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Antivirus emulators are for used dynamic anal-
ysis of unknown potentially malicious binaries on
endpoint computer systems. As modern malware is
often packed, obfuscated, or otherwise transformed
to make signature-based classification difficult, em-
ulation is an essential part of any modern antivirus
(AV). During emulation, binaries are loaded and run
in an emulator which emulates a CPU, an operating
system, and a computer environment (settings, files,
etc.), among other facilities. Runtime instrumenta-
tion allows antivirus software to make heuristic or
signature-based determinations about the potential
malware it is emulating - the binary may use cer-
tain operating system APIs that heuristically indi-
cate malicious intent, or it may unpack or drop a
known signed binary. Unfortunately, while AV use
of emulators for dynamic analysis is well known, few
researchers have published analysis of their inner
workings. As it brings together all the challenges
and excitement of understanding instruction set ar-
chitectures, operating system internals, malware be-
havior, and antivirus itself, emulator analysis is a
fascinating topic in reverse engineering.

In this article, I’ll share three tricks and anec-
dotes from my research into Windows Defender An-
tivirus’ emulator. While the term Defender now
seems to refer to any security tool or mitigation
built into Windows, we’ll be looking specifically at
the Antivirus product, the first to bear to the De-
fender name, and a default free install on Windows.
The tricks I’ll be sharing are Defender specific, but
the astute hacker will be able to generalize them to
other AVs.

We’ll take a look at the mechanisms Defender
uses to implement native OS API function emula-
tion, and then present three related reverse engineer-
ing tricks: 1) how reverse engineers can establish an
output channel to help them observe emulator state
from outside of the emulator; 2) how we can bypass
Microsoft’s attempted mitigations against abuse of
the emulator’s custom apicall instruction; and 3)
writing IDA tooling to help us load Defender VDLL
binaries that use the apicall instruction.

Background

The core of the Windows Defender Antivirus is an
enormous 45 thousand function, eleven megabyte li-
brary, mpengine.dll. Deep within this huge DLL, a
proprietary emulator provides facilities for dynamic
analysis of potentially malicious Windows PE bina-
ries on the endpoint.

Many AVs are difficult to analyze due to
practical hurdles to reverse engineering such
as anti-debugging, GUI-only interfaces, cus-
tom non-standard binary formats, and enormous
disassembler-breaking functions. These challenges
are all surmountable (kernel debuggers, custom har-
nesses, bespoke IDA / Binary Ninja loaders, and
additional RAM), but they can be a major im-
pediment to analysis. Joxean Koret has done some
tremendous and under-appreciated work on address-
ing these challenges, interested readers are referred
to the Antivirus Hacker’s Handbook.

Fortunately, Defender is one of the easiest AVs
to analyze that I have encountered - it does run
as a Windows Protected Process (so it cannot be
debugged by another usermode program), and its
binary is massive, but otherwise it is fairly easy to
work with. Microsoft’s publication of mpengine.dll
PDBs is also a tremendous help in reverse engineer-
ing efforts.

The fact that emulators generally do not provide
output other than malware identification makes it
difficult to follow their execution without actually
debugging them. While previous work on AVLeak
from Jeremy Blackthorne, I, and several other col-
laborators at RPI showed the potential for exploit-
ing malware identification as a side channel to exfil-
trate data from within emulators, this technique is
slow (generally less than 10 bytes per-second) and
only effective for exfiltration of artifacts from within
emulators that remains static from execution to ex-
ecution.64

Debugging emulators and setting breakpoints on
functions of interest can allow for tracing of pro-
gram flow. (E.g., is the malware actually getting
emulated? Is execution stopping after a particular
API call?) Breakpoint-based debugging can get con-
fusing when emulators have complex initialization

64For example, some AVs may randomize certain traits of the execution environment with each run. If only a single byte can
be extracted with each run, researchers can’t extract multi-byte traits.
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and teardown routines that invoke functions of in-
terest unrelated to actual malware execution, as is
the case with Windows Defender. I would note that
I’ve found code coverage exploration tools, such as
a customized version of Markus Gaasedelen’s Light-
house to be extremely helpful in understanding the
big picture of emulator execution.65

While Defender supports other architectures and
binary formats, this article will focus solely on em-
ulator support for 32-bit Windows PE executables.
Readers interested in other dynamic analysis facili-
ties in Defender can check out my REcon Brussels
2018 presentation on Defender’s JavaScript engine.

On Emulator Architecture

AV emulators are generally constructed from three
key components - CPU emulation, operating system
emulation, and a virtual environment. Due to per-
formance and legal licensing concerns, CPU and OS
emulation are usually wholly proprietary and built
on AV-industry developed tooling, not open source
projects like QEMU or WINE.

CPU emulators implement a particular instruc-
tion set architecture in software, so that binary code
can be executed in the emulator. OS emulation is
software-based emulation of operating system facil-
ities - allowing malware to make OS API calls as it
runs. Finally, emulators must emulate a virtual en-
vironment with observable traits such as usernames,
files on disk, and registry entries, among many other
traits. Other than a handful of traits that are acces-
sible from within a processes actual memory space
(e.g., OS build information on the Windows PEB),
most of the virtual execution environment can only
be observed through OS API calls. (Querying for
a username, statting a directory, reading a registry
key, etc.) As a result, OS emulation is often tightly
coupled with virtual environment emulation.

The three tricks addressed here will all touch
upon “VDLLs” (presumably “virtual DLLs”) within
the Defender emulator. VDLLs emulate the func-
tionality of real Windows DLLs (dynamic-link li-
braries) in the Defender emulator, providing emu-
lation of the operating system API, including pre-
senting the virtual execution environment. These
VDLLs are real Windows PE files, and using them is
just like using real Windows DLLs - they are loaded
into the memory space of binaries under emulation,
they are present in the emulated file system in the

right directories, they can be loaded with LoadLi-
brary, etc. Like real DLLs, they are compiled x86
code, and they run at the same privilege level, with
the same stack, registers, and other facilities as the
code invoking them - it just happens that this is go-
ing on within a virtualized emulated process running
on an emulated CPU.

On a real Windows system, some DLL func-
tions may ultimately resolve to triggering system
calls where interaction with the kernel is necessary
(e.g., when writing a file to disk, opening a net-
work socket, putting the process to sleep, etc.), while
others may stay in usermode and simply set re-
turn values or transform input. (E.g., grabbing the
IsDebuggerPresent flag off the PEB, translating a
string to uppercase, or performing a memcpy.) Sim-
ilarly, Defender’s VDLLs may trap into special na-
tively implemented emulation routines akin to per-
forming system calls, or they may stay executing
solely within emulator memory while setting return
values or manipulating input.

Lets take a look at the simpler form of VDLL em-
ulated functions - those which stay executing in em-
ulator memory without trapping out to a special ker-
nel syscall-like emulation routine implemented in na-
tive code. Figure 5 shows Defender’s kernel32.dll
VDLL emulation of kernel32!GetComputerNameW.
When a malware binary calls GetComputerNameW,
this code provides emulation of the function with
x86 code that simply runs on the virtual CPU. As
we can observe, this routine is hardcoded to return
the string “HAL9TH” - evidently the developer who
wrote this emulation was a fan of Arthur C. Clarke.
This particular trait could be used by malware to
evade the Defender emulator, e.g., malware seeing
the computer name “HAL9TH” could choose not to
run, knowing that it is likely being emulated by De-
fender.

Having looked at simple, in-emulator, VDLL
routines, we can now look at more complex rou-
tines that require invoking native emulation. These
routines are akin to those OS API functions which
require syscalling in to the kernel. Just like in the
kernel, these routines are used to handle more com-
plex operations, such as interacting with the file sys-
tem, creating threads, or interacting with mutexes
or events.

Whereas on a real system the int or syscall in-
struction and specific register values are used to alert
the kernel that it must service some usermode re-

65git clone https://github.com/gaasedelen/lighthouse
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. t ex t : 7C82D0EA ; =============== S U B R O U T I N E =======================================
2 . text : 7C82D0EA

. text : 7C82D0EA ; Att r ibut e s : bp−based frame
4 . t ex t : 7C82D0EA

. text : 7C82D0EA ; BOOL __stdcal l GetComputerNameW(LPWSTR lpBuf f e r , LPDWORD nSize )
6 . t ex t : 7C82D0EA pub l i c GetComputerNameW

. text : 7C82D0EA GetComputerNameW proc near ; DATA XREF: . t ex t : off_7C8547D8
8 . t ex t : 7C82D0EA

. text : 7C82D0EA lpBu f f e r = dword ptr 8
10 . t ex t : 7C82D0EA nSize = dword ptr 0Ch

. t ex t : 7C82D0EA
12 . t ex t : 7C82D0EA push ebp

. t ex t : 7C82D0EB mov ebp , esp
14 . t ex t : 7C82D0ED mov eax , [ ebp+nSize ]

. t ex t : 7C82D0F0 push ed i
16 . t ex t : 7C82D0F1 t e s t eax , eax

. t ex t : 7C82D0F3 j z short loc_7C82D119
18 . t ex t : 7C82D0F5 mov edi , [ ebp+lpBu f f e r ]

. t ex t : 7C82D0F8 t e s t edi , ed i
20 . t ex t : 7C82D0FA j z short loc_7C82D119

. t ex t : 7C82D0FC cmp eax , 1000h
22 . t ex t : 7C82D101 jbe short loc_7C82D119

. t ex t : 7C82D103 push 8
24 . t ex t : 7C82D105 pop ecx

. t ex t : 7C82D106 cmp [ eax ] , ecx
26 . t ex t : 7C82D108 jnb short loc_7C82D120

. t ex t : 7C82D10A mov [ eax ] , ecx
28 . t ex t : 7C82D10C mov eax , l a r g e f s : 18 h

. t ex t : 7C82D112 mov dword ptr [ eax+34h ] , 6Fh
30 . t ex t : 7C82D119

. t ex t : 7C82D119 loc_7C82D119 : ; CODE XREF: GetComputerNameW+9
32 . t ex t : 7C82D119 ; GetComputerNameW+10 . . .

. t ex t : 7C82D119 xor eax , eax
34 . t ex t : 7C82D11B

. t ex t : 7C82D11B loc_7C82D11B : ; CODE XREF: GetComputerNameW+4B
36 . t ex t : 7C82D11B pop ed i

. t ex t : 7C82D11C pop ebp
38 . t ex t : 7C82D11D retn 8

. t ex t : 7C82D120 ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 . t ex t : 7C82D120

. t ex t : 7C82D120 loc_7C82D120 : ; CODE XREF: GetComputerNameW+1E
42 . t ex t : 7C82D120 push e s i

. t ex t : 7C82D121 mov e s i , o f f s e t aHal9th_0 ; "HAL9TH"
44 . t ex t : 7C82D126 movsd

. t ex t : 7C82D127 movsd
46 . t ex t : 7C82D128 movsd

. t ex t : 7C82D129 movsw
48 . t ex t : 7C82D12B mov dword ptr [ eax ] , 7

. t ex t : 7C82D131 xor eax , eax
50 . t ex t : 7C82D133 inc eax

. t ex t : 7C82D134 pop e s i
52 . t ex t : 7C82D135 jmp short loc_7C82D11B

. t ex t : 7C82D135 GetComputerNameW endp

Figure 5. Defender’s in-emulator kernel32.dll VDLL emulation of GetComputerNameW.
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quest, in Defender, a custom non-standard apicall
instruction provides this facility. When the CPU
emulator sees the apicall instruction, it invokes
special native emulation routines to handle emula-
tion of a complex function.

The apicall instruction consists of a three byte
opcode, 0f ff f0, followed by a four byte immedi-
ate indicating a function to emulate. The four byte
immediate value is the CRC32 of the DLL name
in all caps xored with the CRC32 of the function’s
name.

1 0 f f f f 0 [ f our byte immediate ]
a p i c a l l which rou t in e to emulate

These apicall functions are spread across De-
fender’s virtual DLLs and used to trigger the more
complex emulation certain functions may require.
For example, the code below is used to trigger De-
fender’s native emulation of the Sleep. This func-
tion with the actual apicall instruction is called by
kernel32!SleepEx, which can be called directly, or
by kernel32!Sleep, which is basically just a wrap-
per around kernel32!SleepEx. The same is true
on a real Windows system.

8B FF mov edi , ed i
2 E8 00 00 00 00 c a l l $+5

83 C4 04 add esp , 4
4 0F FF F0 B6 BE 79 57 a p i c a l l ke rne l32 ! S leep

50 push eax
6 33 C0 xor eax , eax

58 pop eax
8 C2 04 00 retn 4

When the virtual CPU emulator sees the cus-
tom apicall opcode run, it ends up calling
out through several functions until it ends up
at __call_api_by_crc(pe_vars_t *v, unsigned
int apicrc). In this function, pe_vars_t *v is
an enormous (almost half a megabyte) struct hold-
ing all the information needed to manage the em-
ulator’s state during emulation. unsigned int
apicrc is the immediate of the apicall instruction,
crc32(dll name in all caps) ⊕ crc32(name
of function). From here, the emulator searches
the the global g_syscalls array for a function
pointer that provides native emulation of the CRCed
API function. As can be seen in Figure 6, the array

is 119 esyscall_t structs, each consisting of a func-
tion pointer to an API emulation function followed
by the corresponding CRC32 value.

These native functions are implemented in De-
fender’s mpengine.dll as native x86 code. Like an
OS kernel, they have privileged full control over pro-
cessing being emulated - they can manipulate mem-
ory, register state, etc. These functions can also in-
teract with internal data emulator data structures,
such as those that store the virtual file system or
heuristic information about malware behavior.

It’s worth noting that since these 119 emu-
lated functions are emulated with native code,
any vulnerabilities in them can allow malware
to break out of the emulator, escalate privilege
to NTAUTHORITY/SYSTEM (which Defender currently
runs as, unsandboxed), and gain code execution
within an AV process itself - unlikely to be flagged
by the AV for any malicious behavior it carries out.

Building files that get consistently emulated dur-
ing scanning can be a challenge. Through a bit of
trial and error, I was able to come up with Visual
Studio build settings to produce Windows executa-
bles that are consistently scanned - this involved
tweaking optimization levels, target OSes, and link-
ing. The Visual Studio project included in this is-
sue gets consistently emulated when I have Defender
scan it.66

Creating an Output Channel

AV software’s usual lack of output can make it par-
ticularly obtuse to approach for reverse engineers.
When scanning a piece of potential malware, the AV
will often respond with a malicious or not malicious
classification, but little else. Naming conventions in
identifying the malware may provide some indica-
tion of how it was scanned. (For example, seeing
the identification “Dropper:[malware name]” is a
strong indication that the malware was run in the
AV’s emulator, where it dropped a known piece of
malware.)

The prior AVLeak research showed how malware
identification itself may be exploited as a side chan-
nel to leak information out from these emulators,
but this approach is generally only useful for AV
evasion. (For example, creating malware that looks
for particular unique identifiers in these emulated
systems in order to know that it is being analyzed
so it can then behave benignly.) This approach is

66unzip pocorgtfo19.pdf defender.zip
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5A129BA8 ; e s y s c a l l_ t g_sy s ca l l s [ 1 1 9 ]
2 5A129BA8 g_sys ca l l s dd o f f s e t ?NTDLL_DLL_NtSetEventWorker@@YAXPAUpe_vars_t@@@Z

5A129BAC dd 5F2823h
4 5A129BB0 dd o f f s e t ?NTDLL_DLL_NtResumeThreadWorker@@YAXPAUpe_vars_t@@@Z

5A129BB4 dd 2435AE3h
6 5A129BB8 dd o f f s e t ?NTDLL_DLL_NtSetInformationFileWorker@@YAXPAUpe_vars_t@@@Z

5A129BBC dd 2DA9326h
8 5A129BC0 dd o f f s e t ?ADVAPI32_DLL_RegDeleteValueW@@YAXPAUpe_vars_t@@@Z

5A129BC4 dd 6A61690h

Figure 6. Definition of g_syscalls consisting of 119 esyscall_t structs.

also slow as it extracts information at the rate of
bytes per second. Finally, AVLeak requires multi-
ple rounds of malware scanning to extract complex
multi-byte artifacts. This is fine for most artifacts of
interest, such as usernames, timing measurements,
and API call results, but some interesting artifacts
may be randomized per run or too long to dump,
such as bytes of library code after standard func-
tion prologues in Kaspersky AV’s emulated DLLs or
complete files from disk.

After seeing me present my AVLeak side channel
research, my friend Mark suggested using function
hooking to create a much larger bandwidth chan-
nel from within AV emulators to the outside. By
hooking the native code-implemented functions in-
side the emulator’s g_syscalls array, and then in-
voking those hooked functions with malware inside
the emulator using arguments we’d like to pass to
the outside world, we can effectively create an out-
put channel for sharing information from inside.

In general, this technique requires solving the
non-trivial technical challenge of actually locating
emulation routines in memory, writing code to hook
them, and then figuring out how to extract emu-
lated parameters and potentially memory contents
from the emulator. In the case of Windows Defender
however, this is relatively easy, as these functions are
conveniently labeled by Microsoft provided symbols,
and the existing code already present gives us a good
example to work off of.

While the in-emulator VDLL emulation func-
tions can simply interact directly with memory in-
side the emulator, these native emulations func-
tions must use APIs to programmatically change
emulator state via the pe_vars_t *v parameter
which all of them take. We can see an example of
this in Figure 7’s annotated Hex-Rays decompila-
tion of kernel32!WinExec. Note how parameters

are pulled out from the current emulation session,
and parameter 0 (LPCSTR lpCmdLine) is a pointer
within the emulator’s virtual address space and
must be handled through with pe_read_string_ex
in order to retrieve the actual wide string at the
supplied emulator address.

Reversing out how pe_read_string_ex and
other APIs used to map in parameter-provided
pointers, we come across the massive function:
BYTE * __mmap_ex(pe_vars_t *v, unsigned
int size, unsigned __int64 addr, unsigned
int rights), which returns a native pointer to a
virtual memory inside an emulation session. Given
this pointer, native code can now reach in and read
or write (depending on rights) memory inside the
emulator.

With our understanding of function emulation
and memory management, we now have the tools
to create a simple output channel from within the
emulator. We begin with a simple function, one
that is well suited to serve as an output chan-
nel: kernel32!OutputDebugStringA. Defender’s
provided native function of the function basically
does nothing, it just retrieves its single parameter
and bumps up the emulator tick count:

1 void __cdecl KERNEL32_DLL_OutputDebugStringA
( pe_vars_t ∗v ) {

3 Parameters<1> arg ; // [ esp+4h ] [ ebp−Ch]

5 Parameters <1>::Parameters<1>(&arg , v ) ;
v−>m_pDTc−>m_vticks64 += 32 i64 ;

7 }
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1 /∗
Emulation o f UINT WINAPI WinExec( _In_ LPCSTR lpCmdLine , _In_ UINT uCmdShow) ;

3 ∗/
void __cdecl KERNEL32_DLL_WinExec( pe_vars_t ∗v )

5 {
DT_context ∗pDTc ; // ecx

7 unsigned __int64 v2 ; // [ esp+0h ] [ ebp−54h ]
CAutoVticks v t i c k s ; // [ esp+10h ] [ ebp−44h ]

9 src_attr ibute_t a t t r ; // [ esp+1Ch] [ ebp−38h ]
unsigned int Length ; // [ esp+30h ] [ ebp−24h ]

11 Parameters<2> arg ; // [ esp+34h ] [ ebp−20h ]
int unused ; // [ esp+50h ] [ ebp−4h ]

13
v t i c k s . m_vticks = 32 ;

15 pDTc = v−>m_pDTc;
v t i c k s . m_init_vticks = &v−>vt i ck s32 ;

17 v t i c k s .m_pC = pDTc ;
unused = 0 ;

19
// Pu l l two parameters o f f the s tack from v in to the l o c a l Parameters array arg .

21 // This f i r s t parameter i s j u s t the l i t e r a l raw va lue found on the stack , in t h i s case ,
// i t ’ s an LPCSTR, but / in the emulator / , so i t ’ s a po in t e r in the emulators

23 // v i r t u a l address space . The second parameter i s a unsigned in teger , so
// the parameter va lue i s l i t e r a l l y j u s t t ha t i n t e g e r

25
Parameters <2>::Parameters<2>(&arg , v ) ;

27
// s e t re turn va lue to 1

29
pe_set_return_value (v , 1 ui64 ) ;

31 ∗&at t r . f i r s t . l ength = 0 ;
∗&at t r . second . l ength = 0 ;

33 a t t r . a t t r i b i d = 12291 ;
a t t r . second . numval32 = 0 ;

35 Length = 0 ;

37 // t r a n s l a t e the parameter 0 po in t e r in to a r e a l na t i v e po in t e r t ha t
// the emulator can i n t e r a c t with

39
a t t r . f i r s t . numval32 = pe_read_string_ex (v , arg .m_Arg [ 0 ] . val64 , &Length , v2 ) ;

41
a t t r . f i r s t . l ength = Length ;

43 __siga_check (v , &a t t r ) ;

45 // emulate c r ea t in g a new process , do var ious AV in t e rna l s t u f f

47 v t i c k s . m_vticks = pe_create_process (v , arg .m_Arg [ 0 ] . val32 , 0 i64 , v2 ) != 0 ? 16416 : 1056 ;
CAutoVticks : : ~ CAutoVticks(&v t i c k s ) ;

49 }

Figure 7. Annotated Hex-Rays decompilation of the emulated kernel32!WinExec.
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We are going to implement our own function to
replace KERNEL32_DLL_OutputDebugStringA that
will actually print output to stdout so that we can
pass information from inside of the emulator to the
outside world.

We begin engineering by pulling down a copy of
Tavis Ormandy’s LoadLibrary, an open source har-
ness that allows us to run mpengine.dll on Linux.67
LoadLibrary parses and loads the mpengine.dll
Windows PE into executable memory on Linux, and
patches up the import address table to functions
providing simple emulation of the Windows API
functions that Defender invokes. Once loaded, the
engine is initialized, and scanning is invoked by call-
ing Defender’s __rsignal function, which takes in-
put and directs it to various AV scanning subsys-
tems. While this research could also easily be done
with a customWindows harness for Defender, Tavis’
tool is readily accessible and easy to use. Once we
have LoadLibrary working, we can easily modify it
to manipulate the loaded mpengine.dll library in
memory.

Our first step is to hook the KERNEL32_DLL_-
OutputDebugStringA function. As the function is
only ever invoked via function pointer, it’s easi-
est to simply replace the function pointer in the
g_syscalls array. We can write our own function
with the same __cdecl calling convention that sim-
ply takes a void * and put a pointer to it in the
g_syscalls table, replacing the original pointer to
KERNEL32_DLL_OutputDebugStringA. Copying how
the real Defender code does things, we call the Pa-
rameters<1>::Parameters<1> function to retrieve
the one parameter passed to the function - this can
be done easily by simply locating the function in the
DLL, creating a correctly typed function pointer to
it, and calling it as shown in Figure 8.

Running this code produces some basic output:

1 OutputDebugStringA c a l l e d !
OutputDebugStringA parameter : 0x4032d8

Simply knowing what parameters were passed
to the function is nice, but not incredible use-
ful. Copying the techniques used in other De-
fender native API emulation functions, we can use
__mmap_ex to translate this virtual pointer to a real
native pointer that we can read from. Unfortu-
nately, calling __mmap_ex is not as painless as call-
ing Parameters<1>::Parameters<1> as it has an

odd optimized calling convention: pe_vars_t *v
is passed in register ecx (like the thiscall con-
vention), but then unsigned int size is passed in
edx. I found the easiest way to get around this was
to simply write my own a bit of x86 assembly we can
trampoline through to get to it as shown in Figure 9.

Now we can add these calls to e_mmap into
our code so that we can retrieve strings passed to
OutputDebugStringA to obtain the implementation
in Figure 10. Running this code yields our desired
functionality:

OutputDebugStringA
OutputDebugStringA parameter : 0x4032d8 −>

Hel lo World ! This i s coming from i n s i d e
the emulator !

With this hook now set up, we have an easy
way to pass information from within the emulator
to outside of it. Exploring the environment inside
the emulator is now as easy as literally printing to
the terminal.

Using the APIs and techniques demonstrated to
create a two-way IO channel where we can give in-
put to the malware running inside the emulator (for
example, to generate fuzzer test cases for emulated
APIs on the outside and pass them to a malware
binary on the inside) is left as an exercise for the
reader.

67git clone https://github.com/taviso/loadlibrary
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1 stat ic void __cdecl KERNEL32_DLL_OutputDebugStringA_hook(void ∗ v )
{

3 uint64_t Params [ 1 ] = {0} ;
const char ∗ debugStr ing ;

5
p r i n t f ( "OutputDebugStringA c a l l e d ! \ n" ) ;

7
Parameters1 (Params , v ) ; // c a l l i n g in to mpengine . d l l ’ s Parameters <1>::Parameters<1>

9
p r i n t f ( "OutputDebugStringA parameter : 0x%x\n" , Params [ 0 ] ) ;

11
//don ’ t worry about bumping the t i c k count

13
return ;

15 }

17 . t ex t : 5A129E20 dd o f f s e t ?KERNEL32_DLL_CopyFileWWorker@@YAXPAUpe_vars_t@@@Z
. tex t : 5A129E24 dd 0B27D5174h

19 //We’ l l r ep l a ce t h i s func t i on po in t e r :
. t ex t : 5A129E28 dd o f f s e t ?KERNEL32_DLL_OutputDebugStringA@@YAXPAUpe_vars_t@@@Z

21 . t ex t : 5A129E2C dd 0B28014BBh
. t ex t : 5A129E30 dd o f f s e t ?NTDLL_DLL_NtGetContextThread@@YAXPAUpe_vars_t@@@Z

23 . t ex t : 5A129E34 dd 0B363A610h

25 . . .
typedef uint32_t __thisca l l (∗ ParametersCal l ) (void ∗ params , void ∗ v ) ;

27 ParametersCal l Parameters1 ;

29 . . .

31 uint32_t ∗ pOutputDebugStringA ;
// ge t the r e a l address o f the func t i on pointer , mpengine . d l l loaded image base + RVA

33 pOutputDebugStringA = imgRVA(pRVAs−>RVA_FP_OutputDebugStringA) ;
∗pOutputDebugStringA = ( uint32_t )KERNEL32_DLL_OutputDebugStringA_hook ; // i n s e r t hook

35
Parameters1 = imgRVA(pRVAs−>RVA_Parameters1 ) ;

37 . . .

Figure 8. Early OutputDebugStringA Hook
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Defender defines __mmap_ex as:

char ∗__usercal l __mmap_ex@<eax>(pe_vars_t ∗v@<ecx>, unsigned __int64 addr ,
2 unsigned int size@<edx>, unsigned int r i g h t s ) ;

We emulate this function through the following call stack:

extern void ∗ __cdecl ASM__mmap_ex(void ∗ FP, void ∗ params , uint32_t s i z e ,
2 uint64_t addr , uint32_t r i g h t s ) ;

4 void ∗ e_mmap(void ∗ V, uint64_t Addr , uint32_t Len , uint32_t Rights )
{

6 //Trampoline through assembly with custom c a l l i n g convent ion .
//FP__mmap_ex i s a g l o b a l func t i on po in t e r to the __map_ex func t ion

8 return ASM__mmap_ex(FP__mmap_ex, V, Len , Addr , Rights ) ;
}

Where the function’s assembly implementation is:

1 ASM__mmap_ex:
push ebp

3 mov ebp , esp
mov eax , [ ebp+0x8 ] ; f unc t i on po in t e r to c a l l

5 mov ecx , [ ebp+0xc ] ; pe_vars_t v
mov edx , [ ebp+0x10 ] ; unsigned int s i z e

7 push dword [ ebp+0x1c ] ; unsigned int r i g h t s
push dword [ ebp+0x18 ] ; unsigned __int64 addr h i

9 push dword [ ebp+0x14 ] ; unsigned __int64 addr low
c a l l eax

11 add esp , 0xc
pop ebp

13 r e t

Figure 9. Calling __mmap_ex with the unique calling convention.

1 stat ic void __cdecl KERNEL32_DLL_OutputDebugStringA_hook(void ∗ v )
{

3 uint64_t Params [ 1 ] = {0} ;
char ∗ debugStr ing ;

5 DWORD len = 0 ;

7 p r i n t f ( "OutputDebugStringA\n" ) ;
GetParams (v , Params , 1) ;

9
debugStr ing = e_mmap(v , Params [ 0 ] , 0x1000 , E_RW) ;

11
p r i n t f ( "OutputDebugStringA parameter : 0x%x −> %s\n" , Params [ 0 ] , debugStr ing ) ;

13
return ;

15 }

Figure 10. Final implementation of the OutputDebugStringA hook.
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ret2apicall

As previously discussed, the apicall opcode (0f ff
f0) is custom addition to Defender’s CPU emulator
used to trigger calls to native API emulation rou-
tines stored in the g_syscalls array. While these
native API emulation routines include complex-to-
emulate but standard Window APIs (NtWriteFile,
ReadProcessMemory, VirtualAlloc, etc.), there
are also a number of unique, Defender-specific
functions reachable with the apicall instruction.
These Defender-specific functions include various
“VFS_*” functions (e.g., VFS_Read, VFS_Write,
VFS_CopyFile, VFS_GetLength, etc.) providing
low level access to the virtual file system68 as
well as internal functions allowing administration
of the engine (NtControlChannel) and interfacing
with the Defender’s antivirus engine. (Mp* func-
tions, such as MpReportEvent, which is used in-
ternally to report that malware took a particu-
lar action during emulation.) These special func-
tions should normally only be invoked internally
from the Defender emulator by code put there, for
example as shown in Figure 11, the in-emulator
emulation routine for ntdll!ZwSetLdtEntries in-
vokes MpReportEvent(0x3050, 0, 0) - ostensibly
the value (or “attribid” according to Microsoft
symbols) 0x3050 indicates to some heuristic mal-
ware classification engine that ZwSetLdtEntries
was called.

In Summer 2017, Tavis Ormandy of Google
Project Zero took a look at internal functions
and found vulnerabilities in them.69 Tavis’
NtControlChannel bug simply linked against
ntdll!NtControlChannel, but his VFS bug PoC
had to use the apicall instruction to hit
ntdll!VFS_Write, which he did using standard
.text code in his malware binary.70

After fixing these bugs, Microsoft attempted
to lock down these attack surfaces by limiting
where the apicall instruction could be used.
Newly added checks in the 1.1.13903.0 (6/23/2017)
mpengine.dll release look before the function ac-

tually dispatches to a native API emulation handler
look if the instruction is being run from a VDLL
page (is_vdll_page), and if not, if it is a dynamic
page (mmap_is_dynamic_page). Using the instruc-
tion can even trigger a call to MpSetAttribute in-
forming Defender that it was used - likely a very
strong heuristic indicator of malicious intent.

1 . . .
i f ( ! is_vdll_page ( v5 , v25 ) ) {

3 v14 = v6 ;
i f ( ! mmap_is_dynamic_page ( v28 , ∗(&v26−1) )

5 | | n i d s e a r ch r e c i d ( v29 ) != 1 ) {
i f ( ! ∗ ( v2 + 167454) ) {

7 qmemcpy(&v36 , &NullSha1 , 0x14u ) ;
v15 = ∗v2 ;

9 MpSetAttribute (0 ,0 ,&v36 ,0 ,∗(&v27−1) ) ;
∗( v2 + 167454) = 1 ;

11 }
return 0 ;

13 }
}

15 . . .

Looking at that initial check, !is_vdll_page,
it’s quite obvious how we can get around it: we
need to come from a VDLL page. As I’ve shown
throughout this article, the apicall instruction can
be found throughout the process memory space in
VDLLs. Dumping out VDLLs,71 we see that they
contain apicall instructions (see Figure 12) for in-
voking many of the native emulation functions that
Defender supports - both those necessary for the
operations the particular VDLL may use as well
as other ones that are not used by that particular
VDLL.

Calling these internal APIs is a simple as just
trampolining through these apicall instruction
function stubs, which are accessible from executable
memory loaded into the process space of the mal-
ware executing within the emulator. For exam-
ple, in a particular build of the emulator where
kernel32.dll has an apicall stub function for
VFS_Write at RVA +0x16e66, the following code can

68The virtual file system is stored all in memory during emulation. On a real system usermode Native (Nt*) APIs would do
system calls into the kernel where they would ultimately be handled. In Defender, the VFS_* functions are akin to these kernel
level handlers, they provide low level access to operations on the in memory file system.

69https://bugs.chromium.org/p/project-zero/issues/detail?id=1260
https://bugs.chromium.org/p/project-zero/issues/detail?id=1282

70The VFS_Write function did little validation on input values, and Tavis was able cause heap corruption by writing odd
values to it. As Defender’s emulation of ntdll!NtWriteFile ultimately calls into VFS_Write after doing some input validation,
fuzzing that API on the a old unpatched version of Defender, I was able to reproduce Tavis’ same heap corruption, but using
different inputs that passed NtWriteFile validation. (Tavis’s inputs did not.)

71We can simply find them on disk in the virtual file system in the standard C:\Windows\System32 directory, read them in,
and then pass them out via an output channel like that discussed previously in “Creating an Output Channel.”
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pub l i c ZwSetLdtEntries
2 ZwSetLdtEntries proc near

4 mov edi , ed i
push ebp

6 mov ebp , esp
push 0

8 push 0
push 3050h

10 c a l l apicall_KERNEL32_DLL_MpReportEvent
pop ebp

12 jmp loc_7C96B6C2

14 loc_7C96B6C2 :
mov edi , ed i

16 c a l l $+5
add esp , 4

18 a p i c a l l n t d l l ! NtSetLdtEntr ies
re tn 18h

Figure 11. Disassembly of ntdll!ZwSetLdtEntries.

1 . t ex t : 7C816E3E 8B FF mov edi , ed i
. t ex t : 7 C816E40 E8 00 00 00 00 c a l l $+5

3 . t ex t : 7 C816E45 83 C4 04 add esp , 4
. t ex t : 7 C816E48 0F FF F0 41 3B FA 3D ap i c a l l n t d l l ! VFS_GetLength

5 . t ex t : 7C816E4F C2 08 00 retn 8
. t ex t : 7 C816E52 ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 . t ex t : 7 C816E52 8B FF mov edi , ed i
. t ex t : 7 C816E54 E8 00 00 00 00 c a l l $+5

9 . t ex t : 7 C816E59 83 C4 04 add esp , 4
. t ex t : 7C816E5C 0F FF F0 FC 99 F8 98 a p i c a l l n t d l l !VFS_Read

11 . t ex t : 7 C816E63 C2 14 00 retn 14h
. t ex t : 7 C816E66 ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 . t ex t : 7 C816E66 8B FF mov edi , ed i
. t ex t : 7 C816E68 E8 00 00 00 00 c a l l $+5

15 . t ex t : 7C816E6D 83 C4 04 add esp , 4
. t ex t : 7 C816E70 0F FF F0 E7 E3 EE FD ap i c a l l n t d l l ! VFS_Write

17 . t ex t : 7 C816E77 C2 14 00 retn 14h
. t ex t : 7 C816E77 ; −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

19 . t ex t : 7C816E7A 8B FF a l i g n 4
. t ex t : 7C816E7C E8 00 00 00 00 c a l l $+5

21 . t ex t : 7 C816E81 83 C4 04 add esp , 4
. t ex t : 7 C816E84 0F FF F0 1D 86 73 21 a p i c a l l n t d l l ! VFS_CopyFile

23 . t ex t : 7C816E8B C2 08 00 retn 8

Figure 12. Dump from kernel32.dll showing functions that use the apicall instruction.
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1 unsigned int offset_apicall_KERNEL32_DLL_VFS_Write = 0x16e66 ;

3 typedef bool (WINAPI ∗ apicall_VFS_Write_t ) ( uint32_t HFile , void ∗ Buf ,
uint32_t BufSize , uint32_t Of f se t , uint32_t ∗ PBytesWritten ) ;

5
apicall_VFS_Write_t VFS_Write ;

7
kerne l32Base = ( uint32_t )GetModuleHandleA ( " kerne l32 . d l l " ) ;

9 VFS_Write = ( apicall_VFS_Write_t ) ( kerne l32Base + offset_apicall_KERNEL32_DLL_VFS_Write ) ;

11 VFS_Write ( . . . ) ;

be used to reach it from within the emulator.
With the ability to hit these internal APIs, at-

tackers have access to a great attack surface, with
a proven history of memory corruption vulnerabili-
ties. They can also cause trouble by changing vari-
ous signatures hits and settings via MpReportEvent
and NtControlChannel. Finally, if an attacker
does find a vulnerability in the engine, invoking
NtControlChannel(3, ...) provides engine ver-
sion information, which can be helpful in exploita-
tion, if you have pre-calculated offsets for ROP or
other memory corruption.

When I reported this issue to Microsoft, they
said “We did indeed make some changes to make
this interface harder to reach from the code we are
emulating - however, that was never intended to be
a trust boundary. [...] Accessing the internal APIs
exposed to the emulation code is not a security vul-
nerability.”

Disassembling Apicall Instructions

Throughout this article, I’ve shown disassembly
from IDA with the apicall instruction cleanly dis-
assembled. As this is a custom opcode only sup-
ported by Windows Defender, IDA obviously can’t
normally disassemble it. After I dumped VDLLs
out of the emulator from the system32 directory, I
found they could be loaded into IDA cleanly, but
the dissasember was getting confused by apicalls.

As a reminder, this instruction is formed by the
bytes 0f ff f0 followed by a four byte immediate of
the CRC32 of the uppercase DLL name xored with
the CRC32 of the function name.

Attempting to this code, IDA chokes on the 0f
ff f0 bytes, and then attempts to disassemble the
bytes after it, for example, the four byte immediate.
We can see this in ntdll!MpGetCurrentThreadHan-
dle:

1 . t ex t : 7C96C577 MpGetCurrentThreadHandle_0 :
. t ex t : 7C96C577 8B FF mov edi , ed i

3 . t ex t : 7C96C579 E8 00000000 c a l l $+5
. t ex t : 7C96C57E 83 C4 04 add esp , 4

5 . t ex t : 7C96C581 0F FF F0 db 0Fh , 0FFh, 0F0h
. t ex t : 7C96C584 D5 60 aad 60h

7 . t ex t : 7C96C586 D5 8C aad 8Ch
. t ext : 7C96C588 C3 retn
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Using a lesser-known feature of IDA’s scripting
interface, we can write a processor module exten-
sion. I based my code off of Rolf Rolles’ excellent
blogs on writing processor module extensions.

This processor module extension runs during
module loading and analysis, and outputs disassem-
bly for the apicall instruction. The full code is
included in this issue, here I’ll walk through some of
the interesting parts.

As this script is invoked for every binary we load
in IDA, we want to make sure that it only steps in to
do disassembly for binaries we know to be Defender
related. The checks in the init function shown in
Figure 13 make sure that the plugin will only run
for x86 binaries with “.mp.dll” in their name.

Our parse_apicall_hook class inherits from
idaapi.IDP_Hooks, and we provide implementa-
tions for several of the classes methods.

The hashesToNames map is a map of function
CRCs to their names. A script to generate this map
is included in the comments of the included apicall
parsing script. This and other functions discussed
here are shown in Figure 14.

ev_ana_insn fires for each instruction IDA an-
alyzes. In this function we grab three bytes at the
address where IDA thinks there is an instruction,
and check if they are 0f ff f0. If they are, we look
up the function hash to see if we have an imple-
mentation for it, and also set a few traits of the in-
struction - setting it to be seven bytes wide (so that
IDA will know to disassembly the next instruction
seven bytes later), and setting it to having a dword
immediate operand of the API CRC immediate.

ev_out_mnem actually outputs the mnemonic
string for the instruction - in this case we print out
apicall and some spaces.

Finally, ev_out_operand outputs the operand
value - since we know all the instruction CRC
hashes, we can output those names as immediates.

With this extension dropped in our IDA plug-
ins folder, we get clean disassembly of the apicall
instruction when loading binaries that use it.

In conclusion, we’ve looked at three tricks for re-
verse engineering and attacking Windows Defender.
While these tricks are Defender specific, the gen-
eral intuition about AV emulator design and how a
reverse engineer might go about approaching them
should hold for other AVs. This article has mostly
looked at techniques - for a look at Window De-
fender emulator internals, readers are encouraged to
check out my conference presentations on the topic
and to reverse the engine themselves.
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c l a s s ap ica l l_parse_t ( idaap i . plugin_t ) :
2 f l a g s = idaap i .PLUGIN_PROC | idaap i .PLUGIN_HIDE

comment = "MsMpEng a p i c a l l x86 Parser "
4 help = "Runs t r an spa r en t l y during ana l y s i s "

wanted_name = "MsMpEng_apicall"
6 hook = None

8 de f i n i t ( s e l f ) :
s e l f . hook = None

10 i f not " .mp. d l l " in idc . GetInputFi le ( ) or idaap i . ph_get_id ( ) != idaap i .PLFM_386 :
return i daap i .PLUGIN_SKIP

12
pr in t "\n\n−−>MsMpEng a p i c a l l x86 Parser Invoked ! \ n\n"

14
s e l f . hook = parse_apical l_hook ( )

16 s e l f . hook . hook ( )
return i daap i .PLUGIN_KEEP

18
de f run ( s e l f , arg ) :

20 pass

22 de f term ( s e l f ) :
i f s e l f . hook :

24 s e l f . hook . unhook ( )

26 de f PLUGIN_ENTRY() :
return apica l l_parse_t ( )

Figure 13. IDA processor module initialization code.
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1 hashesToNames = {3514167808L : ’KERNEL32_DLL_WinExec ’ ,
3018310659L : ’NTDLL_DLL_VFS_FindNextFile ’ , . . . }

3
NN_apicall = ida_idp .CUSTOM_INSN_ITYPE

5 c l a s s parse_apical l_hook ( idaap i . IDP_Hooks) :
de f __init__( s e l f ) :

7 idaap i . IDP_Hooks . __init__( s e l f )

9 de f ev_ana_insn ( s e l f , in sn ) :
g l oba l hashesToNames

11
in snbyte s = idaap i . get_bytes ( insn . ea , 3)

13 i f i n snbyte s == ’ \ x0f \ x f f \ xf0 ’ :
ap i c r c = idaap i . get_long ( insn . ea+3)

15 apiname = hashesToNames . get ( ap i c r c )
i f apiname i s None :

17 p r i n t "ERROR: ap i c r c 0x%x NOT FOUND! "%(ap i c r c )

19 p r i n t " a p i c a l l : %s @ 0x%x"%(apiname , insn . ea )

21 insn . i t ype = NN_apicall
insn .Op1 . type = idaap i .o_imm

23 insn .Op1 . va lue = ap i c r c
insn .Op1 . dtyp = idaap i . dt_dword

25 insn . s i z e = 7 #eat up 7 bytes

27 return True
return False

29
de f ev_out_mnem( s e l f , outctx ) :

31 insntype = outctx . insn . i t ype

33 i f in sntype == NN_apicall :
mnem = " a p i c a l l "

35 outctx . out_l ine (mnem)

37 MNEM_WIDTH = 8
width = max(1 , MNEM_WIDTH − l en (mnem) )

39 outctx . out_l ine ( ’ ’ ∗ width )

41 return True
return False

43
de f ev_out_operand ( s e l f , outctx , op ) :

45 insntype = outctx . insn . i t ype

47 i f in sntype == NN_apicall :
ap i c r c = op . va lue

49 apiname = hashesToNames . get ( ap i c r c )

51 i f apiname i s None :
return False

53 else :
s = apiname . s p l i t ( "_DLL_" )

55 operand_name = " ! " . j o i n ( [ s [ 0 ] . lower ( ) , s [ 1 ] ] )
p r i n t "FOUND: " , operand_name

57
outctx . out_l ine ( operand_name )

59
return True

61 return False

Figure 14. Excepts from the IDA processor module for parsing apicall instructions.
78


