
17:09 Protecting ELF Files by Infecting Them
by Leandro “acidx” Pereira

Writing viruses is a sure way to learn not only
the intricacies of linkers and loaders, but also tech-
niques to covertly add additional code to an existing
executable. Using such clever techniques to wreck
havoc is not very neighborly, so here’s a way to have
some fun, by injecting additional code to tighten the
security of an ELF executable.

Since there’s no need for us to hide the payload,
the injection technique used here is pretty rudimen-
tary. We find some empty space in a text seg-
ment, divert the entry point to that space, run a
bit of code, then execute the program as usual. Our
payload will not delete files, scan the network for
vulnerabilities, self-replicate, or anything nefarious;
rather, it will use seccomp-bpf to limit the system
calls a process can invoke.

Caveats

By design, seccomp-bpf is unable to read memory;
this means that string arguments, such as in the
open() syscall, cannot be verified. It would other-
wise be a race condition, as memory could be mod-
ified after the filter had approved the system call
dispatch, thwarting the mechanism.

It’s not always easy to determine which system
calls a program will invoke. One could run it under
strace(1), but that would require a rather high
test coverage to be accurate. It’s also likely that
the standard library might change the set of system
calls, even as the program’s local code is unchanged.
Grouping system calls by functionality sets might be
a practical way to build the white list.

Which system calls a process invokes might
change depending on program state. For instance,
during initialization, it is acceptable for a program
to open and read files; it might not be so after the
initialization is complete.

Also, seccomp-bpf filters are limited in size.
This makes it more difficult to provide fine-grained
filters, although eBPF maps31 could be used to
shrink this PoC so slightly better filters could be
created.

Scripting like a kid

Filters for seccomp-bpf are installed using the
prctl(2) system call. In order for the filter to be
effective, two calls are necessary. The first call will
forbid changes to the filter during execution, while
the second will actually install it.

The first call is simple enough, as it only has nu-
meric arguments. The second call, which contains
the BPF program itself, is slightly trickier. It’s not
possible to know, beforehand, where the BPF pro-
gram will land in memory. This is not such a big
issue, though; the common trick is to read the stack,
knowing that the call instruction on x86 will store
the return address on the stack. If the BPF program
is right after the call instruction, it’s easy to obtain
its address from the stack.

31man 2 bpf

56

1 ; . . .

3 jmp f i l t e r

5 app l y_ f i l t e r :
; rdx conta in s the addr o f the BPF program

7 pop rdx

9 ; . . .

11 ; 32 b i t JMP p la c eho ld e r to the entry po int
db 0xe9

13 dd 0x00000000

15 f i l t e r :
c a l l a pp l y_ f i l t e r

17
bpf :

19 bpf_stmt {bpf_ld+bpf_w+bpf_abs } , 4
; remainder o f the BPF payload

The BPF virtual machine has its own instruc-
tion set. Since the shell code is written in assembly,
it’s easier to just define some macros for each BPF
bytecode instruction and use them.

bpf_ld equ 0x00
2 bpf_w equ 0x00

bpf_abs equ 0x20
4 bpf_jmp equ 0x05

bpf_jeq equ 0x10
6 bpf_k equ 0x00

bpf_ret equ 0x06
8

seccomp_ret_allow equ 0 x7 f f f 0 0 00
10 seccomp_ret_trap equ 0x00030000

audit_arch_x86_64 equ 0xc000003e
12

%macro bpf_stmt 2 ; BPF statement
14 dw (%1)

db (0)
16 db (0)

dd (%2)
18 %endmacro

20 %macro bpf_jump 4 ; BPF jump
dw (%1)

22 db (%2)
db (%3)

24 dd (%4)
%endmacro

26
%macro sc_allow 1 ; Allow s y s c a l l

28 bpf_jump {bpf_jmp+bpf_jeq+bpf_k} , 0 , 1 , %1
bpf_stmt {bpf_ret+bpf_k} , seccomp_ret_allow

30 %endmacro

57

58

By listing all the available system calls from
syscall.h,32 it’s trivial to write a BPF filter that
will deny the execution of all system calls, except
for a chosen few.
bpf_stmt {bpf_ld+bpf_w+bpf_abs } , 4

2 bpf_jump {bpf_jmp+bpf_jeq+bpf_k} , 0 , 1 ,
audit_arch_x86_64

bpf_stmt {bpf_ld+bpf_w+bpf_abs } , 0
4 sc_allow 0 ; read (2)

sc_allow 1 ; wr i t e (2)
6 sc_allow 2 ; open (2)

sc_allow 3 ; c l o s e (2)
8 sc_allow 5 ; f s t a t (2)

sc_allow 9 ; mmap(2)
10 sc_allow 10 ; mprotect (2)

sc_allow 11 ; munmap(2)
12 sc_allow 12 ; brk (2)

sc_allow 21 ; a c c e s s (2)
14 sc_allow 158 ; p r c t l (2)

bpf_stmt {bpf_ret+bpf_k} , seccomp_ret_trap

Infecting
One of the nice things about open source being ubiq-
uitous today is that it’s possible to find source code
for the most unusual things. This is the case of
ELFKickers, a package that contains a bunch of lit-
tle utilities to manipulate ELF files.33

I’ve modified the infect.c program from that
collection ever so slightly, so that the placeholder
jmp instruction is patched in the payload and the
entry point is correctly calculated for this kind of
payload.

A Makefile takes care of assembling the pay-
load, formatting it in a way that it can be included
in the C source, building a simple guinea pig pro-
gram twice, then infecting one of the executables.
Complete source code is available.34

1 #include <s td i o . h>
#include <sys / socket . h>

3
int main (int argc , char ∗argv []) {

5 i f (argc < 2) {
p r i n t f ("no socke t c r ea ted \n") ;

7 } else {
int fd=socket (AF_INET, SOCK_STREAM, 6) ;

9 p r i n t f (" c rea ted socket , fd = %d\n" , fd) ;
}

11 }

Testing & Conclusion
The output in Figure 22 is an excerpt of a system
call trace, from the moment that the seccomp-bpf
filter is installed, to the moment the process is killed
by the kernel with a SIGSYS signal.

Happy hacking!

32echo "#include <sys/syscall.h>" | cpp -dM | grep ’ˆ#define __NR_’
33git clone https://github.com/BR903/ELFkickers || unzip pocorgtfo17.pdf ELFkickers-3.1.tar.gz
34unzip pocorgtfo17.pdf infect.zip

1 p r c t l (PR_SET_NO_NEW_PRIVS, 1 , 0 , 0 , 0) = 0
p r c t l (PR_SET_SECCOMP, SECCOMP_MODE_FILTER, { l en=30, f i l t e r =0x400824 }) = 0

3 socket (AF_INET, SOCK_STREAM, IPPROTO_TCP) = 41
−−− SIGSYS { s i_s igno=SIGSYS , si_code=SYS_SECCOMP, s i_cal l_addr=0x7f2d01aa19e7 ,

5 s i_ s y s c a l l=__NR_socket , s i_arch=AUDIT_ARCH_X86_64} −−−
+++ k i l l e d by SIGSYS (core dumped) +++

7 [1] 27536 i n v a l i d system c a l l (core dumped) s t r a c e . / h e l l o

Figure 22. Excerpt of strace(1) output when running hello.c.

59

17:10 Laphroaig’s Home for Unwanted Polyglots and 0day
from the desk of Pastor Manul Laphroaig,

Tract Association of PoC‖GTFO.

Dearest neighbor,
Our scruffy little gang started this самиздат

journal a few years back because we didn’t much like
the academic ones, but also because we wanted to
learn new tricks for reverse engineering. We wanted
to publish the methods that make exploits and poly-
glots possible, so that folks could learn from each
other. Over the years, we’ve been blessed with the
privilege of editing these tricks, of seeing them early,
and of seeing them through to print. Now it’s your turn to share what you know, that

nifty little truth that other folks might not yet know.
It could be simple, or a bit advanced. Whatever
your nifty tricks, if they are clever, we would like to
publish them.

Do this: write an email in 7-bit ASCII telling
our editors how to reproduce ONE clever, techni-
cal trick from your research. If you are uncertain of
your English, we’ll happily translate from French,
Russian, Southern Appalachian, and German.

Like an email, keep it short. Like an email, you
should assume that we already know more than a
bit about hacking, and that we’ll be insulted or—
WORSE!—that we’ll be bored if you include a long
tutorial where a quick explanation would do.

Teach me how to falsify a freshman physics ex-
periment by abusing floating-point edge cases. Show
me how to enumerate the behavior of all illegal in-
structions in a particular implementation of 6502,
or how to quickly blacklist any byte from amd64
shellcode. Explain to me how shellcode in Wine or
ReactOS might be simpler than in real Windows.

Don’t tell us that it’s possible; rather, teach us
how to do it ourselves with the absolute minimum
of formality and bullshit.

Like an email, we expect informal language and
hand-sketched diagrams. Write it in a single sit-
ting, and leave any editing for your poor preacher-
man to do over a bottle of fine scotch. Send this
to pastor@phrack org and hope that the neighborly
Phrack folks—praise be to them!—aren’t man-in-the-
middling our submission process.

Yours in PoC and Pwnage,
Pastor Manul Laphroaig, T G S B

60

