
Document Number: MD00076
Revision 0.96

November 12, 2001

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

MIPS32™ Architecture for Programmers
Volume IV-a: The MIPS16e™

Application-Specific Extension to the MIPS32™
Architecture

Copyright © 2000-2001 MIPS Technologies, Inc. All rights reserved.

Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies”). Any
copying, modifyingor use of this information (in whole or in part) which is not expressly permitted in writing by MIPS
Technologies or a contractually-authorized third party is strictly prohibited. At a minimum, this information is protected
under unfair competition laws and the expression of the information contained herein is protected under federal
copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in
this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
the application or use of this information. Any license under patent rights or any other intellectual property rights owned
by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third
party in a separate license agreement between the parties.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or any contractually-authorized third party.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies, Inc., and
R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MDMX,
SmartMIPS, 4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CoreLV
and MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

...
Table of Contents

Chapter 1 About This Book ..1
1.1 Typographical Conventions ...1

1.1.1 Italic Text ...1
1.1.2 Bold Text ...1
1.1.3 Courier Text ...1

1.2 UNPREDICTABLE and UNDEFINED ..2
1.2.1 UNPREDICTABLE...2
1.2.2 UNDEFINED...2

1.3 Special Symbols in Pseudocode Notation..2
1.4 For More Information ..5

Chapter 2 Guide to the Instruction Set ..7
2.1 Understanding the Instruction Fields ...7

2.1.1 Instruction Fields ...8
2.1.2 Instruction Descriptive Name and Mnemonic ...9
2.1.3 Format Field...9
2.1.4 Purpose Field ...10
2.1.5 Description Field..10
2.1.6 Restrictions Field ...10
2.1.7 Operation Field ..11
2.1.8 Exceptions Field...11
2.1.9 Programming Notes and Implementation Notes Fields ...11

2.2 Operation Section Notation and Functions ..12
2.2.1 Instruction Execution Ordering..12
2.2.2 Pseudocode Functions..12

2.3 Op and Function Subfield Notation ...20
2.4 FPU Instructions ..20

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture .. 21
3.1 Base Architecture Requirements..21
3.2 Software Detection of the ASE..21
3.3 MIPS16e Overview..21
3.4 MIPS16e ASE Features ...22
3.5 MIPS16e Register Set ..22
3.6 MIPS16e ISA Modes ...23

3.6.1 Modes Available in the MIPS16e Architecture ...23
3.6.2 Defining the ISA Mode Field ..24
3.6.3 Switching Between Modes When an Exception Occurs..24
3.6.4 Using MIPS16e Jump Instructions to Switch Modes ..24

3.7 JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode ...25
3.8 MIPS16e Instruction Summaries ...25
3.9 MIPS16e PC-Relative Instructions ..29
3.10 MIPS16e Extensible Instructions...29
3.11 MIPS16e Implementation-Definable Macro Instructions..31
3.12 MIPS16e Jump and Branch Instructions..31
3.13 MIPS16e Instruction Formats ..31

3.13.1 I-type instruction format ..33
3.13.2 RI-type instruction format..33
3.13.3 RR-type instruction format ..33
3.13.4 RRI-type instruction format...33
3.13.5 RRR-type instruction format..33
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 i

.....
....
......

.....
3.13.6 RRI-A type instruction format ...33
3.13.7 Shift instruction format ..33
3.13.8 I8-type instruction format ..33
3.13.9 I8_MOVR32 instruction format (used only by the MOVR32 instruction) ..33
3.13.10 I8_MOV32R instruction format (used only by MOV32R instruction) ...34
3.13.11 I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)..............................34
3.13.12 JAL and JALX instruction format ...34
3.13.13 EXT-I instruction format ...34
3.13.14 ASMACRO instruction format ..34
3.13.15 EXT-RI instruction format...34
3.13.16 EXT-RRI instruction format ..34
3.13.17 EXT-RRI-A instruction format..34
3.13.18 EXT-SHIFT instruction format..34
3.13.19 EXT-I8 instruction format ...35
3.13.20 EXT-I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)......................35

3.14 Instruction Bit Encoding ..35
3.15 MIPS16e Instruction Stream Organization and Endianness ..37

Chapter 4 The MIPS16e™ ASE Instruction Set ...39
4.1 MIPS16e Instruction Descriptions ...39

4.1.1 MIPS16e-Specific Pseudocode Functions ...39

Appendix A Revision History ...151
ii MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 iii

List of Figures

Figure 2-1: Example of Instruction Description ..8
Figure 2-2: Example of Instruction Fields ...9
Figure 2-3: Example of Instruction Descriptive Name and Mnemonic ...9
Figure 2-4: Example of Instruction Format..9
Figure 2-5: Example of Instruction Purpose ..10
Figure 2-6: Example of Instruction Description ..10
Figure 2-7: Example of Instruction Restrictions ..11
Figure 2-8: Example of Instruction Operation ...11
Figure 2-9: Example of Instruction Exception...11
Figure 2-10: Example of Instruction Programming Notes...12
Figure 2-11: COP_LW Pseudocode Function..13
Figure 2-12: COP_LD Pseudocode Function...13
Figure 2-13: COP_SW Pseudocode Function..13
Figure 2-14: COP_SD Pseudocode Function...14
Figure 2-15: AddressTranslation Pseudocode Function ..14
Figure 2-16: LoadMemory Pseudocode Function..15
Figure 2-17: StoreMemory Pseudocode Function ...15
Figure 2-18: Prefetch Pseudocode Function ..16
Figure 2-19: ValueFPR Pseudocode Function ...17
Figure 2-20: StoreFPR Pseudocode Function ..18
Figure 2-21: SyncOperation Pseudocode Function..18
Figure 2-22: SignalException Pseudocode Function ...19
Figure 2-23: NullifyCurrentInstruction PseudoCode Function..19
Figure 2-24: CoprocessorOperation Pseudocode Function..19
Figure 2-25: JumpDelaySlot Pseudocode Function ...19
Figure 2-26: FPConditionCode Pseudocode Function...20
Figure 2-27: SetFPConditionCode Pseudocode Function..20
Figure 4-1: Xlat Pseudocode Function...39

iv MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

List of Tables

Table 1-1: Symbols Used in Instruction Operation Statements ..3
Table 2-1: AccessLength Specifications for Loads/Stores ...16
Table 3-1: MIPS16e General-Purpose Registers ..22
Table 3-2: MIPS16e Special-Purpose Registers ...23
Table 3-3: ISA Mode Bit Encodings...24
Table 3-4: MIPS16e Load and Store Instructions ..26
Table 3-5: MIPS16e Save and Restore Instructions..26
Table 3-6: MIPS16e ALU Immediate Instructions ...26
Table 3-7: MIPS16e Arithmetic One, Two or Three Operand Register Instructions ...26
Table 3-8: MIPS16e Special Instructions..28
Table 3-9: MIPS16e Multiply and Divide Instructions...28
Table 3-10: MIPS16e Jump and Branch Instructions ...28
Table 3-11: MIPS16e Shift Instructions..28
Table 3-12: Implementation-Definable Macro Instructions..29
Table 3-13: PC-Relative MIPS16e Instructions ...29
Table 3-14: PC-Relative Base Used for Address Calculation ..29
Table 3-15: MIPS16e Extensible Instructions ...30
Table 3-16: MIPS16e Instruction Fields ...32
Table 3-17: Symbols Used in the Instruction Encoding Tables..35
Table 3-18: MIPS16e Encoding of the Opcode Field ...36
Table 3-19: MIPS16e JAL(X) Encoding of the x Field ..36
Table 3-20: MIPS16e SHIFT Encoding of the f Field ..36
Table 3-21: MIPS16e RRI-A Encoding of the f Field ..36
Table 3-22: MIPS16e I8 Encoding of the funct Field...36
Table 3-23: MIPS16e RRR Encoding of the f Field ...37
Table 3-24: MIPS16e RR Encoding of the Funct Field ..37
Table 3-25: MIPS16e I8 Encoding of the s Field when funct=SVRS ..37
Table 3-26: MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C) ...37
Table 3-27: MIPS16e RR Encoding of the ry Field when funct=CNVT..37

32™

of the

t

by

ion
Chapter 1

About This Book

The MIPS32™ Architecture for Programmers Volume IV-a comes as a multi-volume set.

• Volume I describes conventions used throughout the document set, and provides an introduction to the MIPS
Architecture

• Volume II provides detailed descriptions of each instruction in the MIPS32™ instruction set

• Volume III describes the MIPS32™ Privileged Resource Architecture which defines and governs the behavior
privileged resources included in a MIPS32™ processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32™ Architecture and is not
applicable to the MIPS32™ document set

• Volume IV-c describes the MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture and is no
applicable to the MIPS32™ document set

• Volume IV-d describes the SmartMIPS™Application-Specific Extension to the MIPS32™ Architecture

1.1 Typographical Conventions

This section describes the use ofitalic, bold andcourier fonts in this book.

1.1.1 Italic Text

• is used foremphasis

• is used forbits, fields, registers, that are important from a software perspective (for instance, address bits used
software, and programmable fields and registers), and variousfloating point instruction formats, such asS, D, andPS

• is used for the memory access types, such ascached anduncached

1.1.2 Bold Text

• represents a term that is beingdefined

• is used forbits andfields that are important from a hardware perspective (for instance,register bits, which are not
programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance,5..1 indicates numbers 5 through 1

• is used to emphasizeUNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruct
pseudocode.
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 1

Chapter 1 About This Book

ions
.

, or

ated,

ry

 is

process

here is
ocessor

tation
1.2 UNPREDICTABLE and UNDEFINED

The termsUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases.UNDEFINED behavior or operations can occur only as the result of executing instruct
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register)
Unprivileged software can never causeUNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can causeUNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generatingUNPREDICTABLE results must not depend on any data source (memo
or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
inaccessible in the current processor mode. For example,UNPREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction.UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue.UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which t
no exit other than powering down the processor). The assertion of any of the reset signals must restore the pr
to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language no
resembling Pascal. Special symbols used in the pseudocode notation are listed inTable 1-1.
2 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

1.3 Special Symbols in Pseudocode Notation

ary
 is

ness
Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed byy copies of the single-bit valuex

b#n
A constant valuen in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the bin
value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix
omitted, the default base is 10.

xy..z
Selection of bitsy throughzof bit stringx. Little-endian bit notation (rightmost bit is 0) is used. Ify is less than
z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

∗, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose registerx. The content ofGPR[0] is always zero.

FPR[x] Floating Point operand registerx

FCC[CC] Floating Point condition code CC.FCC[0] has the same value asCOC[1].

FPR[x] Floating Point (Coprocessor unit 1), general registerx

CPR[z,x,s] Coprocessor unitz, general registerx, select s

CCR[z,x] Coprocessor unitz, control registerx

COC[z] Coprocessor unitz condition signal

Xlat[x] Translation of the MIPS16e GPR numberx into the corresponding 32-bit GPR number

BigEndianMem
Endian mode as configured at chip reset (0→Little-Endian, 1→ Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endian
of Kernel and Supervisor mode execution.
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 3

Chapter 1 About This Book

, and

turn

e

me

led

h an
n

t
icular

n
g a

tion)

sical

-bit
PRs

nch or

 not

ment
e

BigEndianCPU
The endianness for load and store instructions (0→ Little-Endian, 1→ Big-Endian). In User mode, this
endianness may be switched by setting theREbit in theStatusregister. Thus, BigEndianCPU may be computed
as (BigEndianMem XOR ReverseEndian).

ReverseEndian
Signal to reverse the endianness of load and store instructions. This feature is available in User mode only
is implemented by setting theREbit of theStatusregister. Thus, ReverseEndian may be computed as (SRREand
User mode).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write.LLbit is set
when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other CPU
operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception re
instructions.

I :,
I+n :,
I-n :

This occurs as a prefix toOperation description lines and functions as a label. It indicates the instruction tim
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a ti
label ofI . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections labe
with the instruction time, relative to the current instructionI , in which the effect of that pseudocode appears to
occur. For example, an instruction may have a result that is not available until after the next instruction. Suc
instruction has the portion of the instruction operation description that writes the result register in a sectio
labeledI+1.

The effect of pseudocode statements for the current instruction labelledI+1 appears to occur “at the same time”
as the effect of pseudocode statements labeledI for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for differen
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a part
order of evaluation between such sections.

PC

TheProgram Countervalue. During the instruction time of an instruction, this is the address of the instructio
word. The address of the instruction that occurs during the next instruction time is determined by assignin
value toPC during an instruction time. If no value is assigned toPC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc
or 4 before the next instruction time. A taken branch assigns the target address to thePCduring the instruction
time of the instruction in the branch delay slot.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phy
address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32 32
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-bit F
in which 64-bit data types are stored in any FPR.

In MIPS32 implementations,FP32RegistersModeis always a 0. MIPS64 implementations have a compatibility
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32RegisterModeis computed from the FR bit in theStatusregister. If this bit is a 0, the processor operates
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value ofFP32RegistersMode is computed from the FR bit in theStatus register.

InstructionInBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a bra
jump. This condition reflects thedynamic state of the instruction, not thestatic state. That is, the value is false
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is
executed in the delay slot of a branch or jump.

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argu
parameter as an exception-specific argument). Control does not return from this pseudocode function - th
exception is signaled at the point of the call.

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
4 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

1.4 For More Information

URL:
1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS

http://www.mips.com

Comments or questions on the MIPS32™ Architecture or this document should be directed to

Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 5

Chapter 1 About This Book
6 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

etical
Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphab
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2-1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 8

• “Instruction Descriptive Name and Mnemonic” on page 9

• “Format Field” on page 9

• “Purpose Field” on page 10

• “Description Field” on page 10

• “Restrictions Field” on page 10

• “Operation Field” on page 11

• “Exceptions Field” on page 11

• “Programming Notes and Implementation Notes Fields” on page 11
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 7

Chapter 2 Guide to the Instruction Set

wing

f

Figure 2-1 Example of Instruction Description

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follo
rules are followed:

0

Example Instruction Name EXAMPLE

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 EXAMPLE

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Format: EXAMPLE rd, rs,rt MIPS32

Purpose: to execute an EXAMPLE op

Description: rd ← rs exampleop rt
This section describes the operation of the instruction in text, tables, and
illustrations. It includes information that would be difficult to encode in the
Operation section.

Restrictions:
This section lists any restrictions for the instruction. This can include values of the
instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory
access for addressed locations.

Operation:
/* This section describes the operation of an instruction in a */
/* high-level pseudo-language. It is precise in ways that the */
/* Description section is not, but is also missing information */
/* that is hard to express in pseudocode.*/

temp ← GPR[rs] exampleop GPR[rt]
GPR[rd] ← temp

Exceptions:
A list of exceptions taken by the instruction

Programming Notes:
Information useful to programmers, but not necessary to describe the operation o
the instruction

Implementation Notes:
Like Programming Notes, except for processor implementors

Instruction Mnemonic
and Descriptive Name

Instruction encoding
constant and variable
field names and values

Architecture level at
which instruction was
defined/redefined and
assembler format(s) for
each definition

Short description

Symbolic description

Full description of
instruction operation

Restrictions on
instruction and
operands

High-level language
description of instruction
operation

Exceptions that
instruction can cause

Notes for programmers

Notes for implementors
8 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

2.1 Understanding the Instruction Fields

ed are
ded
e
vious
xtended

The
at which
as

eses.

ed data
• The values of constant fields and theopcode names are listed in uppercase (SPECIAL and ADD inFigure 2-2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt andrd in Figure 2-2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 inFigure 2-2). If
such fields are set to non-zero values, the operation of the processor isUNPREDICTABLE .

Figure 2-2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown inFigure
2-3.

Figure 2-3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defin
given in theFormatfield. If the instruction definition was later extended, the architecture levels at which it was exten
and the assembler formats for the extended definition are shown in their order of extension (for an example, se
C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre
levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the e
architecture.

Format: ADD rd, rs, rt MIPS32 (MIPS I)

Figure 2-4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters.
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level
the instruction was first defined, for example “MIPS32” is shown at the right side of the page. If the instruction w
originally defined in the MIPS I through MIPS V levels of the architecture, that information is enclosed in parenth

There can be more than one assembler format for each architecture level. Floating point operations on formatt
show an assembly format with the actual assembler mnemonic for each valid value of thefmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Add Word ADD
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 9

Chapter 2 Guide to the Instruction Set

s (once

n.

 and

ription

one

ards for
The assembler format lines sometimes include parenthetical comments to help explain variations in the format
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Purpose:

To add 32-bit integers. If an overflow occurs, then trap.

Figure 2-5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of theDescription
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operatio

Description: rd ← rs + rt

The 32-bit word value in GPRrt is added to the 32-bit value in GPRrs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified
an Integer Overflow exception occurs

• If the addition does not overflow, the 32-bit result is placed into GPRrd

Figure 2-6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This desc
complements the high-level language description in theOperation section.

This section uses acronyms for register descriptions. “GPRrt” is CPU general-purpose register specified by the
instruction fieldrt. “FPR fs” is the floating point operand register specified by the instruction fieldfs. “CP1 registerfd”
is the coprocessor 1 general register specified by the instruction fieldfd. “FCSR” is the floating pointControl /Status
register.

2.1.6 Restrictions Field

TheRestrictionsfield documents any possible restrictions that may affect the instruction. Most restrictions fall into
of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD.fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see DADD)

• Valid operand formats (for example, see floating point ADD.fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline haz
which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)
10 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

2.1 Understanding the Instruction Fields

tation

tion of a
ship
Restrictions:

None

Figure 2-7 Example of Instruction Restrictions

2.1.7 Operation Field

TheOperation field describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. This formal description complements theDescription section; it is not complete in itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation:

temp ← (GPR[rs] 31||GPR[rs] 31..0) + (GPR[rt] 31||GPR[rt] 31..0)
if temp 32 ≠ temp 31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Figure 2-8 Example of Instruction Operation

See Section 2.2 , "Operation Section Notation and Functions" on page 12 for more information on the formal no
used here.

2.1.8 Exceptions Field

TheExceptionsfield lists the exceptions that can be caused byOperationof the instruction. It omits exceptions that can
be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by
asynchronous external events such as an Interrupt. Although a Bus Error exception may be caused by the opera
load or store instruction, this section does not list Bus Error for load and store instructions because the relation
between load and store instructions and external error indications, like Bus Error, are dependent upon the
implementation.

Exceptions:

Integer Overflow

Figure 2-9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in theExceptions section.

2.1.9 Programming Notes and Implementation Notes Fields
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 11

Chapter 2 Guide to the Instruction Set

ot

. Specific

ed

ode more
include

essor
nd how

into the

a load
ord in
TheNotes sections contain material that is useful for programmers and implementors, respectively, but that is n
necessary to describe the instruction and does not belong in the description sections.

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

Figure 2-10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, theOperationsection uses a high-level language notation to describe the operation
performed by each instruction. Special symbols used in the pseudocode are described in the previous chapter
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 12

• “Pseudocode Functions” on page 12

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in theOperations section are executed sequentially (except as constrain
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudoc
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
the following:

• “Coprocessor General Register Access Functions” on page 12

• “Load Memory and Store Memory Functions” on page 14

• “Access Functions for Floating Point Registers” on page 16

• “Miscellaneous Functions” on page 18

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coproc
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it a
a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted
functions described in this section.

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during
word operation. The action is coprocessor-specific. The typical action would be to store the contents of memw
coprocessor general registerrt.
12 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

2.2 Operation Section Notation and Functions

during
nts of

eration.

f the
COP_LW (z, rt, memword)
z: The coprocessor unit number
rt : Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

Figure 2-11 COP_LW Pseudocode Function

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the conte
memdouble in coprocessor general registerrt.

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt : Coprocessor general register specifier
memdouble : 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD

Figure 2-12 COP_LD Pseudocode Function

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word op
The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general registerrt.

dataword ← COP_SW (z, rt)
z: The coprocessor unit number
rt : Coprocessor general register specifier
dataword : 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

Figure 2-13 COP_SW Pseudocode Function

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store
doubleword operation. The action is coprocessor-specific. The typical action would be to supply the contents o
low-order doubleword in coprocessor general registerrt.
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 13

Chapter 2 Guide to the Instruction Set

st byte
dian

irtual
e
f
ly from

gorithm,

s
.
 the
not
datadouble ← COP_SD (z, rt)
z: The coprocessor unit number
rt : Coprocessor general register specifier
datadouble : 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

Figure 2-14 COP_SD Pseudocode Function

2.2.2.2 Load Memory and Store Memory Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smalle
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-en
ordering this is the least-significant byte.

In theOperation pseudocode for load and store operations, the following functions summarize the handling of v
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in th
AccessLengthfield. The valid constant names and values are shown inTable 2-1. The bytes within the addressed unit o
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined direct
theAccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cache coherence al
describing the mechanism used to resolve the memory reference.

Given the virtual addressvAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the reference. If the virtual addres
is in one of the unmapped address spaces, the physical address andCCAare determined directly by the virtual address
If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU determines
physical address and access type; if the required translation is not present in the TLB or the desired access is
permitted, the function fails and an exception is taken.

(pAddr, CCA) ← AddressTranslation (vAddr, IorD, LorS)

/* pAddr : physical address */
/* CCA: Cache Coherence Algorithm, the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr : virtual address */
/* IorD : Indicates whether access is for INSTRUCTION or DATA */
/* LorS : Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

Figure 2-15 AddressTranslation Pseudocode Function

LoadMemory

The LoadMemory function loads a value from memory.
14 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

2.2 Operation Section Notation and Functions

type
mory

ntire

ry)

t are

d.
This action uses cache and main memory as specified in both the Cache Coherence Algorithm (CCA) and the access
(IorD) to find the contents ofAccessLengthmemory bytes, starting at physical locationpAddr. The data is returned in a
fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address and the
AccessLengthindicate which of the bytes withinMemElemneed to be passed to the processor. If the memory access
of the reference isuncached, only the referenced bytes are read from memory and marked as valid within the me
element. If the access type iscachedbut the data is not present in cache, an implementation-specificsizeandalignment
block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this block is the e
memory element.

MemElem ← LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cache Coherence Algorithm, the method used to access caches */
/* and memory and resolve the reference */

/* AccessLength : Length, in bytes, of access */
/* pAddr : physical address */
/* vAddr : virtual address */
/* IorD : Indicates whether access is for Instructions or Data */

endfunction LoadMemory

Figure 2-16 LoadMemory Pseudocode Function

StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical locationpAddrusing the memory hierarchy (data caches and main memo
as specified by the Cache Coherence Algorithm (CCA). TheMemElem contains the data for an aligned, fixed-width
memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the bytes tha
actually stored to memory need be valid. The low-order two (or three) bits ofpAddrand theAccessLengthfield indicate
which of the bytes within theMemElem data should be stored; only these bytes in memory will actually be change

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength : Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr : physical address */
/* vAddr : virtual address */

endfunction StoreMemory

Figure 2-17 StoreMemory Pseudocode Function

Prefetch

The Prefetch function prefetches data from memory.
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 15

Chapter 2 Guide to the Instruction Set

crease

erpreted
load
Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may in
performance but must not change the meaning of the program or alter architecturally visible state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr : physical address */
/* vAddr : virtual address */
/* DATA: Indicates that access is for DATA */
/* hint : hint that indicates the possible use of the data */

endfunction Prefetch

Figure 2-18 Prefetch Pseudocode Function

Table 2-1 lists the data access lengths and their labels for loads and stores.

2.2.2.3 Access Functions for Floating Point Registers

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are int
to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
(uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Table 2-1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)
16 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

2.2 Operation Section Notation and Functions

o CP1
ctions.
fferent
value ← ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR ← FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (fpr 0 ≠ 0) then

valueFPR ← UNPREDICTABLE
else

valueFPR ← FPR[fpr +1] || FPR[fpr]
endif

DEFAULT:
valueFPR ← UNPREDICTABLE

endcase
endfunction ValueFPR

Figure 2-19 ValueFPR Pseudocode Function

StoreFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored int
registers by a computational or move operation. This binary representation is visible to store or move-from instru
Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a di
format.
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 17

Chapter 2 Guide to the Instruction Set
StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr] ← value

D, UNINTERPRETED_DOUBLEWORD:
if (fpr 0 ≠ 0) then

UNPREDICTABLE
else

FPR[fpr] ← value
FPR[fpr +1] ← value

endif

endcase

endfunction StoreFPR

Figure 2-20 StoreFPR Pseudocode Function

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated bystype occur in the same order for all
processors.

SyncOperation(stype)

/* stype : Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

Figure 2-21 SyncOperation Pseudocode Function

SignalException

The SignalException function signals an exception condition.
18 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

2.2 Operation Section Notation and Functions

a return

 its

TRUE
L,
This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees
from this function call.

SignalException(Exception, argument)

/* Exception : The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

Figure 2-22 SignalException Pseudocode Function

NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted. For branch-likely instructions, nullification kills the instruction in the delay slot during
execution.

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

Figure 2-23 NullifyCurrentInstruction PseudoCode Function

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun : Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

Figure 2-24 CoprocessorOperation Pseudocode Function

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the four PC-relative instructions. The function returns
if the instruction atvAddr is executed in a jump delay slot. A jump delay slot always immediately follows a JR, JA
JALR, or JALX instruction.

JumpDelaySlot(vAddr)

/* vAddr :Virtual address */

endfunction JumpDelaySlot

Figure 2-25 JumpDelaySlot Pseudocode Function

FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 19

Chapter 2 Guide to the Instruction Set

is
,
tains

 in

 For
to a

S16e
tf ←FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode ← FCSR23

else
FPConditionCode ← FCSR24+cc

endif

endfunction FPConditionCode

Figure 2-26 FPConditionCode Pseudocode Function

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

SetFPConditionCode(cc)
if cc = 0 then

FCSR ← FCSR31..24 || tf || FCSR 22..0
else

FCSR ← FCSR31..25+cc || tf || FCSR 23+cc..0
endif

endfunction SetFPConditionCode

Figure 2-27 SetFPConditionCode Pseudocode Function

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfieldsopand functioncan have constant 5- or 6-bit values. When reference
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction
op=COP1 andfunction=ADD. In other cases, a single field has both fixed and variable subfields, so the name con
both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such asfs, ft,
immediate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown
uppercase.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions.
example,rs=basein the format for load and store instructions. Such an alias is always lowercase since it refers
variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIP
instructions.

See Section 2.3 , "Op and Function Subfield Notation" on page 20 for a description of theop andfunction subfields.
20 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

o the

or

 and
e ASE.

n of the

is
Chapter 3

The MIPS16e™ Application-Specific Extension to the MIPS32™
Architecture

This chapter describes the purpose and key features of the MIPS16e™ Application-Specific Extension (ASE) t
MIPS32™ Architecture. The MIPS16e ASE is an enhancement to the previous MIPS16™ ASE which provides
additional instructions to improve the compaction of the code.

3.1 Base Architecture Requirements

The MIPS16e ASE requires the following base architecture support:

• The MIPS32 or MIPS64 Architecture: The MIPS16e ASE requires a compliant implementation of the MIPS32
MIPS64 Architecture.

3.2 Software Detection of the ASE

Software may determine if the MIPS16e ASE is implemented by checking the state of the CA bit in theConfig1 CP0
register.

3.3 MIPS16e Overview

The MIPS16e ASE allows embedded designs to substantially reduce system cost by reducing overall memory
requirements. The MIPS16e ASE is compatible with any combination of the MIPS32 or MIPS64 Architectures,
existing MIPS binaries can be run without modification on any embedded processor implementing the MIPS16

The MIPS16e ASE must be implemented as part of a MIPS based host processor that includes an implementatio
MIPS Privileged Resource Architecture, and the other components in a typical MIPS based system.

This volume describes only the MIPS16e ASE, and does not include information about any specific hardware
implementation such as processor-specific details, because these details may vary with implementation. For th
information, please refer to the specific processor’s user manual.

This chapter presents specific information about the following topics:

• “MIPS16e ASE Features” on page 22

• “MIPS16e Register Set” on page 22

• “MIPS16e ISA Modes” on page 23

• “JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode” on page 25

• “MIPS16e Instruction Summaries” on page 25

• “MIPS16e PC-Relative Instructions” on page 29

• “MIPS16e Extensible Instructions” on page 29

• “MIPS16e Implementation-Definable Macro Instructions” on page 31
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 21

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

ctions
rations

ble

g

.

• “MIPS16e Jump and Branch Instructions” on page 31

• “MIPS16e Instruction Formats” on page 31

• “Instruction Bit Encoding” on page 35

• “MIPS16e Instruction Stream Organization and Endianness” on page 37

3.4 MIPS16e ASE Features

The MIPS16e ASE includes the following features:

• allows MIPS16e instructions to be intermixed with existing MIPS instruction binaries

• is compatible with the MIPS32 and MIPS64 instruction sets

• allows switching between MIPS16e and 32-bit MIPS Mode

• supports 8, 16, 32, and 64-bit data types (64-bit only in conjunction with MIPS64)

• defines eight general-purpose registers, as well as a number of special-purpose registers

• defines special instructions to increase code density (Extend, PC-relative instructions)

The MIPS16e ASE contains some instructions that are available on MIPS64 host processors only. These instru
must cause a Reserved Instruction exception on 32-bit processors, or on 64-bit processors on which 64-bit ope
have not been enabled.

3.5 MIPS16e Register Set

The MIPS16e register set is listed inTable 3-1andTable 3-2. This register set is a true subset of the register set availa
in 32-bit mode; the MIPS16e ASE can directly access 8 of the 32 registers available in 32-bit mode.

In addition to the eight general-purpose registers, 0-7, listed inTable 3-1, specific instructions in the MIPS16e ASE
reference the stack pointer register (sp), the return address register (ra), the condition code register (t8), and the program
counter (PC). Of these,Table 3-1listssp, ra, andt8, andTable 3-2lists the MIPS16e special-purpose registers, includin
PC.

The MIPS16e ASE also contains two move instructions that provide access to all 32 general-purpose registers

Table 3-1 MIPS16e General-Purpose Registers

MIPS16e
Register

Encodinga

32-Bit MIPS
Register

Encodingb

Symbolic
Name
(From

ArchDefs.h)c

Description

0 16 s0 General-purpose register

1 17 s1 General-purpose register

2 2 v0 General-purpose register

3 3 v1 General-purpose register

4 4 a0 General-purpose register

5 5 a1 General-purpose register
22 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.6 MIPS16e ISA Modes
3.6 MIPS16e ISA Modes

This section describes the following:

• the ISA modes available in the architecture, page 23

• the purpose of theISA Mode field, page 24

• how to switch between 32-bit MIPS and MIPS16e modes, page 24

• the role of the jump instructions when switching modes, page 24

3.6.1 Modes Available in the MIPS16e Architecture

There are two ISA modes defined in the MIPS16e Architecture, as follows:

• MIPS 32-bit mode (32-bit instructions)

• MIPS16e mode (16-bit instructions)

6 6 a2 General-purpose register

7 7 a3 General-purpose register

N/A 24 t8

MIPS16eCondition Code register;
implicitly referenced by the BTEQZ,
BTNEZ, CMP, CMPI, SLT, SLTU,
SLTI, and SLTIU instructions

N/A 29 sp Stack pointer register

N/A 31 ra Return address register

a. “0-7” correspond to the register’s MIPS16e binary encoding and show how that encoding relates to the
MIPS registers. “0-7” never refer to the registers, except within the binary MIPS16e instructions. From
the assembler, only the MIPS names ($16, $17, $2, etc.) or the symbolic names (s0, s1, v0, etc.) refer to
the registers. For example, to access register number 17 in the register file, the programmer references
$17 or s1, even though the MIPS16e binary encoding for this register is 001.

b. General registers not shown in the above table are not accessible through the MIPS16e instruction set, ex-
cept by using the Move instructions. The MIPS16e Move instructions can access all 32 general-purpose
registers.

c. The MIPS16e condition code register is referred to as T, t8, or $24 throughout this document, depending
on the context. All three names refer to the same physical register.

Table 3-2 MIPS16e Special-Purpose Registers

Symbolic Name Purpose

PC Program counter. The PC-relative Add and Load
instructions can access this register as an operand.

HI Contains high-order word of multiply or divide result.

LO Contains low-order word of multiply or divide result.

Table 3-1 MIPS16e General-Purpose Registers

MIPS16e
Register

Encodinga

32-Bit MIPS
Register

Encodingb

Symbolic
Name
(From

ArchDefs.h)c

Description
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 23

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

y

32-bit

t MIPS

ction to

t
ddress

address
3.6.2 Defining the ISA Mode Field

TheISA Mode bit controls the type of code that is executed, as follows:

In MIPS 32-bit mode and MIPS16e mode, the JALX, JR, JALR, JALRC, and JRC instructions can change theISA Mode
bit, as described in Section 3.6.4 , "Using MIPS16e Jump Instructions to Switch Modes".

3.6.3 Switching Between Modes When an Exception Occurs

When an exception occurs (including a Reset exception), theISA Modebit is cleared so that exceptions are handled b
32-bit code.

After the processor switches to 32-bit mode following a Reset exception, the processor starts execution at the
mode Reset exception vector.

3.6.4 Using MIPS16e Jump Instructions to Switch Modes

The MIPS16e application-specific extension supports procedure calls and returns from both MIPS16e and 32-bi
code to both MIPS16e and 32-bit MIPS code. The following instructions are used:

• The JAL instruction supports calls to the same ISA.

• The JALX instruction supports calls that change the ISA.

• The JALR and JALRC instructions support calls to either ISA.

• The JR and JRC instructions support returns to either ISA.

The JAL, JALR, JALRC, and JALX instructions save theISA Mode bit in bit 0 of the general register containing the
return address. The contents of this general register may be used by a future JR, JRC, JALR, or JALRC instru
return and restore the ISA Mode.

The JALX instruction in both modes switches to the other ISA (it changes 2#0→ 2#1 and 2#1→ 2#0).

The JR and JALR instructions in both modes load theISA Modebit from bit 0 of the general register holding the targe
address. Bit 0 of the general register is not part of the target address; bit 0 of PC is loaded with a 0 so that no a
exceptions can occur.

The JRC and JALRC instructions in MIPS16e mode load theISA Modebit from bit 0 of the general register holding the
target address. Bit 0 of the general register is not part of the target address; bit 0 of PC is loaded with a 0 so that no
exceptions can occur.

Table 3-3 ISA Mode Bit Encodings

Encoding Mode

2#0 MIPS 32-bit mode. In this mode, the processor executes
32-bit MIPS instructions.

2#1 MIPS16e mode. In this mode, the processor executes
MIPS16e instructions.
24 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.7 JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode

t

nd

ister is

in each

andler,
3.7 JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode

The behavior of three of the 32-bit MIPS instructions—JALX, JR, JALR—differs between those processors tha
implement MIPS16e and those processors that do not.

In processors that implement the MIPS16e ASE, the three instructions behave as follows:

• The JALX instruction executes a JAL and switches to the other mode.

• JR and JALR instructions load theISA Mode bit from bit 0 of the source register. Bit 0 of PC is loaded with a 0, a
no Address exception can occur when bit 0 of the source register is a 1 (MIPS16e mode).

In CPUs that do not implement the MIPS16e ASE, the three instructions behave as follows:

• JALX instructions cause a Reserved Instruction exception.

• JR or JALR instructions cause an Address exception on the target instruction fetch when bit 0 of the source reg
a 1.

3.8 MIPS16e Instruction Summaries

This section describes the various instruction categories and then summarizes the MIPS16e instructions included
category. Extensible instructions are also identified.

There are six instruction categories:

• Loads and Stores—These instructions move data between memory and the GPRs.

• Save and Restore—These instructions create and tear down stack frames.

• Computational—These instructions perform arithmetic, logical, and shift operations on values in registers.

• Jump and Branch—These instructions change the control flow of a program.

• Special—This category includes the Break and Extend instructions. Break transfers control to an exception h
and Extend enlarges theimmediate field of the next instruction.

• Implemention-Definable Macro Instructions—This category includes the capability of defining macros that are
replaced at execution time by a set of 32-bit MIPS instructions, with appropriate parameter substitution.
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 25

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture
Tables3-4 through3-12 list the MIPS16e instruction set.

Table 3-4 MIPS16e Load and Store Instructions

Table 3-5 MIPS16e Save and Restore Instructions

Table 3-6 MIPS16e ALU Immediate Instructions

Table 3-7 MIPS16e Arithmetic One, Two or Three Operand Register Instructions

Mnemonic Instruction Extensible
Instruction?

Implemented Only on
MIPS64 Processors?

LB Load Byte Yes No

LBU Load Byte Unsigned Yes No

LH Load Halfword Yes No

LHU Load Halfword Unsigned Yes No

LW Load Word Yes No

SB Store Byte Yes No

SH Store Halfword Yes No

SW Store Word Yes No

Mnemonic Instruction Extensible
Instruction?

Implemented Only on
MIPS64 Processors?

RESTORE Restore Registers and Deallocate Stack Frame Yes No

SAVE Save Registers and SetUp Stack Frame Yes No

Mnemonic Instruction Extensible
Instruction?

Implemented Only on
MIPS64 Processors?

ADDIU Add Immediate Unsigned Yes No

CMPI Compare Immediate Yes No

LI Load Immediate Yes No

SLTI Set on Less Than Immediate Yes No

SLTIU Set on Less Than Immediate Unsigned Yes No

Mnemonic Instruction Extensible
Instruction?

Implemented Only on
MIPS64 Processors?

ADD Add Unsigned No No

AND AND No No

CMP Compare No No

MOVE Move No No

NEG Negate No No

NOT Not No No

OR OR No No

SEB Sign-Extend Byte No No

SEH Sign-Extend Halfword No No

SLT Set on Less Than No No
26 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.8 MIPS16e Instruction Summaries
SLTU Set on Less Than Unsigned No No

SUBU Subtract Unsigned No No

XOR Exclusive OR No No

ZEB Zero-extend Byte No No

ZEH Zero-Extend Halfword No No

Mnemonic Instruction Extensible
Instruction?

Implemented Only on
MIPS64 Processors?
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 27

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture
Table 3-8 MIPS16e Special Instructions

Table 3-9 MIPS16e Multiply and Divide Instructions

Table 3-10 MIPS16e Jump and Branch Instructions

Table 3-11 MIPS16e Shift Instructions

Mnemonic Instruction Extensible
Instruction?

Implemented Only on
MIPS64 Processors?

BREAK Breakpoint No No

EXTEND Extend No No

Mnemonic Instruction Extensible
Instruction?

Implemented Only on
MIPS64 Processors?

DIV Divide No No

DIVU Divide Unsigned No No

MFHI Move From HI No No

MFLO Move From LO No No

MULT Multiply No No

MULTU Multiply Unsigned No No

Mnemonic Instruction Extensible
Instruction?

Implemented Only on
MIPS64 Processors?

B Branch Unconditional Yes No

BEQZ Branch on Equal to Zero Yes No

BNEZ Branch on Not Equal to Zero Yes No

BTEQZ Branch on T Equal to Zero Yes No

BTNEZ Branch on T Not Equal to Zero Yes No

JALa

a. The JAL and JALX instructions are not extensible because they are inherently 32-bit instructions.

Jump and Link No No

JALR Jump and Link Register No No

JALRC Jump and Link Register Compact No No

JALXa Jump and Link Exchange No No

JR Jump Register No No

JRC Jump Register Compact No No

Mnemonic Instruction Extensible
Instruction?

Implemented Only on
MIPS64 Processors?

SRA Shift Right Arithmetic Yes No

SRAV Shift Right Arithmetic Variable No No

SLL Shift Left Logical Yes No

SLLV Shift Left Logical Variable No No

SRL Shift Right Logical Yes No

SRLV Shift Right Logical Variable No No
28 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.9 MIPS16e PC-Relative Instructions

rsions.

lated for

s

le.

es
 it can
Extend.
Table 3-12 Implementation-Definable Macro Instructions

3.9 MIPS16e PC-Relative Instructions

The MIPS16e ASE provides PC-relative addressing for four instructions, in both extended and non-extended ve
The two instructions are listed inTable 3-13.

Table 3-13 PC-Relative MIPS16e Instructions

These instructions use the PC value of either the PC-relative instruction itself or the PC value for the preceding
instruction as the base for address calculation.

Table 3-14 summarizes the address calculation base used for the various instruction combinations.

Table 3-14 PC-Relative Base Used for Address Calculation

The JRC and JALRC instructions do not have delay slots and do not affect the PC-relative base address calcu
an instruction immediately following the JRC or JALRC.

In the descriptive summaries of PC-relative instructions, located in Tables3-13and3-14, the PC value used as the basi
for calculating the address is referred to as the BasePC value. The BasePC equals theException Program Counter(EPC)
value associated with the PC-relative instruction.

3.10 MIPS16e Extensible Instructions

This section explains the purpose of anExtendinstruction, how to use it, and which MIPS16e instructions are extensib

The Extend instruction allows you to enlarge theimmediatefield of any MIPS16e instruction whoseimmediatefield is
smaller than theimmediate field in the equivalent 32-bit MIPS instruction. The Extend instruction must always
immediately precede the instruction whoseimmediatefield you want to extend. Every extended instruction uses 4 byt
in program memory instead of 2 bytes (2 bytes for Extend and 2 bytes for the instruction being extended), and
cross a word boundary. The PC value of an extended instruction is the address of the halfword containing the

For example, the following MIPS16e instruction contains a five-bitimmediate.

Mnemonic Instruction Extensible
Instruction?

Implemented Only on
MIPS64 Processors?

ASMACRO Implementation-Definable Macro Instructions Yesa

a. The Implementation-Definable Macro Instructions are always extended instructions. There are no 16-bit macro instruction

No

Instruction Use

Load Word LW rx, offset(pc)

Add Immediate Unsigned ADDIU rx, pc, immediate

Instruction BasePC Value

Non-extended PC-relative instruction not in Jump
Delay Slot Address of instruction

Extended PC-relative instruction Address of Extend instruction

Non-extended PC-relative instruction in JR or JALR
jump delay slot Address of JR or JALR instruction

Non-extended PC-relative instruction in JAL or
JALX jump delay slot

Address of first JAL or JALX
halfword
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 29

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

any of
e LW

d

e size

Doing
LW ry, offset(rx)

The immediate expands to 16 bits (2#000000000 || offset || 2#00) before execution in the pipeline. This allows 32
different offset values of 0, 4, 8, and up through 124, in increments of 4. Once extended, this instruction can hold
the 65,536 values in the range -32768 through 32767 that are also available with the 32-bit MIPS version of th
instruction.

Shift instructions are extended to unsignedimmediates of 5 bits. All other immediate instructions expand to either signe
or unsigned 16-bit immediates. There is only one exception which can be extended to a 15-bit signedimmediate:

ADDIU ry, rx, immediate

Unlike most other extended instructions, an extended RESTORE or SAVE instruction provides both a larger fram
adjustment, and the ability to save and restore more registers than the non-extended version.

There is only one restriction on the location of extensible instructions: They may not be placed in jump delay slots.
so causesUNPREDICTABLE results.

Table 3-15lists the MIPS16e extensible instructions, the size of theirimmediate, and how much eachimmediatecan be
extended when preceded with an Extend instruction.

Table 3-15 MIPS16e Extensible Instructions

 Mnemonic MIPS16e Instruction MIPS16e Immediate Extended Immediate

ADDIU Add Immediate Unsigned
4 (ADDIU ry, rx, imm)

8

15 (ADDIU ry, rx, imm)

16

B Branch Unconditional 11 16

BEQZ Branch on Equal to Zero 8 16

BNEZ Branch on Not Equal to Zero 8 16

BTEQZ Branch on T Equal to Zero 8 16

BTNEZ Branch on T Not Equal to Zero 8 16

CMPI Compare Immediate 8 16

LB Load Byte 5 16

LBU Load Byte Unsigned 5 16

LD Load Doubleword 5 16

LH Load Halfword 5 16

LHU Load Halfword Unsigned 5 16

LI Load Immediate 8 16

LW Load Word 5 (or 8) 16

RESTORE Restore Registers and Deallocate Stack
Frame 4 8

SAVE Save Registers and Set Up Stack Frame 4 8

SB Store Byte 5 16

SH Store Halfword 5 16

SLL Shift Left Logical 3 5
30 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.11 MIPS16e Implementation-Definable Macro Instructions

IPS

gle
ability

 and

or is
acro
erefore

ly

en, the
ction

ded

ction
3.11 MIPS16e Implementation-Definable Macro Instructions

Previous revisions of the MIPS16e ASE assumed that most MIPS16e instructions mapped to a single 32-bit M
instruction. However, there are several MIPS16e instructions for which there is no corresponding 32-bit MIPS
instruction equivalent. The addition of the SAVE and RESTORE instructions introduced the possibility that a sin
MIPS16e instruction expand to a fixed sequence of multiple 32-bit instructions. The obvious extension to this cap
is the ability to define aMacro capability in which a single extended MIPS16e instruction can be expanded into a
sequence of 32-bit MIPS instructions, with parameter substitution done between fields of the macro instruction
fields of the expanded instructions. This is the concept behind the addition of Implementation-Definable Macro
Instructions to the MIPS16e ASE.

The term “Implementation-Definable” refers to the fact that the macro definitions are created when the process
implemented, rather than via a programmable mechanism that is available to the user of the processor. The m
definitions, expansions, and parameter substitutions are defined when the processor is implemented, and is th
implementation-dependent. The programmer visible representation of this macro capability is provided by the
ASMACRO (for Application Specific Macro) instruction, as defined in the next chapter.

3.12 MIPS16e Jump and Branch Instructions

Jump and Branch instructions change the control flow of a program.

The JAL, JALR, JALX, and JR instructions occur with a one-instruction delay. That is, the instruction immediate
following the jump is always executed, whether or not the jump is taken.

Branch instructions and the JALRC and JRC jump instructions do not have a delay slot. If a branch or jump is tak
instruction immediately following the branch or jump is never executed. If the branch or jump is not taken, the instru
following the branch or jump is always executed.

Branch, jump and extended instructions may not be placed in jump delay slots. Doing so causesUNPREDICTABLE
results.

3.13 MIPS16e Instruction Formats

This section defines the format1 for each MIPS16e instruction type and includes formats for both normal and exten
instructions.

Every MIPS16e instruction consists of 16 bits aligned on a halfword boundary. All variable subfields in an instru
format (such asrx , ry , rz , andimmediate) are shown in lowercase letters.

SLTI Set on Less Than Immediate 8 16

SLTIU Set on Less Than Immediate Unsigned 8 16

SRA Shift Right Arithmetic 3 5

SRL Shift Right Logical 3 5

SW Store Word 5 (or 8) 16

1 As used here, the termformat means the layout of the MIPS16e instruction word.

 Mnemonic MIPS16e Instruction MIPS16e Immediate Extended Immediate
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 31

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

heir
The two instruction subfieldsop andfunct have constant values for specific instructions. These values are given in t
uppercase mnemonic names. For example,op is LB in the Load Byte instruction;op is RRR andfunction is ADDU
in the Add Unsigned instruction.

Definitions for the fields that appear in the instruction formats are summarized inTable 3-16.

Table 3-16 MIPS16e Instruction Fields

Field Definition

funct or f Function field

immediate
or imm

4-, 5-, 8-, or 11-bit immediate, branch displacement, or
address displacement

op 5-bit major operation code

rx 3-bit source or destination register specifier

ry 3-bit source or destination register specifier

rz 3-bit source or destination register specifier

sa 3- or 5-bit shift amount
32 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.13 MIPS16e Instruction Formats
3.13.1 I-type instruction format

3.13.2 RI-type instruction format

3.13.3 RR-type instruction format

3.13.4 RRI-type instruction format

3.13.5 RRR-type instruction format

3.13.6 RRI-A type instruction format

3.13.7 Shift instruction format

3.13.8 I8-type instruction format

3.13.9 I8_MOVR32 instruction format (used only by the MOVR32 instruction)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rx immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RR rx rya

a. When the funct field is eitherCNVTor J(AL)R(C), thery field encodes a sub-function to
be performed rather than a register number

funct

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rx ry immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RRR rx ry rz f

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RRI-A rx ry f immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHIFT rx ry saa

a. The three-bitsa field can encode a shift amount of 0 through 7. 0 bit shifts (NOPs) are
not possible; a 0 value translates to a shift amount of 8.

f

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I8 funct immediate

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I8 funct ry r32[4:0]
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 33

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

0

0

0

0

0

0

0

d forma
3.13.10 I8_MOV32R instruction format (used only by MOV32R instruction)

3.13.11 I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)

3.13.12 JAL and JALX instruction format

3.13.13 EXT-I instruction format

3.13.14 ASMACRO instruction format

3.13.15 EXT-RI instruction format

3.13.16 EXT-RRI instruction format

3.13.17 EXT-RRI-A instruction format

3.13.18 EXT-SHIFT instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I8 funct r32[2:0,4:3]a

a. Ther32 field uses special bit encoding. For example, the encoding for $7
(00111) is 11100 in ther32 field.

rz

15 14 13 12 11 10 9 8 7 6 5 4 3 0

I8 SVRS s ra s0 s1 framesize

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

JAL Xa

a. If x=0, instruction is JAL. If x=1, instruction is JALX.

immediate 20:16 immediate 25:21 immediate 15:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

EXTEND immediate 10:5 immediate 15:11 op 0 0 0 0 0 0 immediate 4:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

EXTEND select p4 p3 RRR p2 p1 p0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

EXTEND immediate 10:5 immediate 15:11 op rx 0 0 0 immediate 4:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

EXTEND immediate 10:5 immediate 15:11 op rx ry immediate 4:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

EXTEND immediate 10:4 imm 14:11 RRI-A rx ry f imm 3:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

EXTEND sa 4:0 s5a

a. s5 is equivalent to sa5, the most significant bit of the 6-bit shift amount (sa) field. For extended DSLL shifts, this bit may be either 0 or 1. For all 32-bit
extended shifts, s5 must be 0. None of the extended shift instructions perform the 0-to-8 mapping, so 0 bit shifts are possible using the extendet.

0 0 0 0 0 SHIFT rx ry 0 0 0 f
34 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.14 Instruction Bit Encoding

0

0

0

3.13.19 EXT-I8 instruction format

3.13.20 EXT-I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)

3.14 Instruction Bit Encoding

Table 3-18through Table 3-25 describe the encoding used for the MIPS16e ASE.Table 3-17describes the meaning of
the symbols used in the tables.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

EXTEND immediate 10:5 immediate 15:11 I8 funct 0 0 0 immediate 4:0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

EXTEND xsregs framesize 7:4 0 aregs I8 SVRS s ra s0 s1 framesize 3:

Table 3-17 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

δ
(Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

⊥

Operation or field codes marked with this symbol represent instructions which are not legal if the
processor is configured to be backward compatible with MIPS32 processors. If the processor is
executing in Kernel Mode, Debug Mode, or 64-bit instructions are enabled, execution proceeds
normally. In other cases, executing such an instruction must cause a Reserved Instruction
Exception (non-coprocessor encodings or coprocessor instruction encodings for a coprocessor to
which access is allowed) or a Coprocessor Unusable Exception (coprocessor instruction
encodings for a coprocessor to which access is not allowed).

θ

Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, the partner must notify MIPS Technologies, Inc.
when one of these encodings is used. If no instruction is encoded with this value, executing such
an instruction must cause a Reserved Instruction Exception (SPECIAL2encodings or coprocessor
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which access is not allowed).

σ
Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

ε
Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 ISA. Software should avoid using these operation or field codes.
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 35

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture
Table 3-18 MIPS16e Encoding of the Opcode Field

opcode bits 13..11

0 1 2 3 4 5 6 7

bits 15..14 000 001 010 011 100 101 110 111

0 00 ADDIUSPa

a. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction

ADDIUPCb

b. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction

B JAL(X)δ BEQZ BNEZ SHIFTδ β
1 01 RRI-Aδ ADDIU8c

c. The ADDIU8 opcode is used by the ADDIU rx, immediate instruction

SLTI SLTIU I8 δ LI CMPI β
2 10 LB LH LWSPd

d. The LWSP opcode is used by the LW rx, offset(sp) instruction

LW LBU LHU LWPCe

e. The LWPC opcode is used by the LW rx, offset(pc) instruction

β
3 11 SB SH SWSPf

f. The SWSP opcode is used by the SW rx, offset(sp) instruction

SW RRRδ RRδ EXTENDδ β

Table 3-19 MIPS16e JAL(X) Encoding of the x Field

x bit 26

0 1

JAL JALX

Table 3-20 MIPS16e SHIFT Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

SLL β SRL SRA

Table 3-21 MIPS16e RRI-A Encoding of the f Field

f bit 4

0 1

ADDIUa

a. The ADDIU function is used by the AD-
DIU ry, rx, immediate instruction

β

Table 3-22 MIPS16e I8 Encoding of the funct Field

funct bits 10..8

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

BTEQZ BTNEZ SWRASPa

a. The SWRASP function is used by the SW ra, offset(sp) instruction

ADJSPb

b. The ADJSP function is used by the ADDIU sp, immediate instruction

SVRSδ MOV32Rc

c. The MOV32R function is used by the MOVE r32, rz instruction

* MOVR32d

d. The MOVR32 function is used by the MOVE ry, r32 instruction
36 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.15 MIPS16e Instruction Stream Organization and Endianness

s.

tion is

tion is

L and
 them.
3.15 MIPS16e Instruction Stream Organization and Endianness

The instruction halfword is placed within the 32-bit (or 64-bit) memory element according to system endiannes

• On a 32-bit processor in big-endian mode, the first instruction is read from bits 31..16 and the second instruc
read from bits 15..0

• On a 32-bit processor in little-endian mode, the first instruction is read from bits 15..0 and the second instruc
read from bits 31..16

The above rule also applies to all extended instructions, since they consist of two 16-bit halfwords. Similarly, JA
JALX instructions should be viewed as consisting of two 16-bit halfwords, which means this rule also applies to

Table 3-23 MIPS16e RRR Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

β ADDU β SUBU

Table 3-24 MIPS16e RR Encoding of the Funct Field

funct bits 2..0

0 1 2 3 4 5 6 7

bits 4..3 000 001 010 011 100 101 110 111

0 00 J(AL)R(C)δ SDBBP SLT SLTU SLLV BREAK SRLV SRAV

1 01 β * CMP NEG AND OR XOR NOT

2 10 MFHI CNVTδ MFLO β β * β β
3 11 MULT MULTU DIV DIVU β β β β

Table 3-25 MIPS16e I8 Encoding of the s Field when funct=SVRS

s bit 7

0 1

RESTORE SAVE

Table 3-26 MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

JR rx JR ra JALR JRC rx JRC ra JALRC

Table 3-27 MIPS16e RR Encoding of the ry Field when funct=CNVT

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

ZEB ZEH β * SEB SEH β *
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 37

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

n
For a 16-bit-instruction sequence, instructions are placed in memory so that an LH instruction with the PC as a
argument fetches the instruction independent of system endianness.
38 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

4.1 MIPS16e Instruction Descriptions

S16e.

d in the

 It is
PR 17.
Chapter 4

The MIPS16e™ ASE Instruction Set

4.1 MIPS16e Instruction Descriptions

This chapter provides an alphabetical listing of the instructions listed inTable 3-4throughTable 3-12. Instructions that
are legal only in 64-bit implementations are not listed, as they are not part of a MIPS32 implementation of MIP

4.1.1 MIPS16e-Specific Pseudocode Functions

This section defines the pseudocode functions that are specific to the MIPS16e ASE. These functions are use
Operation section of each MIPS16e instruction description.

4.1.1.1 Xlat

The Xlat function translates the MIPS16e register field index to the correct 32-bit MIPS physical register index.
used to assure that a value of 2#000 in a MIPS16e register field maps to GPR 16, and a value of 2#001 maps to G
All other values (2#010 through 2#111) map directly.

PhyReg ← Xlat(i)

/* PhyReg: Physical register index, in the range 0..7 */

/* i : Opcode register field index */

if (i < 2) then
Xlat ← i + 16

else
Xlat ← i

endif

endfunction Xlat

Figure 4-1 Xlat Pseudocode Function
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 39

Chapter 4 The MIPS16e™ ASE Instruction Set
40 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 41

es not
nviron-
ADDIU (2-Operand)

Format: ADDIU rx, immediate MIPS16e

Purpose:

To add a constant to a 32-bit integer.

Description: rx ← rx + immediate

The 8-bitimmediateis sign-extended and then added to the contents of GPRrx to form a 32-bit result. The result is
placed in GPRrx.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat(rx)] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic e
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 0

ADDIU8

01001
rx immediate

5 3 8

Add Immediate Unsigned Word (2-Operand) ADDIU
42 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

es not
nviron-
ADDIU (2-Operand, Extended)

Format: ADDIU rx, immediate MIPS16e

Purpose:

To add a constant to a 32-bit integer.

Description: rx ← rx + immediate

The 16-bitimmediateis sign-extended and then added to the contents of GPRrx to form a 32-bit result. The result is
placed in GPRrx.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat(rx)] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic e
ments that ignore overflow, such as C language arithmetic.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

ADDIU8

01001
rx

0

000
imm 4:0

5 6 5 5 3 3 5

Add Immediate Unsigned Word (2-Operand, Extended) ADDIU
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 43

es not
nviron-
ADDIU (3-Operand)

Format: ADDIU ry, rx, immediate MIPS16e

Purpose:

To add a constant to a 32-bit integer.

Description: ry ← rx + immediate

The 4-bitimmediateis sign-extended and then added to the contents of GPRrx to form a 32-bit result. The result is
placed into GPRry.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat(ry)] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic e
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 5 4 3 0

RRI-A

01000
rx ry

ADDIU

0
immediate

5 3 3 1 4

Add Immediate Unsigned Word (3-Operand) ADDIU
44 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

es not
nviron-
ADDIU (3-Operand, Extended)

Format: ADDIU ry, rx, immediate MIPS16e

Purpose:

To add a constant to a 32-bit integer.

Description: ry ← rx + immediate

The 15-bitimmediateis sign-extended and then added to the contents of GPRrx to form a 32-bit result. The result is
placed into GPRry.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat(ry)] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic e
ments that ignore overflow, such as C language arithmetic.

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0

EXTEND

11110
imm 10:4

imm

14:11

RRI-A

01000
rx ry

ADDIU

0
imm 3:0

5 7 4 5 3 3 1 4

Add Immediate Unsigned Word (3-Operand, Extended) ADDIU
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 45

ction
r bits

es not
nviron-
ADDIU (3-Operand, PC-Relative)

Format: ADDIU rx, pc, immediate MIPS16e

Purpose:

To add a constant to the program counter.

Description: rx ← PC + immediate

The 8-bitimmediateis shifted left two bits, zero-extended, and added to either the address of the ADDIU instru
or the address of the jump instruction in whose delay slot the ADDIU is executed. This result (with its two lowe
cleared) is placed in GPRrx.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

I-1: base_pc ← PC
I: if not (JumpDelaySlot(PC)) then

base_pc ← PC
endif
temp ← (base_pc GPRLEN-1..2 + zero_extend(immediate)) || 0 2)
GPR[Xlat(rx)] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic e
ments that ignore overflow, such as C language arithmetic.

Since the 8-bitimmediate is shifted left two bits before being added to the PC, the range is 0, 4, 8..1020.

The assembler LA (Load Address) pseudo-instruction is implemented as a PC-relative add.

15 11 10 8 7 0

ADDIUPC

00001
rx immediate

5 3 8

Add Immediate Unsigned Word (3-Operand, PC-Relative) ADDIU
46 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

ition,

es not
nviron-
ADDIU (3-Operand, PC-Relative, Extended)

Format: ADDIU rx, pc, immediate MIPS16e

Purpose:

To add a constant to the program counter.

Description: rx ← PC + immediate

The 16-bitimmediateis sign-extended and added either to the address of the ADDIU instruction. Before the add
the two lower bits of the instruction address are cleared.

The result of the addition is placed in GPRrx.

No integer overflow exception occurs under any circumstances.

Restrictions:

A PC-relative, extended ADDIU may not be placed in the delay slot of a jump instruction.

Operation:

temp ← (PC GPRLEN-1..2 || 0 2) + sign_extend(immediate)
GPR[Xlat(rx)] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic e
ments that ignore overflow, such as C language arithmetic.

The assembler LA (Load Address) pseudo-instruction is implemented as a PC-relative add.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

ADDIUPC

00001
rx

0

000
imm 4:0

5 6 5 5 3 3 5

Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended) ADDIU
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 47

rm a

es not
nviron-
ADDIU (2-Operand, SP-Relative)

Format: ADDIU sp, immediate MIPS16e

Purpose:

To add a constant to the stack pointer.

Description: sp ← sp + immediate

The 8-bit immediateis shifted left three bits, sign-extended, and then added to the contents of GPR 29 to fo
32-bit result. The result is placed in GPR 29.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[29] + sign_extend(immediate || 0 3)
GPR[29] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic e
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 0

I8

01100

ADJSP

011
immediate

5 3 8

Add Immediate Unsigned Word (2-Operand, SP-Relative) ADDIU
48 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

sult is

es not
nviron-
ADDIU (2-Operand, SP-Relative, Extended)

Format: ADDIU sp, immediate MIPS16e

Purpose:

To add a constant to the stack pointer.

Description: sp ← sp + immediate

The 16-bitimmediateis sign-extended, and then added to the contents of GPR 29 to form a 32-bit result. The re
placed in GPR 29.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[29] + sign_extend(immediate)
GPR[29] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic e
ments that ignore overflow, such as C language arithmetic.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

I8

01100

ADJSP

011

0

000
imm 4:0

5 6 5 5 3 3 5

Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended) ADDIU
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 49

32-bit

es not
nviron-
ADDIU (3-Operand, SP-Relative)

Format: ADDIU rx, sp, immediate MIPS16e

Purpose:

To add a constant to the stack pointer.

Description: rx ← SP + immediate

The 8-bitimmediateis shifted left two bits, zero-extended, and then added to the contents of GPR 29 to form a
result. The result is placed in GPRrx.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[29] + zero_extend(immediate || 0 2)

GPR[Xlat(rx)] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic e
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 0

ADDIUSP

00000
rx immediate

5 3 8

Add Immediate Unsigned Word (3-Operand, SP-Relative) ADDIU
50 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

sult is

es not
nviron-
ADDIU (3-Operand, SP-Relative, Extended)

Format: ADDIU rx, sp, immediate MIPS16e

Purpose:

To add a constant to the stack pointer.

Description: rx ← sp + immediate

The 16-bitimmediateis sign-extended and then added to the contents of GPR 29 to form a 32-bit result. The re
placed in GPRrx.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[29] + sign_extend(immediate
GPR[Xlat(rx)] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that do
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic e
ments that ignore overflow, such as C language arithmetic.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

ADDIUSP

00000
rx

0

000
imm 4:0

5 6 5 5 3 3 5

Add Immediate Unsigned Word (3-Operand, SP-Relative, Extended) ADDIU
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 51

52 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

ADDU (3-Operand)

Format: ADDU rz, rx, ry MIPS16e

Purpose:

To add 32-bit integers.

Description: rz ← rx + ry

The contents of GPRrx and GPRry are added together to form a 32-bit result. The result is placed into GPRrz.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[Xlat(rx)] + GPR[Xlat(ry)]
GPR[Xlat(rz)] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 5 4 2 1 0

RRR

11100
rx ry rz

ADDU

01

5 3 3 3 2

Add Unsigned Word (3-Operand) ADDU

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 53

AND

Format: AND rx, ry MIPS16e

Purpose:

To do a bitwise logical AND.

Description: rx ← rx AND ry

The contents of GPRry are combined with the contents of GPRrx in a bitwise logical AND operation. The result is
placed in GPRrx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← GPR[Xlat(rx)] and GPR[Xlat(ry)]

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

AND

01100

5 3 3 5

And AND

54 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

ASMACRO

Format: ASMACRO select,p0,p1,p2,p3,p4 MIPS16e

The format listed is the most generic assembler format and is unlikely to be used for an actual implementation of
application-specific macro instructions. Rather, the assembler format is likely to represent the use of the macro, with
the assembler turning that format into the appropriate bit pattern required by the instruction.

Purpose:

To execute an implementation-definable macro instruction.

Description:

The ASMACRO instruction is the programming interface to the implementation-definable macro instruction facility
that is defined by the MIPS16e architecture.

The selectfield specifies which of 8 possible macros is expanded. The definition of each macro specifies how the
parametersp0, p1, p2, p3, andp4are substituted into the 32-bit instructions with which the macro is defined. The exe-
cution of the 32-bit instructions occurs while PC remains unchanged.

It is implementation-dependent whether a processor implements any implementation-definable macro instructions
and, if it does, how many. It is implementation-dependent whether the macro is executed with interrupts disabled.

Restrictions:

The 32-bit instructions with which the macro is defined must by chosen with care. Issues of atomicity, restartability of
the instruction sequence, and similar factors must be considered when using the implementation-definable macro
instruction facility. Failure to do so can causeUNPREDICTABLE behavior.

If implementation-definable macro instructions are not implemented by the processor, or if theselectfield references
a specific macro which is not implemented by the processor, a Reserved Instruction exception is signaled.

Operation:

ExecuteMacro(sel,p0,p1,p2,p3,p4)

Exceptions:

Reserved Instruction
Others as may be generated by the 32-bit instructions included in each macro expansion.

Programming Notes:

Refer to the Users Guide for each processor which implements this capability for a list of macros defined and imple-
mented by that processor.

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
select p4 p3

RRR

11100
p2 p1 p0

5 3 3 5 5 3 3 5

Application-Specific Macro Instructions ASMACRO

nch to

er-
B

Format: B offset MIPS16e

Purpose:

To do an unconditional PC-relative branch.

Description: branch

The 11-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the bra
form the target address. The program branches to the target address unconditionally.

Restrictions:

None

Operation:

I: PC ← PC + 2 + sign_extend(offset || 0)

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branchoffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which int
prets theoffset value as word-aligned.

15 11 10 0

B

00010
offset

5 11

Unconditional Branch B
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 55

nch to

er-
B (Extended)

Format: B offset MIPS16e

Purpose:

To do an unconditional PC-relative branch.

Description: branch

The 16-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the bra
form the target address. The program branches to the target address unconditionally.

Restrictions:

None

Operation:

I: PC ← PC + 4 + sign_extend(offset || 0)

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branchoffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which int
prets theoffset value as word-aligned.

31 27 26 21 20 16 15 11 10 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

B

00010

0

000000
offset 4:0

5 6 5 5 6 5

Unconditional Branch (Extended) B
56 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

nch to

er-
BEQZ

Format: BEQZ rx, offset MIPS16e

Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: if (rx = 0) then branch

The 8-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the bra
form the target address. If the contents of GPRrx are equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[Xlat(rx)] = 0 GPRLEN)
if condition then

PC ← PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branchoffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which int
prets theoffset value as word-aligned.

15 11 10 8 7 0

BEQZ

00100
rx offset

5 3 8

Branch on Equal to Zero BEQZ
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 57

nch to

er-
BEQZ (Extended)

Format: BEQZ rx, offset MIPS16e

Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: if (rx = 0) then branch

The 16-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the bra
form the target address. If the contents of GPRrx are equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[Xlat(rx)] = 0 GPRLEN)
if condition then

PC ← PC + 4 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branchoffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which int
prets theoffset value as word-aligned.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

BEQZ

00100
rx

0

000
offset 4:0

5 6 5 5 3 3 5

Branch on Equal to Zero (Extended) BEQZ
58 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

nch to
ss.

er-
BNEZ

Format: BNEZ rx, offset MIPS16e

Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: if (rx ≠ 0) then branch

The 8-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the bra
form the target address. If the contents of GPRrx are not equal to zero, the program branches to the target addre

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[Xlat(rx)] ≠ 0GPRLEN)
if condition then

PC ← PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branchoffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which int
prets theoffset value as word-aligned.

15 11 10 8 7 0

BNEZ

00101
rx offset

5 3 8

Branch on Not Equal to Zero BNEZ
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 59

nch to
ss.

er-
BNEZ (Extended)

Format: BNEZ rx, offset MIPS16e

Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: if (rx ≠ 0) then branch

The 16-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the bra
form the target address. If the contents of GPRrx are not equal to zero, the program branches to the target addre

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[Xlat(rx)] ≠ 0GPRLEN)
if condition then

PC ← PC + 4 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branchoffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which int
prets theoffset value as word-aligned.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

BNEZ

00101
rx

0

000
offset 4:0

5 6 5 5 3 3 5

Branch on Not Equal to Zero (Extended) BNEZ
60 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 61

BREAK

Format: BREAK immediate MIPS16e

Purpose:

To cause a Breakpoint exception.

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler.

Restrictions:

None

Operation:

SignalException(Breakpoint)

Exceptions:

Breakpoint

Programming Notes:

Thecodefield is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory halfword containing the instruction.

15 11 10 8 7 5 4 0

RR

11101
code

BREAK

00101

5 6 5

Breakpoint BREAK

nch to
ress.

er-
BTEQZ

Format: BTEQZ offset MIPS16e

Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T = 0) then branch

The 8-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the bra
form the target address. If the contents of GPR 24 are equal to zero, the program branches to the target add

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[24] = 0 GPRLEN)
 if condition then

PC ← PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branchoffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which int
prets theoffset value as word-aligned.

15 11 10 8 7 0

I8

01100

BTEQZ

000
offset

5 3 8

Branch on T Equal to Zero BTEQZ
62 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

nch to
ress.

er-
BTEQZ (Extended)

Format: BTEQZ offset MIPS16e

Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T = 0) then branch

The 16-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the bra
form the target address. If the contents of GPR 24 are equal to zero, the program branches to the target add

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[24] = 0 GPRLEN)
if condition then

PC ← PC + 4 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branchoffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which int
prets theoffset value as word-aligned.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

I8

01100

BTEQZ

000

000

0
offset 4:0

5 6 5 5 3 3 5

Branch on T Equal to Zero (Extended) BTEQZ
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 63

nch to
address.

er-
BTNEZ

Format: BTNEZ offset MIPS16e

Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T ≠ 0) then branch

The 8-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the bra
form the target address. If the contents of GPR 24 are not equal to zero, the program branches to the target

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[24] ≠ 0GPRLEN)
if condition then

PC ← PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branchoffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which int
prets theoffset value as word-aligned.

15 11 10 8 7 0

I8

01100

BTNEZ

001
offset

5 3 8

Branch on T Not Equal to Zero BTNEZ
64 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

nch to
address.

er-
BTNEZ (Extended)

Format: BTNEZ offset MIPS16e

Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T ≠ 0) then branch

The 16-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the bra
form the target address. If the contents of GPR 24 are not equal to zero, the program branches to the target

Restrictions:

None

Operation:

I: tgt_offset ← sign_extend(offset || 0)
condition ← (GPR[24] ≠ 0 GPRLEN)
if condition then

PC ← PC + 4 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branchoffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which int
prets theoffset value as word-aligned.

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

I8

01100

BTNEZ

001

000

0
offset 4:0

5 6 5 5 3 3 5

Branch on T Not Equal to Zero (Extended) BTNEZ
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 65

66 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

CMP

Format: CMP rx, ry MIPS16e

Purpose:

To compare the contents of two GPRs.

Description: T ← rx XOR ry

The contents of GPRry are Exclusive-ORed with the contents of GPRrx. The result is placed into GPR 24.

Restrictions:

None

Operation:

GPR[24] ← GPR[Xlat(ry)] xor GPR[Xlat(rx)]

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

CMP

01010

5 3 3 5

Compare CMP

CMPI

Format: CMPI rx, immediate MIPS16e

Purpose:

To compare a constant with the contents of a GPR.

Description: T ← rx XOR immediate

The 8-bitimmediateis zero-extended and Exclusive-ORed with the contents of GPRrx. The result is placed into GPR
24.

Restrictions:

None

Operation:

GPR[24] ← GPR[Xlat(rx)] xor zero_extend(immediate)

Exceptions:

None

15 11 10 8 7 0

CMPI

01110
rx immediate

5 3 8

Compare Immediate CMPI
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 67

CMPI (Extended)

Format: CMPI rx, immediate MIPS16e

Purpose:

To compare a constant with the contents of a GPR.

Description: T ← rx XOR immediate

The 16-bitimmediateis zero-extended and Exclusive-ORed with the contents of GPRrx. The result is placed into
GPR 24.

Restrictions:

None

Operation:

GPR[24] ← GPR[Xlat(rx)] xor zero_extend(immediate)

Exceptions:

None

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

CMPI

01110
rx

000

0
imm 4:0

5 6 5 5 3 3 5

Compare Immediate (Extended) CMPI
68 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

s.
DIV

Format: DIV rx, ry MIPS16e

Purpose:

To divide 32-bit signed integers.

Description: (LO, HI) ← rx / ry

The 32-bit word value in GPRrx is divided by the 32-bit value in GPRry, treating both operands as signed value
The 32-bit quotient is placed into special registerLO, and the 32-bit remainder is placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPRry is zero, the arithmetic result isUNPREDICTABLE .

Operation:

q ← GPR[Xlat(rx)] div GPR[Xlat(ry)]
r ← GPR[Xlat(rx)] mod GPR[Xlat(ry)]
LO ← q
HI ← r

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

DIV

11010

5 3 3 5

Divide Word DIV
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 69

ed and
divi-

th the
more

te
nal con-
EAK

tions to
re

mance

lt of
bse-
and
Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detect
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel wi
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or
typically within the system software; one possibility is to take a BREAK exception with acodefield value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either termina
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptio
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BR
instruction to inform the operating system if a zero is detected.

Where the size of the operands are known, software should place the shorter operand in GPRry. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instruc
execute before it is complete. An attempt to readLO or HI before the results are written interlocks until the results a
ready. Asynchronous execution does not affect the program result, but offers an opportunity for perfor
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the resu
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from su
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV
MIPS32 and all subsequent levels of the architecture.

Divide Word (cont.) DIV
70 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 71

DIVU

Format: DIVU rx, ry MIPS16e

Purpose:

To divide 32-bit unsigned integers.

Description: (LO, HI) ← rx / ry

The 32-bit word value in GPRrx is divided by the 32-bit value in GPRry, treating both operands as unsigned values.
The 32-bit quotient is placed into special registerLO, and the 32-bit remainder is placed into special registerHI.

Restrictions:

If the divisor in GPRry is zero, the arithmetic result isUNPREDICTABLE .

Operation:

q ← (0 || GPR[Xlat(rx)]) div (0 || GPR[Xlat(ry)])
r ← (0 || GPR[Xlat(rx)]) mod (0 || GPR[Xlat(ry)])
LO ← q
HI ← r

Exceptions:

None

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

15 11 10 8 7 5 4 0

RR

11101
rx ry

DIVU

11011

5 3 3 5

Divide Unsigned Word DIVU

72 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

JAL

Format: JAL target MIPS16e

Purpose:

To execute a procedure call within the current 256 MB-aligned region and preserve the current ISA.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit 0 reflects the current
value of theISA Mode bit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is thetargetfield shifted left 2 bits. The remaining upper bits are the correspond-
ing bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, preserving the ISA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

The opcode field describes a general jump-and-link operation, with thex field as a variable. The individual instruc-
tions, JAL and JALX have specific values for this variables.

Restrictions:

An extended instruction should not be placed in a jump delay slot as it causes one-half of an instruction to be exe-
cuted.

Processor operation isUNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I: GPR[31] ← (PC + 6) GPRLEN-1..1 || ISAMode
I+1: PC ← PC GPRLEN-1..28 || target || 0 2

Exceptions:

None

Programming Notes:

Forming the jump target address by catenating PC and the 26-bit target address rather than adding a signedoffsetto
the PC is an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It
allows a branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relativeoff-
set.

This definition creates the boundary case where the jump instruction is in the last word of a 256 MB region and can
therefore jump only to the following 256 MB region containing the jump delay slot.

31 27 26 25 21 20 16 15 0

JAL

00011

x

0

target

20:16

target

25:21
target 15:0

5 1 5 5 16

Jump and Link JAL

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 73

JALR

Format: JALR ra, rx MIPS16e

Purpose:

To execute a procedure call to an instruction address in a register.

Description: ra ← return_addr, PC ← rx

The program unconditionally jumps to the address contained in GPRrx, with a delay of one instruction. The instruc-
tion sets theISA Mode bit to the value in GPRrx bit 0.

The address of the instruction following the delay slot is placed into GPR 31. The value stored in GPR 31 bit 0
reflects the current value of theISA Mode bit.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with thend (no delay slot),l (link),
andra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have specific
values for these variables.

Restrictions:

The effective target address in GPRrx must be naturally-aligned. If bit 0 is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in a jump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation isUNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I: GPR[31] ← (PC + 4) GPRLEN-1..1 || ISAMode
I+1: PC ← GPR[Xlat(rx)] GPRLEN-1..1 || 0

ISAMode ← GPR[Xlat(rx)] 0

Exceptions:

None

15 11 10 8 7 6 5 4 0

RR

11101
rx

nd

0

l

1

ra

0

J(AL)R(C)

00000

5 3 1 1 1 5

Jump and Link Register JALR

74 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

JALRC

Format: JALRC ra, rx MIPS16e

Purpose:

To execute a procedure call to an instruction address in a register

Description: ra ← return_addr, PC ← rx

The program unconditionally jumps to the address contained in GPRrx, with no delay slot instruction. The instruc-
tion sets theISA Mode bit to the value in GPRrx bit 0.

The address of the instruction following the jump is placed into GPR 31. The value stored in GPR 31 bit 0 reflects the
current value of theISA Mode bit.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function field describe a general jump-thru-register operation, with thend (no delay slot),l (link),
andra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have specific
values for these variables.

Restrictions:

The effective target address in GPRrx must be naturally-aligned. If bit 0 is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.

Operation:

I: GPR[31] ← (PC + 2) GPRLEN-1..1 || ISAMode
PC ← GPR[Xlat(rx)] GPRLEN-1..1 || 0
ISAMode ← GPR[Xlat(rx)] 0

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JALRC does not have a delay slot.

15 11 10 8 7 6 5 4 0

RR

11101
rx

nd

1

l

1

ra

0

J(AL)R(C)

00000

5 3 1 1 1 5

Jump and Link Register, Compact JALRC

6e to

ranch,
current

egion.
d-

in the

n to be

ary. It

nd can
JALX (MIPS16e Format)

Format: JALX target MIPS16e

Purpose:

To execute a procedure call within the current 256 MB-aligned region and change the ISA Mode from MIPS1
32-bit MIPS.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
at which location execution continues after a procedure call. The value stored in GPR 31 bit 0 reflects the
value of theISA Mode bit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned r
The low 28 bits of the target address is thetargetfield shifted left 2 bits. The remaining upper bits are the correspon
ing bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, toggling the ISA Mode bit. Execute the instruction that follows the jump,
branch delay slot, before executing the jump itself.

The opcode field describes a general jump-and-link operation, with thex field as a variable. The individual instruc-
tions, JAL and JALX have specific values for this variables.

Restrictions:

An extended instruction should not be placed in a jump delay slot, because this causes one-half an instructio
executed.

Processor operation isUNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I: GPR[31] ← (PC + 6) GPRLEN-1..1 || ISAMode
I+1: PC ← PC GPRLEN-1..28 || target || 0 2

ISAMode ← (not ISAMode)

Exceptions:

None

Programming Notes:

Forming the jump target address by catenating PC and the 26-bit target address rather than adding a signedoffsetto
the PC is an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB bound
allows a jump to anywhere in the region from anywhere in the region which a signed relativeoffset would not allow.

This definition creates the boundary case where the jump instruction is in the last word of a 256 MB region a
therefore jump only to the following 256 MB region containing the jump delay slot.

31 27 26 25 21 20 16 15 0

JAL

00011

x

1

target

20:16

target

25:21
target 15:0

5 1 5 5 16

Jump and Link Exchange (MIPS16e Format) JALX
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 75

IPS to

ranch,
current

egion.
e-

in the

e

PC is an
ranch

6 MB
JALX (MIPS32 Format)

Format: JALX target MIPS32 with MIPS16e

Purpose:

To execute a procedure call within the current 256 MB-aligned region and change the ISA Mode from 32-bit M
MIPS16e.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the b
at which location execution continues after a procedure call. The value stored in GPR 31 bit 0 reflects the
value of theISA Mode bit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned r
The low 28 bits of the target address is theinstr_indexfield shifted left 2 bits. The remaining upper bits are the corr
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, toggling the ISA Mode bit. Execute the instruction that follows the jump,
branch delay slot, before executing the jump itself.

Restrictions:

Processor operation isUNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in th
delay slot of a branch or jump.

Operation:

I: GPR[31] ← PC + 8
I+1: PC ← PC GPRLEN..28 || instr_index || 0 2

ISAMode ← (not ISAMode)

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a b
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 25
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

JALX

011101
instr_index

6 26

Jump and Link Exchange (32-bit MIPS Format) JALX
76 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

struc-

r is one.

pecific

ddress

on to be
JR ra

Format: JR ra MIPS16e

Purpose:

To execute a branch to the instruction address in the return address register.

Description: PC← ra

The program unconditionally jumps to the address specified in GPR 31, with a delay of one instruction. The in
tion sets theISA Mode bit to the value in GPR 31 bit 0.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source registe

The opcode and function field describe a general jump-thru-register operation, with thend (no delay slot),l (link),
andra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have s
values for these variables.

Restrictions:

The effective target address in GPR 31 must be naturally-aligned. If bit 0 is zero and bit 1 is one, then an A
Error exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in a jump delay slot, because this causes one-half of an instructi
executed.

Processor operation isUNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I+1: PC ← GPR[31] GPRLEN-1..1 || 0
ISAMode ← GPR[31] 0

Exceptions:

None

15 11 10 8 7 6 5 4 0

RR

11101
000

nd

0

l

0

ra

1

J(AL)R(C)

00000

5 3 1 1 1 5

Jump Register Through Register ra JR
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 77

-

r is one.

pecific

ess

on to be
JR rx

Format: JR rx MIPS16e

Purpose:

To execute a branch to an instruction address in a register.

Description: PC← rx

The program unconditionally jumps to the address specified in GPRrx, with a delay of one instruction. The instruc
tion sets theISA Mode bit to the value in GPRrx bit 0.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source registe

The opcode and function field describe a general jump-thru-register operation, with thend (no delay slot),l (link),
andra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have s
values for these variables.

Restrictions:

The effective target address in GPRrx must be naturally aligned. If bit 0 is zero and bit 1 is one, then an Addr
Error exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in a jump delay slot, because this causes one-half of an instructi
executed.

Processor operation isUNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I+1: PC ← GPR[Xlat(rx)] GPRLEN-1..1 || 0
ISAMode ← GPR[Xlat(rx)] 0

Exceptions:

None

15 11 10 8 7 6 5 4 0

RR

11101
rx

nd

0

l

0

ra

0

J(AL)R(C)

00000

5 3 1 1 1 5

Jump Register Through MIPS16e GPR JR
78 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

uction

r is one.

pecific

ddress
JRC ra

Format: JRC ra MIPS16e

Purpose:

To execute a branch to the instruction address in the return address register.

Description: PC ← ra

The program unconditionally jumps to the address specified in GPR 31, with no delay slot instruction. The instr
sets theISA Mode bit to the value in GPR 31 bit 0.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source registe

The opcode and function field describe a general jump-thru-register operation, with thend (no delay slot),l (link),
andra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have s
values for these variables.

Restrictions:

The effective target address in GPR 31 must be naturally-aligned. If bit 0 is zero and bit 1 is one, then an A
Error exception occurs when the jump target is subsequently fetched as an instruction.

Operation:

I: PC ← GPR[31] GPRLEN-1..1 || 0
ISAMode ← GPR[31] 0

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

15 11 10 8 7 6 5 4 0

RR

11101
000

nd

1

l

0

ra

1

J(AL)R(C)

00000

5 3 1 1 1 5

Jump Register Through Register ra, Compact JRC
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 79

r is one.

pecific

ess
JRC rx

Format: JRC rx MIPS16e

Purpose:

To execute a branch to an instruction address in a register

Description: PC ← rx

The program unconditionally jumps to the address specified in GPRrx, with no delay slot instruction. The instruction
sets theISA Mode bit to the value in GPRrx bit 0.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source registe

The opcode and function field describe a general jump-thru-register operation, with thend (no delay slot),l (link),
andra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have s
values for these variables.

Restrictions:

The effective target address in GPRrx must be naturally-aligned. If bit 0 is zero and bit 1 is one, then an Addr
Error exception occurs when the jump target is subsequently fetched as an instruction.

Operation:

I: PC ← GPR[Xlat(rx)] GPRLEN-1..1 || 0
ISAMode ← GPR[Xlat(rx)] 0

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

15 11 10 8 7 6 5 4 0

RR

11101
rx

nd

1

l

0

ra

0

J(AL)R(C)

00000

5 3 1 1 1 5

Jump Register Through MIPS16e GPR, Compact JRC
80 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

f

LB

Format: LB ry, offset(rx) MIPS16e

Purpose:

To load a byte from memory as a signed value.

Description: ry ← memory[rx + offset]

The 5-bitoffsetis zero-extended, then added to the contents of GPRrx to form the effective address. The contents o
the byte at the memory location specified by the effective address are sign-extended and loaded into GPRry.

Restrictions:

None

Operation:

vAddr ← zero_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
memword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor BigEndianCPU 2

GPR[Xlat(ry)] ← sign_extend(memword 7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

15 11 10 8 7 5 4 0

LB

10000
rx ry offset

5 3 3 5

Load Byte LB
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 81

f

LB (Extended)

Format: LB ry, offset(rx) MIPS16e

Purpose:

To load a byte from memory as a signed value.

Description: ry ← memory[rx + offset]

The 16-bitoffsetis sign-extended, then added to the contents of GPRrx to form the effective address. The contents o
the byte at the memory location specified by the effective address are sign-extended and loaded into GPRry.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
memword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor BigEndianCPU 2

GPR[Xlat(ry)] ← sign_extend(memword 7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LB

10000
rx ry offset 4:0

5 6 5 5 3 3 5

Load Byte (Extended) LB
82 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

f

LBU

Format: LBU ry, offset(rx) MIPS16e

Purpose:

To load a byte from memory as an unsigned value

Description: ry ← memory[rx + offset]

The 5-bitoffsetis zero-extended, then added to the contents of GPRrx to form the effective address. The contents o
the byte at the memory location specified by the effective address are zero-extended and loaded into GPRry.

Restrictions:

None

Operation:

vAddr ← zero_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
memword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor BigEndianCPU 2

GPR[Xlat(ry)] ← zero_extend(memword 7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

15 11 10 8 7 5 4 0

LBU

10100
rx ry offset

5 3 3 5

Load Byte Unsigned LBU
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 83

f

LBU (Extended)

Format: LBU ry, offset(rx) MIPS16e

Purpose:

To load a byte from memory as an unsigned value

Description: ry ← memory[rx + offset]

The 16-bitoffsetis sign-extended, then added to the contents of GPRrx to form the effective address. The contents o
the byte at the memory location specified by the effective address are zero-extended and loaded into GPRry.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
memword← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor BigEndianCPU 2

GPR[Xlat(ry)] ← zero_extend(memword 7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LBU

10100
rx ry offset 4:0

5 6 5 5 3 3 5

Load Byte Unsigned (Extended) LBU
84 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

loaded

ddress
LH

Format: LH ry, offset(rx) MIPS16e

Purpose:

To load a halfword from memory as a signed value.

Description: ry ← memory[rx + offset]

The 5-bitoffsetis shifted left 1 bit, zero-extended, then added to the contents of GPRrx to form the effective address.
The contents of the halfword at the memory location specified by the effective address are sign-extended and
into GPRry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 0) + GPR[Xlat(rx)]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..2 || (pAddr 1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor (BigEndianCPU || 0)
GPR[Xlat(ry)] ← sign_extend(memword 15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

15 11 10 8 7 5 4 0

LH

10001
rx ry offset

5 3 3 5

Load Halfword LH
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 85

-
to GPR

ddress
LH (Extended)

Format: LH ry, offset(rx) MIPS16e

Purpose:

To load a halfword from memory as a signed value.

Description: ry ← memory[rx + offset]

The 16-bitoffsetis sign-extended and then added to the contents of GPRrx to form the effective address. The con
tents of the halfword at the memory location specified by the effective address are sign-extended and loaded in
ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..2 || (pAddr 1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor (BigEndianCPU || 0)
GPR[Xlat(ry)] ← sign_extend(memword 15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LH

10001
rx ry offset 4:0

5 6 5 5 3 3 5

Load Halfword (Extended) LH
86 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

loaded

ddress
LHU

Format: LHU ry, offset(rx) MIPS16e

Purpose:

To load a halfword from memory as an unsigned value.

Description: ry ← memory[rx + offset]

The 5-bitoffsetis shifted left 1 bit, zero-extended, then added to the contents of GPRrx to form the effective address.
The contents of the halfword at the memory location specified by the effective address are zero-extended and
into GPRry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 0) + GPR[Xlat(rx)]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..2 || (pAddr 1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor (BigEndianCPU || 0)
GPR[Xlat(ry)] ← zero_extend(memword 15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

15 11 10 8 7 5 4 0

LHU

10101
rx ry offset

5 3 3 5

Load Halfword Unsigned LHU
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 87

-
to GPR

ddress
LHU (Extended)

Format: LHU ry, offset(rx) MIPS16e

Purpose:

To load a halfword from memory as an unsigned value.

Description: ry ← memory[rx + offset]

The 16-bitoffsetis sign-extended and then added to the contents of GPRrx to form the effective address. The con
tents of the halfword at the memory location specified by the effective address are zero-extended and loaded in
ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddr PSIZE–1..2 || (pAddr 1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr 1..0 xor (BigEndianCPU || 0)
GPR[Xlat(ry)] ← zero_extend(memword 15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LHU

10101
rx ry offset 4:0

5 6 5 5 3 3 5

Load Halfword Unsigned (Extended) LHU
88 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

LI

Format: LI rx, immediate MIPS16e

Purpose:

To load a constant into a GPR.

Description: rx ← immediate

The 8-bitimmediate is zero-extended and then loaded into GPRrx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← zero_extend(immediate)

Exceptions:

None

15 11 10 8 7 0

LI

01101
rx immediate

5 3 8

Load Immediate LI
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 89

LI (Extended)

Format: LI rx, immediate MIPS16e

Purpose:

To load a constant into a GPR.

Description: rx ← immediate

The 16-bitimmediate is zero-extended and then loaded into GPRrx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← zero_extend(immediate)

Exceptions:

None

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
immediate 10:5 immediate 15:11

LI

01101
rx

0

000
iummediate 4:0

5 6 5 5 3 3 5

Load Immediate (Extended) LI
90 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

PR

ero, an
LW

Format: LW ry, offset(rx) MIPS16e

Purpose:

To load a word from memory as a signed value.

Description: ry ← memory[rx + offset]

The 5-bit offset is shifted left 2 bits, zero-extended, then added to the contents of GPRrx to form the effective
address. The contents of the word at the memory location specified by the effective address are loaded into Gry.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 0 2) + GPR[Xlat(rx)]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

15 11 10 8 7 5 4 0

LW

10011
rx ry offset

5 3 3 5

Load Word LW
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 91

-

ero, an
LW (Extended)

Format: LW ry, offset(rx) MIPS16e

Purpose:

To load a word from memory as a signed value.

Description: ry ← memory[rx + offset]

The 16-bitoffsetis sign-extended and then added to the contents of GPRrx to form the effective address. The con
tents of the word at the memory location specified by the effective address are loaded into GPRry.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LW

10011
rx ry offset 4:0

5 6 5 5 3 3 5

Load Word (Extended) LW
92 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

to the
red to
ddress
LW (PC-Relative)

Format: LW rx, offset(pc) MIPS16e

Purpose:

To load a PC-relative word from memory as a signed value.

Description: rx ← memory[PC + offset]

The 8-bitoffsetis shifted left 2 bits, zero-extended, and added either to the address of the LW instruction or
address of the jump instruction in whose delay slot the LW is executed. The 2 lower bits of this result are clea
form the effective address. The contents of the 32-bit word at the memory location specified by the effective a
are loaded into GPRrx.

Restrictions:

None

Operation:

I-1: base_pc ← PC
I: if not (JumpDelaySlot(PC)) then

base_pc ← PC
endif
vAddr ← (base_pc GPRLEN-1..2 + zero_extend(offset)) || 0 2

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat(rx)] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error

15 11 10 8 7 0

LWPC
10110 rx offset

5 3 8

Load Word (PC-Relative) LW
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 93

jump
lower
by the

ero, an
LW (PC-Relative, Extended)

Format: LW rx, offset(pc) MIPS16e

Purpose:

To load a PC-relative word from memory as a signed value.

Description: rx ← memory[PC + offset]

The 16-bitoffsetis sign-extended and added either to the address of the LW instruction or to the address of the
instruction in whose delay slot the LW is executed; this forms the effective address. Before the addition, the 2
bits of the instruction address are cleared. The contents of the 32-bit word at the memory location specified
effective address are loaded into GPRrx.

Restrictions:

A PC-relative, extended LW may not be placed in the delay slot of a jump instruction.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← (PC GPRLEN-1..2 || 02) + sign_extend(offset)
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat(rx)] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LWPC

10110
rx

0

000
offset 4:0

5 6 5 5 3 3 5

Load Word (PC-Relative, Extended) LW
94 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

ctive
PR

ero, an
LW (SP-Relative)

Format: LW rx, offset(sp) MIPS16e

Purpose:

To load an SP-relative word from memory as a signed value.

Description: rx ← memory[sp + offset]

The 8-bit offset is shifted left 2 bits, zero-extended, then added to the contents of GPR 29 to form the effe
address. The contents of the word at the memory location specified by the effective address are loaded into Grx.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 0 2) + GPR[29]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

15 11 10 8 7 0

LWSP

10010
rx offset

5 3 8

Load Word (SP-Relative) LW
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 95

e con-

ero, an
LW (SP-Relative, Extended)

Format: LW rx, offset(sp) MIPS16e

Purpose:

To load an SP-relative word from memory as a signed value.

Description: rx ← memory[sp + offset]

The 16-bitoffsetis sign-extended and then added to the contents of GPR 29 to form the effective address. Th
tents of the word at the memory location specified by the effective address are loaded into GPRrx.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[29]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

LWSP

10010
rx

0

000
offset 4:0

5 6 5 5 3 3 5

Load Word (SP-Relative, Extended) LW
96 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 97

MFHI

Format: MFHI rx MIPS16e

Purpose:

To copy the special purposeHI register to a GPR.

Description: rx ← HI

The contents of special registerHI are loaded into GPRrx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← HI

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI isUNPREDICTABLE . This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

15 11 10 8 7 5 4 0

RR

11101
rx

0

000

MFHI

10000

5 3 3 5

Move From HI Register MFHI

98 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MFLO

Format: MFLO rx MIPS16e

Purpose:

To copy the special purposeLO register to a GPR.

Description: rx ← LO

The contents of special registerLO are loaded into GPRrx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← LO

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI isUNPREDICTABLE . This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

15 11 10 8 7 5 4 0

RR

11101
rx

0

000

MFLO

10010

5 3 3 5

Move From LO Register MFLO

MOVE r32, rz

Format: MOVE r32, rz MIPS16e

Purpose:

To move the contents of a GPR to a GPR.

Description: r32 ← rz

The contents of GPRrz are moved into GPR r32, and r32 can specify any one of the 32 GPRs.

Restrictions:

None

Operation:

GPR[r32] ← GPR[Xlat(rz)]

Exceptions:

None

Programming Notes:

move $0, $0, expressed as NOP, is the assembly idiom used to denote no operation.

15 11 10 8 7 5 4 3 2 0

I8

01100

MOV32R

101

r32

2:0

r32

4:3
rz

5 3 3 2 3

Move MOVE
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 99

MOVE ry, r32

Format: MOVE ry, r32 MIPS16e

Purpose:

To move the contents of a GPR to a GPR.

Description: ry ← r32

The contents of GPR r32 are moved into GPRry, and r32 can specify any one of the 32 GPRs.

Restrictions:

None

Operation:

GPR[Xlat(ry)] ← GPR[r32]

Exceptions:

None

15 11 10 8 7 5 4 0

I8

01100

MOVR32

111
ry r32

5 3 3 5

Move MOVE
100 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 101

MULT

Format: MULT rx, ry MIPS16e

Purpose:

To multiply 32-bit signed integers.

Description: (LO, HI) ← rx × ry

The 32-bit word value in GPRrx is multiplied by the 32-bit value in GPRry, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is placed into special registerLO, and the
high-order 32-bit word is splaced into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ← GPR[Xlat(rx)] * GPR[Xlat(ry)]
LO ← sign_extend(prod 31..0)
HI ← sign_extend(prod 63..32)

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to readLO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

15 11 10 8 7 5 4 0

RR

11101
rx ry

MULT

11000

5 3 3 5

Multiply Word MULT

102 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MULTU

Format: MULTU rx, ry MIPS16e

Purpose:

To multiply 32-bit unsigned integers.

Description: (LO, HI) ← rx × ry

The 32-bit word value in GPRrx is multiplied by the 32-bit value in GPRry, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special registerLO, and the
high-order 32-bit word is placed into special registerHI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ← (0 || GPR[Xlat(rx)]) * (0 || GPR[Xlat(ry)])
LO ← sign_extend(prod 31..0)
HI ← sign_extend(prod 63..32)

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to readLO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPRrt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

15 11 10 8 7 5 4 0

RR

11101
rx ry

MULTU

11001

5 3 3 5

Multiply Unsigned Word MULTU

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 103

NEG

Format: NEG rx, ry MIPS16e

Purpose:

To negate an integer value.

Description: rx ← 0 - ry

The contents of GPRry are subtracted from zero to form a 32-bit result. The result is placed in GPRrx.

Restrictions:

None

Operation:

temp ← 0 - GPR[Xlat(ry)]
GPR[Xlat(rx)] ← sign_extend(temp 31..0)

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

NEG

01011

5 3 3 5

Negate NEG

104 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

NOP

Format: NOP MIPS16e Assembly Idiom

Purpose:

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as
MOVE $0,$16.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

The 0x6500 instruction word, which represents MOVE $0,$16, is the preferred NOP for software to use to fill jump
delay slots and to pad out alignment sequences.

15 11 10 8 7 5 4 3 2 0

I8

01100

MOV32R

101

0

000

0

00

0

000

5 3 3 2 3

No Operation NOP

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 105

NOT

Format: NOT rx, ry MIPS16e

Purpose:

To complement an integer valu

Description: rx ← (NOT ry)

The contents of GPRry are bitwise-inverted and placed in GPRrx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← (not GPR[Xlat(ry)])

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

NOT

01111

5 3 3 5

Not NOT

106 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

OR

Format: OR rx, ry MIPS16e

Purpose:

To do a bitwise logical OR.

Description: rx ← rx OR ry

The contents of GPRry are combined with the contents of GPRrx in a bitwise logical OR operation. The result is
placed in GPRrx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← GPR[Xlat(rx)] or GPR[Xlat(ry)]

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

OR

01101

5 3 3 5

Or OR

djusting

e stack

resses. A

l

ory. A
on.
RESTORE

Format: RESTORE {ra,}{s0/s1/s0-1,}{framesize} (All args are optional) MIPS16e

Purpose:

To deallocate a stack frame before exit from a subroutine, restoring return address and static registers, and a
stack

Description: ra ← Stack and/or GPR[17] ← Stack and/or GPR[16] ← Stack,

sp ← sp + (framesize*8)

Restore the ra and/or GPR 16 and/or GPR 17 (s0 and s1 in the MIPS ABI calling convention) registers from th
if the correspondingra, s0, or s1bits of the instruction are set, and adjust the stack pointer by 8 times theframesize
value. Registers are loaded from the stack assuming higher numbered registers are stored at higher stack add
framesize value of 0 is interpreted as a stack adjustment of 128.

The opcode and function field describe a general save/restore operation, with thesfields as a variables. The individua
instructions, RESTORE and SAVE have specific values for this variable.

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of thera, s0, or s1bits are set, then an
Address Error exception will occur.

Operation:

if framesize = 0 then
temp ← GPR[29] + 128

else
temp ← GPR[29] + (0 || (framesize << 3))

endif
temp2 ← temp
if ra = 1 then

temp ← temp − 4
GPR[31] ← VirtualMemory[temp]

endif
if s1 = 1 then

temp ← temp - 4
GPR[17] ← VirtualMemory[temp]

endif
if s0 = 1 then

temp ← temp − 4
GPR[16] ← VirtualMemory[temp]

endif
GPR[29] ← temp2

Exceptions:

TLB refill, TLB invalid, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of loads from mem
full restart of the sequence of operations will be performed on return from any exception taken during executi

15 11 10 8 7 5 4 0

I8

01100

SVRS

100

s

0
ra s0 s1 framesize

5 3 1 1 1 1 4

Restore Registers and Deallocate Stack Frame RESTORE
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 107

rom an

is-
7

ing

so used,
not be

egisters
d before
as
E, only
RESTORE (Extended)

Format: RESTORE {ra,}{sregs,}{aregs,}{framesize}(All arguments optional) MIPS16e

Purpose:

To deallocate a stack frame before exit from a subroutine, restoring return address and static registers f
extended static register set, and adjusting the stack

Description: ra ← Stack and/or GPR[18-23,30] ← Stack and/or GPR[17] ← Stack
and/or GPR[16] ← Stack and/or GPR[4-7] ← Stack, sp ← sp + (framesize ∗ 8)

Restore the ra register from the stack if thera bit is set in the instruction. Restore from the stack the number of reg
ters in the set GPR[18-23,30] indicated by the value of thexsregsfield. Restore from the stack GPR 16 and/or GPR 1
(s0 and s1 in the MIPS ABI calling convention) from the stack if the correspondings0ands1bits of the instruction
are set, restore from the stack the number of registers in the range GPR[4-7] indicated by thearegsfield, and adjust
the stack pointer by 8 times the 8-bit concatenatedframesizevalue. Registers are loaded from the stack assum
higher numbered registers are stored at higher stack addresses.

Interpretation of the aregs Field

In the standard MIPS ABIs, GPR[4-7] are designated as argument passing registers, a0-a3. When they are
they must be saved on the stack at locations allocated by the caller of the routine being entered, but need
restored on subroutine exit. In other MIPS16e calling sequences, however, it is possible that some of the r
GPR[4-7] need to be saved as static registers on the local stack instead of on the caller stack, and restore
return from the subroutine. The encoding used for thearegsfield of an extended RESTORE instruction is the same
that used for the extended SAVE, but since argument registers can be ignored for the purposes of a RESTOR
the registers treated as static need be handled. The following table shows the RESTORE encoding of thearegs field

31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 3 0

EXTEND

11110
xsregs framesize 7:4 aregs

I8

01100

SVRS

100

s

0
ra s0 s1 framesize 3:0

5 3 4 4 5 3 1 1 1 1 4

Restore Registers and Deallocate Stack Frame (Extended) RESTORE
108 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

will
.

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of thera, s0, s1, or xsregsfields are
non-zero or thearegsfield contains an encoding that implies a register load, then an Address Error exception
occur.

aregs
Encoding
(binary)

Registers Restored as Static
Registers

0 0 0 0 None

0 0 0 1 GPR[7]

0 0 1 0 GPR[6], GPR[7]

0 0 1 1 GPR[5], GPR[6], GPR[7]

1 0 1 1 GPR[4], GPR[5], GPR[6]. GPR[7]

0 1 0 0 None

0 1 0 1 GPR[7]

0 1 1 0 GPR[6], GPR[7]

0 1 1 1 GPR[5], GPR[6], GPR[7]

1 0 0 0 None

1 0 0 1 GPR[7]

1 0 1 0 GPR[6], GPR[7]

1 1 0 0 None

1 1 0 1 GPR[7]

1 1 1 0 None

1 1 1 1 Reserved

Restore Registers and Deallocate Stack Frame (Extended, cont.) RESTORE
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 109

Operation:

temp ← GPR[29] + (0 || (framesize << 3))
temp2 ← temp
if ra = 1 then

temp ← temp − 4
GPR[31] ← VirtualMemory[temp]

endif
if xsregs > 0 then

if xsregs > 1 then
if xsregs > 2 then

if xsregs > 3 then
if xsregs > 4 then

if xsregs > 5 then
if xsregs > 6 then

temp ← temp − 4
GPR[30] ← VirtualMemory[temp]

endif
temp ← temp − 4
GPR[23] ← VirtualMemory[temp]

endif
temp ← temp − 4
GPR[22] ← VirtualMemory[temp]

endif
temp ← temp - 4
GPR[21] ← VirtualMemory[temp]

endif
temp ← temp − 4
GPR[20] ← VirtualMemory[temp]

endif
temp ← temp − 4
GPR[19] ← VirtualMemory[temp]

endif
temp ← temp − 4
GPR[18] ← VirtualMemory[temp]

endif
if s1 = 1 then

temp ← temp − 4
GPR[17] ← VirtualMemory[temp]

endif
if s0 = 1 then

temp ← temp − 4
GPR[16] ← VirtualMemory[temp]

endif
case aregs of

2#0000 2#0100 2#1000 2#1100 2#1110: astatic ← 0
2#0001 2#0101 2#1001 2#1101: astatic ← 1
2#0010 2#0110 2#1010: astatic ← 2
2#0011 2#0111: astatic ← 3
2#1011: astatic ← 4
otherwise: UNPREDICTABLE

endcase

Restore Registers and Deallocate Stack Frame (Extended, cont.) RESTORE
110 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

ory. A
on.
if astatic > 0 then
temp ← temp − 4
GPR[7] ← VirtualMemory[temp]
if astatic > 1 then

temp ← temp − 4
GPR[6] ← VirtualMemory[temp]
if astatic > 2 then

temp ← temp − 4
GPR[5] ← VirtualMemory[temp]
if astatic > 3 then

temp ← temp − 4
GPR[4] ← VirtualMemory[temp]

endif
endif

endif
endif
GPR[29] ← temp2

Exceptions:

TLB refill, TLB invalid, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of loads from mem
full restart of the sequence of operations will be performed on return from any exception taken during executi

Behavior of the processor isUNPREDICTABLE for Reserved values ofaregs.

Restore Registers and Deallocate Stack Frame (Extended, cont.) RESTORE
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 111

ck

orre-

l

. A full
SAVE

Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional) MIPS16e

Purpose:

To set up a stack frame on entry to a subroutine, saving return address and static registers, and adjusting sta

Description: Stack ← ra and/or Stack ← GPR[17] and/or Stack← GPR[16],

sp ← sp - (framesize * 8)

Save thera and/or GPR 16 and/or GPR 17 (s0 and s1 in the MIPS ABI calling convention) on the stack if the c
spondingra, s0, ands1bits of the instruction are set, and adjust the stack pointer by 8 times theframesizevalue. Reg-
isters are stored with higher numbered registers at higher stack addresses. Aframesizevalue of 0 is interpreted as a
stack adjustment of 128.

The opcode and function field describe a general save/restore operation, with thesfields as a variables. The individua
instructions, RESTORE and SAVE have specific values for this variable.

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of thera, s0, or s1bits are set, then an
Address Error exception will occur.

Operation:

temp ← GPR[29]
if ra = 1 then

temp ← temp − 4
VirtualMemory[temp] ← GPR[31]

endif
if s1 = 1 then

temp ← temp − 4
VirtualMemory[temp] ← GPR[17]

endif
if s0 = 1 then

temp ← temp − 4
VirtualMemory[temp] ← GPR[16]

endif
if framesize = 0 then

temp ← GPR[29] − 128
else

temp ← GPR[29] − (0 || (framesize << 3))
endif
GPR[29] ← temp

Exceptions:

TLB refill, TLB invalid, TLB modified, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of stores to memory
restart of the sequence of operations will be performed on return from any exception taken during execution.

15 11 10 8 7 5 4 0

I8

01100

SVRS

100

s

1
ra s0 s1 framesize

5 3 1 1 1 1 4

Save Registers and Set Up Stack Frame SAVE
112 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

adjusting

y the
tack
] that
n-

so used,
IPS16e
egisters
,
nd thus
ws the
SAVE (Extended)

Format: SAVE {ra,}{sregs,}{aregs,}{framesize} (All arguments optional) MIPS16e

Purpose:

To set up a stack frame on entry to a subroutine, saving return address, static, and argument registers, and
the stack

Description: Stack ← ra and/or Stack ← GPR[18-23,30] and/or Stack ← GPR[17] and/or

Stack ← GPR[16] and/or Stack ← GPR[4-7], sp ← sp - (framesize * 8)

Save registers GPR[4-7] specified to be treated as incoming arguments by thearegsfield. Save the ra register on the
stack if thera bit of the instruction is set. Save the number of registers in the set GPR[18-23, 30] indicated b
value of thexsregsfield, and/or GPR 16 and/or GPR 17 (s0 and s1 in the MIPS ABI calling convention) on the s
if the correspondings0ands1bits of the instruction are set. Save the number of registers in the range GPR[4-7
are to be treated as static registers as indicated by thearegsfield, and adjust the stack pointer by 8 times the 8-bit co
catenatedframesize value. Registers are stored with higher numbered registers at higher stack addresses.

Interpretation of the aregs Field

In the standard MIPS ABIs, GPR[4-7] are designated as argument passing registers, a0-a3. When they are
they must be saved on the stack at locations allocated by the caller of the routine being entered. In other M
calling sequences, however, it is possible that some of the registers GPR[4-7] will need to be saved as static r
on the local stack instead of on the caller stack. The encoding of thearegsfield allows for 0-4 arguments, 0-4 statics
and for mixtures of the two. Registers are bound to arguments in ascending order, a0, a1, a2, and a3, a
assigned to static values in the reverse order, GPR[7], GPR[6], GPR[5], and GPR[4]. The following table sho
encoding of thearegs field.

31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 3 0

EXTEND

11110
xsregs framesize 7:4 aregs

I8

01100

SVRS

100

s

1
ra s0 s1 framesize 3:0

5 3 4 4 5 3 1 1 1 1 4

Save Registers and Set Up Stack Frame (Extended) SAVE
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 113

occur.
Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any of thera, s0, s1, or xsregsfields are
non-zero or thearegs field contains an value that implies a register store, then an Address Error exception will

aregs
Encoding
(binary)

Registers Saved as
Arguments

Registers Saved as Static Registers

0 0 0 0 None None

0 0 0 1 None GPR[7]

0 0 1 0 None GPR[6], GPR[7]

0 0 1 1 None GPR[5], GPR[6], GPR[7]

1 0 1 1 None GPR[4], GPR[5], GPR[6], GPR[7]

0 1 0 0 a0 None

0 1 0 1 a0 GPR[7]

0 1 1 0 a0 GPR[6], GPR[7]

0 1 1 1 a0 GPR[5], GPR[6], GPR[7]

1 0 0 0 a0, a1 None

1 0 0 1 a0, a1 GPR[7]

1 0 1 0 a0, a1 GPR[6], GPR[7]

1 1 0 0 a0, a1, a2 None

1 1 0 1 a0, a1, a2 GPR[7]

1 1 1 0 a0, a1, a2, a3 None

1 1 1 1 Reserved Reserved

Save Registers and Set Up Stack Frame (Extended, cont.) SAVE
114 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Operation:

temp ← GPR[29]
temp2 ← GPR[29]
case aregs of

2#0000 2#0001 2#0010 2#0011 2#1011: args ← 0
2#0100 2#0101 2#0110 2#0111: args ← 1
2#1000 2#1001 2#1010: args ← 2
2#1100 2#1101: args ← 3
2#1110: args ← 4
otherwise: UNPREDICTABLE

endcase
if args > 0 then

VirtualMemory[temp] ← GPR[4]
if args > 1 then

VirtualMemory[temp + 4] ← GPR[5]
if args > 2 then

VirtualMemory[temp + 8] ← GPR[6]
if args > 3 then

VirtualMemory[temp + 12] ← GPR[7]
endif

endif
endif

endif
if ra = 1 then

temp ← temp − 4
VirtualMemory[temp] ← GPR[31]

endif
if xsregs > 0 then

if xsregs > 1 then
if xsregs > 2 then

if xsregs > 3 then
if xsregs > 4 then

if xsregs > 5 then
if xsregs > 6 then

temp ← temp − 4
VirtualMemory[temp] ← GPR[30]

endif
temp ← temp − 4
VirtualMemory[temp] ← GPR[23]

endif
temp ← temp − 4
VirtualMemory[temp] ← GPR[22]

endif
temp ← temp − 4
VirtualMemory[temp] ← GPR[21]

endif
temp ← temp − 4
VirtualMemory[temp] ← GPR[20]

endif
temp ← temp − 4
VirtualMemory[temp] ← GPR[19]

endif
temp ← temp − 4
VirtualMemory[temp] ← GPR[18]

endif

Save Registers and Set Up Stack Frame (Extended, cont.) SAVE
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 115

. A full
if s1 = 1 then
temp ← temp − 4
VirtualMemory[temp] ← GPR[17]

endif
if s0 = 1 then

temp ← temp − 4
VirtualMemory[temp] ← GPR[16]

endif
case aregs of

2#0000 2#0100 2#1000 2#1100 2#1110: astatic ← 0
2#0001 2#0101 2#1001 2#1101: astatic ← 1
2#0010 2#0110 2#1010: astatic ← 2
2#0011 2#0111: astatic ← 3
2#1011: astatic ← 4
otherwise: UNPREDICTABLE

endcase
if astatic > 0 then

temp ← temp − 4
VirtualMemory[temp] ← GPR[7]
if astatic > 1 then

temp ← temp − 4
VirtualMemory[temp] ← GPR[6]
if astatic > 2 then

temp ← temp − 4
VirtualMemory[temp] ← GPR[5]
if astatic > 3 then

temp ← temp − 4
VirtualMemory[temp] ← GPR[4]

endif
endif

endif
endif
temp ← temp2 − (0 || (framesize << 3))
GPR[29] ← temp

Exceptions:

TLB refill, TLB invalid, TLB modified, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of stores to memory
restart of the sequence of operations will be performed on return from any exception taken during execution.

Behavior of the processor isUNPREDICTABLE for Reserved values ofaregs.

Save Registers and Set Up Stack Frame (Extended, cont.) SAVE
116 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

f-
SB

Format: SB ry, offset(rx) MIPS16e

Purpose:

To store a byte to memory.

Description: memory[rx + offset] ← ry

The 5-bitoffsetis zero-extended, then added to the contents of GPRrx to form the effective address. The least-signi
icant byte of GPRry is stored at the effective address.

Restrictions:

None

Operation:
vAddr ← zero_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
bytesel ← vAddr 1..0 xor BigEndianCPU 2

dataword ← GPR[rt] 31–8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

15 11 10 8 7 5 4 0

SB

11000
rx ry offset

5 3 3 5

Store Byte SB
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 117

SB (Extended)

Format: SB ry, offset(rx) MIPS16e

Purpose:

To store a byte to memory.

Description: memory[rx + offset] ← ry

The 16-bitoffset is sign-extended and then added to the contents of GPRrx to form the effective address. The
least-significant byte of GPRry is stored at the effective address.

Restrictions:

None

Operation:
vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr 1..0 xor ReverseEndian 2)
bytesel ← vAddr 1..0 xor BigEndianCPU 2

dataword ← GPR[rt] 31–8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

SB

11000
rx ry offset 4:0

5 6 5 5 3 3 5

Store Byte (Extended) SB
118 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 119

SDBBP

Format: SDBBP code MIPS16e EJTAG

Purpose:

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. The code field can be used
for passing information to the debug exception handler, and is retrieved by the debug exception handler only by load-
ing the contents of the memory word containing the instruction, using the DEPC register. The CODE field is not used
in any way by the hardware.

Restrictions:

Operation:

If DebugDM = 0 then
SignalDebugBreakpointException()

else
SignalDebugModeBreakpointException()

endif

Exceptions:

Debug Breakpoint Exception

15 11 10 5 4 0

RR

11101
code

SDBBP

00001

5 6 5

Software Debug Breakpoint SDBBP

120 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

SEB

Format: SEB rx MIPS16e

Purpose:

Sign-extend least significant byte in register rx.

Description: rx ← sign_extend(rx 7..0)

The least significant byte of rx is sign-extended and the value written back to rx.

Restrictions:

None

Operation:

temp ← GPR[Xlat(rx)]
GPR[Xlat(rx)] ← sign_extend(temp 7..0)

Exceptions:

None

Programming Notes:

None.

15 11 10 8 7 5 4 0

RR

11101
rx

SEB

100

CNVT

10001

5 3 3 5

Sign-Extend Byte SEB

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 121

SEH

Format: SEH rx MIPS16e

Purpose:

Sign-extend least significant word in register rx.

Description: rx ← sign_extend(rx 15..0);

The least significant halfword of rx is sign-extended and the value written back to rx.

Restrictions:

None.

Operation:

temp ← GPR[Xlat(rx)]
GPR[Xlat(rx)] ← sign_extend(temp 15..0)

Exceptions:

None

Programming Notes:

None.

15 11 10 8 7 5 4 0

RR

11101
rx

SEH

101

CNVT

10001

5 3 3 5

Sign-Extend Halfword SEH

ddress
SH

Format: SH ry, offset(rx) MIPS16e

Purpose:

To store a halfword to memory.

Description: memory[rx + offset] ← ry

The 5-bitoffsetis shifted left 1 bit, zero-extended, and then added to the contents of GPRrx to form the effective
address. The least-significant halfword of GPRry is stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 0) + GPR[Xlat(rx)]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr1 1..0 xor (ReverseEndian || 0))
bytesel ← vAddr1 1..0 xor (BigEndianCPU || 0)
dataword ← GPR[Xlat(ry)] 31–8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

15 11 10 8 7 5 4 0

SH

11001
rx ry offset

5 3 3 5

Store Halfword SH
122 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

ddress
SH (Extended)

Format: SH ry, offset(rx) MIPS16e

Purpose:

To store a halfword to memory.

Description: memory[rx + offset] ← ry

The 16-bitoffset is sign-extended and then added to the contents of GPRrx to form the effective address. The
least-significant halfword of GPRry is stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an A
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
if vAddr 0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddr PSIZE-1..2 || (pAddr1 1..0 xor (ReverseEndian || 0))
bytesel ← vAddr1 1..0 xor (BigEndianCPU || 0)
dataword ← GPR[Xlat(ry)] 31–8*bytesel..0 || 0 8*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

SH

11001
rx ry offset 4:0

5 6 5 5 3 3 5

Store Halfword (Extended) SH
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 123

it
d into
SLL

Format: SLL rx, ry, sa MIPS16e

Purpose:

To execute a left-shift of a word by a fixed number of bits—1 to 8 bits.

Description: rx ← ry << sa

The 32-bit contents of GPRry are shifted left, and zeros are inserted into the emptied low-order bits. The 3-bsa
field specifies the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The result is place
GPRrx.

Restrictions:

None

Operation:

if sa = 0 3 then
s ← 8

else
s ← 0 2 || sa

endif
temp ← GPR[Xlat(ry)] (31-s)..0 || 0 s

GPR[Xlat(rx)] ← temp

Exceptions:

None

.

15 11 10 8 7 5 4 2 1 0

SHIFT

00110
rx ry sa

SLL

00

5 3 3 3 2

Shift Word Left Logical SLL
124 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

it
SLL (Extended)

Format: SLL rx, ry, sa MIPS16e

Purpose:

To execute a left-shift of a word by a fixed number of bits—0 to 31 bits.

Description: rx ← ry << sa

The 32-bit contents of GPRry are shifted left, and zeros are inserted into the emptied low-order bits. The 5-bsa
field specifies the shift amount. The result is placed into GPRrx.

Restrictions:

None

Operation:

s ← sa
temp ← GPR[Xlat(ry)] (31-s)..0 || 0 s

GPR[Xlat(rx)] ← temp

Exceptions:

None

.

31 27 26 22 21 16 15 11 10 8 7 5 4 2 1 0

EXTEND

11110
sa4:0

0

000000

SHIFT

00110
rx ry

0

000

SLL

00

5 5 6 5 3 3 3 2

Shift Word Left Logical (Extended) SLL
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 125

126 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

SLLV

Format: SLLV ry, rx MIPS16e

Purpose:

To execute a left-shift of a word by a variable number of bits.

Description: ry ← ry << rx

The 32-bit contents of GPRry are shifted left, and zeros are inserted into the emptied low-order bits; the result word
is and placed back in GPRry. The 5 low-order bits of GPRrx specify the shift amount.

Restrictions:

None

Operation:

s ← GPR[Xlat(rx)] 4..0
temp ← GPR[Xlat(ry)] (31-s)..0 || 0 s

GPR[Xlat(ry)] ← temp

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

SLLV

00100

5 3 3 5

Shift Word Left Logical Variable SLLV

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 127

SLT

Format: SLT rx, ry MIPS16e

Purpose:

To record the result of a less-than comparison.

Description: T ← (rx < ry)

The contents of GPRry are subtracted from the contents of GPRrx. Considering both quantities as signed integers, if
the contents of GPRrx are less than the contents of GPRry, the result is set to 1 (true); otherwise, the result is set to 0
(false). This result is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < GPR[Xlat(ry)] then
GPR[24] ← 0 GPRLEN-1 || 1

else
GPR[24] ← 0 GPRLEN

endif

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

SLT

00010

5 3 3 5

Set on Less Than SLT

is
SLTI

Format: SLTI rx, immediate MIPS16e

Purpose:

To record the result of a less-than comparison with a constant.

Description: T ← (rx < immediate)

The 8-bit immediateis zero-extended and subtracted from the contents of GPRrx. Considering both quantities as
signed integers, if GPRrx is less than the zero-extendedimmediate, the result is set to 1 (true); otherwise, the result
set to 0 (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < zero_extend(immediate) then
GPR[24] ← 0 GPRLEN-1 || 1

else
GPR[24] ← 0 GPRLEN

endif

Exceptions:

None

15 11 10 8 7 0

SLTI

01010
rx immediate

5 3 8

Set on Less Than Immediate SLTI
128 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

is
SLTI (Extended)

Format: SLTI rx, immediate MIPS16e

Purpose:

To record the result of a less-than comparison with a constant.

Description: T ← (rx < immediate)

The 16-bitimmediateis sign-extended and subtracted from the contents of GPRrx. Considering both quantities as
signed integers, if GPRrx is less than the sign-extendedimmediate, the result is set to 1 (true); otherwise, the result
set to 0 (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < sign_extend(immediate) then
GPR[24] ← 0 GPRLEN-1 || 1

else
GPR[24] ← 0 GPRLEN

endif

Exceptions:

None

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

SLTI

01010
rx

0

000
imm 4:0

5 6 5 5 3 3 5

Set on Less Than Immediate (Extended) SLTI
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 129

lt
SLTIU

Format: SLTIU rx, immediate MIPS16e

Purpose:

To record the result of an unsigned less-than comparison with a constant.

Description: T ← (rx < immediate)

The 8-bit immediateis zero-extended and subtracted from the contents of GPRrx. Considering both quantities as
unsigned integers, if GPRrx is less than the zero-extendedimmediate, the result is set to 1 (true); otherwise, the resu
is set to 0 (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if (0 || GPR[Xlat(rx)]) < (0 || zero_extend(immediate)) then
GPR[24] ← 0 GPRLEN-1 || 1

else
GPR[24] ← 0 GPRLEN

endif

Exceptions:

None

15 11 10 8 7 0

SLTIU

01011
rx immediate

5 3 8

Set on Less Than Immediate Unsigned SLTIU
130 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

lt
SLTIU (Extended)

Format: SLTIU rx, immediate MIPS16e

Purpose:

To record the result of an unsigned less-than comparison with a constant.

Description: T ← (rx < immediate)

The 16-bitimmediateis sign-extended and subtracted from the contents of GPRrx. Considering both quantities as
unsigned integers, if GPRrx is less than the sign-extendedimmediate, the result is set to 1 (true); otherwise, the resu
is set to 0 (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if (0 || GPR[Xlat(rx)]) < (0 || sign_extend(immediate)) then
GPR[24] ← 0 GPRLEN-1 || 1

else
GPR[24] ← 0 GPRLEN

endif

Exceptions:

None

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
imm 10:5 imm 15:11

SLTIU

01011
rx

0

000
imm 4:0

5 6 5 5 3 3 5

Set on Less Than Immediate Unsigned (Extended) SLTIU
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 131

132 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

SLTU

Format: SLTU rx, ry MIPS16e

Purpose:

To record the result of an unsigned less-than comparison.

Description: T ← (rx < ry)

The contents of GPRry are subtracted from the contents of GPRrx. Considering both quantities as unsigned integers,
if the contents of GPRrx are less than the contents of GPRry, set the result to 1 (true); otherwise, set the result to 0
(false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if (0 || GPR[Xlat(rx)]) < (0 || GPR[Xlat(ry)]) then
GPR[24] ← 0 GPRLEN-1 || 1

else
GPR[24] ← 0 GPRLEN

endif

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

SLTU

00011

5 3 3 5

Set on Less Than Unsigned SLTU

The
laced
SRA

Format: SRA rx, ry, sa MIPS16e

Purpose:

To execute an arithmetic right-shift of a word by a fixed number of bits—1 to 8 bits.

Description: rx ← ry >> sa (arithmetic)

The 32-bit contents of GPRry are shifted right, and the sign bit is replicated into the emptied high-order bits.
3-bit safield specifies the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The result is p
into GPRrx.

Restrictions:

None

Operation:

s ← 0 2 || sa
if (s = 0) then

s ← 8
endif
temp ← (GPR[Xlat(ry)] 31) s || GPR[Xlat(ry)] 31..s
GPR[Xlat(rx)] ← temp

Exceptions:

None

15 11 10 8 7 5 4 2 1 0

SHIFT

00110
rx ry sa

SRA

11

5 3 3 3 2

Shift Word Right Arithmetic SRA
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 133

The
SRA (Extended)

Format: SRA rx, ry, sa MIPS16e

Purpose:

To execute an arithmetic right-shift of a word by a fixed number of bits—0 to 31bits.

Description: rx ← ry >> sa (arithmetic)

The 32-bit contents of GPRry are shifted right, and the sign bit is replicated into the emptied high-order bits.
5-bit sa field specifies the shift amount. The result is placed into GPRrx.

Restrictions:

None

Operation:

s ← sa
temp ← (GPR[Xlat(ry)] 31) s || GPR[Xlat(ry)] 31..s
GPR[Xlat(rx)] ← sign_extend(temp31..0)

Exceptions:

None

31 27 26 22 21 16 15 11 10 8 7 5 4 2 1 0

EXTEND

11110
sa4:0

0

000000

SHIFT

00110
rx ry

0

000

SRA

11

5 5 6 5 3 3 3 2

Shift Word Right Arithmetic (Extended) SRA
134 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 135

SRAV

Format: SRAV ry, rx MIPS16e

Purpose:

To execute an arithmetic right-shift of a word by a variable number of bits.

Description: ry ← ry >> rx (arithmetic)

The 32-bit contents of GPRry are shifted right, and the sign bit is replicated into the emptied high-order bits; the
word result is placed back in GPRry. The 5 low-order bits of GPRrx specify the shift amount.

Restrictions:

None

Operation:

s ← GPR[Xlat(rx)] 4..0
temp ← (GPR[Xlat(ry)] 31) s || GPR[Xlat(ry)] 31..s
GPR[Xlat(ry)] ← temp

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

SRAV

00111

5 3 3 5

Shift Word Right Arithmetic Variable SRAV

it
d into
SRL

Format: SRL rx, ry, sa MIPS16e

Purpose:

To execute a logical right-shift of a word by a fixed number of bits—1 to 8 bits.

Description: rx ← ry >> sa (logical)

The 32-bit contents of GPRry are shifted right, and zeros are inserted into the emptied high-order bits. The 3-bsa
field specifies the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The result is place
GPRrx.

Restrictions:

None

Operation:

if sa = 0 3 then
s ← 8

else
s ← 0 2 || sa

endif
temp ← 0 s || GPR[Xlat(ry)] 31..s
GPR[Xlat(rx)] ← temp

Exceptions:

None

15 11 10 8 7 5 4 2 1 0

SHIFT

00110
rx ry sa

SRL

10

5 3 3 3 2

Shift Word Right Logical SRL
136 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

it
SRL (Extended)

Format: SRL rx, ry, sa MIPS16e

Purpose:

To execute a logical right-shift of a word by a fixed number of bits—0 to 31 bits.

Description: rx ← ry >> sa (logical)

The 32-bit contents of GPRry are shifted right, and zeros are inserted into the emptied high-order bits. The 5-bsa
field specifies the shift amount. The result is placed into GPRrx.

Restrictions:

None

Operation:

s ← sa
temp ← 0 s || GPR[Xlat(ry)] 31..s
GPR[Xlat(rx)] ← stemp

Exceptions:

None

31 27 26 22 21 16 15 11 10 8 7 5 4 2 1 0

EXTEND

11110
sa4:0

0

000000

SHIFT

00110
rx ry

0

000

SRL

10

5 5 6 5 3 3 3 2

Shift Word Right Logical (Extended) SRL
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 137

138 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

SRLV

Format: SRLV ry, rx MIPS16e

Purpose:

To execute a logical right-shift of a word by a variable number of bits.

Description: ry ← ry >> rx (logical)

The 32-bit contents of GPRry are shifted right, and zeros are inserted into the emptied high-order bits; the word
result is placed back in GPRry. The 5 low-order bits of GPRrx specify the shift amount.

Restrictions:

None

Operation:

s ← GPR[Xlat(rx)] 4..0
temp ← 0 s || GPR[Xlat(ry)] 31..s
GPR[Xlat(ry)] ← temp

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

SRLV

00110

5 3 3 5

Shift Word Right Logical Variable SRLV

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 139

SUBU

Format: SUBU rz, rx, ry MIPS16e

Purpose:

To subtract 32-bit integers.

Description: rz ← rx - ry

The 32-bit word value in GPRry is subtracted from the 32-bit value in GPRrx and the 32-bit arithmetic result is
placed into GPRrz.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[Xlat(rx)] - GPR[Xlat(ry)]
GPR[Xlat(rz)] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

15 11 10 8 7 5 4 2 1 0

RRR

11100
rx ry rz

SUBU

11

5 3 3 3 2

Subtract Unsigned Word SUBU

ero, an
SW

Format: SW ry, offset(rx) MIPS16e

Purpose:

To store a word to memory.

Description: memory[rx + offset] ← ry

The 5-bitoffsetis shifted left 2 bits, zero-extended, and then added to the contents of GPRrx to form the effective
address. The contents of GPRry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 0 2) + GPR[Xlat(rx)]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[Xlat(ry)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

15 11 10 8 7 5 4 0

SW

11011
rx ry offset

5 3 3 5

Store Word SW
140 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

-

ero, an
SW (Extended)

Format: SW ry, offset(rx) MIPS16e

Purpose:

To store a word to memory.

Description: memory[rx + offset] ← ry

The 16-bitoffsetis sign-extended and then added to the contents of GPRrx to form the effective address. The con
tents of GPRry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[Xlat(rx)]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[Xlat(ry)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

SW

11011
rx ry offset 4:0

5 6 5 5 3 3 5

Store Word (Extended) SW
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 141

ective

ero, an
SW rx (SP-Relative)

Format: SW rx, offset(sp) MIPS16e

Purpose:

To store an SP-relative word to memory.

Description: memory[sp + offset] ← rx

The 8-bitoffsetis shifted left 2 bits, zero-extended, and then added to the contents of GPR 29 to form the eff
address. The contents of GPRrx are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 0 2) + GPR[29]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[Xlat(rx)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

15 11 10 8 7 5 4 0

SWSP

11010
rx offset

5 3 8

Store Word rx (SP-Relative) SW
142 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

e con-

ero, an
SW rx (SP-Relative, Extended)

Format: SW rx, offset(sp) MIPS16e

Purpose:

To store an SP-relative word to memory.

Description: memory[sp + offset] ← rx

The 16-bitoffsetis sign-extended and then added to the contents of GPR 29 to form the effective address. Th
tents of GPRrx are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the two least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[29]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[Xlat(rx)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

SWSP

11010
rx

0

000
offset 4:0

5 6 5 5 3 3 5

Store Word rx (SP-Relative, Extended) SW
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 143

ective

ero, an
SW ra (SP-Relative)

Format: SW ra, offset(sp) MIPS16e

Purpose:

To store registerra SP-relative to memory.

Description: memory[sp + offset] ← ra

The 8-bitoffsetis shifted left 2 bits, zero-extended, and then added to the contents of GPR 29 to form the eff
address. The contents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← zero_extend(offset || 0 2) + GPR[29]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[31]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

15 11 10 8 7 0

I8

01100

SWRASP

010
offset

5 3 8

Store Word ra (SP-Relative) SW
144 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

e con-

ero, an
SW ra (SP-Relative, Extended)

Format: SW ra, offset(sp) MIPS16e

Purpose:

To store registerra SP-relative to memory.

Description: memory[sp + offset] ← ra

The 16-bitoffsetis sign-extended and then added to the contents of GPR 29 to form the effective address. Th
tents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-z
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[29]
if vAddr 1..0 ≠ 0 2 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[31]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND

11110
offset 10:5 offset 15:11

I8

01100

SWRASP

010

0

000
offset 4:0

5 6 5 5 3 3 5

Store Word ra(SP-Relative, Extended) SW
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 145

146 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

XOR

Format: XOR rx, ry MIPS16e

Purpose:

To do a bitwise logical Exclusive OR.

Description: rx ← rx XOR ry

The contents of GPRry are combined with the contents of GPRrx in a bitwise Exclusive OR operation. The result is
placed in GPRrx.

Restrictions:

None

Operation:

GPR[Xlat(rx)] ← GPR[Xlat(rx)] xor GPR[Xlat(ry)]

Exceptions:

None

15 11 10 8 7 5 4 0

RR

11101
rx ry

XOR

01110

5 3 3 5

Exclusive OR XOR

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 147

ZEB

Format: ZEB rx MIPS16e

Purpose:

Zero-extend least significant byte in register rx.

Description: rx ← zero_extend(rx 7..0);

The least significant byte of rx is zero-extended and the value written back to rx.

Restrictions:

None

Operation:

temp ← GPR[Xlat(rx)]
GPR[Xlat(rx)] ← 0 || temp 7..0

Exceptions:

None

Programming Notes:

None.

15 11 10 8 7 5 4 0

RR

11101
rx

ZEB

000

CNVT

10001

5 3 3 5

Zero-Extend Byte ZEB

148 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

ZEH

Format: ZEH rx MIPS16e

Purpose:

Zero-extend least significant halfword in register rx.

Description: rx ← zero_extend(rx 15..0);

The least significant halfword of rx is zero-extended and the value written back to rx.

Restrictions:

None

Operation:

temp ← GPR[Xlat(rx)]
GPR[Xlat(rx)] ← 0 || temp 15..0

Exceptions:

None

Programming Notes:

None.

15 11 10 8 7 5 4 0

RR

11101
rx

ZEH

001

CNVT

10001

5 3 3 5

Zero-Extend Halfword ZEH

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 149

150 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 151

Appendix A

Revision History

Revision Date Description

0.90 November 1, 2000 External review copy of reorganized and updated architecture documentation.

0.91 November 15, 2000

Changes in this revision:

• Correct table 3-10 description of branch instructions (branches really are
implemented in the 32-bit architecture and are extensible)

• Correct the pseudo code for all MIPS16 branches - the offset value thould
be added to the address of the instruction following the branch, not the
branch itself.

0.92 December 15, 2000
Changes in this revision:

• Add missing I8_MOVER32 instruction format.

0.93 January 25, 2001

Changes in this revision:

• Correct minor typos in the previous version.

• Add the 32-bit MIPS version of JALX and update the instruction
descriptions of JAL and JALX.

0.95 March 12, 2001 Document cleanup for next external release.

0.96 November 12, 2001

Changes in this revision:

• Declassify the MIPS32 Architecture for Programmers volume.

• Fix PDF bookmarks for the MIPS16 instructions.

• Fix formatting in instruction translation section.

• Correct the description of the shift count for extended SRA and SLL.

• Change all uses of “MIPS16” to “MIPS16e”.

	MIPS32™ Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to ...
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	Guide to the Instruction Set
	2.1� Understanding the Instruction Fields
	2.1.1� Instruction Fields
	2.1.2� Instruction Descriptive Name and Mnemonic
	2.1.3� Format Field
	2.1.4� Purpose Field
	2.1.5� Description Field
	2.1.6� Restrictions Field
	2.1.7� Operation Field
	2.1.8� Exceptions Field
	2.1.9� Programming Notes and Implementation Notes Fields

	2.2� Operation Section Notation and Functions
	2.2.1� Instruction Execution Ordering
	2.2.2� Pseudocode Functions
	2.2.2.1� Coprocessor General Register Access Functions
	COP_LW
	COP_LD
	COP_SW
	COP_SD

	2.2.2.2� Load Memory and Store Memory Functions
	AddressTranslation
	LoadMemory
	StoreMemory
	Prefetch

	2.2.2.3� Access Functions for Floating Point Registers
	ValueFPR
	StoreFPR

	2.2.2.4� Miscellaneous Functions
	SyncOperation
	SignalException
	NullifyCurrentInstruction
	CoprocessorOperation
	JumpDelaySlot
	FPConditionCode
	SetFPConditionCode

	2.3� Op and Function Subfield Notation
	2.4� FPU Instructions

	The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture
	3.1� Base Architecture Requirements
	3.2� Software Detection of the ASE
	3.3� MIPS16e Overview
	3.4� MIPS16e ASE Features
	3.5� MIPS16e Register Set
	3.6� MIPS16e ISA Modes
	3.6.1� Modes Available in the MIPS16e Architecture
	3.6.2� Defining the ISA Mode Field
	3.6.3� Switching Between Modes When an Exception Occurs
	3.6.4� Using MIPS16e Jump Instructions to Switch Modes

	3.7� JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode
	3.8� MIPS16e Instruction Summaries
	3.9� MIPS16e PC-Relative Instructions
	3.10� MIPS16e Extensible Instructions
	3.11� MIPS16e Implementation-Definable Macro Instructions
	3.12� MIPS16e Jump and Branch Instructions
	3.13� MIPS16e Instruction Formats
	3.13.1� I-type instruction format
	3.13.2� RI-type instruction format
	3.13.3� RR-type instruction format
	3.13.4� RRI-type instruction format
	3.13.5� RRR-type instruction format
	3.13.6� RRI-A type instruction format
	3.13.7� Shift instruction format
	3.13.8� I8-type instruction format
	3.13.9� I8_MOVR32 instruction format (used only by the MOVR32 instruction)
	3.13.10� I8_MOV32R instruction format (used only by MOV32R instruction)
	3.13.11� I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)
	3.13.12� JAL and JALX instruction format
	3.13.13� EXT-I instruction format
	3.13.14� ASMACRO instruction format
	3.13.15� EXT-RI instruction format
	3.13.16� EXT-RRI instruction format
	3.13.17� EXT-RRI-A instruction format
	3.13.18� EXT-SHIFT instruction format
	3.13.19� EXT-I8 instruction format
	3.13.20� EXT-I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)

	3.14� Instruction Bit Encoding
	3.15� MIPS16e Instruction Stream Organization and Endianness

	The MIPS16e™ ASE Instruction Set
	4.1� MIPS16e Instruction Descriptions
	4.1.1� MIPS16e-Specific Pseudocode Functions
	4.1.1.1� Xlat

	ADDIU (2-Operand)
	ADDIU (2-Operand, Extended)
	ADDIU (3-Operand)
	ADDIU (3-Operand, Extended)
	ADDIU (3-Operand, PC-Relative)
	ADDIU (3-Operand, PC-Relative, Extended)
	ADDIU (2-Operand, SP-Relative)
	ADDIU (2-Operand, SP-Relative, Extended)
	ADDIU (3-Operand, SP-Relative)
	ADDIU (3-Operand, SP-Relative, Extended)
	ADDU (3-Operand)
	AND
	ASMACRO
	B
	B (Extended)
	BEQZ
	BEQZ (Extended)
	BNEZ
	BNEZ (Extended)
	BREAK
	BTEQZ
	BTEQZ (Extended)
	BTNEZ
	BTNEZ (Extended)
	CMP
	CMPI
	CMPI (Extended)
	DIV
	DIVU
	JAL
	JALR
	JALRC
	JALX (MIPS16e Format)
	JALX (MIPS32 Format)
	JR ra
	JR rx
	JRC ra
	JRC rx
	LB
	LB (Extended)
	LBU
	LBU (Extended)
	LH
	LH (Extended)
	LHU
	LHU (Extended)
	LI
	LI (Extended)
	LW
	LW (Extended)
	LW (PC-Relative)
	LW (PC-Relative, Extended)
	LW (SP-Relative)
	LW (SP-Relative, Extended)
	MFHI
	MFLO
	MOVE r32, rz
	MOVE ry, r32
	MULT
	MULTU
	NEG
	NOP
	NOT
	OR
	RESTORE
	RESTORE (Extended)
	SAVE
	SAVE (Extended)
	SB
	SB (Extended)
	SDBBP
	SEB
	SEH
	SH
	SH (Extended)
	SLL
	SLL (Extended)
	SLLV
	SLT
	SLTI
	SLTI (Extended)
	SLTIU
	SLTIU (Extended)
	SLTU
	SRA
	SRA (Extended)
	SRAV
	SRL
	SRL (Extended)
	SRLV
	SUBU
	SW
	SW (Extended)
	SW rx (SP-Relative)
	SW rx (SP-Relative, Extended)
	SW ra (SP-Relative)
	SW ra (SP-Relative, Extended)
	XOR
	ZEB
	ZEH

	Revision History

