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A B S T R A C T

Volatile memory may contain many traces important in a forensic in-
vestigation. When the odds are stacked against a forensic investigator
he may have to resort to innovative memory acquisition methods. In
this work we present an evaluation of the forensic soundness of dif-
ferent memory acquisition methods based on their applicability in a
near worst-case scenario. Furthermore, we discuss the details of an
acquisition method we developed based on Coreboot and the cold
boot attack. It is shown that the method developed is correct to a far
higher degree than related methods, and that the method’s integrity
is directly related to the susceptibility of specific memory modules to
the remanence effect. The observation that the cold boot attack is not
as consistent as anticipated has been an unexpected result. Finally,
research into the Intel memory scrambler of the Ivy Bridge microar-
chitecture is put forth. We show that it is feasible to reproduce the
working of the memory scrambler based on only 1026 bits of data
and provide a detailed analysis of its working.
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1
I N T R O D U C T I O N

Computers use memory to save their state. Different types of mem-
ory are used to save different states. Depending on the speed of state
transitions, the data is either saved in the processor caches, Random-
Access Memory (RAM), or on the hard drive. The ability to inspect
the state of a computer is of great importance in the field of computer
forensics. This state may prove to be meaningful evidence in a sub-
sequent investigation. A complicating matter is that not all memory
retains its state when power is removed, it is then said to be volatile.
Contemporary RAM being the main example, it returns to a prede-
fined ground state after power is lost. In general, the manner in which
to acquire a computer’s memory becomes increasingly more difficult
as its physical size decreases and volatility increases. This work there-
fore, focuses on extraction of data from RAM while a computer is
(still) switched on.

1.1 problem description

How to acquire all memory of a locked, yet powered on computer
from a uncooperative user? That is, a (near worst-case) incident re-
sponse scenario where: no privileges are available (locked computer);
the machine is fully patched (no exploits available); the risk that anti-
forensic measures may be in place (full-disk encryption); and a Basic
I/O System (BIOS) that clears the memory on reset. Furthermore, we
assume that, physical access to the device is possible (no need for re-
mote acquisition), yet no previous interaction has been possible (no
opportunity for pre-installation).

1.2 scope

To scope the project into a manageable size for the time frame set, it
was chosen to focus on obtaining a flat linear copy of the physical
DDR3 memory of a predefined desktop system (see Appendix A). As
a consequence, this work focusses solely on Intel hardware. Further-
more, as the analysis of an obtained physical memory image allows
for a whole study on itself, no other requirements on post-processing
or carving logical data structures out of the obtained physical data
have been defined.
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2 introduction

1.3 scientific question

Taking into account the problem description, four scientific questions
have been defined.

• What memory acquisition methods are available and applicable
in this scenario?

• How can the most suitable method be professionalized for use
in a forensics lab?

• How forensically sound is the method of choice?
• What is the effect of the memory scrambling mechanism as im-

plemented by Intel?

1.4 contribution

The contribution of this thesis is threefold:
I. A review of the acquisition methods available in a near worst-

case incident response scenario is presented in Part I.
II. The implementation of a novel memory acquisition method is

discussed in Part II.
III. An analysis of the Intel memory scrambler is provided in Part III.



Part I

L I T E R AT U R E S T U D Y
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B A C K G R O U N D

In order to aid in the understanding of this thesis, a discussion on
the underlying concepts is presented in this chapter. It should be un-
derstood that some generalization is in order, to allow for a concise,
yet self-contained section. A more detailed discussion of recent Intel
computer architectures may, for example, be found in [11].

2.1 computer architecture

In general, personal computers are built from different components,
all of which need to function in harmony. A main Printed Circuit
Board (PCB), named the motherboard, houses all the parts (see Fig-
ure 1). The components communicate through hardware buses, which
consist of a certain number of parallel wires called traces on the PCB.
On top of the buses run different signalling protocols. The main com-
ponents are the: Central Processing Unit (CPU), RAM, and different
Input/Output (I/O) peripherals. The latter of which are made avail-
able through a multitude of different ports. For example, Universal
Serial Bus (USB) to connect general peripherals, Video Graphics Ar-
ray (VGA) to connect monitors, Serial Advanced Technology Attach-
ment (SATA) to connect hard disks, and Ethernet for networking.

The manner in which components are connected and communi-
cate differs between hardware generations and models. In general
there are two main components responsible, the northbridge and
the southbridge, which together can be identified as the chipset. The
northbridge or Memory Controller Hub (MCH), is connected with a
fast bus to the processor, it determines where memory addresses are
routed, and is responsible for fast communication between the: pro-
cessor, memory and expansion buses such as Peripheral Component
Interconnect express (PCIe). The southbridge is responsible for the
communication between peripherals and the northbridge. Whereas
older hardware used to have components physically placed centime-
ters apart due to their size and heat restrictions, recent developments
focus on placing more components on a single chip. For example,
in most modern CPUs, the communication with the main memory
is now handled by logic placed on the same silicon die as the CPU
cores. So the clear boundaries between the: CPU, northbridge, and
southbridge have faded.

A general x86 instruction set compatible CPU consists of registers,
caches, and (multiple) processing cores. The registers save the state of
the processor, the caches buffer (recently requested) data from main-
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6 background
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memory, and the cores perform operations on the data. There may
be different levels of cache with different purposes e.g. an instruction
cache and a data cache. For more details on the x86 architecture we
kindly refer to [31].

Contemporary main-memory or RAM is generally packaged in the
form of Dual In-line Memory Modules (DIMMs), of the Synchronous
Dynamic Random-Access Memory (SDRAM) type and based on one
of the four Double Data Rate (DDR) standards (DDR1 through DDR4
[34, 35, 37, 38]) defined by the Joint Electron Device Engineering
Council (JEDEC). DDR3, on which we focus, is discussed in more
detail in Section 2.3.

2.1.1 Boot sequence

When a computer is started, it goes through a boot sequence, initializ-
ing all connected hardware to a working state such that an Operating
System (OS) can be started. The first code a computer executes is lo-
cated at the reset vector. This is a memory address which is generally
routed to a non-volatile memory chip where firmware and BIOS code
is saved. After executing the firmware and BIOS or Unified Extensi-
ble Firmware Interface (UEFI) code, the Master Boot Record (MBR)
or GUID Partition Table (GPT) is loaded, which is usually located on
a hard disk. This invokes the bootloader which loads the kernel. As
soon as the kernel and other OS specific components have finished
loading, user applications may be started.

2.2 memory addressing

The location of data in RAM is defined by its address. Each memory
address points to a single byte of data and the address bus is the
physical representation of a memory address. The width of the ad-
dress bus determines the length of the memory addresses and there-
fore the maximum number of possible addresses1. In turn limiting
the amount of memory that can be used by a system. For example,
addresses of 32 bits allows for four gigabytes of data to be located2.
When more than four gigabytes of memory is to be used, a 32 bit
wide address bus by itself is insufficient.

Over the course of time, the desire for speed and backwards com-
patibility has led to the introduction of different processor execution
modes. Each of those modes allows a processor to address more mem-
ory. Mainly due to legacy reasons, older modes are still supported by
newer CPUs. Real mode is the 16 bit legacy mode all x86 processors
start in. Only a single megabyte of memory is addressable in this

1 Multiplexing reserved.
2 232 addresses can point to 4294967296 bytes / 1024 (KiB) / 1024 (MiB) / 1024 (GiB)

= 4 GiB



8 background

mode. Protected mode is the native operation mode of the 32 bit x86
instruction set. Long mode is the native operation mode of the 64 bit
x86 instruction set, and allows more than four gigabyte of memory to
be addressed.

Next to these legacy modes, System Management Mode (SMM) was
introduced. SMM transparently suspends normal execution to allow
for an isolated execution environment, mainly used for power man-
agement and system security by the system’s firmware. Again we
refer to [31, Chapter 3 - Basic execution environment] for a more de-
tailed discussion.

As memory acquisition requires reading all of the memory physi-
cally present on the DIMMs, there are two artifacts of these (legacy)
modes that have to be taken into account: memory address routing
and translation.

2.2.1 Memory address routing

Not all memory addresses may point to data in the physical DIMMs:
ranges of memory can be routed to other components. Examples
of mechanisms that cause memory addresses to be routed to differ-
ent components are: Memory Mapped I/O (MMIO), Memory Type
Range Register (MTRR), and static routing. MMIO maps the mem-
ory of peripherals (I/O devices) into the computer’s address space.
The use of MMIO allows the memory of e.g. a network card to be
accessed through regular memory operations. To enable MMIO the
BIOS configures the processor’s Top of Low Usable DRAM (TOLUD)
register with a memory address above which all memory accesses
(up to the 4 GiB limit) are reserved for MMIO. The Base Address Reg-
isters (BARs) of e.g. PCI peripherals can be programmed such that
those devices may respond to reads and writes to data in the MMIO
range. The MMIO area is thus not backed by actual RAM. MTRRs
control how ranges of memory addresses are cached. For example,
they determine when an update of the cache is written back to RAM.
MTRRs are used to enable Cache-as-RAM (CAR) (discussed in Sec-
tion 5.3) and are discussed in more detail in [11]. MTRRs may hence
cause certain reads from memory to be read from the cache only, in-
stead of the actual RAM. Finally, the memory addresses near the reset
vector may be statically routed to the BIOS chip, as in that point of
the boot sequence, other hardware has yet to be initialized.

Furthermore, sequential memory accesses may be distributed over
different components through the routing mechanism. For example,
CPUs may include options to interleave memory accesses on the gran-
ularity most suitable for performance increase [56] and [28, 2.1.3.2.1
Dual-Channel Symmetric Mode]. By routing, for example, sequen-
tial memory addresses to different DIMMs these accesses can be
pipelined and thus retrieved concurrently. Figure 2 shows an exam-
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ple of the routing behavior of a computer with two DIMMs installed.
It highlights the difference in the resulting linear copy of memory, be-
tween the case when no interleaving is applied and when the mem-
ory addresses are distributed in an interleaving fashion across the
two DIMMs (on a RAM chip granularity). The address at which a
specific region of memory starts can be altered by setting registers in
the MCH. Many different regions of memory have been ascribed a
specific purpose. For example, the legacy region of Figure 2 includes
many smaller regions with each a different purpose. To prevent a
lengthy discussion of the historical reason of existence of every single
memory region, we kindly refer to the datasheets of the hardware
([28] in our case).

One important aspect of different memory regions in the context of
memory acquisition are the so-called ‘stolen’ memory regions. These
regions of memory are used by components to save their state. Exam-
ples of components using stolen regions are: the integrated graphics
device, SMM, and the Intel Management Engine (ME) (for details on
the latter we refer to Appendix D). Instead of using their own in-
ternal memory, the RAM is used for this. However, the regions are
allocated, to the components, very early in the boot sequence, and
may be routed to allow the components exclusive access. This might
be the cause of serious concerns when acquiring memory; a point
which we will return to in Section 6.3.

2.2.2 Memory address translation

A memory address may, over the course of time, translate to differ-
ent locations in physical RAM. The main mechanism that introduces
such translation is called paging. Next to providing isolation between
code and data, paging can also be used to provide virtual memory.
Virtual memory allows a computer to use more memory than actu-
ally exists, by saving lesser used parts of memory to slower memory
(e.g. the hard disk). Paging introduces the distinction between logi-
cal and physical addresses. Logical (virtual) addresses are used by
the code whereas the physical addresses are the locations the data
is actually stored. When a logical address is accessed that does not
actually reside in RAM, the OS first puts the address’s data in mem-
ory before continuing execution of the program. Because the logical
address space is far larger than the physical address space, over time
the same logical address may point to different physical addresses.

2.2.3 The overloading of address terminology

The consequence of the above sections memory address routing and
translation is that some literature attributes different meanings to the
term ‘physical memory address’. Overloading the term by using it
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both in the context within the host and in the context of communica-
tion over the memory bus (between the host and the DIMM).

On the host side, the logical addresses are used to address vir-
tual memory, and are translated by the Memory Management Unit
(MMU) –using the paging mechanism– to physical host addresses.
The Translation Lookaside Buffer (TLB) is used to cache a number
of these translations to increase the mechanism’s speed. The physical
host addresses are next converted by the MCH to physical DIMM ad-
dresses, for example, DDR3 commands and send over the physical
memory bus. When not obvious from the context we will prepend
the term ‘physical address’ with either host or DIMM to remove am-
biguity.

2.3 SDRAM and DDR3

There are many different types and generations of volatile memory.
This work focusses solely on DDR3 Synchronous Dynamic Random-
Access Memory (SDRAM). The ‘synchronous’ in SDRAM means that
all memory works based on a single clock, whereas ‘dynamic’ stands
for the fact that the memory needs to be refreshed (the cause for its
volatile property). SDRAM needs to be refreshed, as each memory cell
consists of a capacitor and transistor. The transistor controls whether
power can flow to/from the capacitor and the capacitor holds the
memory cell’s state. The cell’s state is determined by the difference
between a threshold value and the charge saved in the capacitor. Even
when the transistor prevents charge to flow to/from the capacitor, the
charge still gradually leaks to/from the capacitor. Details on the un-
derlying physical properties regarding this leakage can, for example,
be found in [21]. Once a memory cell’s state can no longer be deter-
mined it is said to be in it ground state. The cell’s ground state may
either be a zero or one depending on whether the memory cell’s ca-
pacitor is wired to power or ground. To prevent this, all capacitors
need to be recharged before any of the cells’ states can no longer be
determined correctly. The leaking of the charge of a capacitor is called
decay, and its counterpart is called remanence. The time a cell’s state
can correctly be determined without a refresh is named its remanence
time or period. The remanence period is lower bounded by the DDR3
specification [37], defining that a refresh command is to be sent every
7.8 µs. Depending on the memory’s density, typically every capacitor
is required to have a minimum remanence period of 64 ms. Figure 3

shows cross sections of two different types of capacitors present in-
side SDRAM chips. Trench capacitors are an older technology which
relatively take up more space on the silicon than stacked capacitors.
The chronological development of SDRAM capacitors is discussed in
[66] and an analysis of the capacitors used in contemporary SDRAM
chips are provided in [40].
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Figure 3: Different physical appearances of capacitors. Trench capacitors
are shown left (planar view), stacked capacitors are shown right
(cross-section). Source: http://www.sdram-technology.info/

sdram-cross-section.html

The DDR3 specification [37] supports a plethora of different vari-
ants and extensions, providing SDRAM manufactures the room to
innovate. Innovations are typically related to advances in integrity,
speed, and power consumption. Due to reasons of conciseness and
relevance, we refrain from providing a complete overview of all op-
tions and their details. However, many of these advances have been
standardized by JEDEC and some of the different options that may
be encountered are: speed (frequencies, timings); integrity (registered
(RDIMM), fully buffered (FBDIMM), load reduced (LRDIMM), Error-
Correcting Code (ECC)); power usage (DDR3L (low voltage), DDR3U
(ultra low voltage)); and form factor (Dual In-line Memory Module
(DIMM), SODIMM (small outline), LPDIMM (low profile), VLPDIMM
(very low profile)). Each memory module is labeled, the contents of
this label is typically standardized by its manufacturer3. Most of the
aforementioned options should be recognizable on this label. Further-
more, every module contains a small amount of persistent memory,
used to save Serial Presence Detect (SPD) information, again stan-
dardized by JEDEC [39]. The SPD data includes information regard-
ing the type of DIMM in an electronic format. SPD is used by a
computer’s memory controller to enable automatic initialization of
different types of DIMMs. Not every memory controller may sup-

3 See for example [42, 49, 60], a preliminary JEDEC specification has also been released
but has, to the best of our knowledge, never been standardized [36].

http://www.sdram-technology.info/sdram-cross-section.html
http://www.sdram-technology.info/sdram-cross-section.html
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port all types of memory modules. Typically a memory controller
only supports one generation of DDR and only higher-end moth-
erboards support integrity enhancing options. A memory controller
initializes and communicates with a DIMM by transitioning through
the DIMM’s internal state machine as defined in the DDR3 standard
[37, 3.1 Simplified State Diagram].

The details of SDRAM discussed above lie at the basis of the differ-
ent factors that influence the cold boot method; as will be discussed
in more detail in Section 3.6 and Section 7.3.





3
R E L AT E D W O R K

A body of research has been developed on the topic of memory ac-
quisition. Due to some subtle, yet important differences in scope and
scenario, not all work fits that of ours. Therefore, different methods of
memory acquisition are reviewed; promising methods are presented
in more detail. Furthermore, a justification of each method’s suitabil-
ity in our setting is provided. Every justification is accompanied by
an evaluation of the method’s forensic soundness, based on the fol-
lowing criteria.

3.1 methodology for evaluating forensic soundness

The quality of an acquisition method and the data it produces is
of great importance in a forensic context. Vömel and Freiling have
distilled this idea of forensic soundness (of acquired volatile mem-
ory) into three criteria: correctness, atomicity, and integrity [70, 71].
Vömel and Freiling provide a formal definition of the criteria, to-
gether with a justification of their independence and claim that satis-
fying these three criteria implies a forensically sound copy of mem-
ory; here we only provide an intuitive description. The acquired mem-
ory is deemed forensically sound if it is:

• an exact copy of the data in memory i.e. no data skipped/missed
(correctness).

• free of any concurrent system activity i.e. other processes are
prevented to write to memory (atomicity).

• the memory is not modified after a certain point in time i.e. the
start of acquisition (integrity).

The criteria have been applied to specific implementations by Vömel
and Stüttgen [72] and Gruhn [15, Chapter 4], as a whitebox and black-
box methodology respectively. Vömel and Stüttgen restricted them-
selves to software only acquisition methods, and Gruhn has limited
his scope by taking correctness for granted. Their work has shown
that most memory acquisition methods are only able to fulfill the
three criteria up to a certain degree. We have based our evaluation
on their findings, but differ our methodology on two points. First, in-
stead of checking the correctness of a region of memory, we explicitly
evaluate a method’s correctness based only on the question whether
it can acquire all memory available. Second, instead of evaluating
specific implementations, we aim to review the general acquisition
methods in relation to our scenario as defined in Section 1.1; to be
able to do this we introduce the following generalization.

15
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Although not explicitly noted by Vömel and Freiling, we argue that
their criteria encompass the concept of anti-forensics. Anti-forensics
is defined as: “any measure that prevents a forensic analysis or re-
duces its quality” [15] and therefore the goal of any such measure is
to reduce the degree of correctness, atomicity, and integrity. One may
argue that the a-priori chance of the presence of anti-forensic mea-
sures may be small, based on a risk assessment on the background of
the user. However, such an assessment may prove to be difficult to per-
form or its result to be biased, due to the possible lack of information
on a user. We argue that chance of the success of anti-forensic mea-
sures is proportional to the size of the Trusted Computing Base (TCB)
of the acquisition method and that therefore a method requiring a
small TCB is preferred above a method requiring a large TCB.

3.2 software

A multitude of applications have been developed over the years with
the aim to secure volatile memory. For all major recent OSes a pro-
gram can be installed and run to acquire memory. Due to its ease
of use and low impact on the stability of the system, we consider
software to be a preferred memory acquisition method.

However, the fact that the software runs on the same machine from
which the memory needs to be acquired, has two implications. First,
the acquisition software alters the state of the machine, as it loads
itself in memory, overwriting the data to be acquired. Second, soft-
ware has the largest TCB possible. The first argument may –for a
large part– be overcome by using software of a very small size, only
overwriting specific regions of memory. Furthermore, the software is
permitted to use portions of memory it has already secured, allowing
additional functionality to be introduced over time. Different stages
and compression techniques can, therefore, be considered [4]. As for
the second argument, not only may the integrity of the TCB, includ-
ing the OS, pose difficult to predict beforehand, it may also prove
problematic to determine a-posteriori.

Finally, as user-land programs are not allowed to read all (kernel)
memory, the software needs to be installed with root privileges. Ex-
cluding a software-only approach in our scenario.

Evaluation: not applicable in our scenario. Although existing soft-
ware scores high on the criteria of correctness, it scores relatively low
on the criteria of atomicity and integrity [70, Tables 4.2, 4.3, 4.4].

3.3 Direct Memory Access (DMA)

DMA allows components, other than the CPU, direct access to a com-
puter’s RAM and is used to speed up memory accesses by periph-
erals. Different external physical ports allow for DMA access. Exam-
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ples are: PCI/PCIe [10, 14, 75]; PCMCIA, ExpressCard, PCCard [75];
FireWire [5, 12]; and Thunderbolt [62, 63]. Similar to software, the
DMA method is performed on the same hardware from which the
memory is acquired. Again allowing the method to be subverted by
any of the components in its TCB [59]. DMA attacks may be mit-
igated through I/O Memory Management Unit (IOMMU) and OS
protection mechanisms. The IOMMU acts as a kind of firewall, only
allowing a device to read memory ranges specifically allocated to it.
Recent OSes disable DMA once the device is locked1. Originally DMA
only allowed for 32-bit addressing, therefore many DMA methods
can acquire no more than four gigabytes of memory. Workarounds
for this may require hardware or OS support, both of which cannot
be applied in our scenario. Finally, the physical ports, e.g. Thunder-
bolt, may be unavailable, inaccessible or non-existent, and as some
ports may not be hot-pluggable these may require pre-installation e.g.
PCI/PCIe. These requirements exclude a DMA-only approach in our
scenario.

Evaluation: not applicable in our scenario. Existing DMA methods
score the lowest on the criteria of atomicity and integrity [15, 4.5.2.2
inception] when compared to other methods; its score on correctness
is unclear.

3.4 System Management Mode (SMM)

Multiple authors [57, 73] have opted to run software in System Man-
agement Mode (SMM) to acquire memory. Although the switch to
SMM would halt other software and increase the method’s atomicity,
to obtain code execution in SMM one is required to either: (1) run soft-
ware at the most privileged level; (2) pre-install the code to the BIOS
chip and invoke it through a secure channel e.g. hardware switch; (3)
patch the BIOS chip, reboot the system, and start executing own code
from the reset vector.

The first possibility is not an option in our case. The second option
is discussed in [57, 73], yet not applicable in our case due to its pre-
installation requirement. The third choice defies the use of SMM for
the most part, and other than running in SMM, is the same as the
method discussed in the next section.

Evaluation: the same as BIOS modification in our case.

3.5 BIOS modification

Schramp has shown that a BIOS chip can be replaced whilst the sys-
tem is still running [61]. By replacing the chip with one which houses

1 “OS X Lion disables DMA when the user is logged out/screen is locked and FileVault
is enabled. [...]” http://www.breaknenter.org/projects/inception/

http://www.breaknenter.org/projects/inception/
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SerialICE2 Schramp was able to dump the computer’s memory. Se-
rialICE is software which allows one to: run a BIOS in the QEMU3

emulator on one machine, and proxy all hardware accesses to the Se-
rialICE mini shell running from the BIOS chip on another machine.
By resetting the computer, it can be made to run the replacement
BIOS’s code from the reset vector. Schramp modified SerialICE such
that it dumps the computer’s memory directly after RAM initializa-
tion. The memory was dumped as ASCII hexadecimal Power-On Self-
Test (POST) codes to a POST dongle. The POST codes are normally
shown on a seven-segment display of a POST card indicating at what
stage of self-test the BIOS is. The codes are typically used as extra
information for troubleshooting, but allow for a slow communication
channel. Gruhn [15, Section 5.5.2] attempted to reproduce the work
of Schramp, yet was only partially able to do so. Gruhn was required
to pre-install a BIOS chip socket such that the chip could be replaced
without soldering.

Modifying the BIOS in general has been an active topic of research,
often from the perspective of rootkit development [7, 8, 23]. This has
led to the development of UEFI and Intel Boot Guard. The UEFI speci-
fication modernizes the older BIOS interface, and among other things,
allows for cryptographic verification of firmware updates. Thereby
preventing illegitimate modification of the firmware from the OS.
However, implementations of the UEFI specification have proven to
be vulnerable [3, 24, 26, 43]. To this end, Intel devised Boot Guard [29,
30]. Although the details on Boot Guard are scarce, the method seems
to bind the integrity of contents of the BIOS chip to keys burnt into
the hardware. Preventing illegitimate modification of said contents,
which includes the firmware, as this check is performed on every
power-on.

All in all, the suitability of this method is very platform-specific due
to hardware specific initialization requirements and possible counter-
measures. Therefore, this method may pose to be non-trivial to port
to different platforms. Furthermore, because code execution can only
be obtained through a reset (possibly depriving a computer’s mem-
ory of power), the data remanence property (discussed in the next
section) needs also to apply.

Evaluation: applicability conditioned on the presence of Intel Boot
Guard and data remanence. Mixed results have been achieved during
reproduction. We argue that BIOS modification scores high on the
criteria of correctness, atomicity and integrity.

2 https://www.serialice.com

3 http://qemu.org/

https://www.serialice.com
http://qemu.org/
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3.6 cold boot

The cold boot method is based on the principles of memory reten-
tion (as discussed in Section 2.3), known in theory before but made
famous thanks to the seminal paper of Halderman et al. [20]. Volatile
SDRAM memory retains its state for a short period of time without
power, cooling the memory increases this period. There are two gen-
eral variants of this method. A first order cold boot attack, in which
the same computer is reset to start acquisition software, typically
loaded from a bootable device. A second order cold boot attack, in
which the memory modules (DIMMs) are transplanted to a differ-
ent computer which runs the acquisition software. Typically software
such “memimage” as released by the original authors4 or “msram-
dump” by Wesley McGrew5 is used to perform a cold boot attack.
However, this software does have the same consequences described
in Section 3.2; overwriting parts of the memory to be acquired. Even
more so, Halderman et al. noted that: the BIOS may overwrite small
parts of memory with its own code and data; destructive POST rou-
tines may destroy large chunks of memory; and ECC memory may
be initialized entirely to a known initial state by the BIOS [20, section
3.4 BIOS footprints and memory wiping]. A more detailed discussion
on these concerns is provided in Section 6.3.

As discussed in section 2.3, the period of time during which mem-
ory survives without power is labeled the retention period. Not all
memory cells may survive over the whole retention period, some cells
may decay faster than others. The length of the retention period is es-
sential to the success of this method, yet depends on many different
factors. Lindenlauf, Höfken, and Schuba [45] have identified the vari-
ables at play to be: SDRAM type; SDRAM manufacturer; individual
SDRAM; cold boot mainboard; multi-channel mode; SDRAM temper-
ature; and SDRAM time without power. Carbone, Bean, and Salois [9]
have identified the physical properties underlying these factors to be
related to the: memory density, residual capacitance of the cold boot
motherboard, and resolution of the production process. A point we
will return to in Section 7.3.

Over the years, mixed results in performing cold boot attacks have
been achieved. Hannay and Woodward [22] set out to verify the work
of Halderman et al., but were unable to find any remnants of data
aside from data of the software used. Carbone, Bean, and Salois [9]
were able find remnants of data, but only for some of the tested sys-
tems6. Gruhn and Müller [16] claimed that cold boot attacks on DDR2
are possible, DDR3, however, was deemed impossible to acquire us-
ing the cold boot method. Gruhn and Müller note that it is unclear

4 https://citp.princeton.edu/research/memory/code/

5 http://mcgrewsecurity.com/oldsite/projects/msramdmp.1.html

6 Although extensive details of the computer systems tested are included, it is unclear
from their work exactly which memory types have been tested.

https://citp.princeton.edu/research/memory/code/
http://mcgrewsecurity.com/oldsite/projects/msramdmp.1.html
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whether the immunity of DDR3 is solely due to its construction type,
or also owing to effects introduced by the memory controller. In a
paper written from an engineering perspective, Liu et al. [46] have
tested the retention times of 248 different SDRAM chips of thirty-four
different DDR3 SODIMMs of five different vendors at various temper-
atures7. Through the use of an FPGA board and different testing pat-
terns, they claim to have observed no memory cells with a retention
time smaller than 1.5 seconds at 45°C. Strengthening the conjecture of
Gruhn and Müller that the memory controller introduces detrimen-
tal effects. Lindenlauf, Höfken, and Schuba [45] have performed data
retention experiments on fourteen DIMMs; both DDR2 and DDR3.
Whereas the DDR2 experiments succeeded on a Gigabyte GA-G41M-
Combo motherboard, the DDR3 experiments did not succeed on the
same board. Nevertheless, the attack did work for DDR3 on the moth-
erboard of a Asus P53E notebook. Leading the authors to claim that
“[...] many boards overwrite DDR3 SDRAM with a random bit pattern
during a cold boot.”. Recently Bauer, Gruhn, and Freiling [2] verified
that hardware vendors (e.g. Intel) have opted to apply memory scram-
bling. We suspect that, this hardware based memory scrambling has
most likely been the cause of problems in reproducing the work of
Halderman et al. on DDR3 as experienced in [16] and [45]. Memory
scrambling will be discussed in greater detail in Part III.

It is good to note that, on the one hand, this method may well be
the most destructive of all methods presented here. Any mistake in
cooling or timing may result in only the ground state of the DIMM
being acquired, not allowing for any second try. On the other hand,
we argue that this method has the smallest TCB of all and that it may
be applied in certain scenarios (e.g. ours) where other methods can
not.

Evaluation: applicability conditioned on the presence of the rema-
nence effect. Mixed results have been achieved during reproduction.
The cold boot method scores the highest on the criteria of atomicity
and integrity [15], yet the rate of decay may directly be related to the
degree of integrity that can be achieved.

3.7 legal requirements

Owing to the fact that the acquisition method will most likely be used
in a forensic context, it is of importance that data acquired is deemed
to be reliable evidence in a court of law. To this end we provide an
overview of the relevant jurisprudence and case law.

Typically, digital evidence of this nature is to be presented to the
court by a expert-witness. In the Dutch case (which we focus on) an
expert-witness may be registered in the nationwide expert-witness

7 It is unclear exactly which chips of what DIMMs have been tested. Furthermore, the
vendor names have been anonymized.
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register8 meant to assure the quality of the expert. However, this is not
obligatory and it is up to a judge whether he allows one to act as an
expert-witness. The Dutch law states: “De deskundige brengt aan zijn
opdrachtgever een met redenen omkleed verslag uit. Hij geeft daarbij
zo mogelijk aan welke methode hij heeft toegepast, in welke mate deze meth-
ode en de resultaten daarvan betrouwbaar kunnen worden geacht en welke
bekwaamheid hij heeft bij de toepassing van de methode.” [74] (em-
phasis by the author). The emphasis translates to: the expert-witness
should –if possible– note which method was used and to which ex-
tent the results of the methods can be deemed reliable. Based on case
law and Dutch jurisprudence ([25], [6, pp. 50-82], [54]) the follow-
ing questions –that may be asked by a judge– have been formulated9

(translation by the author):
I. What is the profession, education, and experience of the expert?

II. Does the expertise of the expert extend to the matter at hand?
III. Which method was used by the expert?
IV. Were there other methods available? If so, then why was this

method chosen?
V. What is the reliability of the used method (motivation of)?

VI. Was the expert able to professionally execute the method?
Only once a suspect challenges the findings of an expert-witness

a judge is required to ask these questions. It is then up to the judge
as to determine whether an additional expert is required to reach a
conclusive verdict. The main problem in the scenario of volatile mem-
ory is the possible destructive application of any of the acquisition
methods. In other forensic disciplines, the Netherlands Forensic Insti-
tute (NFI) has established forensics technical standards, these include
procedures on the (possibly destructive) securing of biological traces
e.g. blood or fingerprints. To the best of our knowledge, such stan-
dards have not been established in the digital context. We argue that
the use of such a standard should also raise the confidence of a judge
in a acquisition method in the digital domain, as its reliability in gen-
eral will become more uniform.

To aid in this we put forth two appendices: Appendix B, in which
a flowchart is presented, that may help a forensic investigator in
choosing the most suitable method of memory acquisition; and Ap-
pendix C which discusses the procedure that should be followed once
the acquisition presented in Part II has shown to be most suitable. We
conclude that the reliability of the acquisition method of choice needs
to be justified. We do this by reviewing applicable scientific literature
(as provided in this chapter), and by discussing the method’s imple-
mentation details and validating its forensic soundness in Part II.

8 https://www.nrgd.nl/

9 In the international context the (similar) Daubert criteria [69] have long been of the
de facto standard.

https://www.nrgd.nl/
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3.8 conclusion

In a memory acquisition scenario, there are many factors involved
that may vary widely. Some may be in one’s own hands, whilst others
may not. In the context of the predefined scenario, every method dis-
cussed in this chapter brings its own advantages and disadvantages
to the table. By opting for a combination of the BIOS modification and
cold boot methods, we aim to professionalize an acquisition method
that is applicable even in the most worst-case of scenarios. Our hope
is to produce a forensically sound acquisition method with a small
TCB.
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4
C O N C E P T A N D D E S I G N

4.1 concept

The general concept is to use the cold boot method together with
BIOS modification. It is known that the cold boot method does not
work with certain BIOSes. Therefore, it is our goal to, on the one
hand, have a BIOS that doesn’t wipe or overwrite memory whilst, on
the other hand, to implement additional (acquisition) functionality.
This idea is not new, it has been thought of before by Appelbaum,
one of the authors of the original cold boot paper:

“If you were to implement your own custom BIOS you
would be able to, for example, dump the memory with
having a very minimal amount of memory being stomped
on. [...] With Coreboot someone, I think his name is Uwe
and maybe Peter [Stuge], I forget, they implemented a
small plugin for Coreboot that actually allows you to boot
a machine that has this little plugin loaded and it sim-
ply dumps the memory to the screen and you can page
through it.” [1] (transcription by the author).

The functionality of the Coreboot plugin is present in the “core-
info” payload of Coreboot under the name “RAM dumper”1. Stuge
elaborated on the idea of Appelbaum by commenting:

“Because we’re doing the RAM initialization we can stop
right after RAM initialization is complete and do whatever
we want, it’s open-source so go ahead and have some fun.
Do some special dump routines, we can even utilize an-
other trick which is called Cache-as-RAM to not have to
use any RAM at all so we can really extract every single
byte of data that is in RAM.” [64].

There are two main advantages of this concept over the available
cold boot acquisition software such as “memimage” and “msram-
dump”. First, Cache-as-RAM (CAR) should allow the acquisition of
all memory, directly after memory initialization, without overwrit-
ing any of it. Second, the time the transplanted DIMMs are without
power can be reduced by detecting the insertion of a DIMM from
CAR.

To the best of our knowledge, a BIOS specifically developed for
memory acquisition has not been implemented before. Therefore, we

1 https://www.coreboot.org/Coreinfo
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have developed a proof-of-concept implementation, the design and
details of which will be discussed next.

4.2 design

The acquisition method developed has been designed to minimize
the time the DIMM is without power, and should thereby reduce the
amount of decay introduced. The procedure for acquiring memory is
as follows:

I. Boot the acquisition machine without a DIMM and poll for the
insertion of a DIMM

II. Cool the DIMM of the target machine
III. Transplant the DIMM from the target to the acquisition machine
IV. As soon as the DIMM is inserted, the acquisition machine ini-

tializes and starts refreshing the DIMM
V. The contents of the DIMM are secured to persistent memory of

the acquisition machine
During the entire procedure nothing is overwritten in RAM as all

code is running from CAR and the memory is acquired as soon as
memory initialization has finished.
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Coreboot1 is free open-source software and has been described as
an open-source extended firmware platform. It is an alternative to
the closed-source firmware and BIOSes developed by commercial in-
dependent BIOS vendors such as: Insyde, American Megatrends Inc,
and Phoenix. Coreboot performs the minimal amount of hardware
initialization possible to be able to execute a payload. Different pay-
loads can be executed after Coreboot has initialized the hardware.
Examples are: SeaBIOS (x86 BIOS implementation), TianoCore (UEFI
implementation), a Linux kernel, or diagnostic tools (e.g. MemTest86).
Coreboot’s code is the first that runs on a computer2.

5.1 binary situation

Firmware contains large amounts of platform-specific hardware ini-
tialization code. Much of this is only provided as binary blobs by
hardware vendors. Hence, open-source initialization code can only
be developed by reverse engineering such blobs. This process is very
time-consuming and the documentation of such code is arcane due
to the lack of datasheets, as these are only available under Non-
Disclosure Agreement (NDA) or are vendor confidential. Coreboot’s
choice to include blobs that are not (yet) reverse engineered is one of
the reasons behind the Coreboot code-fork named Libreboot3. Libre-
boot aims to be completely blob free, but is only supported on a very
limited set of devices because of this constraint.

5.2 memory initialization

The memory initialization code of modern architectures is an ex-
ample of functionality only provided as a binary blob, without any
source code e.g. Intel’s Firmware Support Package [65, Chapter 4].
Fortunately, the memory initialization code of older platforms has
been reverse engineered and for these platforms the source code is
available. On the one hand, this allows us to take over execution di-
rectly after RAM has been initialised. On the other hand, although
the code is open source, it is by no means easily understood. It con-

1 https://www.coreboot.org/

2 Before the reset vector the processor may have executed microcode updates or other
logic such as the Built-In Self Test (BIST). Most of the time, this logic cannot be
altered at all, or only by the hardware vendor itself through cryptographically signed
updates. Therefore, it may be assumed integer.

3 https://libreboot.org/
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tains many ‘magic’ reads and writes from and to memory addresses
and offsets thereof. Furthermore, public documentation in this topic
is absent.

5.3 cache-as-ram (car)

Coreboot is able to run compiled C code before it has even initialized
RAM. The motivation to run C code so early in the boot sequence,
is based on the fact that assembly code is much more difficult to
reuse and maintain across many different architectures. Originally
Coreboot was only able to run C code so early in the boot sequence
through the use of the ROMCC compiler. Because there is no RAM
to save the stack, ROMCC used the processor’s registers for this in-
stead. By doing so, limits the code’s functionality as it can keep only
minimal state.

On more recent processors, Coreboot is able to use a mechanism
named Cache-as-RAM (CAR) [41, 47, 53]. The terms no-fill mode [55]
or no-eviction mode [76, Figure 15.1] are used by different literature
interchangeably to refer to CAR. As the name suggests, CAR uses
the processor’s cache to save its state, as would normally be done in
RAM. Although CAR is used in most recent BIOS implementations
and all of the building blocks to enable it are public, to the best of our
knowledge, Intel does not support nor provide any public documen-
tation on the method as a whole. Furthermore, as with the reverse
engineered memory initialization code, the code is not obvious and
has been named “an esoteric area of the code” or “black magic” by
Coreboot’s developers.

To be able to verify and explain CAR’s implementation, we have
cross-referenced the available documentation with Coreboot’s CAR-
code for our architecture4. CAR works by altering the cache’s oper-
ating modes [31, Volume 3A, Table 11− 5, Cache Operating Modes].
MTRRs can to be set to change the cache its behaviour for certain
memory ranges (as discussed in Section 2.2.1). CAR is in fact used
by Coreboot for two purposes: (1) to save the stack; and (2) to speed
up execution of the code that needs to be fetched from the BIOS chip,
by loading it into the processor’s cache. The first goal requires the
cached data to be both readable and writeable, the second suffices
with a read only region.

To enable CAR the following procedure is followed: all MTRRs are
cleared, default caching type is set to uncacheable, a MTRR is set to
control the memory range required, the MTRR is enabled, caching
is enabled through the CPU’s control register, either the region is
cleared or the data is read from the BIOS chip (and thereby cached),
and caching is disabled through the CPU’s control register (actually
enabling CAR).

4 src/cpu/intel/model_206ax/cache_as_ram.inc https://github.com/coreboot/

coreboot/blob/e74ad21a91e33f275a7bda999b058a8390c44ae6/src/cpu/intel/

model_206ax/cache_as_ram.inc

https://github.com/coreboot/coreboot/blob/e74ad21a91e33f275a7bda999b058a8390c44ae6/src/cpu/intel/model_206ax/cache_as_ram.inc
https://github.com/coreboot/coreboot/blob/e74ad21a91e33f275a7bda999b058a8390c44ae6/src/cpu/intel/model_206ax/cache_as_ram.inc
https://github.com/coreboot/coreboot/blob/e74ad21a91e33f275a7bda999b058a8390c44ae6/src/cpu/intel/model_206ax/cache_as_ram.inc
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6.1 exfiltration routes

The acquisition method has been designed to acquire the memory
very early in the boot sequence, because of this many, components
have not yet been initialized. This poses an interesting challenge in
either initializing an exfiltration route to another computer e.g. net-
working, or initializing a large portion of non-volatile memory e.g. a
hard disk; both such that a copy of the volatile memory can be written
to it and thereby secured.

As discussed in section 3.6, Schramp used post codes to extract the
memory acquired. Actually working around this problem, as POST
codes are typically routed by default to the Peripheral Component
Interconnect (PCI) bus. However, this transfer channel is tediously
slow1, and has never been designed with large data transfers in mind.
To initialize another exfiltration route, the hardware device in ques-
tion needs to be enabled and a driver is required to communicate
with it. Here DMA becomes of great concern, as most modern trans-
fer methods use DMA to increase their transfer rate. DMA uses RAM
to buffer the data read and written without intervention of the proces-
sor. Typically the buffer is of a specific size. Output is written directly
to memory and input may be directly read from memory. However,
overwriting memory is not desirable in our case and in direct conflict
with the forensic soundness of the acquisition method. Still, being
able to read from the peripheral can be very convenient e.g. to read
the file system’s structure. Therefore, we have chosen not to use DMA
although the problem could perhaps be alleviated by (temporarily)
saving the memory to be overwritten in e.g. the cache.

The two exfiltration routes that have been explored by us are: (1)
networking using an older PCI card that contains internal buffers2; (2)
hard disk communication. The first had already been implemented in
Coreboot, yet required more platform-specific code than anticipated.
Due to the fact that PCI bridges not yet having been initialized at this
point in the boot sequence. However, they are required to be correctly
initialized, as otherwise data will not be routed to the correct PCI
device. It proves non-trivial to initialize the bridges without access to
sufficient memory.

Therefore, second, the option of using the SATA controller in
Programmed I/O (PIO) mode has been investigated. Invoking the

1 The same is true for the serial debug channel Coreboot provides.
2 https://blogs.coreboot.org/blog/2010/05/31/coreboot-console-over-ethernet/
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SATA initialization code of Coreboot at an earlier point in time, and
combining it with the SATA PIO driver of SeaBIOS enabled us to use
the hard disk to save the memory acquired. The main hurdle to over-
come was finding the correct I/O base-port of the SATA controller. A
rate of 100 MiB per minute has been achieved and was regarded to
be sufficient.

6.2 accessing all memory

The main part of Coreboot natively compiles as 32-bit code and runs
in protected mode, this only allows one to address the lower 4 GiB of
data (as discussed in Section 2.2). To address more memory, paging
has to be enabled. Although, paging allows one to access all mem-
ory regions, the accessible memory is still limited to 4 GiB at a time.
To access all memory, one additionally needs to either enable win-
dowing or long mode. The application of windowing allows a range
of low logical memory addresses (< 4 GiB) –named a window– to
be translated through the paging mechanism to high physical ad-
dresses (> 4 GiB) such that the higher physical addresses may be
accessed. Because this windowing introduces additional complexity
in the acquisition routine, the option of running Coreboot as 64-bit
code (in long mode) has been explored. However, due to Coreboot’s
non-trivial build system and numerous 32-bit truncated pointers, this
would require significant effort to change. Although, there has been
some previous work on enabling Coreboot to run as 64-bit code, this
has been very experimental3. Therefore, our system uses windowing
to acquire memory saved in high physical host addresses.

Enabling paging has also proven to be more of a challenge than
anticipated; the main difficulties to overcome were the: (1) limited
debugging options; (2) large number of different paging options; (3)
space and alignment requirements of the paging tables; (4) combi-
nation of paging and CAR introducing unpredictable behavior. Al-
though all of these problems can be overcome, their combination acts
as a multiplier on the effort required to do so. Even more so, any
of the latter three difficulties led to an unbootable system and there-
fore a tedious development cycle. Eventually the following options
allowed us to access all memory. First, Coreboot allows for the use
of a POST-card and serial debug output, the latter of which is not
available until after CAR and the former only provides very rudi-
mentary output. Second, by using Physical Address Extension (PAE)
we were able to page 4 GiB of memory. Third, using PAE keeping the
required paging tables small enough to save them in cache. The prob-
lem of size is increased as even small paging tables are required to be
aligned on (large) page-boundaries, for this we used GCC’s aligned

variable attribute. Fourth, as all of the code is running from CAR, it is

3 https://www.coreboot.org/pipermail/coreboot/2015-January/079135.html

https://www.coreboot.org/pipermail/coreboot/2015-January/079135.html
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essential that the activation of the paging-mechanism does not inter-
fere with the system’s caching behavior. However, every page can is
accompanied by several flags that define its, amongst other things,
caching properties. The combination of setting the: Present, Read-
/write, Accessed, Page size, and Global flags enabled us to use paging
in CAR. This combination was found in the experimental 64-bit con-
version previously discussed, see [31, Table 4-4. Format of a 32-Bit
Page-Directory Entry that Maps a 4-MByte Page] for the meaning of
these bits. Furthermore, the point in the boot sequence at which pag-
ing is enabled is of great importance. Enabling it before the Memory
Controller Hub (MCH) has finished initialization causes the paging
mechanism to stay disabled although the processor’s control registers
acknowledge that it has been enabled.

6.3 memory integrity concerns

As described in Section 2.2 memory addresses accesses may not al-
ways be routed to data in RAM, the MCH may decide to route to
addresses to different components depending on its configuration.
Furthermore, some components do not come with their own mem-
ory and use (overwrite) part of the computer’s RAM to function (the
‘stolen’ memory regions). These are only two examples of concepts
that may impact the integrity of memory to be acquired.

We have identified the following components and concepts that
may reduce the integrity of the memory to be acquired. As the ac-
quisition system of a second order cold boot method may route and
translate parts of memory differently than the target system, this is
of particular importance in our case. The list is by no means restric-
tive and may be different for every platform, yet it should provide
a decent overview of the concepts that may need to be taken into
account:

• Memory overwrites i.e. the BIOS writing data to RAM
• Destructive POST routines i.e. destructive memory training/test-

ing
• Reserved BIOS regions4

• Memory Type Range Registers (MTRRs)
• Memory regions stolen by the:

– Internal graphics device
– SMM
– Intel ME (see Appendix D)

• Memory scrambling (as discussed in Part III)

4 The stock BIOS on our system reports 150 MiB to be unusable or reserved. This
was observed by executing the dmesg command on a default Ubuntu installation..
These memory regions are, for example, not acquired by the “memimage” software
released by Halderman et al. [20].
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Most of these problems are inherently countered by our acquisition
method. Because it acquires memory directly after memory initializa-
tion, before any other functionality is used. Only the devices stealing
memory regions required explicit disabling. We chosen not to disable
any of the memory training/testing routines, as this is required for
the correct initialization and communication with the memory mod-
ules.

6.4 reproducibility

All source code to reproduce any of our results can be found as a
Coreboot patch at https://review.coreboot.org/#/c/18539/.

https://review.coreboot.org/#/c/18539/


7
VA L I D AT I O N

To validate whether the method developed is actually forensically
sound, we verify whether it meets the requirements as set out in
Chapter 3. Therefore, we verify whether it complies with the prop-
erties of correctness, atomicity, and integrity as defined by Vömel
(and Freiling). Due to the use of the cold boot method, atomicity is
implied, hence our focus is on correctness and integrity. Correctness
is implied when a complete copy of all data present in the physical
DIMM is acquired i.e. no memory ranges are skipped/missed. In-
tegrity is implied when the contents of memory is not altered after
the start of acquisition method e.g. due to loading the acquisition pro-
gram into memory or decay due to the cold boot method. It may be
the case that a property is not fulfilled completely, it is then still desir-
able to determine the degree of fulfillment. Performing the following
experiment has allowed us to determine this.

7.1 experiment methodology

We employ a similar experiment as defined in [16, section II. Setup -
C. Experiment]. The experiment comprises three steps: 1) filling the
memory with reproducible pseudo-random data, 2) executing the ac-
quisition method, and 3) measuring the difference between the data
acquired and the expected pseudo-random data.

As opposed to the experiment defined in [16, section II. Setup - C.
Experiment], we chose to differ two of the conditions. First, a differ-
ent cooling method has been chosen to determine whether the orig-
inal cooling technique could be improved upon (professionalized).
Second, instead of executing the experiment on only relative small
amounts of data e.g. 2 MiB in [16], the experiment has been per-
formed over all data that the DIMM could hold e.g. 1 or 4 GiB such
that the degree of correctness of the method as a whole could be
determined. The details of the setup used have been attached as Ap-
pendix A.

7.2 cooling techniques

In general the cooling of memory modules is done through the use
cooling spray, either dedicated freezing spray or ad-hoc upside down
canisters of compressed air. By spraying this directly on the memory
modules, the DIMMs are brought down to a temperature of between
the −30° and −50° Celsius. Although this method is widely accepted
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[2, 16, 20, 45], it may have severe consequences. First, the flash freez-
ing of electrical components may cause them to malfunction. The lo-
cating of thermal faults in electrical equipment is one of the typical
use-cases of freeze spray. Second, the formation of frost and subse-
quent condensation may cause component malfunction. Although the
widespread use of freeze spray to perform the cold boot method may
suggest otherwise, this is a well known side-effect of extreme cooling
in the field of overclocking. Either of these consequences may result
in loss of the data to be acquired.

We have, therefore, chosen to explore a different method of cool-
ing. As noted, much experience with extreme cooling in this context
may be drawn from the overclocking scene. The use of liquid nitro-
gen evaporation coolers is one example hereof. This type of cooler
consists of a heatsink which clamps around the DIMM with a tray on
top that holds the liquid nitrogen. An image of its usage is attached in
Appendix A as Figure 11. As the liquid nitrogen evaporates, it cools
the tray and heatsink drastically, which in turn cool the DIMM. The
benefits of the method are threefold: (1) the memory can be cooled to
extreme temperatures in a reduced pace as the mass of the heatsink
prevents fast temperature fluctuations; (2) frost collects nearly exclu-
sively on the heatsink instead of the DIMM. The heatsink can be re-
moved as soon as the memory has been transplanted, reducing the
risks related to condensation; and (3) The DIMM can be cooled to
even extremer temperatures (around −150° Celsius).

We have made no further attempt to professionalize the cooling
method, but directions to explore may be: a closed circuit cooling
system connected to the heat sink; or working in a humidity (and
temperature) controlled environment, with enough space to execute
the entire method in. The former of which is already commercially
available to the overclocking community1.

7.3 discussion of empirical results

The experiments we have performed, show high rates of decay for
most of the DIMMs tested (irrespective of the cooling method ap-
plied). In Appendix A a table is attached containing the details of
the DIMMs tested. Of the four different DIMMs tested, only DIMM D

has led to sufficiently low and reproducible decay rates2 to base any
findings on. This has led to the fact that we are unable to draw any
strong conclusions on the general susceptibility of DIMMs to data
remanence; allowing more work to be done in this area. Three obser-
vations are, however, deemed worthy of a discussion.

1 See, for example, the OCC-X and Purge Case products of L&L Cooling Technologies
http://www.lnlcooling.com

2 The overall percentage of bits that either decayed was around 0.05%

http://www.lnlcooling.com
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First, the sole DIMM exhibiting low decay rates is of the Small Out-
line DIMM (SODIMM) type, typically used in laptops. Leading us to
believe that their physical construction may be more susceptible to
data remanence due to their reduced power usage i.e. longer reten-
tion rates mean less refreshes in turn using less power. This suspicion
is strengthened by the fact that many of the studies that are success-
ful in reproducing the cold boot attack focus on SODIMMs [20, 45,
46]3.

Second, it is unclear when a DIMM’s capacitors are being refreshed.
The DIMM is controlled by the DIMM’s internal finite state machine.
During normal operation the MCH ensures the DIMM is refreshed.
However, it is unclear how removing an reasserting power influences
the state machine of a DIMM.

Third, cryogenically freezing the DIMM may cause memory ini-
tialization to fail. Cooling the DIMM to extreme temperatures has
resulted in the fact the DIMM could not be initialized correctly and
only being able to do so after some period of time that allowed the
DIMM to warm up again.

Taken together, although prior work showed mixed results, the
extreme deviation between the retention time of different memory
modules of the same DDR generation was an unexpected result. This
should be taken as a note of caution for anyone considering to apply
the cold boot attack in a forensic context. Nonetheless, we have still
been able to validate the correctness and integrity of our method by
performing experiments on the sole DIMM sufficiently susceptible to
the remanence effect.

7.4 correctness

We were able to verify the correctness of the method by executing
the experiment defined in Section 7.1. This has allowed us to verify
all memory physically present on the DIMM is acquired, and that no
memory regions are missed.

7.5 integrity

In spite of our extensive efforts to ensure no data in the DIMMs
is overwritten, transplanting memory still causes certain regions of
memory to be overwritten. The regions are typically located in the
low address range from address 0x0 to 0x10000. We expect this behav-
ior to be caused by the training routines or memory initialization, as
the size of the memory regions differ based on the size of the DIMM
initialized. Furthermore, as discussed in Section 7.3 the integrity of
the method is directly related to the decay of the memory modules.

3 Although the pictures from [45] suggest otherwise, to the best of our knowledge the
DDR3 modules tested in the work of Lindenlauf et al. are of the SODIMM type.
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7.6 conclusion

We argue that the method presented in this chapter has ‘upped the
ante’ regarding the level of professionalization of the applicable mem-
ory acquisition methods. The application of the concept of CAR, ac-
quiring memory directly after its initialization, disabling stolen mem-
ory regions, and experimentation with a different method of cooling,
has allowed for the development of a acquisition method with a high
degree of correctness.

Nevertheless, it showed to be far more difficult than expected to
verify the claim of integrity, as the underlying cold boot method has
shown much greater levels of deviation in the remanence period be-
tween different DIMMs than expected. Concluding, this results in a
acquisition method of which its forensic soundness is directly influ-
enced by the underlying physical properties influencing the rema-
nence period of a DIMM.
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B A C K G R O U N D & G O A L S

8.1 background

As noted in Section 3.6 Cold boot, recent computer architectures in-
clude a component which scrambles the data sent over the memory
bus. The reason for including this scrambler is to prevent signal in-
tegrity issues due to power spikes on the power supply. The power
spikes are introduced when writing many successive ones or zeroes
are written to memory [28, 2.1.6 Data Scrambling]. The switching re-
quired between a zero and a one on the memory bus would, most
likely, be the cause of this; a well known relation in the field of side-
channel power analysis attacks. For example, the physical represen-
tation of a logical one may be a high voltage, whereas a logical zero
may be represented by a low voltage. Due to comparable deteriorat-
ing effects, similar scrambling techniques are also applied in many
other high capacity wired and wireless transmission protocols e.g.
SATA, USB3, PCIe and CDMA. The scrambler works by mixing-in a
source of pseudo-randomness, before the data is transmitted. At the
receiver’s side this pseudo-randomness is removed again.

Typically the pseudo-randomness required by such a scrambler is
based on the output of an LFSR (see Figure 4), due to its small im-
plementation size and good statistical properties. The output of an
LFSR is called a Pseudo-Random Binary Sequence (PRBS). An LFSR
consists of a register (its state) with multiple entries, every entry con-
tains a single bit. With every shift (or clock) of the register one bit is
shifted out (output bit) and one bit is shifted back into the register
(feedback bit). The feedback bit is produced through a combination
of specific entries of the register. LFSRs have two main advantages;
1) LFSRs are very efficient to implement in hardware and 2) can be
defined in a mathematical sense by expressing them using GF(2) (ma-
trix) arithmetic. These two advantages have led to their wide imple-
mentation and study. The output of a LFSR repeats after a certain
number of clocks, this number depends on the size of the register
and feedback polynomial in use. A scrambler can be seen as a stream
‘cipher’ i.e. the PRBS is generated completely defined by the LFSR’s
internal state. The LFSR’s initial state is called a seed. The idea is to
XOR the data with a PRBS which consists of approximately an equal
amount of ones and zeroes. This increases the number of switched
bits on average, yet prevents the worst case scenario of only zeroes or
ones to occur. Instead of the term cipher, henceforth, the term scram-
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Data

Feedback bit
 

Output bits / PRBS

State

Scrambled data

1 0 1 0

Figure 4: Schematic overview of a typical scrambler. A PRBS is produced by an
LFSR and combined with the data to obtain the scrambled data. The same
system can used for descrambling. The internal state of this LFSR is 1010
at the moment.

bler is used, as such a scrambling system is in no way meant to be
cryptographically secure.

The main problem introduced by the scrambler is that, when the
PRBS is not known, scrambled data may not easily be descrambled.
Normally the scrambler performs its scrambling entirely transparent,
all data sent will be received by the same scrambler with the same
state. However, because the PRBS is generated based on an initial
(random) seed on every boot, this may cause problems when exe-
cuting the cold boot method to acquire memory. The memory to be
acquired may be scrambled with the PRBS generated based on one
seed, and may be descrambled with a PRBS generated based on an-
other seed. Leaving the resulting memory image incomprehensible.
This problem may intensify when different versions of scramblers are
used to scramble and descramble the data.

8.2 goals

Two goals have been set out in determining the effects of the mem-
ory scrambler on the data. First, to reverse engineer the scrambler’s
workings in general such that the ideas behind its implementation
are exposed. Second, to reproduce the scrambler’s working, prefer-
ably using the smallest amount of data as possible. The preference of
minimal data required is related to that of Kolmogorov complexity
and linear complexity [58]. The concept is fairly simple, for example,
the PRBS “ababababababab” can be reproduced from a combination
of a substring of two characters, whereas the PRBS “d24278d4a99846”
may contain no such internal structure. If so, the Kolmogorov com-
plexity of the first PRBS lower than that of the second. Inflating the
idea to larger PRBSes would allow the first to be reproduced with a
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smaller storage requirement than the second e.g. the first can be re-
constructed with a small program whereas the second would need to
be stored as a whole.

We chose to focus on a single instance of the scrambler found in
the same platform, of the Ivy Bridge architecture, as used earlier in
this work (see Appendix A). These two goals have allowed us to re-
duce the data required to reproduce the scrambler’s working to only
1026 bits and have provided us with detailed insight into the im-
plementation and the concepts behind this generation of scrambler.
Our hope is that these insights may prove useful during a foren-
sic investigation which may include different generations of scram-
blers. The data and code required to reproduce the working of the
scrambler may be found at https://github.com/NicoHeijningen/

IntelMemoryScrambler.

https://github.com/NicoHeijningen/IntelMemoryScrambler
https://github.com/NicoHeijningen/IntelMemoryScrambler
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P R I O R & R E L AT E D W O R K

9.1 prior work

Very little public documentation on the internal working of the In-
tel memory scrambler exists. Therefore, we provide an overview of
relevant documentation and useful sources.

The work of Bauer, Gruhn, and Freiling [2] is the main scientific
discourse on this topic. Bauer et al. were the first to have analysed
the working of the memory scrambler. Through the use of a blackbox
method, an attack was defined that renders the cold boot attack effec-
tive yet again. Bauer et al. note that, the PRBS they were able to distill
from the scrambler actually was only very short and repeated every
64 bytes. The authors have attributed this discovery to the properties
of a LFSR and enabled them to develop a “stencil” attack. The stencil
attack XORs 64 bytes of known data with the scrambled data thereby
retrieving the PRBS. The retrieved PRBS can then be stenciled over the
remaining stenciled data to obtain the unscrambled data. The idea is
similar to the cryptanalysis of data erroneously encrypted multiple
times by a pad that should only have been used once (‘one-time pad’
crypto-system).

Coincidentally, the platforms analysed in the work of Bauer et al.
and in this work are both of the Ivy Bridge architecture. Therefore,
we assume that the scramblers analysed are of the same generation,
such that we can correlate our findings with those of Bauer et al. We
build on the work of Bauer et al. by analyzing and verifying their
findings, and have made avid use of the source code released in their
work. We expand their work by executing the future work proposed:

“[...] to read out the raw key stream from a cold booted
DDR3 memory module. [Would] enable brute forcing of
key streams by trying different seeds, but it would also be
an attack that would be significantly more difficult than
what we show in this work.” [2].

9.2 related work

The datasheets regarding the Ivy Bridge microarchitecture (2012) used
in our research provides no hints on the implementation of the mem-
ory scrambling [28] and is limited in technical details. However,
datasheets of other architectures and generations of architectures do
contain some details. For example, [33, pp. 127-128] contains the
quote:
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Listing 1: Excerpt of Coreboot’s memory intialization code which defines the scram-
bling seeds used.

/* FIXME: we hardcode seeds. Do we need to use some PRNG for them

?

I don’t think so. */

static u32 seeds[NUM_CHANNELS][3] = {

{0x00009a36, 0xbafcfdcf, 0x46d1ab68},

{0x00028bfa, 0x53fe4b49, 0x19ed5483}

};

“SCRMSEED: Holds 18 bit scrambler seed value used to
feed into LFSR array matrix. [...] SCRMLO: Holds 31:0 bits
of scrambler parrem value used to XOR with LFSR array
output. [...] SCRMHI: Holds 63:32 bits of scrambler par-
rem value used to XOR with LFSR array output.”.

Although it is unclear what is exactly meant with a “LFSR
array matrix”, it suggests that an LFSR is used in combina-
tion with matrix arithmetic in GF(2). This quote can be cross-
referenced to the relevant Coreboot source code1 for our ar-
chitecture; shown in Listing 1. Coreboot sets three different
static seeds for every memory channel, of which the first seed
is significantly smaller than the other two. Therefore, we as-
sume henceforth that: SCRMSEED = seeds[NUM_CHANNELS][0], SCRMHI
= seeds[NUM_CHANNELS][1], SCRMLO = seeds[NUM_CHANNELS][2].

Because we can alter the Coreboot source code, we can influence
the seeds used to determine the functionality of the scrambler. In
turn allowing us to profile the working of the memory scrambler and
the PRBS it generates. A method we return to in Section 10.2.

Starting with the Intel Nehalem microarchitecture (2008), DDR3
memory is supported through an integrated memory controller. Al-
though, we were unable to find any technical details on the data
scrambling in documents related to this architecture (or our archi-
tecture for that matter), documents related to Westmere (2010 - the
die shrink of Nehalem) do discuss the data scrambling feature:

“For every write command (CAS & WE), an LFSR is
seeded using the 16 bit column address. The LFSR then
generates 8 pseudo random codes to XOR with data, one
for each of the 8 data transfers associated with that com-
mand. The data is then transmitted to the DRAM and
stored in memory scrambled. On a subsequent read com-
mand (CAS & WE#), a second LFSR recreates the codes

1 The relevant code can be found in src/northbridge/intel/raminit.c:

set_scrambling_seed() at https://github.com/coreboot/coreboot/blob/

e74ad21a91e33f275a7bda999b058a8390c44ae6/src/northbridge/intel/

sandybridge/raminit.c#L3784

https://github.com/coreboot/coreboot/blob/e74ad21a91e33f275a7bda999b058a8390c44ae6/src/northbridge/intel/sandybridge/raminit.c#L3784
https://github.com/coreboot/coreboot/blob/e74ad21a91e33f275a7bda999b058a8390c44ae6/src/northbridge/intel/sandybridge/raminit.c#L3784
https://github.com/coreboot/coreboot/blob/e74ad21a91e33f275a7bda999b058a8390c44ae6/src/northbridge/intel/sandybridge/raminit.c#L3784
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using the address and recovers the original data. Since
memory aliasing is not allowed, data scrambling is always
reversible. Each code is 16 bits wide, where the LFSR has
been unrolled to “shift” 16 times per cycle, reducing cor-
relation between different lanes or cycles. To reduce hard-
ware cost, each bit of the pseudo random code is reused 4

times to scramble the full 64 lane bus.” [50].

Although, we were unable to cross-reference this directly to the imple-
mentation under analysis, it does provide some details of the general
scrambling technique applied. It is noteworthy that newer architec-
tures may use different scrambling techniques. In a publication on
the Broadwell microarchitecture (2014), Intel discusses a newer ver-
sion of the memory scrambler. The document can be cross-referenced
with Intel patent [68], yet again not with the implementation under
analysis:

“Broadwell changed and implemented the DDR scram-
bler to be programmable in a way that balances signal in-
tegrity and power requirements. Real world applications
often have fairly stable data and scrambling created exces-
sive toggling. The new scrambler provided an additional
100− 150mW power savings.” [52]

Different other patents can be found that discuss the idea of mem-
ory scrambling. The most related to our microarchitecture are Intel
owned patents [51] and [13]2, the latter of which is a continuation of
the first. Both patents discuss a method of scrambling data before its
transmitted over a bus by using parallel LFSRs. The first patent –filed
in 2007 and published in 2011– discusses a simpler form of scram-
bling based on an initial static seed and dynamic parameters based
on the memory address. Whereas, the second patent –filed in 2009

and published in 2013– describes a more complex method of generat-
ing different LFSR polynomials based on a “boot signal”. The patent
does however not include any details that could directly be related
with the device under analysis.

Finally, a patent that describes a device called the “TeraDIMM” has
been found very relevant [67]. The TeraDIMM allows the connection
of other peripherals than memory modules to the memory bus e.g. a
SSD. Since the patent not only describes how such a system would
work from a high level architectural point of view, but also contains
some technical details on the implementation of the scrambling sys-
tem. The technical details define a method to determine the different
components that make up the scrambling (a point we will return to
in Section 10.4.1).

2 The patent applications can also be found online and may provide additional infor-
mation.
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10.1 prbs acquisition methods

To analyse the memory scrambler, the data (PRBSes) it generates
needs to be acquired. First, we discuss the PRBS acquisition technique
as defined by Bauer et al.. Second, the acquisition method we have
developed is discussed. In the remainder of this thesis we explicitly
use the terminology of ‘differential’ and ‘plain’ PRBS to differentiate
(where necessary) between the PRBSes acquired using the first and
second PRBS acquisition method respectively.

10.1.1 Differential PRBS acquisition

Bauer et al. [2] distill the PRBS from the scrambled data, as part of
their stencil attack. Their paraphrased procedure to do so reads as
follows (see also Figure 5a):

I. Turn the machine on, scrambling is enabled with random seed,
the PRBS generated is K0

II. Write known plaintext P to memory, it will be scrambled to
P⊕K0

III. Turn the machine off
IV. Turn the machine on, scrambling is enabled with another ran-

dom seed, the PRBS generated is K1

V. Try to read P from memory, it will be unscrambled to P⊕K0 ⊕
K1

VI. XOR the data read with the known plaintext to retrieve the dif-
ferential PRBS K0 ⊕K1 (the period of K0 ⊕K1 is 64 bytes)

10.1.2 Plain PRBS acquisition

Whereas Bauer et al. [2] have analysed only differential images, the
acquisition method developed in Chapter 6 provides us with much
more flexibility. First, instead of having the memory scrambler al-
ways enabled, we can choose to disable the memory scrambler and
e.g. write unscrambled data to the DIMM. Second, the method has al-
lowed us to change the scrambling seeds with a mere reset, instead of
having to either fully power-off the machine or transplant the DIMM.
The latter introduces significant decay, allowing for lossy image ac-
quisition only. Resetting the machine eventually introduces decay, but
empiric tests have shown that decay only occurs after some thousands
of reset-cycles. Therefore we are able to obtain a correct copy of the
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[power cycle machine or] transplant

(a) Differential PRBS acquisition

reset machine and enable scrambler

(b) Plain PRBS acquisition

Figure 5: Schematic representation of the differential acquisition method (taken
from [2, Figure 3]) vs. our plain acquisition method.

plain PRBS for many seeds. The procedure to extract the plain PRBS
is as follows (see also Figure 5b):

I. Turn the machine on, with the scrambler disabled
II. Write known plaintext P to memory

III. Reset the machine, enable the scrambler with seeds of choice,
the PRBS generated is K

IV. Try to read P from memory, this will be unscrambled to P⊕K

V. XOR the read data with the known plaintext to retrieve the plain
PRBS K (the period of K is 1024 bytes)

10.1.3 Differential PRBS vs. plain PRBS

There is an interesting difference to note between the PRBSes ac-
quired through differential and plain acquisition. We expected both
PRBSes to be of the same 64 byte size and repeat itself after that.
However, through plain acquisition we obtained a PRBS with a 1024

byte period. Reproducing the same differential acquisition method as
Bauer et al. indeed yielded us a PRBS which repeats every 64 bytes.
This observation has led to the hypothesis that the plain PRBS con-
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sists of another layer of scrambling. We use the terms SCRMSEED
based scrambling and address based scrambling in the remainder of
this thesis to differentiate between these components. Apparently, the
address based scrambling is the same for different seeds (interseed
consistent), whereas the SCRMSEED based scrambling is different for
every seed (intraseed consistent). Due to this the differential PRBS
acquisition method of Bauer et al. only results in the SCRMSEED
based scrambling component. Summarized in the following relation-
ship, where ⊕ represents the bitwise XOR operation, xy means that x
is repeated y times (concatenation), KSCRMSEED0

and KSCRMSEED1

are the different 64 byte SCRMSEED based scrambling components,
and Kaddress is the 1024 byte address based scrambling component.

K0⊕K1 = (K16
SCRMSEED0

⊕Kaddress)⊕ (K16
SCRMSEED1

⊕Kaddress) =

(KSCRMSEED0
⊕KSCRMSEED1

)16

As our plain PRBS acquisition method is able to obtain K0 sepa-
rately from K1, the address based scrambling does not cancel out.

However, as our earlier engineering efforts allow us to influence
the initial seeds of the scrambler, this has enabled us to execute a
stronger variant of the differential PRBS acquisition method from
Section 10.1.1. The procedure can be executed with seeds of choice.
Now, when the differential image with SCRMSEED=0 to scramble
and SCRMSEED=x (x ∈ N, 0 6 x < 218) to descramble is produced,
the resulting (strong) differential PRBS is 64 bytes long, periodic,
and identical to the first 64 bytes of the plain PRBS acquired with
SCRMSEED=x (see Figure 6). We name the 64 bytes, that are the same
in both the strong differential and plain PRBS, the SCRMSEED key-
block and analyse this observation in the remainder of this chapter.

10.2 prbs internal structure definitions

To be able to dissect the internal structure present in the PRBS intelli-
gibly, we introduce some terminology. An example of the definitions
presented in this section, may be observed in Figure 7 and the plain
PRBS in which this data occurs has been attached in its entirety as
Appendix E. The PRBS may be observed from different resolutions
(smaller parts), we employ the (vector) notation where y[x] means a
vector named y of length x bits:

• (PRBS) word[16]; the two byte little endian1 interpretation of
the PRBS.

• (LFSR) stretch[64]; four consecutive PRBS words. A LFSR
stretch contains internal structure as shown in Figure 7

i.e. stretchi = keyi[16, .., 0] || keyi[17, .., 1] || keyi[18, .., 2] ||

1 As noted in Appendix E, all pairs of bytes in the PRBSes pesented in this work have
been swapped i.e. already been interpreted as 16-bit little endian integers.
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(a) Strong differ-
ential PRBS

(b) Plain PRBS

Figure 6: Schematic representation the PRBS produced by strong differential and
plain PRBS acquisition using the same SCRMSEED. The SCRMSEED
keyblock is represented by the blue blocks and the address based scram-
bling is denoted by the brown block. Each of the two PRBSes represents
1024 bytes of data, addressing starts at the top.
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06 38 83 1C C1 8E 60 C7  E2 20 F1 10 F8 88 7C 44 
86 5A C3 2D 61 96 30 CB  E1 68 70 B4 B8 5A 5C 2D 
D6 D8 EB 6C 75 B6 3A DB  50 F2 28 79 94 3C 4A 1E 
3A E0 9D 70 4E B8 27 5C  37 80 1B C0 0D E0 06 F0 

(PRBS) wordLFSR stretch

Keyblock

00111010 11100000 10011101 01110000 01001110 10111000 00100111 01011100

Figure 7: Overview of the components that make up a keyblock. In this case, the
second keyblock of the PRBS attached as Appendix E. The keyblock itself
is printed in hexadecimal notation, one of the LFSR stretches is expanded
as binary to show its LFSR like (shifting) behavior. The LFSR key is
printed bold, the redundant information gray.

keyi[19, .., 3]. Where the || operator means concatenation and i

is the index of a LFSR stretch.
• (LFSR) key[19]; the 19 bits of information that make up a LFSR

stretch.
• Keyblock[512]; eight consecutive LFSR stretches. All keyblocks

are 512 bits aligned.

10.3 scrmlo and scrmhi

As noted in Chapter 9, there are –at least– three different seeds in use
that determine the functionality of the memory scrambler: SCRM-
SEED, SCRMHI, SCRMLO. Actually only SCRMSEED is of real in-
terest. That is because SCRMHI and SCRMLO are together 64 bits
and stenciled over or bitwise XORed with each LFSR stretch. This
behavior can be cross-referenced with the Intel datasheets (discussed
in Section 9.2) which ascribes the two seeds similar functionality. The
exact manner in which the two seeds are applied can be deduced
from Appendix F. Therefore, in the remainder of this work, we fix
SCRMHI and SCRMLO to be zero and focus on SCRMSEED.

10.4 reproducing the prbs

The most straightforward method of reproducing the workings of
the memory scrambler, would be to save all the possible PRBSes and
index them by the 18-bit SCRMSEED. This method is ignorant of any
structure present in the PRBS and would require 218 · 1024 = 256 MiB
of storage space. Although, 256 MiB seems quite manageable, keep
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in mind that the SCRMSEED and hence the PRBS used should2 be
different on every reboot and that a random part of the PRBS could be
used for every RAM access. Therefore the only place the PRBSes can
be saved, during regular operation, is in persistent memory on the
processor die. In what follows, the structure present in the scrambling
data is discussed in more detail, which allows us to reduce the storage
space required to a more reasonable size to be stored on the processor
die. Although, redundancy present between LFSR stretches and LFSR
keys allows for an obvious optimization of the space requirements,
we postpone this discussion until the end of this chapter.

10.4.1 Address based scrambling (interseed consistent)

Recalling the observation of the distinction between SCRMSEED
and address based scrambling from Section 10.1.3, and cross cross-
referencing this with the TerraDIMM patent [67, Data Scrambling]
led us to define the following relationship. The keyblocks in the plain
PRBS are a linear combination of only four special keyblocks named
the generator vectors (abbreviated to gvs), these are dynamically
combined depending on the memory address the keyblock starts at.
Assume a linear physical memory address space, without any vir-
tual addressing, the (physical) host address may consist of 39 bits
a = (a38, ...,a0) (in our case [28, Section 2.3]). Now the keyblock start-
ing at physical host address a is defined by the following function in
GF(2):

address_based_scrambling(a) = (a9,a8,a7,a6) •


gv3

gv2

gv1

gv0


Thus, the input of the function is the 39-bit physical host address

and the output is the 512-bit address based scrambling keyblock for
that address. Only bits 9 through 6 of the input are used, and if
any of the bits is a logical 1, then its respective generator vector is
XORed into the keyblock; making up for the address based scram-
bling keyblock at that address. Because only bits 9 through 6 of the
address are use, the address based scrambling keyblocks are all 512
bit aligned. This combination may be observed in Figure 8 in which
the pink, yellow, red, and green blocks depict the generator vectors of
(a9,a8,a7,a6) respectively. Finally, as the contribution of the SCRM-
SEED based scrambling with SCRMSEED=0 is all zeroes, the gen-

2 Bauer et al. discuss that some machines keep the scrambling the same over reboots,
whereas others differ in scrambling. This can be cross-referenced with [32, 5.4.15 En-
able Scrambling] which notes: “If scrambling is enabled by platform designer/owner,
then the Firmware should load a new, random scrambler vector every cold boot.”
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erator vectors (gv3, ...,gv0) may readily be found in Appendix E as
the keyblocks starting at addresses 0x200, 0x100, 0x80, 0x40, respec-
tively. As noted, the address based scrambling is applied indepen-
dently from the SCRMSEED. Therefore, the four different generator
vectors are the same for all possible SCRMSEEDs (interseed consis-
tent). Hence, any data generated by the memory scrambling may be
reproduced based on the four generator vectors. Together with the
218 possible SCRMSEED keyblocks of the SCRMSEED based scram-
bling this results in a reduced storage requirement of roughly 16 MiB
for reproducing all possible scrambler output.

The origin of this address based scrambling behavior lies in the
mapping between physical host addresses and physical DIMM ad-
dresses3. The host address maps to the (DDR3) DIMM address by
means of a row address, column address, and bank address (sent
over the bus time-wise multiplexed one address after another). This
mapping may not be obvious at first. A single bit in the host address
may influence multiple bits in the DIMM address. For example differ-
ent bits of the host address are XORed to obtain the physical DIMM’s
bank address. The authors of [56] have reverse engineered multiple
of these mappings based on different architecture and DIMM combi-
nations, and the TerraDIMM patent [67, Data Scrambling] (discussed
in Chapter 8) provides an explicit example of such a mapping in rela-
tion to address based scrambling. These two works lie at the basis of
ours. In our case the interesting part of the mapping is actually very
straight forward. Assume that the DIMM’s column address consists
of 16 bits (c15, ..., c0). Now we have (a9, ...,a6)=(c6, ..., c3) i.e. four bits
of the host address directly influence four bits of the column address
that is sent over the DDR3 bus. The use of column addresses to base
the scrambling on seems related to the Intel patents [13, 51], which
note the use of the column address as a seed for the LFSR. It seems
likely that an LFSR is used to generate the generator vectors, but as of
yet it is unknown exactly how; a point we return to in Section 10.4.3.

10.4.2 SCRMSEED based scrambling (intraseed consistent)

Recall the SCRMSEED keyblocks (the blue block in Figure 8), these
are generated based on the SCRMSEED and applied throughout the
entire plain PRBS. The relation present within each SCRMSEED key-
block is again one of linear combinations, similar as that of address
based scrambling. However, in this case the relation is based on the
SCRMSEED instead of on the memory address. More specifically, the
SCRMSEED keyblock of an arbitrary SCRMSEED may be reproduced
by a combination of the SCRMSEED keyblocks produced by a set of
special SCRMSEEDs. This set of SCRMSEEDS consists of the SCRM-

3 Recall Section 2.2.3, we refrain from using the prefix ‘physical’ in the remainder of
this section as it is clear from this context.
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Figure 8: Schematic representation of the PRBS produced by plain acquisition.
Each vertical partition indicates a keyblock of 64 bytes. Whereas in Fig-
ure 6 the address based scrambling (brown) contained an unknown struc-
ture, now it is clear that it is built from a combination of different key-
blocks. The addressing that influences this scrambling is provided in the
table at the right hand side. The combined keyblocks represent a plain
PRBS of 1024 bytes, addressing starts at the top.
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SEEDs with a hamming weight of one; we have named this set the
toggleseeds: (∀x ∈ 2y,y ∈ N, 0 6 y 6 17). Hence, there are 18 dif-
ferent toggleseeds of which 0x0, 0x1, 0x2, 0x4, 0x8 are hexadecimal ex-
amples. We name the SCRMSEED keyblocks that the scrambler gener-
ates based on the toggleseeds the toggle vectors (abbreviated to tvs).
Now the SCRMSEED keyblock of any SCRMSEED s = (s17, ..., s0) is
defined by the following function:

SCRMSEED_based_scrambling(s) = (s17, ..., s0) •



tv17

tv16

...

tv1

tv0


Thus, the input of the function is the 18 bit SCRMSEED and the out-

put of the function is the 512-bit SCMRSEED based scrambling key-
block for that SCRMSEED. If any of the input bits is a logical 1, then
its respective toggle vector is XORed into the equation, making up for
the SCMRSEED keyblock of that SCRMSEED. Now, instead of requir-
ing 218 different SCRMSEED keyblock to reproduce the SCMRSEED
based scrambling, we only require 18 of them (the toggle vectors).
Together with the four generator vectors of the address based scram-
bling, this reduces the total space requirements for reproducing the
scrambler from roughly 16 MiB to only 1408 bytes.

10.4.2.1 Overlapping streams

An interesting observation regarding the data of the toggle vec-
tors, is the presence of significant redundant data. A large fraction
of the data repeats sequentially, in the same order, between differ-
ent toggle vectors. We have grouped the toggle vectors that over-
lap, highlighted the data that repeats between different toggle vec-
tors, produced the stream of the non-redundant data (which we
have named the ‘overlapping stream’), and attached this in full
as Appendix G. The groups of toggleseeds of which their toggle
vectors contain overlapping data are: 1 ={0x1, 0x40, 0x400, 0x4000},
2 ={0x2, 0x80, 0x800, 0x8000}, 4 ={0x4, 0x10, 0x100, 0x1000, 0x10000},
8 ={0x8, 0x20, 0x200, 0x2000, 0x20000}. We leave it as an exercise for

the reader to verify this in Appendix G. The 64 byte toggle vectors
can be reproduced, from their overlapping stream, by starting at dif-
ferent offsets: {0x20, 0x8, 0x10, 0x18} and {0x20, 0x0, 0x8, 0x10, 0x18} for
the overlapping streams consisting of four and five SCMRSEEDs re-
spectively. The observation that the 18 toggle vectors can be generated
from the four overlapping streams, reduces the data required to 624

bytes (recall also the generator vectors required).
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Finally, it has been noted that two of the four overlapping streams
can generate the other two through a transformation i.e. 1 ⇒ 4 and
2 ⇒ 8 . Now, define z to be the overlapping streams of either 1

or 2 , denote every LFSR stretch within the overlapping stream z as
stretch0, ... stretch11 then the mapping from 1 and 2 to 4 and 8 ,
respectively, is as follows:

overlappingstream( z ) =



0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 0 0 0 1 1

0 0 0 1 1 1 0 0 0 0 1 1

0 0 0 1 1 1 1 0 0 0 1 1

0 0 0 1 1 1 1 1 0 0 1 1



•



stretch0

stretch1

stretch2

stretch3

stretch4

stretch5

stretch6

stretch7

stretch8

stretch9

stretch10

stretch11


Thus, the first seven LFSR stretches of the generated overlapping

streams (output) are actually a XOR of two subsequent LFSR stretches
of the input. For example, stretch0 of 4 is generated by combining
stretch4 and stretch5 of 1 i.e. 20 00 10 00 08 00 04 00 = 00 01

00 00 00 00 00 00 ⊕ 20 01 10 00 08 00 04 00 (the LFSR stretches
can again be found in Appendix G). After this the symmetry breaks
and additional stretches are XORed into the equation. We are unable
to provide an explanation for the structure of the transformation ma-
trix, but hypothesise that this choice best suits engineering purposes.

This observation means that only two of the four overlapping
streams are required. Together with the four generator vectors this
reduces the space requirements from 642 to 432 bytes.

10.4.3 PRBS LFSR stretches

At the start of this section we noted that an LFSR stretch actually
only contains 19 bits of information (the LFSR key); as defined in
Section 10.2 and depicted in Figure 7. This (obvious) optimization
reduces the space requirements from 432 bytes down to 1026 bits4.

This LFSR like relation has first been observed by Bauer et al. [2,
Mathematical approach]. From Figure 7 it can be observed that every

4 Two overlapping streams each consisting of eleven LFSR stretches, and four genera-
tor vectors each consisting of eight LFSR stretches; resulting in ((2 · 11)+ (4 · 8)) · 19 =

1026 bits
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keyblock consists of eight LFSR stretches each consisting of four PRBS
words w3, ...,w0 in turn consisting of sixteen bits. Then as defined in
[2], we have the relation:

((w(4i+j) >> 1)⊕ pj)&0x7fff = w(4i+j+1)

Where >> denotes the bitwise right shift operation, & represents
the bitwise AND operation, 0 6 i 6 7 iterates over the LFSR stretches
in a keyblock, 0 6 j 6 2 iterates over the words inside an LFSR stretch,
and p is a 16-bit polynomial. Bauer et al. defined this relation to be
based on three polynomials. However, their work was based on solely
differential PRBSes, with random values for SCRMSEED, SCRMHI,
and SCRMLO on every boot. Therefore, the authors claimed that the
information on the most significant bit of the adjacent word is lost
(&0x7fff). Nevertheless, as we have fixed SCRMHI and SCRMLO to
be zero (Section 10.3) and acquire the PRBSes through the plain acqui-
sition method (Section 10.1.2), we should have the required informa-
tion on this bit. Therefore, we may be able to determine the polyno-
mials used in the LFSR relations. Based on the available literature [13,
33, 50, 51] we think it is reasonable to assume that this relationship is
indeed introduced by a LFSR. However, we argue that the polynomi-
als formulated by Bauer et al. are completely defined by SCRMHI and
SCRMLO, as other than that the bits between the words in the rela-
tion are identical. Bauer et al. define three 16-bit polynomials, instead
the relation is actually defined by two 32-bit constants (SCRMLO and
SCRMHI) XORed with the whole LFSR stretch only after it has been
generated (see Section 10.3).

From Figure 7 it may be observed that a LFSR stretch seems to
contain four internal states of an 16-bit Fibonacci LFSR, where each
state differs by one clock tick of the LFSR. Therefore, the only LFSR
relationship would be the new (feedback) bit being shifted in on the
second, third, and fourth word of a LFSR stretch. In comparison with
other high bandwidth scrambling implementations, we believe that
the direct use of the internal state of an LFSR as opposed to using
the bits it outputs is atypical. This atypical usage, most likely finds
its origins in optimizing the scrambler for use with the high speed
DDR3 bus.

As noted, assuming a 16-bit LFSR there are three pairs of 16-bit in-
ternal states and resulting feedback bits present in every LFSR stretch.
Because, the feedback bit is generated through a linear combination
of the bits of the LFSR’s internal state, the three pairs can be com-
bined into a system of linear equations. Solving this system of linear
equations should show the information available on the polynomial
used to generate the feedback bits. In the case of the LFSR stretch
shown in Figure 7 the resulting system of linear equations would be:
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 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0

1 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0

0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 0

 • (p) =

 1

0

0


Where p is an 16-bit column vector. This idea can of course be

generalized to include all LFSR stretches in a keyblock. However, de-
termining the polynomial(s) proves to be non-trivial; there are three
reasons for this.

First, it is unclear what size the internal state of the LFSR is. It seemed
likely that the LFSR used would also be 16-bits in length. This hypoth-
esis was based on the work of Bauer et al., the observation that each
PRBS word is 16-bits long, the use of 16-bit seeds by the Westmere
documents and two Intel patents discussed in Chapter 9. However,
the individual systems of equations composed of any of the overlap-
ping streams or generator vectors, turned out to be inconsistent. Once
we recalled the Intel datasheet which claims: “SCRMSEED: Holds 18-
bit scrambler seed value used to feed into LFSR array matrix.” [33, pp.
127-128], the assumption of a 16-bit long LFSR proved to be a naive
one. Indeed, the systems of equations produced with the assumption
that the LFSR’s state is 18-bits are consistent. However, this increase
in state size introduces a second difficulty.

Second, the number of output bits of the LFSR are limited. An LFSR
with a state size of 18-bits, negatively influences the number of linear
equations present in a single LFSR stretch. Again referring to the
LFSR stretch of Figure 7, this has been reproduced in Figure 9. As
shown there, only a single bit of information is left related to the
LFSR’s polynomial i.e. a combination of the LFSR’s internal state and
the polynomial would produce 0. Due to the lack of information, the
system of equations obtained from a single overlapping stretch or a
single generator vector is under determined (many different possible
polynomials remaining).

Third, different polynomials are in use. As there is not enough infor-
mation present in a single overlapping stretch or generator vector,
it would make sense to try and add additional information to the
system. A logical choice could be to combine the different generator
vectors or overlapping streams and try to solve the combined system.
However, this results in inconsistent systems of linear equations. Both
in the case when the keyblocks of the generator vectors are combined,
as when the overlapping streams are combined.

As a final note, we are familiar with the Berlekamp-Massey (BM)
algorithm [48], yet this too proves troublesome to use in this setting.
The algorithm requires a stream of 2n consecutive output bits from
an n-bit LFSR, to be able to correctly determine the LFSR’s polyno-
mial. Assuming an 18-bit LFSR, we only obtain 8 bits of output per
keyblock. Hence the BM algorithm cannot be applied.
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00111010 11100000 10011101 01110000 01001110 10111000 00100111 01011100

(0 1  0 0 1 1 1 0 1 0  1 1 1 0 0 0 0 0)   (p) = (0)

Figure 9: How to obtain the 18-bit LFSR state and resulting output bit from an
LFSR stretch. The LFSR stretch used is the same as in Figure 7.
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R E M A I N I N G P R O B L E M S A N D C O N C L U S I O N

Although we have been able to determine a lot of the structure
present in the output of the scrambler, it does not mean that the
scrambler has been fully reverse engineered. There are some ques-
tions remaining, which allow for more work to be done on this topic:

• Where do the LFSR keys of the generator vectors and overlap-
ping streams originate from?

• If an LFSR is used,
– what is the size of the LFSR?
– what are the polynomials used?
– is there a set of constant polynomials or does the polyno-

mial differ dynamically based on e.g. the address?
• What is the reason for the asymmetric transformation matrix

used in the overlappingstream() function?
Concluding, we have presented the effects of the Intel memory

scrambler on the data in memory in great detail. Together the rela-
tions defined in Section 10.4 lead to the fact that the PRBS for any
of the SCRMSEEDs can be reproduced from only 1026 bits. Using
only the four generator vectors and the two overlapping streams,
all possible PRBSes can be derived. The data and code required
to do so can be found at https://github.com/NicoHeijningen/

IntelMemoryScrambler.
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F U T U R E W O R K

This research could be substantiated by more results of cold boot at-
tack in relation to different DIMMs. In such work one should make
sure to include the explicit details of the memory modules tested,
together with information on the experimental setup used. An ex-
plicit study into the deviation in remanence time between DIMMs
and SODIMMs would be of great interest.

This research could be extended by applying it to newer architec-
tures and different combinations of DIMMs. Examples could include
newer microarchitectures such as Broadwell or Skylake or the newer
DDR4 specification. The analysis of more recent architectures may
prove to be even more of an hurdle due to the possible non-linearity
introduced [68], and the aim of memory encryption instead of scram-
bling [17–19]. One could also try and solve the remaining problems
related to the Ivy Bridge memory scrambler. However, we argue that
this may lead to less new insights than trying to tackle a different ar-
chitectures based on this work. Different DIMM combinations could
introduce extra difficulties, yet these problems have been assumed to
be orthogonal to the ones discussed in this work.

Furthermore, as also noted by Bauer et al., one could try to use
a Field-Programmable Gate Array (FPGA) system to acquire mem-
ory. Instead of being subordinate to the Intel memory controller, one
would be able to achieve the required flexibility and small TCB prefer-
able in an forensically sound method. This would allow for the pro-
filing of DIMMs’ state machines and enable one to send DDR reset
and refresh commands at will. The flexibility could allow one to use
the same hardware to support the plethora of different options of the
DDR standards.
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C O N C L U S I O N

All of the of the memory acquisition methods reviewed have their
own advantages and disadvantages. However, in the context of the
predefined near worst-case scenario, only the methods of BIOS modi-
fication and cold boot are deemed to be applicable. Through the com-
bination of the two methods and by: applying the concept of CAR, ac-
quiring memory directly after its initialization, disabling stolen mem-
ory regions, and experimentation with a different method of cooling,
it showed to be possible to develop a method with a high degree of
correctness. However, the results of the underlying cold boot method
differ widely. Therefore, the criteria of integrity, and the general foren-
sic soundness of the method, is directly influenced by the underlying
physical properties that determine the remanence period of a DIMM.

The acquisition method, did, however, allow us to reverse engineer
more of the workings of the Intel memory scrambler present in the
Ivy Bridge microarchitecture. The effect of it on the data stored in
memory has for a large part been exposed and only 1026 bits are
required to reproduce it.
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A P P E N D I C E S





A
E X P E R I M E N TA L S E T U P

Throughout this research a system composed of the following hard-
ware has been used:

• Gigabyte GA-B75M-D3V rev. 2.0 motherboard
• Intel Celeron G1610 processor
• A single DIMM from Table 1

The processor is of the Ivy Bridge microarchitecture (2012) and con-
tains the memory controller [28]. The chipset is of the B75 type [27]. A
picture of the setup and peripherals is attached as Figure 10, a close-
up of the liquid nitrogen evaporation cooler discussed in Section 7.2
is attached as Figure 11, and the information of the DIMMs used in
this research is attached as Table 1.
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Figure 10: Image of our setup, including: a can of freeze spray, thermometer,
SODIMM adapter, DIMM interposer, liquid nitrogen evaporation
cooler, and serial adapter used through the research.

Figure 11: Formation of frost on the liquid nitrogen evaporation cooler. Note the
smaller amount of frost formation on the heatsink as opposed to the tray
containing the liquid nitrogen. A funnel was used to fill the tray and a
small thermocouple sandwiched between one of the DIMM’s chips and
heatsink to obtain relevant temperature readings.



Module  Type  Manufacturer  Label  Chips (amount - type)  Capacity  Frequency (MHz)  Form factor

A  DDR3  Samsung 
1GB 1Rx8 PC3 - 8500E - 07 - 10 - D0

M391B2873EH1-CF8

 9 - SEC 940 HCF8
K4B1G0846E
GSHE66CAC

 1GB 533  DIMM

B DDR3 Samsung
1GB 1Rx8 PC3 - 8500U - 07 - 10 - A0

M378B2873EH1-CF8

8 - SEC 934 HCF8
K4B1GO846E
GS6Q85BAC

1GB 533 DIMM

C DDR3 Kingston

99U5474 - 028, A00LF
0000006980416 - K005746
HVLWN - 69EMXL - WWWHB

KVR13N9S8/4

8 - Kingston
N14712 - 03
1517 S2C

D5128EC4BPGGBU
MHD923000D

4GB 667 DIMM

D DDR3 Hynix
4GB 2Rx8 PC3 - 12800S - 11 - 12 - F3

HMT351S6EFR8C - PB N0 AA  1244

16 - Hynix 
H5TQ2G83EFR
PBC  251E
DT3D2583D4

4GB 800 SO-DIMM
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Table 1: List of the DIMMs used in this research as discussed in Section 7.3.





*Need to be able to load kernel privileged software. Lower 
privilege does not allow for access to all physical memory.

**Requires physical access

VM?

 1) Snapshot / Pause
 2) Clone
 3) Host Disk
 4) Introspection

Yes

Running?

No

1) Hibernation File
2) Page file(s)
3) Crash dumps

No

Got root?*

Yes

Hardware** Software

No Yes

Exploit 
available?

No Yes

1) Remote?
2) Concurrence?
3) TCB (OS, BIOS)?

1) DMA
2) BIOS modification
3) Cold boot

B
F L O W C H A RT - M E M O RY A C Q U I S I T I O N O P T I O N S

This flowchart shows the options that one may face during volatile
memory acquisition (adapted from [44, Figure 4-1]).
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C
H A N D B O O K F O R T H E F O R E N S I C I N V E S T I G AT O R :
A P P L I C AT I O N O F T H E C O L D B O O T U S I N G
C O R E B O O T M E T H O D

The below handbook may be used to aid a forensic investigator in the
correct usage of the acquisition method developed in this work.

I. Use appendix B to verify whether this is the most applicable
method. Continue only if the cold boot method is most appli-
cable, taking into account its possible destructiveness.

II. Obtain a reference motherboard and DIMM. Preferably both of
the same type and revision.

III. Execute the method on the reference hardware first, until the
method is deemed to be repeatable (consistent results).

IV. Boot the acquisition machine without a DIMM and poll for the
insertion of a DIMM

V. Cool the DIMM of the target machine.
VI. Take DIMM out of the target and put it in the acquisition ma-

chine.
VII. Wait until memory is acquired and saved.

VIII. Place the DIMM back into the target machine and start a dat-
aplacer program. Placing both randomness and the address in
memory. This to be able to determine the average percentage of
decay introduced, together with determining whether the DDR
data lines have been swapped. Repeat until the results are con-
sistent. If the percentage of decay is high the dataplacer can
be run or the target machine and apply a first order cold boot
attack. This should result in less decay and shed light on the
type/generation of scrambler in place.
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D
I N T E L M E

We have been able to disable Intel Management Engine (ME) using
two different methods: software straps and hardware straps. Straps
are used to configure a component’s starting stage. The software
straps are used by the ME firmware. The ME firmware is loaded from
the same chip as the BIOS. The layout of the data on the chip is stipu-
lated in the so-called firmware descriptor. The descriptor does, how-
ever, also influence the working of the Management Engine. Hard-
ware straps are used by the processor to define its initial configura-
tion. By changing specific straps we were able to invoke a debugging
mode of the ME.

The full working of Intel ME is unknown due to the lack of pub-
lic documentation, but it has allowed us to boot a system without
handing ME a block of RAM, which would normally not be possible.
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E
N U L L P R B S

The Pseudo-Random Binary Sequence (PRBS) generated when no bit
in any of the seeds is set i.e. SCRMSEED = SCRMHI = SCRMLO
= 0. Formatting was chosen as such to easily distinguish LFSR
stretches and keyblocks. Every two LFSR stretches are prepended
with the memory address. The data is printed in hexadecimal no-
tation, where every two bytes of the PRBS have been swapped to pro-
vide for correct endianness. The generator vectors have been labeled
as gv0,gv1,gv0,gv3.
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SCRMSEED 
keyblock 

 
 
 

gv0 
 
 
 
 

gv1 
 
 
 
 
 
 
 
 
 

gv2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
0000: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 
0010: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 
0020: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 
0030: 00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00 
 
0040: 06 38 83 1C C1 8E 60 C7  E2 20 F1 10 F8 88 7C 44 
0050: 86 5A C3 2D 61 96 30 CB  E1 68 70 B4 B8 5A 5C 2D 
0060: D6 D8 EB 6C 75 B6 3A DB  50 F2 28 79 94 3C 4A 1E 
0070: 3A E0 9D 70 4E B8 27 5C  37 80 1B C0 0D E0 06 F0 
 
0080: 52 96 29 4B 94 A5 4A 52  D2 85 69 42 B4 A1 5A 50 
0090: 7A B6 3D 5B 9E AD 4F 56  D1 BD E8 DE F4 6F 7A 37 
00a0: 2E 1C 17 0E 8B 87 C5 C3  A3 7F D1 BF E8 DF 74 6F 
00b0: 4A 12 25 09 12 84 89 42  CF 31 E7 98 F3 CC 79 E6 
 
00c0: 54 AE AA 57 55 2B 2A 95  30 A5 98 52 4C 29 26 14 
00d0: FC EC FE 76 FF 3B 7F 9D  30 D5 98 6A 4C 35 26 1A 
00e0: F8 C4 FC 62 FE 31 FF 18  F3 8D F9 C6 7C E3 3E 71 
00f0: 70 F2 B8 79 5C 3C AE 1E  F8 B1 FC 58 FE 2C 7F 16 
 
0100: 8B 5B 45 AD A2 D6 D1 6B  0B 4D 05 A6 02 D3 81 69 
0110: 03 79 01 BC 80 DE C0 6F  0E 5D 87 2E C3 97 61 CB 
0120: 6B 7B 35 BD 9A DE 4D 6F  3F D4 9F EA CF F5 67 FA 
0130: 2F 70 17 B8 8B DC 45 EE  F3 AD 79 D6 3C EB 1E 75 
 
0140: 8D 63 C6 B1 63 58 B1 AC  E9 6D F4 B6 FA 5B FD 2D 
0150: 85 23 C2 91 E1 48 F0 A4  EF 35 F7 9A 7B CD 3D E6 
0160: BD A3 DE D1 EF 68 77 B4  6F 26 B7 93 5B C9 2D E4 
0170: 15 90 8A C8 C5 64 62 B2  C4 2D 62 16 31 0B 18 85 
 
0180: D9 CD 6C E6 36 73 9B 39  D9 C8 6C E4 B6 72 DB 39 
0190: 79 CF 3C E7 1E 73 8F 39  DF E0 6F F0 37 F8 1B FC 
01a0: 45 67 22 B3 11 59 88 AC  9C AB 4E 55 27 2A 13 95 
01b0: 65 62 32 B1 99 58 CC AC  3C 9C 9E 4E CF 27 67 93 
 
01c0: DF F5 EF FA F7 FD FB FE  3B E8 9D F4 4E FA A7 7D 
01d0: FF 95 FF CA 7F E5 BF F2  3E 88 1F 44 8F A2 47 D1 
01e0: 93 BF C9 DF 64 EF B2 77  CC 59 66 2C B3 16 59 8B 
01f0: 5F 82 AF C1 D7 E0 EB F0  0B 1C 85 8E C2 C7 61 63 
 
 
 
 
 
 
 
 

 
 
 
 
Intraseed 
consistent 
 
 
 
Interseed 
consistent 
 
 
 
Interseed 
consistent 
 
 
 
 
 
 
 
 
Interseed 
consistent 
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gv3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
0200: 4C 4A 26 25 93 12 49 89  F7 B1 FB D8 FD EC FE F6 
0210: A0 17 50 0B A8 05 54 02  35 94 9A CA 4D 65 26 B2 
0220: 59 8A AC C5 56 62 2B 31  18 B0 0C 58 86 2C C3 16 
0230: AE 5F 57 2F AB 97 D5 CB  20 60 10 30 88 18 44 0C 
 
0240: 4A 72 A5 39 52 9C 29 4E  15 91 0A C8 05 64 82 B2 
0250: 26 4D 93 26 C9 93 64 C9  D4 FC EA 7E F5 3F 7A 9F 
0260: 8F 52 47 A9 23 D4 11 EA  48 42 24 21 12 10 89 08 
0270: 94 BF CA 5F E5 2F F2 97  17 E0 0B F0 85 F8 42 FC 
 
0280: 1E DC 0F 6E 07 B7 03 DB  25 34 92 9A 49 4D A4 A6 
0290: DA A1 6D 50 36 A8 1B 54  E4 29 72 14 B9 0A 5C 85 
02a0: 77 96 BB CB DD E5 EE F2  BB CF DD E7 6E F3 B7 79 
02b0: E4 4D 72 26 B9 13 5C 89  EF 51 F7 A8 7B D4 3D EA 
 
02c0: 18 E4 8C 72 C6 39 63 1C  C7 14 63 8A B1 C5 D8 E2 
02d0: 5C FB AE 7D 57 3E 2B 9F  05 41 02 A0 01 50 00 A8 
02e0: A1 4E 50 A7 A8 53 D4 29  EB 3D F5 9E FA CF FD 67 
02f0: DE AD EF 56 F7 AB 7B D5  D8 D1 EC 68 76 34 3B 1A 
 
0300: C7 11 63 88 31 C4 98 E2  FC FC FE 7E FF 3F 7F 9F 
0310: A3 6E 51 B7 28 DB 94 6D  3B C9 1D E4 8E F2 47 79 
0320: 32 F1 99 78 CC BC 66 5E  27 64 93 B2 49 D9 A4 EC 
0330: 81 2F 40 97 20 4B 90 25  D3 CD 69 E6 B4 F3 5A 79 
 
0340: C1 29 E0 94 F0 4A F8 25  1E DC 0F 6E 07 B7 03 DB 
0350: 25 34 92 9A 49 4D A4 A6  DA A1 6D 50 36 A8 1B 54 
0360: E4 29 72 14 B9 0A 5C 85  77 96 BB CB DD E5 EE F2 
0370: BB CF DD E7 6E F3 B7 79  E4 4D 72 26 B9 13 5C 89 
 
0380: 95 87 4A C3 A5 61 D2 B0  2E 79 97 3C 4B 9E 25 CF 
0390: D9 D8 6C EC B6 76 DB 3B  EA 74 F5 3A 7A 9D 3D 4E 
03a0: 1C ED 8E 76 47 3B A3 9D  84 1B 42 0D A1 06 D0 83 
03b0: CB 3D 65 9E 32 CF 19 67  1C FC 8E 7E 47 3F 23 9F 
 
03c0: 93 BF C9 DF 64 EF B2 77  CC 59 66 2C B3 16 59 8B 
03d0: 5F 82 AF C1 D7 E0 EB F0  0B 1C 85 8E C2 C7 61 63 
03e0: CA 35 65 1A 32 8D 99 46  D4 E9 6A 74 35 3A 9A 9D 
03f0: F1 DD F8 EE 7C 77 3E 3B  2B 7C 95 BE 4A DF 25 6F 

 
 
 
 
Interseed 
consistent 
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SCRMSEED: 0x00000000 

SCRMHI: 0xcdef89ab 

SCRMLO: 0x45670123 

 

0000: 01 23 45 67 89 AB CD EF  01 23 45 67 89 AB CD EF 

0010: 01 23 45 67 89 AB CD EF  01 23 45 67 89 AB CD EF 

0020: 01 23 45 67 89 AB CD EF  01 23 45 67 89 AB CD EF 

0030: 01 23 45 67 89 AB CD EF  01 23 45 67 89 AB CD EF 

 

0040: 07 1B C6 7B 48 25 AD 28  E3 03 B4 77 71 23 B1 AB 

0050: 87 79 86 4A E8 3D FD 24  E0 4B 35 D3 31 F1 91 C2 

0060: D7 FB AE 0B FC 1D F7 34  51 D1 6D 1E 1D 97 87 F1 

0070: 3B C3 D8 17 C7 13 EA B3  36 A3 5E A7 84 4B CB 1F 

 

... 

F
R E P R E S E N TAT I O N O F S C R M L O & S C R M H I I N
M E M O RY

It may prove to be useful to compare this appendix with Appendix E
for two reasons. First, the values of SCRMHI and SCMRLO provide
an example that clarifies the change in endianness as also present
in Appendix E. Second, the trivial XOR of SCRMHI and SCRMLO
with every LFSR stretch can be deduced e.g. 01 23 45 67 89 AB CD

EF ⊕ 07 1B C6 7B 48 25 AD 28 = 06 38 83 1C C1 8E 60 C7 (second
keyblock first stretch of Appendix E).
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no colour 

purple 

turquoise 

red 

yellow (consists of five concatenated LFSR stretches) 

blue 

green 

no colour 

 

 

 

  

G
O V E R L A P P I N G S T R E A M S

The eighteen toggle vectors are grouped into four overlapping
stretches. The groups of toggleseeds of which their toggle vec-
tors contain overlapping data are: 1 ={0x1, 0x40, 0x400, 0x4000},
2 ={0x2, 0x80, 0x800, 0x8000}, 4 ={0x4, 0x10, 0x100, 0x1000, 0x10000},
8 ={0x8, 0x20, 0x200, 0x2000, 0x20000}. Thus, 1 and 2 each consist

of data from four toggle vectors and 4 and 8 each consist of data
from five toggle vectors.

The next four pages contain the groups of toggle vectors and their
overlapping stream. All toggle vectors are 64 bytes in size and printed
in hexadecimal notation. The SCRMSEED used to generate the toggle
vector is printed first and the toggle vector second. LFSR stretches
present in more than one toggle vector have been highlighted and
finally the overlapping stream of non-redundant data is shown. The
order of the highlighted LFSR stretches is as follows:
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SCRMSEED=0x00000001 

00 01 00 00 00 00 00 00  20 01 10 00 08 00 04 00 

20 31 90 18 48 0c 24 06  24 99 92 4c 49 26 24 93 

67 d3 b3 e9 59 f4 2c fa  67 d7 b3 eb d9 f5 6c fa 

e7 d1 f3 e8 79 f4 3c fa  61 cf 30 e7 18 73 8c 39 

 

 

 

 

 

 

 

SCRMSEED=0x00000040 

80 02 40 01 20 00 10 00  06 18 83 0c c1 86 e0 c3 

38 00 1c 00 0e 00 07 00  00 01 00 00 00 00 00 00 

20 01 10 00 08 00 04 00  20 31 90 18 48 0c 24 06 

24 99 92 4c 49 26 24 93  67 d3 b3 e9 59 f4 2c fa 

 

SCRMSEED=0x00000400 

06 18 83 0c c1 86 e0 c3  38 00 1c 00 0e 00 07 00 

00 01 00 00 00 00 00 00  20 01 10 00 08 00 04 00 

20 31 90 18 48 0c 24 06  24 99 92 4c 49 26 24 93 

67 d3 b3 e9 59 f4 2c fa  67 d7 b3 eb d9 f5 6c fa 

 

SCRMSEED=0x00004000 

38 00 1c 00 0e 00 07 00  00 01 00 00 00 00 00 00 

20 01 10 00 08 00 04 00  20 31 90 18 48 0c 24 06 

24 99 92 4c 49 26 24 93  67 d3 b3 e9 59 f4 2c fa 

67 d7 b3 eb d9 f5 6c fa  e7 d1 f3 e8 79 f4 3c fa 

 

 

The overlapping stream of ① is: 

00 00 00 00 00 00 00 00  80 02 40 01 20 00 10 00 

06 18 83 0c c1 86 e0 c3  38 00 1c 00 0e 00 07 00 

00 01 00 00 00 00 00 00  20 01 10 00 08 00 04 00 

20 31 90 18 48 0c 24 06  24 99 92 4c 49 26 24 93 

67 d3 b3 e9 59 f4 2c fa  67 d7 b3 eb d9 f5 6c fa 

e7 d1 f3 e8 79 f4 3c fa  61 cf 30 e7 18 73 8c 39 

  

88 overlapping streams



SCRMSEED=0x00000002 

80 12 40 09 20 04 10 02  88 32 44 19 22 0c 11 06  

8b 3a 45 9d 22 ce 11 67  db 38 6d 9c 36 ce 9b 67  

ea b0 75 58 3a ac 9d 56  8e ba 47 5d 23 ae 91 d7  

62 f2 31 79 98 bc cc 5e  8e fa c7 7d 63 be b1 df  

 

 

 

 

 

 

 

SCRMSEED=0x00000080 

88 42 44 21 a2 10 51 08  00 40 80 20 40 10 20 08  

00 80 00 40 00 20 80 10  80 12 40 09 20 04 10 02  

88 32 44 19 22 0c 11 06  8b 3a 45 9d 22 ce 11 67  

db 38 6d 9c 36 ce 9b 67  ea b0 75 58 3a ac 9d 56  

 

SCRMSEED=0x00000800 

00 40 80 20 40 10 20 08  00 80 00 40 00 20 80 10  

80 12 40 09 20 04 10 02  88 32 44 19 22 0c 11 06  

8b 3a 45 9d 22 ce 11 67  db 38 6d 9c 36 ce 9b 67  

ea b0 75 58 3a ac 9d 56  8e ba 47 5d 23 ae 91 d7  

 

SCRMSEED=0x00008000 

00 80 00 40 00 20 80 10  80 12 40 09 20 04 10 02  

88 32 44 19 22 0c 11 06  8b 3a 45 9d 22 ce 11 67  

db 38 6d 9c 36 ce 9b 67  ea b0 75 58 3a ac 9d 56  

8e ba 47 5d 23 ae 91 d7  62 f2 31 79 98 bc cc 5e  

 

 

The overlapping stream of ② is: 

00 00 00 00 00 00 00 00  88 42 44 21 a2 10 51 08 

00 40 80 20 40 10 20 08  00 80 00 40 00 20 80 10 

80 12 40 09 20 04 10 02  88 32 44 19 22 0c 11 06 

8b 3a 45 9d 22 ce 11 67  db 38 6d 9c 36 ce 9b 67 

ea b0 75 58 3a ac 9d 56  8e ba 47 5d 23 ae 91 d7 

62 f2 31 79 98 bc cc 5e  8e fa c7 7d 63 be b1 df 
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SCRMSEED=0x00000004 

00 04 00 02 80 01 40 00  80 06 40 03 a0 01 50 00  

86 1e c3 0f 61 87 b0 c3  be 1e df 0f 6f 87 b7 c3  

be 1f df 0f 6f 87 b7 c3  9e 1e cf 0f 67 87 b3 c3  

be 2f 5f 17 2f 8b 97 c5  9a b6 cd 5b 66 ad b3 56  

 

SCRMSEED=0x00000010 

20 00 10 00 08 00 04 00  00 30 80 18 40 0c 20 06  

04 a8 02 54 01 2a 00 95  43 4a 21 a5 10 d2 08 69  

00 04 00 02 80 01 40 00  80 06 40 03 a0 01 50 00  

86 1e c3 0f 61 87 b0 c3  be 1e df 0f 6f 87 b7 c3  

 

SCRMSEED=0x00000100 

00 30 80 18 40 0c 20 06  04 a8 02 54 01 2a 00 95  

43 4a 21 a5 10 d2 08 69  00 04 00 02 80 01 40 00  

80 06 40 03 a0 01 50 00  86 1e c3 0f 61 87 b0 c3  

be 1e df 0f 6f 87 b7 c3  be 1f df 0f 6f 87 b7 c3  

 

SCRMSEED=0x00001000 

04 a8 02 54 01 2a 00 95  43 4a 21 a5 10 d2 08 69  

00 04 00 02 80 01 40 00  80 06 40 03 a0 01 50 00  

86 1e c3 0f 61 87 b0 c3  be 1e df 0f 6f 87 b7 c3  

be 1f df 0f 6f 87 b7 c3  9e 1e cf 0f 67 87 b3 c3  

 

SCRMSEED=0x00010000 

43 4a 21 a5 10 d2 08 69  00 04 00 02 80 01 40 00  

80 06 40 03 a0 01 50 00  86 1e c3 0f 61 87 b0 c3  

be 1e df 0f 6f 87 b7 c3  be 1f df 0f 6f 87 b7 c3  

9e 1e cf 0f 67 87 b3 c3  be 2f 5f 17 2f 8b 97 c5  

 

 

The overlapping stream of ④ is: 

20 00 10 00 08 00 04 00  00 30 80 18 40 0c 20 06 

04 a8 02 54 01 2a 00 95  43 4a 21 a5 10 d2 08 69 

00 04 00 02 80 01 40 00  80 06 40 03 a0 01 50 00 

86 1e c3 0f 61 87 b0 c3  be 1e df 0f 6f 87 b7 c3 

be 1f df 0f 6f 87 b7 c3  9e 1e cf 0f 67 87 b3 c3 

be 2f 5f 17 2f 8b 97 c5  9a b6 cd 5b 66 ad b3 56 

  

90 overlapping streams



SCRMSEED=0x00000008 

64 0a 32 05 19 02 0c 81  ec 48 76 24 bb 12 5d 89  

ec 08 f6 04 fb 02 7d 81  ec 88 f6 44 fb 22 fd 91  

6c 9a b6 4d db 26 ed 93  e4 a8 f2 54 f9 2a fc 95  

6f 92 b7 c9 db e4 ed f2  b4 aa da 55 ed 2a 76 95  

 

SCRMSEED=0x00000020 

08 20 04 10 02 08 01 04  03 08 01 84 00 c2 00 61  

50 02 28 01 14 00 8a 00  31 88 18 c4 0c 62 06 31  

64 0a 32 05 19 02 0c 81  ec 48 76 24 bb 12 5d 89  

ec 08 f6 04 fb 02 7d 81  ec 88 f6 44 fb 22 fd 91  

 

SCRMSEED=0x00000200 

03 08 01 84 00 c2 00 61  50 02 28 01 14 00 8a 00  

31 88 18 c4 0c 62 06 31  64 0a 32 05 19 02 0c 81  

ec 48 76 24 bb 12 5d 89  ec 08 f6 04 fb 02 7d 81  

ec 88 f6 44 fb 22 fd 91  6c 9a b6 4d db 26 ed 93  

 

SCRMSEED=0x00002000 

50 02 28 01 14 00 8a 00  31 88 18 c4 0c 62 06 31  

64 0a 32 05 19 02 0c 81  ec 48 76 24 bb 12 5d 89  

ec 08 f6 04 fb 02 7d 81  ec 88 f6 44 fb 22 fd 91  

6c 9a b6 4d db 26 ed 93  e4 a8 f2 54 f9 2a fc 95  

 

SCRMSEED=0x00020000 

31 88 18 c4 0c 62 06 31  64 0a 32 05 19 02 0c 81  

ec 48 76 24 bb 12 5d 89  ec 08 f6 04 fb 02 7d 81  

ec 88 f6 44 fb 22 fd 91  6c 9a b6 4d db 26 ed 93  

e4 a8 f2 54 f9 2a fc 95  6f 92 b7 c9 db e4 ed f2  

 

 

The overlapping stream of ⑧ is: 

08 20 04 10 02 08 01 04  03 08 01 84 00 c2 00 61 

50 02 28 01 14 00 8a 00  31 88 18 c4 0c 62 06 31 

64 0a 32 05 19 02 0c 81  ec 48 76 24 bb 12 5d 89 

ec 08 f6 04 fb 02 7d 81  ec 88 f6 44 fb 22 fd 91 

6c 9a b6 4d db 26 ed 93  e4 a8 f2 54 f9 2a fc 95 

6f 92 b7 c9 db e4 ed f2  b4 aa da 55 ed 2a 76 95 

overlapping streams 91
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