
19:04 Undefining the ARM
by Eric Davisson

I’m here today to tell you fine folks about a re-
cent adventure with the ARM architecture, in which
I scrambled the undefined bits of instructions to
break disassembly without breaking the program’s
execution.

ARM was something I hadn’t touched, so I dug
up an old Raspberry Pi and what looked to be a
great online resource for learning assembly language,
specifically for the Pi. Although it had one handy
section on GPIO at the end, this book turned out
to be terrible.

Fed up with shallow introductions, I registered
with ARM and downloaded the 2,700 page manual.
I had to admire the structure and order of the in-
struction encodings. For the 32-bit form, each in-
struction is exactly 32 bits, rather than varying from
1 to 15 bytes like x86. Most instructions are condi-
tional, and the first four bits define the conditions.
(0b1110 is the default for unconditional execution.)
When browsing the alphabetical instruction list and
instruction encoding parts of the manual, I saw that
certain bit fields even subdivided instructions into
different categories. Some bits then define the spe-
cific instruction, and after that, you’re pretty much
left with the operand data fields.

The Concept

For the register form of the MOV command (MOV Rd,
Rm), we have the 32 bits shown in Figure 1.

As I’ve mentioned before, those first four bits
specify under what condition to execute this MOV in-
struction. The next three bits, 000, put this instruc-
tion into the Data-processing (register) category, a
fairly common one. Other categories include Load-
/Store, Media, Branch, and Co-processor. The next
five (really four) bits of 1101x puts us into a sub-sub-
category of Moves, Shifts, and Rotates. The
two bits near the end further divide this into either
a MOV or LSL. The five bits of 00000 is what defines
this as a specific instruction of MOV (register). We
then have the Rd and Rm fields, which just specify
which of the 16 registers to use. Finally the S bit
defines whether the condition flags are set or not
after the instruction is executed.

Well, we skipped a piece! Nothing explained
what the (0)(0)(0)(0) bits were. So let’s flip some
and try it out!

In GNU’s as assembler, you use the .word direc-
tive to place an arbitrary 32-bit piece of data where
an instruction might go.14 This is a valid instruc-
tion of MOV r0, pc, defined in 0b form so that we
can see the individual bits.

. word 0b1110000110100000000000001111

The Program Counter (PC) register is the 15th
(1111) register, and it is much like EIP in x86. After
stepping through this instruction in gdb, I confirmed
that the value of PC+4 is moved into the r0 register,
just as expected. So that is my baseline, my control.
Next I flipped one of those (0) bits.

1 . word 0b1110000110100001000000001111

14Editor’s Note: All instructions in this article are presented as 32-bit words, rather than as bytes, to better match the ARM
manual’s descriptions.

15rasm2 -e -a arm -D "e1a0000f e1a1000f"

17



I put both of those instructions in my program
for comparison, finding that both gdb and objdump
failed to disassemble it.15

1 0x10420 main+24 mov r0 , pc
0x10424 main+28 ;<UNDEFINED> in s : 0 xe1a1000f

Even though the disassembler shows the second
instruction as undefined, both of them behave iden-
tically, moving PC+4 into r0!

At this point, a false prophet might declare that
wherever an instruction matches one with undefined
bits, we can flip these bits without changing the be-
havior of the program. And like many things a false
prophet might say, this is almost true, but lacking
one or two important details. Here, the details mat-
ter.

ARM Wrestling

I call my PoC ARMaHYDAN, to pay tribute to
the 2004 HYDAN stego tool for x86 by El-Khalil
and Keromytis.16 Like many readers of this fine
journal, I am not interested in steganography as a
tool to hide information; rather, I love the idea that
file formats–and also instruction sets!–have hidden
nooks and crannies ignored by their interpreters.

First I cataloged all of the instructions that had
these optional bits. From four hundred or so in-
structions, ignoring conditional codes, only 141 in-
structions had these bits.

The first script I wrote flipped the last optional
bit for all valid instructions in an executable. I did
this to /usr/games/worm in the bsdgames package,
because I like that game. My script used readelf
to locate and parse the offset and size of the .text
section; as I only wanted to flip the bits for the code
of the program.

About a quarter of the output’s .text section
appeared to be undefined! I then ran the game, and

it worked flawlessly. At this point the generaliza-
tions seem to hold, but I had only tested against
one program.

Still, I wondered if by changing this bits from
one instruction, I might convert it to some other in-
struction. To assure myself, I checked by having a
script definitively investigate every encoding. Based
on the encodings in the ARM manual, there should
be no overlap here.

Just for safe measure I tested a few other pro-
grams. My favorite was modifying a quarter of
objdump, then feeding it itself as an argument to
show it report that quarter of its own instructions
are undefined.

When it Literally isn’t Code!

So now that I was executing modified code, I still
needed to know whether these invalid instructions
ever occurred naturally in the wild. So I loosened up
the parsing for my profiler script to not just match
on the valid instruction encodings, but invalid ones
too.

The answer to my question was disturbing: there
were many of these illegal instructions in the wild! I
later found the rate of this occurrence to be evenly
distributed from 0-13%. It would get much higher
for libraries. I knew something was off about this,
as it just wouldn’t make sense for assemblers to do
this on purpose. Something else was going on.

I finally got a hint when my script began to
break, and the breaking change was that I was now
matching on all forms of instructions, and not just
the validly defined ones. Why would it be safe to
change any valid instruction, but not these ten per-
cent of already-invalid ones? It turns out I made
one of the biggest assumption of all, that the .text
section is pure code!

So here’s what happened: In fixed-width instruc-
tion sets like ARM and PowerPC, there is no room
in the instruction for a register-wide pointer. ARM
solves this problem by placing a pool of literals into

16unzip pocorgtfo19.pdf hydan.pdf hydan-0.13.tar.gz

3 1 | 3 0 | 2 9 | 2 8 | 2 7 | 2 6 | 2 5 | 2 4 | 2 3 | 2 2 | 2 1 | 2 0 | 1 9 | 1 8 | 1 7 | 1 6 | 1 5 | 1 4 | 1 3 | 1 2 | 1 1 | 1 0 | 0 9 | 0 8 | 0 7 | 0 6 | 0 5 | 0 4 | 0 3 | 0 2 | 0 1 | 0 0
2 cond | 0 0 0 | 1 1 0 1 | S | ( 0 ) (0) (0) (0) Rd | 0 0 0 0 0 | 0 0 | 0 | Rm

Figure 1. Bitfields of the MOV Instruction.

18



the code, then referencing that location with fewer
bits, relative to the program counter.

So when you see ldr r2, =0xdeadbeef in the
disassembly, you will also see 0xdeadbeef as a lit-
eral later in the code. These four bytes are not an
instruction, but they are in the .text section, and
its important not to damage them.

Not Solving the Code/Data Problem
This means I ran into a very old problem, the code
versus data problem. My early tests worked out of
luck, but that luck ran out when I loosened up the
parser can began modifying words in the .text sec-
tion that were not code.

I noticed these false positive instructions did not
show up in a consistent frequency; some of them
occurred way more than others. For a while it
only seemed that two or three problem instructions
seemed to show up, so I took them out of my script
and everything worked after that. But still, only for
the small subset of programs I was modifying and
testing.

To really understand the situation, I wrote a pro-
filer script to run against my entire Raspbian in-
stallation. It showed that these false positives were
distributed across more than half the possible in-
struction set! It was also evenly distributed enough
to not be able to justify blacklisting a couple of in-
structions and hoping for the best.

Well, that’s in the context of statically black-
listing some instructions. I considered running an
initial profiling pass of the program I’m trying to
modify to tally the invalid instructions (most likely
data) and keep track of this as a blacklist and store
it as metadata. The dynamically blacklisted instruc-
tions could be ignored for injecting data into, and
the extracting routine could look to the blacklist in
metadata to not extract data from those instruc-
tions. One downside to this is that more metadata
is at the cost of how much data I can inject.

Then I realized that I could encode the entire
blacklist in just one byte, by prioritizing the instruc-
tions. The byte would simply be the number of high-
trouble matches to skip.

I profiled my whole system for a list of instruc-
tions based on frequency in a few contexts. The first
is just the occurrence of instructions period. This
found the top five instructions with optional bits to
be MOV (register), CMP (immediate), MOV (immedi-
ate), CMP (register), and LSL (immediate). The top
fife for false positives, that are actually data, with
option bits are LDRD (register), STRD (register), STRH
(register), MUL, and MRS.

We aren’t so lucky that the full lists are mutually
exclusive, but they are certainly dissimilar enough to
truly minimize the second data loss problem. This
is because the instructions I’m actually blacklisting
are in the minority of instructions that are actu-
ally valid and therefore used. We are losing only a
marginal amount of storage space for our injection!

Comparing my top ten lists, the MUL instruction
is the only one in both my top ten lists, ranked
fourth for false positives but tenth for popularity,
making up less than one percent of valid instruc-
tions. By choosing the right threshold, these lists
oughtn’t conflict or get in the way of our storage.

19



Steganalysis
As I said in the very beginning, using rare machine
encodings to inject data for steganography is easily
detectable. The concept in HYDAN was that there
are different (valid) ways to encode the same assem-
bly instruction, partly because of how messed up
things get with x86’s MODRM/SIB tables and redun-
dancies introduced with not being able to do mem-
ory to memory operand instructions. (These are just
two basic reasons; there are more.)

Take xor eax, eax for example. There is an
encoding for xor r32m32, r32 and also one for xor
r32, r32m32. In other words, there’s a variation for
a pointer being the first or second operand depend-
ing on the encoding, even though you can choose a
register for both. So if you did just choose a register
for both, which encoding do you use? Assemblers
will prefer only one in this kind of situation, even
though both execute in a valid way. A steganogra-
pher could use this information to call one encoding
a 1, and the other a 0, and encode data with this
method. But knowing that, if I suspect an x86 pro-
gram to be stego’d, the first thing I would check for
is the uncommonly encoded instructions like that.

The situation is no different for ARMaHYDAN.
Invalid instructions, whether data or stego, ought
to be less than 13% of all 32-bit words in the .text
section, and by carefully observing which ones are
executed, it oughtn’t be hard to identify the exis-
tence of hidden content.

Cut out the NULLs!
Another nifty result of this project is that many
of the null bytes in ARM machine code contain at
least a bit or two that the CPU will ignore. Take
a moment to reread the brilliant Phrack 66:12, in
which Yves Younan and Pieter Philippaerts used
a dozen clever tricks to make alphanumeric self-
modifying shellcode in a creole dialect of both ARM
and Thumb,17 then consider how much easier it
might be if so many of their blacklisted instruc-
tions18 could be smuggled in by flipping a bit here
or there.

Native Assembly Modified
e10100d0 ldrd r0, [r1, -r0] e10101d0
e10100f0 strd r0, [r1, -r0] e10101f0
e10100b0 strh r0, [r1, -r0] e1010fb0
e0100090 muls r0, r0, r0 e0101090
e11000d0 ldrsb r0, [r0, -r0] e11001d0
e11000b0 ldrh r0, [r0, -r0] e11001b0
e11000f0 ldrsh r0, [r0, -r0] e11001f0
e1100080 tst r0, r0, lsl #1 e1101080
e3100080 tst r0, #128 e3101080
e1500080 cmp r0, r0, lsl #1 e1501080
e1300080 teq r0, r0, lsl #1 e1301080
e1700080 cmn r0, r0, lsl #1 e1701080
e3700080 cmn r0, #128 e3701080
e3300080 teq r0, #128 e3301080
e1100010 tst r0, r0, lsl r0 e1101010
e3500080 cmp r0, #128 e3501080
e1400090 swpb r0, r0, [r0] e1400190
e1700010 cmn r0, r0, lsl r0 e1701010
e1500010 cmp r0, r0, lsl r0 e1501010
e1300010 teq r0, r0, lsl r0 e1301010
f1010000 setend le f1010401
e1200050 qsub r0, r0, r0 e1200150
e03000b0 ldrht r0, [r0], -r0 e03001b0
e03000d0 ldrsbt r0, [r0], -r0 e03001d0
e03000f0 ldrsht r0, [r0], -r0 e03001f0
e12000a0 smulwb r0, r0, r0 e12010a0
... ... ...

Figure 2. ARM Instructions with a Null Byte

Final Thoughts

This project is not ground breaking, but by reading
the ARM manual and chasing down the unexplained
bitfields, I managed to learn a lot about the archi-
tecture and have some fun in the process.

As you read my code,19 please remember that
the fun is in the journey and not the destination.
Don’t just theorize about what new tricks might be
done! Read the documentation, and when the inspi-
ration hits, run the experiments that will teach you
the facts you need to write a nifty proof of concept.

17unzip pocorgtfo19.pdf phrack6612.txt
18Ibid, §2.3.
19git clone https://github.com/XlogicX/ARMaHYDAN || unzip pocorgtfo19.pdf ARMaHYDAN.zip

20


