
17:06 The DIP Flip Whixr Trick:
An Integrated Circuit That Functions in Either Orientation

by Joe “Kingpin” Grand

Hardware trickery comes in many shapes and
sizes: implanting add-on hardware into a finished
product, exfiltrating data through optical, thermal,
or electromagnetic means, injecting malicious code
into firmware, BIOS, or microcode, or embedding
Trojans into physical silicon. Hackers, governments,
and academics have been playing in this wide open
field for quite some time and there’s no sign of things
slowing down.

This PoC, inspired by my friend Whixr of
#tymkrs, demonstrates the feasibility of an IC be-
having differently depending on which way it’s con-
nected into the system. Common convention states
that ICs must be inserted in their specified orien-
tation, assisted by the notch or key on the device
identifying pin 1, in order to function properly.

So, let’s defy this convention!
– — — – — — — — – — –

Most standard chips, like digital logic devices
and microcontrollers, place the power and ground
connections at corners diagonal from each other. If
one were to physically rotate the IC by 180 degrees,
power from the board would connect to the ground
pin of the chip or vice versa. This would typically
result in damage to the chip, releasing the magic
smoke that it needs to function. The key to this
PoC was finding an IC with a more favorable pin
configuration.

While searching through microcontroller data
sheets, I came across the Microchip PIC12F629.
This particular 8-pin device has power and GPIO
(General Purpose I/O) pins in locations that would
allow the chip to be rotated with minimal risk. Of
course, this PoC could be applied to any chip with
a suitable pin configuration.

In the pinout drawing, which shows the chip from
above in its normal orientation, arrows denote the
alternate functionality of that particular pin when
the chip is rotated around. Since power (VDD) is
normally connected to pin 1 and ground (VSS) is
normally connected to pin 8, if the chip is rotated,
GP2 (pin 5) and GP3 (pin 4) would connect to power
and ground instead. By setting both GP2 and GP3
to inputs in firmware and connecting them to power
and ground, respectively, on the board, the PIC will
be properly powered regardless of orientation.

– — — – — — — — – — –

I thought it would be fun to change the data
that the PIC sends to a host PC depending on its
orientation.

On power-up of the PIC, GP1 is used to detect
the orientation of the device and set the mode ac-
cordingly. If GP1 is high (caused by the pull-up
resistor to VCC), the PIC will execute the normal
code. If GP1 is low (caused by the pull-down re-
sistor to VSS), the PIC will know that it has been
rotated and will execute the alternate code. This
orientation detection could also be done using GP5,
but with inverted polarity.

The PIC’s UART (asynchronous serial) output
is bit-banged in firmware, so I’m able to reconfigure
the GPIO pins used for TX and RX (GP0 and GP4)
on-the-fly. The TX and RX pins connect directly to
an Adafruit FTDI Friend, which is a standard FTDI
FT232R-based USB-to-serial adapter. The FTDI
Friend also provides 5V (VDD) to the PoC.

In normal operation, the device will look for a
key press on GP4 from the FTDI Friend’s TX pin
and then repeatedly transmit the character ’A’ at
9600 baud via GP0 to the FTDI Friend’s RX pin.
When the device is rotated 180 degrees, the device
will look for a key press on GP0 and repeatedly
transmit the character ’B’ on GP4. As a key press
detector, instead of reading a full character from the
host, the device just looks for a high-to-low transi-
tion on the PIC’s currently configured RX pin. Since
that pin idles high, the start bit of any data sent
from the FTDI Friend will be logic low.

32

Adafruit FTDI Friend Interface

1

2

3

4

5

6

P1

Header 6

0.1uF

C1

VDD

GND

CTS ->

VCC <-

TX <-

RX ->

RTS <-

GP5
2

GP1/ICSPCLK
6

GP2
5

GP3/MCLR
4

GP0/ICSPDAT
7

VSS
8

VDD
1

GP4
3

U1

PIC12F629-I/P

VDD

VDD

VDD

10kR1

10kR2

PIC101

PIC102
COC1

PIP101

PIP102

PIP103

PIP104

PIP105

PIP106

COP1

PIR101 PIR102

COR1

PIR201 PIR202

COR2

PIU101

PIU102

PIU103

PIU104 PIU105

PIU106

PIU107

PIU108

COU1

PIC101

PIP106

PIR201

PIU104

PIU108

PIP101

PIP102PIU107

PIP103

PIU103

PIP105

PIR101PIU106

PIR202PIU102

PIC102

PIP104

PIR102

PIU101

PIU105

switch (input (PIN_A1)) {// o r i en t a t i on
de t e c t i on

2 case MODE_NORMAL: // normal behav ior
#use rs232 (baud=9600 , b i t s =8, pa r i t y=N,
stop=1, xmit=PIN_A0, force_sw)

4
//wait f o r a keypres s

6 while (input (PIN_A4)) ;

8 while (1) {
p r i n t f ("A ") ;

10 delay_ms (10) ;
}

12 break ;

14 case MODE_ALTERNATE: // abnormal behav ior
#use rs232 (baud=9600 , b i t s =8, pa r i t y=N,
stop=1, xmit=PIN_A4, force_sw)

16
// wait f o r a keypress

18 while (input (PIN_A0)) ;

20 while (1) {
p r i n t f ("B ") ;

22 delay_ms (10) ;
}

24 break ;
}

For your viewing entertainment, a demonstra-
tion of my breadboard prototype can be found on
Youtube.17 Complete engineering documentation,
including schematic, bill-of-materials, source code,
and layout for a small circuit board module are also
available.18

Let this PoC serve as a reminder that one should
not take anything at face value. There are an end-
less number of ways that hardware, and the elec-
tronic components within a hardware system, can
misbehave. Hopefully, this little trick will inspire
future hardware mischief and/or the development of
other sneaky circuits. If nothing else, you’re at least
armed with a snarky response for the next time some
over-confident engineer insists ICs will only work in
one direction!

17Joe Grand, Sneaky Circuit: This DIP Goes Both Ways
18unzip pocorgtfo17.pdf dipflip.zip # or at www.grandideastudio.com/portfolio/sneaky-circuits/

33

17:07 Injecting shared objects on FreeBSD with libhijack.
by Shawn Webb

In the land of red devils known as Beasties exists
a system devoid of meaningful exploit mitigations.
As we explore this vast land of opportunity, we will
meet our ELFish friends, [p]tracing their very moves
in order to hijack them. Since unprivileged process
debugging is enabled by default on FreeBSD, we can
abuse ptrace to create anonymous memory map-
pings, inject code into them, and overwrite PLT/-
GOT entries.19 We will revive a tool called libhijack
to make our nefarious activities of hijacking ELFs
via ptrace relatively easy.

Nothing presented here is technically new. How-
ever, this type of work has not been documented
in this much detail, so here I am, tying it all into
one cohesive work. In Phrack 56:7, Silvio Cesare
taught us fellow ELF research enthusiasts how to
hook the PLT/GOT.20 Phrack 59:8, on Runtime
Process Infection, briefly introduces the concept of
injecting shared objects by injecting shellcode via
ptrace that calls dlopen().21 No other piece of re-
search, however, has discovered the joys of forcing
the application to create anonymous memory map-
pings from which to inject code.

This is only part one of a series of planned ar-
ticles that will follow libhijack’s development. The
end goal is to be able to anonymously inject shared
objects. The libhijack project is maintained by the
SoldierX community.

Previous Research

All prior work injects code into the stack, the heap,
or existing executable code. All three methods cre-
ate issues on today’s systems. On AMD64 and
ARM64, the two architectures libhijack cares about,
the stack is non-executable by default. The heap
implementation on FreeBSD, jemalloc creates non-
executable mappings. Obviously overwriting exist-
ing executable code destroys a part of the executable
image.

PLT/GOT redirection attacks have proven ex-
tremely useful, so much so that read-only relocations
(RELRO) is a standard mitigation on hardened sys-
tems. Thankfully for us as attackers, FreeBSD

doesn’t use RELRO, and even if FreeBSD did, us-
ing ptrace to do devious things negates RELRO as
ptrace gives us God-like capabilities. We will see
the strength of PaX NOEXEC in HardenedBSD,
preventing PLT/GOT redirections and executable
code injections.

The Role of ELF

FreeBSD provides a nifty API for inspecting the en-
tire virtual memory space of an application. The
results returned from the API tells us the protec-
tion flags of each mapping (readable, writable, exe-
cutable.) If FreeBSD provides such a rich API, why
would we need to parse the ELF headers?

We want to ensure that we find the address of the
system call instruction in a valid memory location.22
On ARM64, we also need to keep the alignment to
eight bytes. If the execution is redirected to an im-
properly aligned instruction, the CPU will abort the
application with SIGBUS or SIGKILL. Intel-based
architectures do not care about instruction align-
ment, of course.

PLT/GOT hijacking requires parsing ELF head-
ers. One would not be able to find the PLT/GOT
without iterating through the Process Headers to
find the Dynamic Headers, eventually ending up
with the DT_PLTGOT entry.

We make heavy use of the Struct_Obj_Entry
structure, which is the second PLT/GOT entry. In-
deed, in a future version of libhijack, we will likely
handcraft our own Struct_Obj_Entry object and
insert that into the real RTLD in order to allow the
shared object to resolve symbols via normal meth-
ods.

Thus, invoking ELF early on through the pro-
cess works to our advantage. With FreeBSD’s
libprocstat API, we don’t have a need for parsing
ELF headers until we get to the PLT/GOT stage,
but doing so early makes it easier for the attacker
using libhijack, which does all the heavy lifting.

19Procedure Linkage Table/Global Offset Table
20unzip pocorgtfo17.pdf phrack56-7.txt
21unzip pocorgtfo17.pdf phrack59-8.txt
22syscall on AMD64, svc 0 on ARM64.

34

