
 1

Breaking the x86 ISA

Christopher Domas
xoreaxeaxeax@gmail.com

July 17, 2017

Abstract— A processor is not a trusted black box for running

code; on the contrary, modern x86 chips are packed full of secret

instructions and hardware bugs. In this paper, we demonstrate

how page fault analysis and some creative processor fuzzing can

be used to exhaustively search the x86 instruction set and

uncover the secrets buried in a chipset. The approach has

revealed critical x86 hardware glitches, previously unknown

machine instructions, ubiquitous software bugs, and flaws in

enterprise hypervisors.

I. OVERVIEW

ere, we introduce the first effective approach for fuzzing

the x86 instruction set. Using a page fault analysis, we've

uncovered critical x86 hardware glitches, hidden processor

instructions, ubiquitous software bugs, and flaws in enterprise

hypervisors. We explore these issues, as well as the larger

implications and risks of running software on black-box

hardware like the x86. Our work is released as a new open

source tool (sandsifter), allowing users to audit their

processors for bugs, backdoors, and hidden functionality. This

provides the first major step towards introspecting the black

box x86 processor.

II. HISTORY

We must face the unpleasant truth that our processors are

treated as trusted black boxes on which to run our software.

Yet in reality, x86's lesser known history is full of secrets and

failures: hardware flaws, from the Pentium f00f to the Cyrix

comma bugs; corporate secrets, from Intel's mysterious

"Appendix H", to the undocumented ICE execution mode on

earlier x86 designs; all the way to restricted backdoors, as with

AMD and VIA's password protected registers. This is the

motivation behind our research - an approach to discovering

the secrets and flaws built into the processors we blindly trust.

III. APPROACH

Our goal is to find a way to programmatically exhaustively

search the x86 instruction set, in order to find hidden or

undocumented instructions, as well as instruction-level flaws

like the Pentium f00f bug. To do this, we should generate a

potential x86 instruction, execute it, and observe its results.

The most significant challenge with this is in the complexity

of the x86 instruction set: x86 instructions can be 15 bytes

long - a simple iterative search is infeasible, and randomly

selecting possible instructions will only cover a tiny fraction

of the potential search space. The search space can be reduced

by only generating instructions that follow the formats

described in x86 reference manuals, but this approach will fail

to find undocumented instructions, and will miss hardware

errors that are the result of invalid instructions. To effectively

reduce the instruction search space, we propose a search

algorithm based on observing changes in instruction lengths.

The instruction search process, which we call tunneling,

runs as follows. A 15 byte buffer is generated as a potential

starting instruction; for example, for searching the complete

instruction space, we use a buffer of 15 0 bytes as the starting

candidate. The instruction is executed, and its length (in

bytes) is observed. The byte at the end of the instruction is

then incremented. For example, in the case of the 15 byte zero

buffer, the instruction will be observed to be two bytes long;

thus, the second byte is incremented, so that the buffer is now

{0x00, 0x01, 0x00, 0x00, 0x00, …}. The process is then

repeated with the new instruction. If this incrementation

results in an increase in the observed instruction length, the

resulting instruction is incremented from its new end. When

the end of an instruction has been incremented 256 times

(exhausting all possibilities for the last byte of that

instruction), the increment process moves to the previous byte

in the instruction. This technique allows effectively exploring

the meaningful search space of the x86 ISA. The less

significant portions of an instruction (such as immediate

values and displacements) are quickly skipped in the search,

since they do not change the instruction length. This allows

the fuzzing process to focus on only meaningful parts of the

instruction, such as prefixes, opcodes, and operand selection

bytes.

However, the instruction tunneling approach only works if

there is a reliable way to determine the length of an arbitrary

(potentially undocumented) x86 instruction. Since the

instruction may be undocumented, disassembling the

instruction is not an option. An alternate naïve approach to

determining instruction length is to set the x86 trap flag,

execute the instruction, and observe the difference between the

original and new instruction pointers. However, this approach

fails on instructions that throw faults – since a faulting

instruction does not execute, there is no change in the

instruction pointer when the instruction is stepped with the

trap flag. We wish to find all potentially undocumented or

flawed instructions, so exploring even faulting instructions is

critical to the approach. Additionally, if, for practical reasons,

the approach is run in one privilege ring, we may wish to

explore instructions that can only execute in more privileged

rings. For example, an instruction such as “inc eax” can

execute in ring 3 and below; an instruction such as “mov eax,

cr0” can execute in ring 0 and below; and an instruction such

as “rsm” can execute only in ring -2 (System Managemnet

Mode). For effective results, a fuzzer should be able to

identify instructions in more privileged rings, even if it cannot

actually execute those instructions.

H

 2

To effectively determine the length of even faulting

instructions, we introduce a 'page fault analysis' technique,

wherein instructions are incrementally moved across page

boundaries to induce page faults. A candidate instruction is

generated (a 15 byte value, generated by the incrementation

process described earlier), and place it in memory so that the

first byte of the instruction is on the last byte of an executable

page, and the rest of the instruction lies in a non-executable

page. The instruction is then executed. If a general protection

exception occurs during the instruction fetch, the processor

triggers the #GP interrupt, and the address of the page

boundary is reported as the exception argument. This

indicates to the fuzzing process that part of the instruction lies

in the non-executable page; any other result indicates that the

entire instruction was fetched from memory. If the fuzzer

determines that the instruction does not yet reside entirely in

executable memory, the instruction is moved back a byte, so

that the first two bytes are on an executable page, and the rest

are on the non-executable page. The process is repeated until

no #GP fault occurs, or until a #GP fault is received with an

address other than the page boundary. At this point, the

number of bytes lying in the executable page indicate the

length of the instruction.

The approach allows resolving the length even of illegal

(non-existing) instructions. For example, 9a13065b8000d7 is

an illegal instruction, but its length is known to be 7 bytes,

because this is when the processor stops decoding the

instruction. Analyzing illegal instructions opens the door to

analyzing privileged instruction: whereas an illegal instruction

will throw a #UD exception, a privileged instruction will

throw a #GP exception. By observing the type of exception

thrown, the fuzzer can differentiate between instructions that

don’t exist, versus those that exist but are restricted to more

privileged rings. Thus, even from ring 3, we can effectively

explore the instruction space of ring 0 and ring -2.

The tunneling algorithm combined with fault analysis to

resolve instruction lengths brings us close to an effective x86

instruction fuzzing approach, but other problems arise.

Foremost, in fuzzing hardware instructions, it is important to

avoid permanently corrupting the system or process state. As

a basic protection against this, we restrict the fuzzer to ring 3 –

with this, we only have to worry about the process state being

corrupted, rather than the entire system state. Analyzing the

fault type and operand still allows the fuzzer to explore

instructions in more privileged rings.

Although restricting the fuzzer to ring 3 prevents the fuzzer

from crashing the system, it is still possible for the fuzzer to

crash itself. Specifically, the process state is corrupted if a

generated instruction writes into the fuzzer’s address space.

This is overcome by initializing all registers to 0 and mapping

the NULL pointer into the fuzzing process’s memory. This

ensures that computed memory addresses such as [eax + 4 *

ecx] resolve to 0, rather than an address within the process’s

normal memory space. Mapping the page at address 0 into

memory as well allows more detailed instruction analysis for

some types of instructions. For example, without address 0

mapped, “mov eax, [ecx + 8 * edx]” will generate a #GP

exception, as will “mov cr0, eax”. Since both instructions

generate the same exceptions, the fuzzer cannot determine that

one is privileged and one is not. By mapping 0 into the

process’s address space, the unprivileged instruction can

successfully execute, allowing the fuzzer to differentiate it

from the privileged instruction. Memory accesses with a

displacement may still cause a process state corruption; for

example, “inc [0x0804a10c]” may hit the .data segment of a

32 bit process, regardless of the register initialization values.

However, as the tunneling approach for instruction searching

only manipulates a single byte of the instruction at a time, it

will explore “inc [0x0000000c]”, “inc [0x0000a100]”, “inc

[0x00040000]”, and “inc [0x08000000]”, but will never search

“inc [0x0804a10c]”. In practice, this prevents the tunneling

process from ever corrupting its own state. We also provide

an alternative fuzzing strategy via random instruction

generation. In this approach, it is possible for the fuzzing

process to become corrupted, but we have observed that in

practice, this is still extremely rare – a 32 bit process with 1

KB of writable critical program data has only a one in four

million chance of being corrupted by an arbitrary memory

access, and even then only for instructions that allow a 4 byte

displacement in the memory calculation.

The last challenge in maintaining coherent execution state is

resuming execution after an instruction is tested, and dealing

with generated branch instructions. Both issues are solved by

setting the x86 trap flag immediately prior to instruction

execution, and catching the single step interrupt. This allows

regaining control after both errant jump instructions and non-

branching instructions.

With this, we are now able to effectively explore the x86

instruction set, reducing 10^36 conceivable 15 byte

combinations down to a few million candidate instructions.

These techniques form our "sandsifter" x86 fuzzing tool,

which we release as open source. The tool calculates and

executes each candidate instruction, and compares its

observed length and fault behavior to the expected values

provided by a disassembler and architecture documentation.

Any deviations from the expected behavior are logged for

analysis.

IV. RESULTS

We ran the instruction fuzzer on dozens of x86 processors.

The tool discovered undocumented instructions in all major

processors, shared bugs in nearly every major assembler and

disassembler, flaws in enterprise hypervisors, and critical x86

hardware bugs.

On an Intel Core i7 processor running in 64 bit mode, the

following undocumented instructions were found. 0f0dxx:

this is currently documented as prefetchw for /1 (ie reg field =

1), other reg fields aren't documented, but still execute.

0f18xx: until the -061 (June 2016) version of the reference

manuals, about half of these instructions were undocumented,

but would still run (the Device Under Test was released in

2012); they're now documented as reserved nops (presumably

in place of a future instruction). 0f{1a-1f}xx: similar to

0f18xx, this doesn't appear until the -061 references, but

 3

executed at least back to Ivy Bridge. 0fae{e9-ef, f1-f7, f9-ff}:

these seem to have existed for a long time, but were

undocumented until the -051 references (June 2014) (only the

r/m field = 0 were documented). dbe0, dbe1: these execute

but do not appear in the opcode maps. df{c0-c7}: these

execute but do not appear in the opcode maps. f1: this

executes but does not appear in the opcode maps; there is a

note in SDM vol. 3 that it and d6 will not produce a #UD

(interestingly, d6 does produce a #UD, at least in Ivy Bridge).

{c0-c1, d0-d1, d2-d3}{30-37, 70-77, b0-b7, f0-f7}: these

execute, but are not in the opcode maps; we believe they are

SAL aliases. f6 /1, f7 /1: these execute, but aren't in the

opcode maps; we suspect they are aliases for the /0 version.

The tool discovered innumerable bugs in disassemblers, the

most interesting of which is a bug shared by nearly all

disassemblers. Most disassemblers will parse certain jmp (e9)

and call (e8) instructions incorrectly if they are prefixed with

an operand size override prefix (66) in a 64 bit executable. In

particular, IDA, QEMU, gdb, objdump, valgrind, Visual

Studio, and capstone were all observed to parse this

instruction differently than it actually executes. On Intel

processors executing in 64 bit mode, the 66 override prefix

appears to be ignored, and the instruction consumes a 4 byte

operand, as it does without the prefix. Most disassemblers

misinterpret the instruction to consume only a 2 byte operand

instead. This difference in instruction lengths between the

disassembled version and the version actually executed opens

opportunities for malicious software. By embedding an

opcode for a long instruction in the last two bytes of the

physical instruction, the physical instruction stream can hide

malicious code in the following instruction. Disassemblers

and emulators, thrown off by the misparsing of the initial

instruction, miss this malicious code in the following

instructions. As a demonstration, we created a program that

executes a malicious function when run on baremetal, but runs

as a benign process in QEMU. The same program, analyzed

in IDA, will appear to not execute any malicious code. The

confusion in these instructions is likely caused by differences

in AMD and Intel processors; AMD processors obey the

override prefix, only fetching a two byte operand. However,

due to AMD’s small market share, it appears tools would be

better to follow Intel’s implementation.

In terms of processor errata, the tool found issues on Intel,

Transmeta, and XXXX [PENDING DISCLOSURE]

processors. On Intel, the tool successfully found the original

Pentium f00f bug. On Transmeta, errata were found on four

byte versions of illegal instructions beginning with 0f71, 0f72,

and 0f73. When executing these instructions in combination

with randomly generated instructions, the processor will

sporadically fetch only three bytes of the four byte instructions

before generating the #UD signal. Lastly, ‘killer poke’

instructions were discovered on XXXX processors. These

instructions, executed from an unprivileged process, appear to

lock the processor entirely. The details of the instructions and

the processors affected will be enumerated when responsible

disclosure is complete, and an updated version of this

whitepaper will be released.

V. CONCLUSION

Although we treat our processors as trusted black boxes,

they are riddled with the same flaws and secrets we find in

software. With the release of the sandsifter x86 fuzzing tool

[1], the reader is encouraged to audit their own processors for

defects and hidden instructions. This work provides a critical

stepping stone towards introspecting x86 chips, and validating

the processors we all blindly trust.

[1] https://github.com/xoreaxeaxeax/sandsifter

