
18:09 Memory Scrambling on Intel Sandy Bridge DDR3
by Nico Heijningen

Humble greetings neighbors,

I reverse engineered part of the memory scram-
bling included in Intel’s Sandy/Ivy Bridge proces-
sors. I have distilled my research in a PoC that can
reproduce all 218 possible 1,024 byte scrambler se-
quences from a 1,026 bit starting state.50

For a while now Intel’s memory controllers in-
clude memory scrambling functionality. Intel’s doc-
umentation explains the benefits of scrambling the
data before it is written to memory for reduc-
ing power spikes and parasitic coupling.51 Prior
research on the topic52 53 quotes different Intel
patents.54

Furthermore, some details can be deduced by
cross-referencing datasheets of other architectures55,
for example the scrambler is initialized with a ran-
dom 18 bit seed on every boot; the SCRMSEED.
Other than this nothing is publicly known or docu-
mented by Intel. The prior work shows that scram-
bled memory can be descrambled, yet newer versions
of the scrambler seem to raise the bar, together with
prospects of full memory encryption.56 While the
scrambler has never been claimed to provide any
cryptographic security, it is still nice to know how
the scrambling mechanism works.

Not much is known as to the internals of the
memory scrambler, Intel’s patents discuss the use
of LFSRs and the work of Bauer et al. has mod-
eled the scrambler as a stream cipher with a short
period. Hence the possibility of a plaintext attack
to recover scrambled data: if you know part of the
memory content you can obtain the cipher stream by
XORing the scrambled memory with the plaintext.
Once you know the cipher stream you can repeti-
tively XOR this with the scrambled data to obtain
the original unscrambled data.

Data

Feedback bit

Output bits / PRBS

State

Scrambled data

1 0 1 0

An analysis of the properties of the cipher stream
has to our knowledge never been performed. Here
I will describe my journey in obtaining the cipher
stream and analyzing it.

First we set out to reproduce the work of Bauer
et al.: by performing a cold-boot attack we were
able to obtain a copy of memory. However, because
this is quite a tedious procedure, it is troublesome
to profile different scrambler settings. Bauer’s work
is built on ‘differential’ scrambler images: scram-
bled with one SCRMSEED and descrambled with
another. The data obtained by using the procedure
of Bauer et al. contains some artifacts because of
this.

We found that it is possible to disable the mem-
ory scrambler using an undocumented Intel register
and used coreboot to set it early in the boot pro-
cess. We patched coreboot to try and automate
the process of profiling the scrambler. We chose
the Sandy Bride platform as both Bauer et al.’s
work was based on it and because coreboot’s mem-
ory initialization code has been reverse engineered
for the platform.57 Although coreboot builds out-
of-the-box for the Gigabyte GA-B75M-D3V moth-
erboard we used, coreboot’s makefile ecosystem is
quite something to wrap your head around. The
code contains some lines dedicated to the memory
scrambler, setting the scrambling seed or SCRM-
SEED. I patched the code in Figure 28 to disable the

50unzip pocorgtfo18.pdf IntelMemoryScrambler.zip
51See for example Intel’s 3rd generation processor family datasheet section 2.1.6 Data Scrambling.
52Johannes Bauer, Michael Gruhn, and Felix C. Freiling. “Lest we forget: Cold-boot attacks on scrambled DDR3 memory.”

In: Digital Investigation 16 (2016), S65–S74.
53Yitbarek, Salessawi Ferede, et al. “Cold Boot Attacks are Still Hot: Security Analysis of Memory Scramblers in Modern

Processors.” High Performance Computer Architecture (HPCA), 2017 IEEE International Symposium on. IEEE, 2017.
54USA Patents 7945050, 8503678, and 9792246.
55See 24.1.45 DSCRMSEED of N-series Intel R© Pentium R© Processors and Intel R© Celeron R© Processors Datasheet – Volume

2 of 3, February 2016
56Both Intel and AMD have introduced their flavor of memory encryption.
57For most platforms the memory initialization code is only available as an blob from Intel.

58

3784 stat ic void set_scrambling_seed (ramctr_timing ∗ c t r l)
{

3786 int channel ;

3788 /∗ FIXME: we hardcode seeds . Do we need to use some PRNG for them?
I don ’ t t h ink so . ∗/

3790 stat ic u32 seeds [NUM_CHANNELS] [3] = {
{0x00009a36 , 0 xba f c fdc f , 0x46d1ab68 } ,

3792 {0 x00028bfa , 0 x53fe4b49 , 0x19ed5483}
} ;

3794 FOR_ALL_POPULATED_CHANNELS {
MCHBAR32(0 x4020 + 0x400 ∗ channel) &= ~0x10000000 ;

3796 wr i te32 (DEFAULT_MCHBAR + 0x4034 , s eeds [channel] [0]) ;
wr i te32 (DEFAULT_MCHBAR + 0x403c , s eeds [channel] [1]) ;

3798 wr i te32 (DEFAULT_MCHBAR + 0x4038 , s eeds [channel] [2]) ;
}

3800 }

Figure 28. Coreboot’s Scrambling Seed for Sandy Bridge

memory scrambler, write all zeroes to memory, reset
the machine, enable the memory scrambler with a
specific SCRMSEED, and print a specific memory
region to the debug console. (COM port.) This way
we are able to obtain the cipher stream for differ-
ent SCRMSEEDs. For example when writing eight
bytes of zeroes to the memory address starting at
0x10000070 with the scrambler disabled, we read 3A
E0 9D 70 4E B8 27 5C back from the same address
once the PC is reset and the scrambler is enabled.
We know that that’s the cipher stream for that mem-
ory region. A reset is required as the SCRMSEED
can no longer be changed nor the scrambler disabled
after memory initialization has finished. (Registers
need to be locked before the memory can be initial-
ized.)

Now some leads by Bauer et al. based on the
Intel patents quickly led us in the direction of ana-
lyzing the cipher stream as if it were the output of
an LFSR. However, taking a look at any one of the
cipher stream reveals a rather distinctive usage of
a LFSR. It seems as if the complete internal state
of the LFSR is used as the cipher stream for three
shifts, after which the internal state is reset into a
fresh starting state and shifted three times again.
(See Figure 29.)

00111010 11100000
10011101 01110000
01001110 10111000
00100111 01011100

It is interesting to note that a feedback bit is
being shifted in on every clocktick. Typically only
the bit being shifted out of the LFSR would be used
as part of the ‘random’ cipher stream being gener-
ated, instead of the LFSR’s complete internal state.
The latter no longer produces a random stream of
data, the consequences of this are not known but it
is probably done for performance optimization.

These properties could suggest multiple con-
structions. For example, layered LFSRs where one
LFSR generates the next LFSR’s starting state, and
part of the latter’s internal state being used as out-
put. However, the actual construction is unknown.
The number of combined LFSRs is not known, nei-
ther is their polynomial (positions of the feedback
taps), nor their length, nor the manner in which
they’re combined.

Normally it would be possible to deduce such
information by choosing a typical length, e.g. 16-
bit, LFSR and applying the Berlekamp Massey al-
gorithm. The algorithm uses the first 16-bits in the
cipher stream and deduces which polynomials could
possibly produce the next bits in the cipher stream.
However, because of the previously described un-
knowns this leads us to a dead end. Back to the
drawing board!

Automating the cipher stream acquisition by
also patching coreboot to parse input from the serial
console we were able to dynamically set the SCRM-
SEED, then obtain the cipher stream. Writing a
Python script to control the PC via a serial cable en-
abled us to iterate all 218 possible SCRMSEEDs and

59

06 38 83 1C C1 8E 60 C7 E2 20 F1 10 F8 88 7C 44
86 5A C3 2D 61 96 30 CB E1 68 70 B4 B8 5A 5C 2D
D6 D8 EB 6C 75 B6 3A DB 50 F2 28 79 94 3C 4A 1E
3A E0 9D 70 4E B8 27 5C 37 80 1B C0 0D E0 06 F0

LFSR stretch

00111010 11100000 10011101 01110000 01001110 10111000 00100111 01011100

Figure 29. Keyblock

save their accompanying 1024 byte cipher streams.
Acquiring all cipher streams took almost a full week.
This data now allowed us to try and find relations
between the SCRMSEED and the produced cipher
stream. Stated differently, is it possible to reproduce
the scrambler’s working by using less than 218×1024
bytes?

This analysis was eased once we stumbled upon
a patent describing the use of the memory bus
as a high speed interconnect, under the name of
TeraDIMM.58 Using the memory bus as such, one
would only receive scrambled data on the other end,
hence the data needs to be descrambled. The au-
thors give away some of their knowledge on the sub-
ject: the cipher stream can be built from XORing
specific regions of the stream together. This insight
paved the way for our research into the memory
scrambling.

The main distinction that the TeraDIMM patent
makes is the scrambling applied is based on four
bits of the memory address versus the scrambling
based on the (18-bit) SCRMSEED. Both the mem-
ory address- and SCRMSEED-based scrambling are
used to generate the cipher stream 64 byte blocks
at a time.59 Each 64 byte cipher-stream-block is a
(linear) combination of different blocks of data that
are selected with respect to the bits of the memory
address. See Figure 30.

Because the address-based scrambling does not
depend on the SCRMSEED, this is canceled out in
the differential images obtained by Bauer. This is
how far the TeraDIMM patent takes us; however,
with this and our data in mind it was easy to see
that the SCRMSEED based scrambling is also built
up by XORing blocks together. Again depending on
the bits of the SCRMSEED set, different blocks are

XORed together.
Hence, to reproduce any possible cipher stream

we only need four such blocks for the address scram-
bling, and eighteen blocks for the SCRMSEED
scrambling. We have named the eighteen SCRM-
SEEDs that produce the latter blocks the (SCRM-
SEED) toggleseeds. We’ll leave the four address
scrambling blocks for now and focus on the toggle-
seeds.

The next step in distilling the redundancy in the
cipher stream is to exploit the observation that for
specific toggleseeds parts of the 64 byte blocks over-
lap in a sequential manner. (See Figure 32.) The
18 toggleseeds can be placed in four groups and any
block of data associated with the toggleseeds can be
reproduced by picking a different offset in the non-
redundant stream of one of the four groups. Go-
ing back from the overlapping stream to the cipher
stream of SCRMSEED 0x100 we start at an offset
of 16 bytes and take 64 bytes, obtaining 00 30 80
... 87 b7 c3.

58US Patent 8713379.
59This is the largest amount of data that can be burst over the DDR3 bus.

60

Figure 30. TeraDIMM Scrambling

overlappingstream(z)




0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 0 0 0 1 1

0 0 0 1 1 1 0 0 0 0 1 1

0 0 0 1 1 1 1 0 0 0 1 1

0 0 0 1 1 1 1 1 0 0 1 1






•


stretch0

stretch1

stretch2

stretch3

stretch4

stretch5

stretch6

stretch7

stretch8

stretch9

stretch10

stretch11




Figure 31. Scrambler Matrix

Finally, the overlapping streams of two of the
four groups can be used to define the other two;
by combining specific eight byte stretches i.e., mul-
tiplying the stream with a static matrix. For ex-
ample, to obtain the first stretch of the overlapping
stream of SCRMSEEDs 0x4, 0x10, 0x100, 0x1000,
and 0x10000 we combine the fifth and the sixth
stretch of the overlapping stream of SCRMSEEDs
0x1, 0x40, 0x400, and 0x4000. That is 20 00
10 00 08 00 04 00 = 00 01 00 00 00 00 00 00
ˆ 20 01 10 00 08 00 04 00. The matrix is the
same between the two groups and provided in Fig-
ure 31. One is invited to verify the correctness of
that figure using Figure 32.

Some future work remains to be done. We pos-
tulate the existence of a mathematical basis to these
observations, but a nice mathematical relationship
underpinning the observations is yet to be found.
Any additional details can be found in my TUE the-
sis.60

60unzip pocorgtfo18.pdf heijningen-thesis.pdf

61

SC
RM
SE
ED
=0
x4

00
 0
4
00
 0
2
80
 0
1
40
 0
0

 8
0
06
 4
0
03
 a
0
01
 5
0
00

86
 1
e
c3
 0
f
61
 8
7
b0

 c
3
 b
e
1e
 d
f
0f
 6
f
87
 b
7
c3

be
 1
f
df
 0
f
6f
 8
7
b7
 c
3

 9
e
1e
 c
f
0f
 6
7
87
 b
3
c3

be
 2
f
5f
 1
7
2f
 8
b
97
 c
5

 9
a
b6
 c
d
5b
 6
6
ad
 b
3
56

 SC
RM
SE
ED
=0
x1
0

20
 0
0
10
 0
0
08
 0
0
04
 0
0

 0
0
30
 8
0
18
 4
0
0c
 2
0
06

04
 a
8
02
 5
4
01
 2
a
00
 9
5

 4
3
4a
 2
1
a5
 1
0
d2
 0
8
69

00
 0
4
00
 0
2
80
 0
1
40
 0
0

 8
0
06
 4
0
03
 a
0
01
 5
0
00

86
 1
e
c3
 0
f
61
 8
7
b0
 c
3

 b
e
1e
 d
f
0f
 6
f
87
 b
7
c3

 SC
RM
SE
ED
=0
x1
00

00
 3
0
80
 1
8
40
 0
c
20
 0
6

 0
4
a8
 0
2
54
 0
1
2a
 0
0
95

43
 4
a
21
 a
5
10
 d
2

08
 6
9
 0
0
04
 0
0
02
 8
0
01
 4
0
00

80
 0
6
40
 0
3
a0
 0
1
50
 0
0

 8
6
1e
 c
3
0f
 6
1
87
 b
0
c3

be
 1
e
df
 0
f
6f
 8
7
b7
 c
3

 b
e
1f
 d
f
0f
 6
f
87
 b
7
c3

 SC
RM
SE
ED
=0
x1
00
0

04
 a
8
02
 5
4
01
 2
a
00
 9
5

 4
3
4a
 2
1
a5
 1
0
d2
 0
8
69

00
 0
4
00
 0
2
80
 0
1
40
 0
0

 8
0
06
 4
0
03
 a
0
01
 5
0
00

86
 1
e
c3
 0
f
61
 8
7
b0
 c
3

 b
e
1e
 d
f
0f
 6
f
87
 b
7
c3

be
 1
f
df
 0
f
6f
 8
7
b7
 c
3

 9
e
1e
 c
f
0f
 6
7
87
 b
3
c3

 SC
RM
SE
ED
=0
x1
00
00

43
 4
a
21
 a
5
10
 d
2
08
 6
9

 0
0
04
 0
0
02
 8
0
01
 4
0
00

80
 0
6
40
 0
3
a0
 0
1
50
 0
0

 8
6
1e
 c
3
0f
 6
1
87
 b
0
c3

be
 1
e
df
 0
f
6f
 8
7
b7
 c
3

 b
e
1f
 d
f
0f
 6
f
87
 b

7
c3

9e
 1
e
cf
 0
f
67
 8
7
b3
 c
3

 b
e
2f
 5
f
17
 2
f
8b
 9
7
c5

 Th
e
no
n-
re
du
nd
an
t/

ov
er
la
pp
in
g
st
re
am

 o
f
SC
RM
SE
ED
S

0x
4,
 0
x1
0,
 0
x1
00
,
0x

10
00
,
an
d
0x
10
00
0:

20
 0
0
10
 0
0
08
 0
0
04
 0
0

 0
0
30
 8
0
18
 4
0
0c
 2
0
06

04
 a
8
02
 5
4
01
 2
a
00
 9
5

 4
3
4a
 2
1
a5
 1
0
d2
 0
8
69

00
 0
4
00
 0
2
80
 0
1
40
 0
0

 8
0
06
 4
0
03
 a
0
01
 5
0
00

86
 1
e
c3
 0
f
61
 8
7
b0
 c
3

 b
e
1e
 d
f
0f
 6
f
87
 b
7
c3

be
 1
f
df
 0
f
6f
 8
7
b7
 c
3

 9
e
1e
 c
f
0f
 6
7
87
 b
3
c3

be
 2
f
5f
 1
7
2f
 8
b
97
 c
5

 9
a
b6
 c
d
5b
 6
6
ad
 b
3
56

SC
RM

SE
ED

=0
x1

00

 0
1

00
 0

0
00

 0
0

00
 0

0
 2

0
01

 1
0

00
 0

8
00

 0
4

00

20
 3

1
90

 1
8

48
 0

c
24

 0
6

 2
4

99
 9

2
4c

 4
9

26
 2

4
93

67

 d
3
b3

 e
9

59
 f

4
2c

 f
a

 6
7

d7
 b

3
eb

 d
9

f5
 6

c
fa

e7

 d
1

f3
 e

8
79

 f
4

3c
 f

a
 6

1
cf

 3
0

e7
 1

8
73

 8
c

39

 SC
RM

SE
ED

=0
x4

0
80

 0
2

40
 0

1
20

 0
0

10
 0

0
 0

6
18

 8
3

0c
 c

1
86

 e
0

c3

38
 0

0
1c

 0
0

0e
 0

0
07

 0
0

 0
0

01
 0

0
00

 0
0

00
 0

0
00

20

 0
1

10
 0

0
08

 0
0

04
 0

0
 2

0
31

 9
0

18
 4

8
0c

 2
4

06

24
 9

9
92

 4
c

49
 2

6
24

 9
3

 6
7

d3
 b

3
e9

 5
9

f4
 2

c
fa

 SC

RM
SE

ED
=0
x4

00

06
 1

8
83

 0
c

c1
 8

6
e0

 c
3

 3
8

00
 1

c
00

 0
e

00
 0

7
00

00

 0
1

00
 0

0
00

 0
0

00
 0

0
 2

0
01

 1
0

00
 0

8
00

 0
4

00

20
 3

1
90

 1
8

48
 0

c
24

 0
6

 2
4

99
 9

2
4c

 4
9

26
 2

4
93

67

 d
3
b3

 e
9

59
 f

4
2c

 f
a

 6
7

d7
 b

3
eb

 d
9

f5
 6

c
fa

 SC

RM
SE

ED
=0
x4

00
0

38
 0

0
1c

 0
0

0e
 0

0
07

 0
0

 0
0

01
 0

0
00

 0
0

00
 0

0
00

20

 0
1

10
 0

0
08

 0
0

04
 0

0
 2

0
31

 9
0

18
 4

8
0c

 2
4

06

24
 9

9
92

 4
c

49
 2

6
24

 9
3

 6
7

d3
 b

3
e9

 5
9

f4
 2

c
fa

67

 d
7

b3
 e

b
d9

 f
5

6c
 f

a
 e

7
d1

 f
3

e8
 7

9
f4

 3
c

fa

 Th
e
no

n-
re

du
nd

an
t/

ov
er

la
pp

in
g

st
re

am
 o

f
SC

RM
SE

ED
S

0x

1,
 0

x4
0,
 0

x4
00

,
an

d
0x

40
00

:

 8
0

02
 4

0
01

 2
0

00
 1

0
00

06

 1
8

83
 0

c
c1

 8
6

e0
 c

3
 3

8
00

 1
c

00
 0

e
00

 0
7

00

00
 0

1
00

 0
0

00
 0

0
00

 0
0

 2
0

01
 1

0
00

 0
8

00
 0

4
00

20

 3
1

90
 1

8
48

 0
c

24
 0

6
 2

4
99

 9
2

4c
 4

9
26

 2
4

93

67
 d

3
b3

 e
9

59
 f

4
2c

 f
a

 6
7

d7
 b

3
eb

 d
9

f5
 6

c
fa

e7

 d
1

f3
 e

8
79

 f
4

3c
 f

a
 6

1
cf

 3
0

e7
 1

8
73

 8
c

39

F
ig
ur
e
32
.
O
ve
rl
ap

pi
ng

St
re
am

s

62

