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Abstract

The ATtiny85 Processor by Atmel is an 8-bit RISC microcontroller with 8kB of flash, 512
bytes of RAM, and a nominal operating frequency of 20 MHz. 10Base-T. Ethernet is an inter-
face standard supported by most modern networking hardware and enables devices to talk to
eachother on a network. Ordinarily, specialty hardware is needed to send and receive. However,
by abusing the USI and PLL and overclocking the ATtiny85 processor, while violating the 802.3
standard, we can communicate to devices via 10Base-T on a network.
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Figure 1: System Schematic

Warning

This project does not follow standards, and violates recommended operating ranges on the AVR. It

is unlikely to work with most AVRs or Ethernet-enabled devices, and is completely unacceptable for
production designs. Follow only at your own risk.



1 Introduction

Although there have been those who have successfully sent packets from an AVR to the Ethernet
on an AVREL their approaches have been limited to fixed packets with at most one byte of payload
changing. This is not ideal for a general Ethernet device.

The ATtiny85 processor has a core that operates at one clock cycle per instruction for most
instructionﬂ It has a USI (Universal Serial Interface) that we can use as a high frequency shift
register. If clocked with Timer 0, we can achieve a sample rate of the system clock frequency. This
makes it possible to send out Manchester-encoded Ethernet frames from RAM when operating at
20 MHz.

When receiving packets, we need to sample at ~31.5 MHz. This can be achieved by using the
AVR’s internal PLL. Once the AVR is running above 30 MHz, the USI’s buffer register is polled.
When an Ethernet frame begins, the AVR can dump the bitstream to RAM, and at a later time can
decode the Ethernet frame in place.

Our physical interface to the Ethernet is intentionally poor and cheap, as can be seen in Figure
[[l While it would be wise in more practical situations to-use magnetics and proper termination even
a line driver would be great. We opted to see what the bare minimum is.

2 Background

2.1 Ethernet Topology

Ethernet uses a point-to-point communication scheme over separate differential pairs of copper wires,
one pair for TX one pair for RX. All communication to other devices on the network is done through
the use of switches and hubs. Switches expect the TX and RX lines to be opposite that of the client
device. We use the client-style +/- pairs. If we wish to connect directly to another client, i.e. a
laptop, we would need a crossover or the other computer would need to support MDIX.

The pairs, TX and RX are differential to aid in common-mode rejection. Noise will affect both
pairs similarly, and the effective noise on the signal will be minimized. Additionally, 802.3-2002
mandates all Ethernet devices isolated the incoming signal to help with noise rejection and prevent
ground loop issues, but most prominently, safety benefits. E|

While detectable; it generally is not a big deal if the 4+ /- on an individual pair is swapped. Our
algorithm doesn’t care which one is + or -.

Because we ground our signals instead of using magnetics, we will get neither of these benefits.

2.2 Manchester Encoding

Ethernet data is encoded in Manchester encoding at 10 MBits/sec. Manchester encoding is a con-
tinuous stream that focuses on the changes in bits.

With Manchester decoding, focus is on the location of a rising or falling edge. Falling edges
on clock pulses indicate a 0, rising edges indicate a 1. Manchester guarantees that there should
be approximately as many 1’s on the wire as 0’s, thus preventing DC offsets. Figure [2] shows an
example Manchester encoded stream.

This data is transmitted on-wire MSB first. At any one point in time, it is impossible to determine
if a bit is a 1 or a0 unless the start-of-message bit is found, as there is no clock source for Ethernet.
Therefore, it isdimpossible to know if the signal is falling or rising on the clock edge.

'gor Cesko “Implementation UDP into microcontroller Igor Atmel-UDP device: UDP/IP infrared remote control”
http://www.cesko.host.sk/IgorPlugUDP/IgorPlug-UDP%20%28AVR%29_eng.htm (Retrieved Sept 2, 2014)

ZAtmel “8-bit AVR Instruction Set” 0856DAVR08/02 (Retrieved Sept 2, 2014)

3802.3-2002 Section 14.3.1.1


http://www.cesko.host.sk/IgorPlugUDP/IgorPlug-UDP%20%28AVR%29_eng.htm
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Figure 2: Manchester Example
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Figure 3: Beginning of frame

One way to decode the Manchester if you know what the first bit is, is to look for any long pulses.
Each long pulse indicates a change in bits, and any pairs of short pulses indicate a repeat in bit.
When the data transitions from a 0 to.a 1 or a 1 to a 0, there is a long pulse. For the section of the
packet with many 0’s, there are pairs of short pulses. Making sure that all short pulses are paired
up helps us detect errors early.

If there are many repeated output 1’s or 0’s in a row that can mark the end of an Ethernet
packet. While the Ethernet packet is transmitting, there should never be a period when the line is
low or high for longer than .2us.

In order to match up the first bit of the packet, we have to look for the start signature. Figure[3]
shows what the beginning of the data in an Ethernet packet looks like. Once we see the pair of 1’s,
we now know that the packet is starting and can begin decoding the packet.

2.3 IEEE 802.3 Ethernet frame

The Ethernet frame consists of a preamble, i.e. repeating 0x55’s for 7 bytes, with the last byte being
a 0xD5, i.e. the highest bit is flipped to break the chain of alternating low and high. This makes it
possible for receivers to sync up to the packet at any time during the preamble. This can be seen in
Figure [3] Practically speaking that gives us ~5uS to begin recording an Ethernet before we’ll miss
the start token and be unable to recover the packet.

Figure [4] shows us that from there, we have the destination MAC, source MAC, and the rest of
our IP packet. When we’re done with the IP Packet, we can have padding so that the frame adds
up to 64 bytes, and then at the end, we have an Ethernet CRC. We had to use a table-less CRC
because of the excessive RAM /Flash usage of tabled ones.
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Figure 4: Ethernet Packet Example

2.4 Link Detection

Ethernet Links are detected using different autonegotiation schemes depending on speed. Conve-
niently, 10Base-T, Half-Duplex is trivial to indicate. It does not need any codes and simply needs
to emit a new NLP pulse every 16ms that’s 100-200ns wide. This pulse is only in one direction and
is not a full up-and-down.

3 Hardware

Figure [I] shows the specific schematic we used when developing the software stack. It is particularly
terrible. It terminates poorly, doesn’t have any isolation, doesn’t drive very strong (violating the
voltage template) E] and doesn’t cleanly receive data. This is the most minimal set up we were able
to use to send and receive packets.

While it worked with short cables (<10 meters) with all hardware we connected it. When tested
>10 meters, to a switch it did not link.

e C1, C2 are bypass capacitors that maintain power to the chip during brief points where it
needs extra power, i.e. transitioning states on the TX pin.

e P1 is any ethernet connector, it may be female or male.

e (3 is the TX capacitor. It develops a 2.5v bias, so the output swing (if no load were applied)
would be #£2.5v.

e (4 is the RX capacitor. It develops a biased voltage across, so the AVR does not interface
with negative voltages.

e R1, R2 produce a bias in order to raise or lower the DC offset of the incoming signal so that
the AVR receives approximately as many 1’s as 0’s. It also helps prevent state transitions from
being missed entirely. 2k was selected because it happens to have lined up with what I had
and worked surprisingly well.

e R3, R4 are termination resistors, to terminate the signal from the network cable.
e Ul is the ATtiny85 Processor.

e J1 is the programming header, compliant with the 6-pin AVR ISP header.

e WS2812 is any series of WS2812 LEDs.

e SW1 is a switch. Because PB4 has an internal pull-up resistor. This switch will ground that
pin.

Hardware warnings include:

4IEEE 802.3-2002 Figure 14-9



Listing 1: AVRDude Fuse Command Line

avrdude —c usbtiny —p t85 —U Ifuse:w:0x41:m

e The AVR is driving the output directly, and will often be unable to push the output hard
enough to reach the needed voltages to match the spec, also it has a noisy output.

e There is no isolation. There should be magnetics to help to:

— Reject common-mode noise, cleaning up the signal.

— Add safety to prevent DC transients.

e There is no differential receiver. We are relying on the AVR’s Schmitt trigger. EI

4 Software Implementation

IEEE 802.3 specifies a few different speeds for Ethernet. One of which that is still widely supported
is 10Base-T, which runs at 10 mbits/sec on-wire transfer - and Ethernet devices today are still
reverse compatible with it. [EEE 802.3 Section 28.1.4 Yo will mimic a 10Base-T device. For this we
will focus on these aspects:

e Clocking

Use of the USI (Universal Serial Interface)

Normal Link Pulses (NLP)

Transmitting Manchester encoded packets

Receiving Manchester encoded packets

Overall process.

All source code is available on github in the ”ethertiny” project. At the time of initially writing
this paper, all code for this paper was in the ”?t85spi” folder.

4.1 Clock

We opted to use the USI on the ATtiny85, clocked at the system clock. This enables us to write
one byte at a time that will be shifted out of the USI over the next eight clock cycles. This gives
us enough time to Manchester encode bytes of Ethernet traffic in RAM on-the-fly. This is good
because it means we do not need to pre- process the packet and we do not need to use extra RAM
to store it.

In order to obtain 20 MHz, we arbitrarily picked an OSCCAL value of Oxbb on our hardware.
Although this should change from chip to chip, we’ve found that in most cases, surprisingly, this
value seems to hold. Additionally, we have to configure the clock fuses to CKSEL=1. Our fuses for
this are found in Listing [I} Default EFUSEs and HFUSEs are acceptable. We also enable PLLE
and PCKE for any additional hardware as seen in Listing [2]

To move to ~31.5 MHz for receiving, we simply set OSCCAL to 0xff. Once done, we move it
back to Oxbb for all other operations.

5AVR ATtiny85 Datasheet (2586K-AVR-01/08), Figure 10-2




Listing 2: Clock Setup

PLLCSR = BV (PLLE) | _BV( PCKE );
OSCCAL = 0SC20;

Listing 3: USI Setup

//Setup timer 0 to speed along.

//It will become useless for any other uses:

TCCROA = BV(WGMOLl); //CTC mode.

TCCROB = BV(CS00); //Use system clock with no divisor.
OCROA = 0;

USICR = BV (USIWMO0) | _BV(USICS0) | BV (USITC);

//setup port B
PORTIB &= "BV (0);
DDRB &= "BV (0);
PORTB &= "BV (1

USICR &= "BV (USIWMO);  //Disable USICR

#ifdef SMARTDDR

DDRB &= BV (1);
#else

DDRB |= BV (1);
#endif

//Optional , changes bias.

//2k — GND/2k —>5V seems best with this on
//PORTB |= _BV(0);

//Doesn’t change much with it off. 2k/2k it is.
PORTB &= ~BV(0);

4.2 USI

The USI on the ATtiny must be clocked at the system clock in order to input and output the data
fast enough. To do this, we configure Timer 0 to clock at the system clock rate in CTC mode,
with a "top” time of 0. Provided we operate on it every eight clock cycles, we can create or read a
continuous stream of 1’s and 0’s at the clock rate.

Listing [3] shows the code to activate Timer 0 and configure the USI to use it. When reading from
the USI, it is important to use the USIDR registers whenever reading or writing to it.

We have to keep the USI disabled when not in use. If we leave it enabled, data coming in will
be shifted through. That means that whenever the USI is enabled, we must be constantly filling the
incoming buffer or reading the buffer. We do not want the incoming data from the network to be
shifted back out. It is convenient to leave the USICR setup and then set the flag to enable it once
we're ready to load in new data and go.



Listing 4: NLP Code

sbi PORTB, 1
#ifdef SMARTDDR

sbi DDRB, 1
#endif

nop //780uns from on to off
#ifdef LONGNLP

nop //+40ns

#endif
#ifdef SMARTDDR

cbi DDRB, 1
#endif

cbi PORTB, 1

Listing 5: Manchester Lookup Table

char ManchesterTable[16] __attribute__

((aligned (16))) = {

0b10101010, 0b01101010
0b10011010, 0b01011010,
0b10100110, 0b0O1100110,
0b10010110, 0b01010110,
0b10101001, 0b01101001,
0b10011001, 0b01011001,
0b10100101, 0b01100101,
0b10010101, 0b01010101 ,

4.3 NLPs

10Base-T Ethernet uses link pulses, or a single up-going pulse that lasts 10-20us every 16ms + 8ms
IEEES02.3 Section 14.2.1.1 "hig i3 used to tell the connected Ethernet device that this device is here,
that it’s alive, and that it’s a 10Base-T, Half-duplex device. Instead of using the USI on the AVR
to create this signal, we opt to manually turn the pin on and off at the correct times in Listing [4
Provided the USI is turned off, DDRB is configured as an output (or SMARTDDR is enabled), and
we're operating at 30 MHz. This will produce an ~80ns to ~120ns pulse.

It would be useful to note here what “SMARTDDR” is. Because we have a capacitor to decouple
the DC from the TX line, it is many times advantageous to leave the pin disconnected except when
it is in use. This will help keep the bias across the capacitor to 2.5V, so when the pin is turned high
or low, it can create the £2.5v swing 10Base-T uses.

4.4 TX Manchester-encoded packets

When operating at 20 MHz, it would be possible to manually bit-bang out a message via two GPIOs.
If we do that, we also get the added bonus of differential signaling. However, if we do this, then
there is very little room to modify the packet. In fact, we would only be able to modify at most one
byte and a few bits.

We can store a pre-computed Manchester, Listing [5| table for each possible nibble of output
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Figure 5: High-level SendTestASM

and look up into that table while we’re shifting the data out. In that table, the data in address
0 represents the data that would need to be shifted out to represent a binary 0000, the value in
address address 13 “d” (1011 binary), is 01100101, pattern we saw in Figure [3l The reason for the
alignment is because the bottom nibble of its address must be 0x0, so we can use bitwise operations
to look up into the table.

The function that handles sending packets is SendTestASM, and it is written in assembler for
the AVR as to tightly control the timing of writing to the USIDR register. Figure [5] shows the
progression of a transmit operation. We first read the byte we want to send out of RAM, look at
its bottom nibble, look that up in the Manchester table, send the bottom nibble’s Manchester, read
the high nibble, look it up in the Manchester table, and send that. Then, we look at the next byte
and do the same, all in groups of 4 bytes.

Unfortunately, in order to actually accomplish this, we have to heavily interleave the code. The
reason we must interleave the code is some operations such as checking to see if we are done with
sending all of the bytes take three operations, and there is only one free operation every time we
send another byte. By sending groups of four bytes, that extra free cycle we gain per-byte can build
up so we can do our three-cycle compare and jump at the end.

4.5 RX Manchester-encoded packets

Doing the Manchester decoding is the difficult part. Without using external hardware to lock onto
the loop, or to detect the phase, it means we have to do that entirely with the AVR. Because it is
also difficult to tweak the AVR’s clock to get in phase with the Ethernet signal, we opted to stream
the bits in software.

Manchester encoding can be decoded entirely in software with a sample rate that exceeds three
times the symbol rate. That would means our AVR would have to run above 30 MHz, which
conveniently is possible.

By sampling at three times the rate, we can identify “Long” and “Short” transitions. Addition-
ally, the fact that a signal is a “1” or a “0”, incoming becomes irrelevant, and we can focus only
on the transitions. In order to read in the data, we operate in much the same way we TX’ed the
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Figure 6: Demanchestration (33 MHz clock)

packet. However we need to wait for a reading from USIDR that is not 0x00 or Oxff, i.e. it contains
both 1 and 0 bits. That would mean we likely have a packet.

Once we see that change, provided we’re operating at ~31.5 MHz, we can begin to capture the
packet by continuously reading USIDR every eight cycles. After every two packets, we can check to
see if it is all 1’s or all 0’s. If it is, we can stop, if not, we continue to capture to RAM.

To understand how we can go from a Manchester bitstream to a series of 1’s and 0’s, we first
have to understand how we can determine the difference between short and long transitions. Figure
[6] shows this conversion in the creation of the “counts” row from the “values” row. Once we have
them, we can pair the shorts together and identify whether bits are flipping or not.

Considering that we can look for the start of packet flag, the 0xD5 from the beginning, we can
maintain whether the current bit is a 0 or a 1 throughout the life of the packet.

A copy of the Demanchestrate function can be found in the code tree in hlprocess.c.

It is important to note that Demanchestrating the packet can be done in-place. It is safe to
overwrite the raw data with the packet as it is decoded because the packet is always shorter than
the raw data coming in.

Once a packet is decoded, provided there are no bit errors, i.e. unmatched shorts, or missed
shorts, we can begin the CRC Iﬂ We can use the same CRC that we use for sending in order to verify
that the packet was received successfully.

From there, we can pass it to the IP stack, where it will deal with the packet. An IP stack is
outside the scope of this document.

4.6 Overall Process

We configure the pin change interrupt on PBO so that if data ever comes in, we can start watching
that line to see if it’s ‘a spurious data, a NLP, FLP or the beginnings of a packet. If it’s a packet,
we start recording the pin as described in Section 4.5

We configure timer 1 to operate on a 4ms period and set it up to fire an interrupt. After 4 ticks,
we then send a NLP. This timer can also be used to clock other higher level aspects of the chip and
drive PWM if needed. The NLPs can be sent by an arbitrary means, so long as they are sent out
approximately every 16ms.

Our main loop waits to see when the NLP timer advances. We can schedule things to happen
whenever in this loop. Every 4 NLPs, we fire a broadcast packet.

6CRC Code from: http://www.hackersdelight.org/hdcodetxt/crc.c.txt



Whenever user code locks interrupts, the system cannot receive. If we continue locked until there
insufficient preamble for the demanchestrate function to operate on, we will drop a packet. User
code can use interrupts freely as well (given the same caveat).

User code can also send packets either in response to existing packets in the HandleUDP function
or anywhere in code.

As a warning, interrupts are disabled while the system is receiving a packet.

5 Conclusion

We have been able to implement a UDP/IP stack with ARP, UDP, and ICMP on an attiny85. We
have tested it with short wire runs to a few different types of switches and computers and found
that we could communicate. We can send and receive packets up to a =~90-bytes on-wire or 48-bytes
of UDP payload. We have had moderate packet loss, on the order of 5-20 % of the packets. This is
important when considering applications for this technology, as all protocols the user would have to
use must be robust, able to handle lost packets gracefully, and must not be CPU intensive.

Additionally, because the stack takes a considerable amount of RAM, very little RAM is left over
for user applications unless the user decides to tune back the stack’s buffer - which would further
limit the maximum packet size.

When operating at full speed, our stack uses ~25 mA at 4.5v - less than 1/8 of a watt.

Though impractical for most applications; this stack may prove useful in niche applications where
cost, power size or other factors outweigh robustness, transfer speeds, or reliability.

6 Future Work

We could do a number of things from here that would be useful and interesting. A few are listed
below:

e Use TO input from PLL PWM on the AVR to increase sampling rate to 35 MHz, to improve
input performance.

e Use a differential driver/receiver to drive the actual signal.

e Add magnetics and examine performance.

e Use the internal pull-up to tune the bias, detect if this pull-up helps somehow.

e Optimize the Demanchestration function in assembly.

e Automatically calibrate the proper OSCCAL for sending based on incoming packets.

e Improve error correction based on matching pairs and long/short segments. (Improvements to
the Demanchestrate function)

10
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