
16:05 Fast Cash for Useless Bugs!
by EA

Hello neighbors,
I come to you with a short story about useless

crashes turned useful.
Every one of us who has ever looked at a piece of

code looking for vulnerabilities has ended up finding
a number of situations which are more than sim-
ple bugs but just a bit too benign to be called a
vulnerability. You know, those bugs that lead to
process crashes locally, but can’t be exploited for
anything else, and don’t bring a remote server down
long enough to be called a Denial Of Service.

They come in various shapes and sizes from sim-
ple assert()s being triggered in debug builds only,
to null pointer dereferences (on certain platforms),
to recursive stack overflows and many others. Some
may be theoretically exploitable on obscure plat-
form where conditions are just right. I’m not talk-
ing about those here, those require different treat-
ment.12

The ones I’m talking about are the ones we are
dead sure can’t be abused and by that virtue might
have quite a long life. I’m talking about all those
hundreds of thousands of null pointer dereferences
in MS Office that plagued anybody who dared fuzz
it, about unbounded recursions in PDF renderers,
and infinite loops in JavaScript engines. Are they
completely useless or can we squeeze just a tiny bit

of purpose from their existence?
As I advise everybody should, I’ve been keep-

ing these around, neatly sorting them by target and
keeping track of which ones died. I wouldn’t say I’ve
been stockpiling them, but it would be a waste to
just throw them away, wouldn’t it?

Anyway, here are some of my uses for these use-
less crashes – including a couple of examples, all
dealing with file formats, but you can obviously gen-
eralize.

Testing Debug/Fuzzing Harness The first use
I came up with for long lived, useless crashes in
popular targets is testing debugging or fuzzing har-
nesses. Say I wrote a new piece of code that is sup-
posed to catch crashes in Flash that runs in the con-
text of a browser. How can I be sure my tool actu-
ally catches crashes if I don’t have a proper crashing
testcase to test it with?

Of course CDB catches this, but would your cus-
tom harness? It’s simple enough to test. From
a standpoint of a debugger, crashing due to null
pointer dereference or heap overflow is the same.
It’s all an “Access Violation” until you look more
closely – and it’s always better to test on the actual
thing than on a synthetic example.

cdb f lashplayer_26_sa . exe f l a sh_cra she r . swf
2 CommandLine : f lashplayer_26_sa . exe f l a sh_cra she r . swf

(784 . f 3 c) : Break i n s t r u c t i o n except ion − code 80000003 (f i r s t chance)
4 eax=00000000 ebx=00000000 ecx=001 e f418 edx=777 f6c74 e s i= f f f f f f f e ed i =00000000

e ip=778505d9 esp=001 e f434 ebp=001 e f460 i o p l=0 nv up e i p l z r na pe nc
6 cs=001b s s=0023 ds=0023 es=0023 f s =003b gs=0000 e f l =00000246

n t d l l ! LdrpDoDebuggerBreak+0x2c :
8 778505d9 cc i n t 3

0:000> g
10 (784 . f 3 c) : Access v i o l a t i o n − code c0000005 (f i r s t chance)

F i r s t chance except i ons are repor ted be f o r e any except ion handl ing .
12 This except ion may be expected and handled .
∗∗∗ ERROR: Symbol f i l e not found . Defaulted to export symbols f o r FlashPlayer . exe −

14 eax=00f6c3d0 ebx=00000000 ecx=00000000 edx=0372b17d e s i =00000000 ed i=02d1b020
e ip=0187b6c9 esp=001eb490 ebp=00f6c3d0 i o p l=0 nv up e i p l nz na po nc

16 cs=001b s s=0023 ds=0023 es=0023 f s =003b gs=0000 e f l =00010202
FlashPlayer ! IAEModule_IAEKernel_UnloadModule+0x25a559 :

18 0187 b6c9 8b11 mov edx , dword ptr [ecx] ds :0023:00000000=????????
0:000>

12The author has generously donated a collection of useless bugs. unzip pocorgtfo16.pdf useless_crashers.zip and then
extract that archive with a password of “pocorgtfo”.

18

Test for Library Inclusion Ok, what else can
we do? Another instance of use for useless crashes
that I’ve found is in identifying if certain library is
embedded in some binary you don’t have source or
symbols for. Say an application renders TIFF im-
ages, and you suspect it might be using libtiff and
be in OSS license violation as it’s license file never
mentions it. Try to open a useless libtiff crash in it,
if it crashes chances are it does indeed use libtiff.
A more interesting example might be some piece
of code for PDF rendering. There are many many
closed and open source PDF SDKs out there, what
are the chances that the binary you are looking at
employs it’s own custom PDF parser as opposed to
Poppler, MuPDF, PDFium or Foxit SDKs?

Leadtools, for example, is an imaging SDK that
supports indexing PDF documents. Let’s test it:

1 $. / t e s t i n g /LEADTOOLS19/Bin/Lib/x64/ l f c \
. / f ox i t_c ra she r / . / junk/ −m a

3 Error −9 g e t t i n g f i l e in fo rmat ion from
./ f ox i t_c ra she r /8 c . . . d174b1f189 . pdf

5 $

The test crash for Foxit doesn’t seem to crash it,
instead it just spits out an error. Let’s try another
one:

1 $. / t e s t i n g /LEADTOOLS19/Bin/Lib/x64/ l f c \
. / mupdf_crasher/ . / junk/ −m a

3 l f c : draw−path . c : 5 2 0 : fz_add_line_join :
Assert " Inva l i d l i n e j o i n "==0 f a i l e d .

5 Aborted (core dumped)
$

Would you look at that; it’s an assertion failure
so we get a bit of code path, too! Doing a simple
lookup confirms that this code indeed comes from
MuPDF which Leadtools embeds.

As another example, there is a tool called
PSPDFKit13 which is more complete PDF manipu-
lation SDK (as opposed to PDFKit) for macOS and
iOS. Do they rely on PDFKit at all or on something
completely different? Let’s try with their demo ap-
plication.

(l l db) t a r g e t c r e a t e "PSPDFCatalog"
2 Current executab l e s e t to ’PSPDFCatalog ’ .

(l l db) r pd fk i t_crasher . pdf
4 Process 53349 launched : ’PSPDFCatalog ’

Process 53349 ex i t ed with s t a tu s = 0
6 (l l db)

Nothing out of the ordinary, so let’s try another
test.

(l l db) r pdfium_crasher . pdf
2 Process 53740 launched : ’PSPDFCatalog−macOS ’

Process 53740 stopped
4 ∗ thread #2: t i d = 0x2060fc , . . .

s top reason = EXC_BAD_ACCESS
6 (code=2, address=0x700009a76fc8)

l ibsystem_mal loc . dyl ib ‘
8 szone_malloc_should_clear :
−>0x7 f f f 9737946d +395: c a l l q 0 x7 f f f 9737a770

10 ; t iny_mal loc_from_free_l ist
0 x7 f f f 97379472 <+400>: movq %rax , %r9

12 0 x7 f f f 97379475 <+403>: t e s t q %r9 , %r9
0 x7 f f f 97379478 <+406>: movq %r12 , %rbx

Now ain’t that neat! It seems like PSPDFKit
actually uses PDFium under the hood. Now we can
proceed to dig into the code a bit and actually con-
firm this (in this case their license also confirms this
conclusion).

13Version 2017-08-23 23-34-32 shown here.

19

What else could we possibly use crashes like
these for? These could also be useful to construct
a sort of oracle when we are completely blind as to
what piece of code is actually running on the other
side. And indeed, some folks have used this before
when attacking different online services, not unlike
Chris Evans’ excellent writeup.14 What would hap-
pen if you try to preview above mentioned PDFs
in Google Docs, Dropbox, Owncloud, or any other
shiny web application? Could you tell what those
are running? Well that could be useful, couldn’t it?
I wouldn’t call these tests conclusive, but it’s a good
start.

I’ll finish this off with a simple observation. No
one seems to care about crashes due to infinite re-
cursion and those tend to live longest, followed of
course by null pointer dereferences, so one of either
of those is sure to serve you for quite some time.
At least that has been the case in my very humble
experience.

14Black Box Discovery of Memory, Scary Beast Security blog, March 2017.

20

