
19:08 Steganography in .ICO Files
by Rodger Allen

For the delight and amusement of
the Reverend Pastor Manul Laphraoig and his flock,

These days, with a megapixel camera in all our
phones, we are used to full colour, 24-bit images.
The days of 256 colour images may seem to be some-
thing that only our older neighbours might remem-
ber. But these low-res images are still with us and
so ubiquitous that they go unnoticed.

Minimize all the windows on your desktop and
you’ll likely see a dozen or more of them. Check the
tabs in your browser and you’ll see many more. Yep,
a great deal of those icons and favicons are actually
low resolution bitmaps.

And they’re a great place to hide data!

BMP Palettes
First, let’s discuss how Palettized BMPs work. The
basic structure of a bitmap file is a bit like so.

//14 Byte Fi leHeader .
2 typedef struct tagBITMAPFILEHEADER {

WORD bfType ;
4 DWORD b fS i z e ;

WORD bfReserved1 ;
6 WORD bfReserved2 ;

DWORD bfOf fB i t s ;
8 } BITMAPFILEHEADER;

10 //5 d i f f e r e n t s i z e s , 20 to 124 by t e s .
struct DIBHeader ;

12
//Optional , 8 to 1024 by t e s .

14 struct Pa l e t t e ;

16 //Rows are nu l l−padded , d i v i s i b l e by four .
RGBQUAD p i x e l s [] ;

Bitmap images that don’t use a palette define the
colour independently for each pixel. Each pixel uses
three bytes (24 bits) to define the Red, Green and
Blue (RGB) channels. The pixels in a palettized im-
age reference the Palette to define the colour for each
pixel. 256-colour bitmaps use 8-bit pixels, 16-colour
bitmaps use 4-bit pixels, and 2-colour bitmaps use
a single bit for each pixel.

The palette structure uses four bytes to define
each RGB, with the fourth byte being reserved. The

MSDN page on the RGBQUAD struct states that the
fourth byte is “reserved and must be zero.”52

The depth of colour in a palettized image is then
still the same as a full 24-bit colour image - each
pixel is still a full 24-bit colour. It’s just that the
palettized image is likely to contain fewer overall
colours than the 24-bit-per-pixel image. Indeed,
even the so-called monochrome 1-bit image isn’t re-
stricted to just black and white; the two colours can
both be full 24-bit colours.

The choice as to whether to use a palettized im-
age or just have 24-bit pixels mostly comes down to
file size. For a small image, such as an icon (and we’ll
come back to these soon) you might find it better
to use 24-bit pixels instead of allocating 1k for the
palette. For example, a 16×16 image might use just
20-odd different colours. If it used a palette, then
the file size would be (roughly) 1.25k (1024 bytes
for the palette and then 256 bytes (16×16) for the
pixels), with roughly 900 bytes of palette unrefer-
enced and unused. Using 24-bit pixels would yield a
file size of approx .75k (0 bytes for the palette and
768 bytes (16×16×3) for the pixels). The figures
for a 32×32 pixel image would be 2,048 bytes for
the palettized image and 3,072 bytes for the 24-bit
version.

Palette Histograms

The key element of this steganographic technique is
to take a histogram of the palette colours that are
used in the pixels. It is often the case that not every
colour defined in the palette is actually used by the
pixels. The histogram makes a count of the number
of times each colour is used. We are interested in
the colours that have a count of zero, since we can
then overwrite those colours (bytes) in the palette
array, and it won’t affect the display of the image.

To extract the data utilises the same process -
take a histogram of the pixels per palette colour,
and read those bytes out.

52MSDN tagRGBQUAD Structure

47

This technique has three important advantages
over the LSB (Least Significant Bit) method:

First, there is no need to have a reference im-
age. The LSB method makes comparison between
the original image and the injected image to deter-
mine which bits have been altered. With this tech-
nique, the original pixel array is the key to which
bytes are to be read from the palette.

Second, and depending on the image size, there is
the potential to store quite a bit more data into the
image. The LSB method generally only uses one bit
per colour channel, so even with 24-bit images it can
only store three bits per pixel. This method though
has an upper-limit on the amount of data that can
be stored per image - an 8-bit palettized image that
only uses two colours leaves 254 free colours, there-
fore leaving 762 bytes to inject into. The size of the
image itself doesn’t change this.

Finally, there is an element of deniability in the
histogram method. Steganography is framed as a
game between two prisoners, Alice and Bob, who
wish to privately communicate in the presence of
a warden, Mallory, who can read all of their mes-
sages. Even if Mallory does notice that the palette is
weird, Alice or Bob could quite plausibly say, “Hey,
that’s just the palette that the image creation soft-
ware made.” Of course, Alice and Bob could only
use their image once without drawing attention to
them.

You might remember from earlier that each
palette entry uses four bytes. I quite deliberately
only use the three RGB bytes to inject and leave
the reserved bytes alone, mostly on the grounds of
detectability.

Detectability
Despite the claim to deniability, there are some ob-
vious markers of the injection. For starters, take a
look at the examples of a palette from an image pro-
cessed by MS Paint, which is for the most part the
old web-safe palette, or the palette generated by Im-
age Magick’s convert utility,53 which is front-loaded
with the actual colours in the image, and then the
rest is solid black (0x000000). Yet another palette
that was converted from 24-bit to 256 colours by Im-
age Magick does display quite a spread of colours:

Image Magick Short Palette

Microsoft Web-Safe Palette

Image Magick Full Palette

53man 1 convert

48

Then compare these to the palette from an in-
jected image. It is obvious that the colours have
been all jumbled up.

Image Before and After Injection

Icons
But who uses those palettized bitmaps any more?
The camera in your phone, heck, even the display
on your phone, is capable of taking and displaying
images with a bewildering depth of colour. And
nowadays, bandwidth is cheap and fast, and image
compression algorithms are good enough, that there
is little reason to lower the quality of the images.

There are two places, however, where these im-
ages are, if not ubiquitous, at least quite widespread.
Take a moment, and minimize all the windows on
your desktop. Most of those icons will be using
bitmaps. Now open a browser and navigate to some
random page. That little icon in the browser loca-
tion bar or in the tab is also most likely a bitmap,
and is known as a favicon. Not every website has
them, but almost every browser will request them.

The Icon file format is basically a little directory
of multiple images. The format for an Icon header
follows this general schema:

1 typedef struct{
WORD idReserved ; //Always zero .

3 WORD idType ; //Often 0x0100 .
WORD idCount ; //Count o f d i r e en t r i e s .

5 } ICONHEADER;

It is followed by one or more 16-byte directory
entries.

1 typedef struct {
BYTE bWidth ;

3 BYTE bHeight ;
BYTE bColorCount ;

5 BYTE bReserved ;
WORD wPlanes ;

7 WORD wBitCount ;
DWORD dwBytesInRes ;

9 DWORD dwOffset ;
} ICONDIRENTRY

The rest of the file is nominally contiguous blocks
of images. The standards suggest that there are
only two types of valid images: BMP and PNG.
The BMP image blocks are basically the same as
for BMP files, but don’t use the first 14 bytes of
the FileHeader. That is, they use the DIB Header,
optionally the Palette, and of course the Pixels.

The DIB pixels in an icon have one other com-
plication. The pixel array is in fact two separate
arrays. The first is the is the actual coloured pixel

49

array. The second is literally an array of bits that
act as a mask that is used to determine the trans-
parency of the icon.

One major difference between the Icon format
and the DIB format (the actual image format con-
tained in the BMP), is that the Icon header infor-
mation is little-endian, and the DIB format is big-
endian. So the resultant file is a mix of both big and
little endians.

Consider that idCount field. An icon file can
contain up to 65,536 image resources. That’s up to
48Mb worth of injectable palette space!

Injected Icon and its Palettes

Example of an Icon header

−− i c o header
2 00 00 idReserved

01 00 idType
4 02 00 idCount

6 −− r e s ou r c e header 1
10 bWidth

8 10 bHeight
00 bColorCount (0 i f >=8bpp)

10 00 bReserved (must be 0)
01 00 wPlanes

12 08 00 wBitCount
68 05 00 00 dwBytesInRes

14 26 00 00 00 dwOffset

16 −− r e s ou r c e header 2
e tc

18
−− r e s ou r c e data 1

20 e tc S ta r t s at 0x00000026 ,
conta in ing 0x0568 bytes .

22
Cons i s t s o f :

24 ∗ DIBHeader
∗ Pa l e t t e (maybe)

26 ∗ Pixe l s
∗ Transparency mask

28
−− r e s ou r c e data 2

30 e tc

50

Uses in the Past and Future
Taking a look at the favicons used by the top thou-
sand sites from the Alexa list. Just under seven hun-
dred of the sites responded with an image file. Of
these, 560 were icon resource files, that is, the type
of icon files I’ve described above. The others were
in general just PNGs or other image types simply
renamed with the .ico extension.

Of these icon resources, at least 1-in-7 contained
an 8-bit BMP image, suitable for palette injection.
Around three quarters of these files contained only
one or two images, but there were four favicons that
contained ten or more bitmaps.

Given how widespread these favicons are and
their variety, and the fact that they are effectively
ignored by most web security monitoring systems,
they would an excellent mechanism for at least part
of a C2 (Command and Control) channel for mal-
ware. Indeed, there is some history with the Vaw-
trak malware using LSB steganography to commu-
nicate updates from their C2 servers.54 Other mal-
ware rootkits have just renamed their malware to
favicon.ico, but are in reality just raw (or obfus-
cated) PHP code or the like.

As for prior art, I haven’t been able to discover
any other previous uses of this technique of repur-
posing the unused bytes in an image palette. If any
brethren know of similar techniques, I’d love to hear
about it.

Bitmaps aren’t the only image type that use a
palette. PNGs, for instance, have a PLTE chunk
that describes the colours in the image. But the
PNG format removes the dead colours and the
PLTE chunk only contains a list of the actual used
colours, thereby reducing the size. The PNG stan-
dard does however allow the PLTE chunk to contain
more colours than are actually used. This histogram
technique would then reduce to adding extra bytes
to the image file, a method I was trying to avoid.

On the subject of adding extra bytes, notice that
both BMPs and Icons are what I call indexed file for-
mats; that is, the header contains information about
the offset (where the image data starts) and size
(how big the image data is). This makes it possible
to introduce arbitrary data into the files and then
manipulate the offsets to skip over the padded data.

You can also, of course, just tack on the extra data
at the end of the file, and it should be ignored by
the image viewer.

The default image viewers (eog, shotwell) on the
version of Linux I am currently using doesn’t like the
padding before the pixels, rendering the image with
those padded bytes; maybe one of our memory-bug
hunting friends could find some delight here. Gimp
is okay though. Windows seems to behave correctly
and ignores the extra bytes.

Where’s the code?

The POC code is a tool called Stegpal, written in
Haskell. If the source is not yet available from Hack-
age, you’ll find it attached to this PDF and as the
Favicon for the most popular PoC‖GTFO mirror.55

Creating icons

I used Image Magick to create sample icons. I wasn’t
too worried about the transparency bits, as they
don’t change anything about the palette.

Start with a an image that is going to bear be-
ing reduced down to a small size. The number of
colours doesn’t matter too much as this process will
reduce that anyway. It’s best if the original image
has equal dimensions for width and height.

Create a bunch of smaller scaled images from the
original. Favicons are usually 16x16 (ish), but you
can create them any size you want.

Then feed all of the smaller BMPs into one ico.

Creat ing i c on s
2

convert source .bmp −s c a l e 64x64 \
4 −type Pa l e t t e −depth 8 −compress none \

temp−64x64 .bmp
6 convert source .bmp −s c a l e 32x32 \

−type Pa l e t t e −depth 8 −compress none \
8 temp−32x32 .bmp

convert source .bmp −s c a l e 16x16 \
10 −type Pa l e t t e −depth 8 −compress none \

temp−16x16 .bmp
12 convert temp−64x64 .bmp temp−32x32 .bmp \

temp−16x16 .bmp fav i con . i c o

54unzip pocorgtfo19.pdf avgvawtrak.pdf
55unzip pocorgtfo19.pdf stegpal-0.2.8.0.tar.gz; wget https://www.alchemist.org/favicon.ico

51

