Antikernel

A Decentralized Secure Hardware-Software
Operating System

Andrew Zonenberg (@azonenberg)

Bllent Yener

| |
I ACtIve This work is based on Zonenberg’s 2015

Hardware Software Wetware doctoral dissertation, advised by Yener.
SECURITY SERVICES

Kernel mode = full access to all state

What OS code needs this level of access?

— Memory manager only needs heap metadata

— Scheduler only needs run queue

— Drivers only need their peripheral

— Nothing needs access to state of user-mode apps
No single subsystem that needs access to all state

Any code with ring O privs is incompatible with LRP!

| Active

Monolithic kernel, microkernel, ...

Huge Huge
attack surface

Small

Ring-0 code size

Can we
get here?

None

Monolithic Micro 2?7

| Active

Exokernel (MIT, 1995)

OS abstractions can often hurt performance
— You don'’t need a full FS to store temporary data on disk

Split protection / segmentation from abstraction

Word proc Jese FS N Cache 3 g Disk driver _
DHCP server y I

| Active

Exokernel (MIT, 1995)

OS does very little:

— Divide resources into blocks
(CPU time quanta, RAM pages...)

— Provide controlled access to them

| Active

But wait, there’s more...

By removing non-security abstractions from the kernel,
we shrink the TCB and thus the attack surface!

| Active

So what does the kernel have to do?

Well, obviously a few things...
— Share CPU time between multiple processes
— Allow processes to talk to hardware/drivers
— Allow processes to talk to each other
— Page-level RAM allocation/access control

| Active

Are you sure”?

Barrel proc / HT can context switch without S/W help
What if we moved the whole run queue into the CPU?

&I PCS[] wmmmma FETCH
EYE .
P,D 4 EXECUTE

1

| Active

Hardware scheduler

Circular queue of thread IDs = round robin scheduler
Minimal gate count (one small small FIFO)
Deterministic performance (good for hard realtime)
No possibility of corrupting unrelated state

| Active

Access to hardware

Instead of a bus, connect the CPU to rest of the SoC
with a packet-switched NoC

— Assign addresses as {cpu subnet prefix, PID}

CPU ::8040/10 L: RAM ::8003/16

ﬁ

=a Mgmt ::8040/16
ma Appl ::8060/16
ma App2 ::8061/16

Flash::8004/16

| Active

Communication

Two parallel networks

— RPC network: 4x 32 bit words, = ioctl(2)
Typically accessed via CPU registers for low latency

— DMA network: 1-512 word data plane blocks
Typically memory mapped
Reliable datagrams
— In-order delivery between any pair of endpoints
— Guaranteed minimum QoS for hard realtime systems

| Active

Network-based access control

Provide CPU insn to send/recv message

Network accessed via formally verified transceiver IP
— Untrusted 3"-party IP cores cannot spoof headers
— Neither can arbitrary code on the CPU
We can use packet headers for access control!
— Node can tell what app is accessing it
— Node makes access control decision based on msg origin

| Active

IPC Is now trivial

Each app already has a unique address on the NoC
Just send a packet to the app’s address

CPU ::8040/10 S RAM ::8003/16
Flash::8004/16

B g :8040/16
B /o1 -060/16 B
ke

Surely sbrk/malloc must be in ring O...

Processor MMU provides translation only

You can map any phyaddr you want, but if the
peripheral says “no” the app segfaults

mmap(2) no longer needs elevated privs!
— Just send a message to CPU OoB address

CPU ::8040/10 g4 RAM ::8003/16
E Mgmt ::8040/16 o L
Appl ::8060/16 pummrem

Flash::8004/16

| Active

Smart RAM controller

RAM controller has NoC API
— RPC: Allocate/free/chown page
— DMA: bulk read/write

Allocate

Page is 0x0800

Map ram:0x0800 at 0x41414000

(0] ¢

| Active

Smart RAM controller

Trivially simple data structures

— FIFO of free pages

— Array of page owners

— Control state machine is ~500 lines including fluff
Easy to test / verify

— Thoroughly covered by automated test suite
— Formal verification in near future

| Active

So what’s left in ring 07?

Nothing!

Remove privileged instructions from the ISA

Run userspace on bare metal

This is an antikernel — an OS with no kernel at all!

| Active

Key concepts

This is not just a “hardware microkernel”

The “OS” is an emergent entity created from many
iIndependent state machines

These subsystems communicate in a limited, formally
defined manner (complete encapsulation of state)

| Active

Modularity for security

Each node maintains its own security state

Your TCB is what you make it

— Awvuln in a node you don’t depend on has zero impact on
your app’s security

| Active

SARATOGA CPU

Compatible with mips GCC but not full MIPS

8 stage barrel processor, 200 MHz on Artix-7

— 2 cycles each i-fetch, r-fetch

— 4 cycles execution
2-issue in-order superscalar, 2N HW threads (N=3)
Set-associative L1 cache, partitioned per thread
Hardware ELF loader w/ code signing

— HMAC-SHA256 for prototype to save FPGA resources
— Will use RSA or ECC in real system

| Active

Name server

Resolve 8-char hosthnames to 16-bit addresses
ROM of hard IP locations

Writable memory for software apps
— Signed updates to ensure authenticity

| Active

Prototype implementation

~187 kLine including test cases, build tools, etc

Critical stuff is small
— RPC/DMA networks combined 4.5 kLine
— Name server 1 kLine
— SARATOGA CPU 9 kLine

All code i1s F/OSS (3-clause BSD)

Goal is to encourage reproduction of results,
industry/academic research, etc

| Active

Future work

Add more peripherals
Solve name binding problem for NVM

Formally verify non-reduced-payload DMA protocol
Formally verify SARATOGA (or its successor)

| Active

Questions?

| Active

