007-2010 Xavier Clerc – cadmium@x9c.fr
Released under the LGPL version 3

February 6, 2010

Abstract: This document describes the binary formats used by Caml1 in its “3.11.2” version for
both bytecode files and marshalled data. This document is structured in two parts: the first one
exposes the format of bytecode files, and the second one exposes the format of marshalled data.

Bytecode file format

The format of bytecode files is summarized by figure 1. Unused header is commonly os-executable
code that looks for ocamlrun executable and launch it on the file. Trailer identifies the file as a
caml bytecode file by magic (“Caml1999X008”) and indicates the number of sections in the file.
One should notice that datas and descriptors of sections do not need to be in the same order.
All character and string values use the ISO-8859-1 encoding. The remainder of this section lists
possible sections with their contents.

” CODE ” section (mandatory) contains the bytecode to be executed. Its size must be a multiple
of 4, as the code is composed of 4-byte integers (in little-endian representation). These integers
are either insctructions bytecodes or instructions arguments. The list of intructions with related
arguments is given in another document “Caml Virtual Machine – Instruction set” that can be
downloaded at http://cadmium.x9c.fr.

” DATA ” section (mandatory) contains the global data for the program, in the format defined
in the second part of this document.

” PRIM ” section (mandatory) contains a null-character-terminated list of null-character-
terminated strings. Each string is the name of a primitive requested for program execution. The
order of these strings defines the primitive integer identifiers: the first requested primitive is given
the ” 0 ” integer identifier, the second one is given the ” 1 ” integer identifier, etc.

” DLLS ” section contains a null-character-terminated list of null-character-terminated strings.
Each string is the name of a linked library requested for program execution.

1The official Caml website can be reached at caml.inria.fr and contains the full development suite (compiler,
tools, virual machine, etc.) as well as links to third-party contributions.

1

http://cadmium.x9c.fr
mailto:cadmium@x9c.fr
http://cadmium.x9c.fr
caml.inria.fr

unused header

data for section 1

...

data for section N

descriptor for section 1

...

descriptor for section N

trailer

ta
bl

e
of

 c
on

te
nt

s
ac

tu
al

 d
at

a

File format:

name length

four 8-bit chars one 32-bit integer
(unsigned)

Section description format:

of sections magic

one 32-bit integer
(unsigned)

twelve 8-bit chars

Trailer format:

Figure 1: File format.

” DLPT ” section contains a null-character-terminated list of null-character-terminated strings.
Each string is a path for linked library search.

” DBUG ” section contains an unsigned 32-bit integer indicating the number of debug elements.
Elements follow, each being a couple containing an offset (as an unsigned 32-bit integer) and a
marshalled value representing an Instruct.debug-event instance.

Marshalled data format

The format of marshalled values is summarized by figure 2. The following paragraphs give some
precisions about particular data formats.

Integer values are stored in big-endian format. They encode values of the int type (int32,
int64 and nativeint types are coded as custom values).

String values are stored using ISO-8859-1 encoding.

Float values are stored using IEEE 754 encoding. According to code, values may be either
big-endian (0x0B, 0x0D, and 0x0F codes) or little-endian (0x0C, 0x0E, and 0x07 codes).

Code offset values (0x10) consist in the offset of a code address, relative to code start.

Block values are serialized as shown in figure 3. For atoms, no additional data needs to be stored
as the tag is given by the header. Other blocks are stored by serializing their fields in ascending
order, the size (number of blocks) being given by the header. Color is used by garbage collector
and is set to zero in serialized data.

2

code value

signed 8-bit integer

signed 16-bit integer

signed 32-bit integer

0x00

0x01

0x02

0x03 signed 64-bit integer supported only on 64-bit architectures

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x07

0x0F

0x10

0x11

0x12

0x13

unsigned 8-bit length

unsigned 32-bit length

sequence of 8-bit characters (ISO-8859-1 encoding)

sequence of 8-bit characters (ISO-8859-1 encoding)

64-bit float (IEEE 754 encoding)

unsigned 8-bit length sequence of 64-bit floats (IEEE 754 encoding)

unsigned 32-bit length sequence of 64-bit floats (IEEE 754 encoding)

0x04

0x05

0x06

unsigned 8-bit offset

unsigned 16-bit offset

unsigned 32-bit offset

32-bit header (unsigned)

64-bit header (signed) supported only on 64-bit architectures

in
te

ge
rs

sh
ar

ed
 e

le
m

en
ts

bl
oc

ks
st

rin
gs

flo
at

s
m

isc
el

la
ne

ou
s

0-terminated string (8-bit ISO-8859-1 characters) custom data

block

block

unsigned 32-bit offset

unsigned 32-bit offset

closure

16-byte checksum

Figure 2: Data format.

3

size = 0

size > 0

nothing — atom index is given by tag

field 0 field 1 field size - 2 field size - 1...

32-bit header:

64-bit header:

Block content:

(color) tagsize
07891031

(color) tagsize
07891063

Figure 3: Block values.

Custom values are stored in two parts: the first one is the custom identifier (as a null-character-
terminated string, using ISO-8859-1 encoding), the second one is custom-specific data.

Shared values are references to elements already (de)serialized of the current value. The offset
defines this reference, zero pointing to the last read object, one pointing to the preceding object,
etc.

Small elements are used to shorten value representation. They are stored using the specific
encodig depicted in figure 4. A code from 0x20 to 0x3F indicates a small string value, a code from
0x40 to 0x7F indicates a small int value, and a code from 0x80 to 0xFF indicates a small block
value.

4

0x20

0x3F

...

0x40

0x7F

...

0x80

0xFF

...

code value

sequence of 8-bit characters (ISO-8859-1 encoding) length = code & 0x1F

value = code & 0x3F

size = (code >> 4) & 0x07

tag = code & 0x0F
block

Figure 4: Small elements.

5

	Bytecode file format
	Marshalled data format

