MII—P S

TECHNOLOGIES

MIPS32™ Architecture for Programmers
Volume IV-a: The MIPS16e™
Application-Specific Extension to the MIPS32™
Architecture

Document Number: MD0O0076
Revision 0.96
November 12, 2001

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2000-2001 MIPS Technologies, Inc. All rights reserved.
Unpublished rights reserved under the Copyright Laws of the United States of America.

This document contains information that is proprietary to MIPS Technologies, Inc. (“MIPS Technologies™). Any
copying, modifyingor use of this information (in whole or in part) which is not expressly permitted in writing by MIPS
Technologies or a contractually-authorized third party is strictly prohibited. Ata minimum, this information is protected
under unfair competition laws and the expression of the information contained herein is protected under federal
copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information contained in
this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
the application or use of this information. Any license under patent rights or any other intellectual property rights owned
by MIPS Technologies or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third
party in a separate license agreement between the parties.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the
United States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or
transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal
Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202
for military agencies. The use of this information by the Government is further restricted in accordance with the terms
of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or any contractually-authorized third party.

MIPS, R3000, R4000, R5000, R8000 and R10000 are among the registered trademarks of MIPS Technologies, Inc., and
R4300, R20K, MIPS16, MIPS32, MIPS64, MIPS-3D, MIPS |, MIPS I, MIPS 1lI, MIPS IV, MIPS V, MDMX,

SmartMIPS, 4K, 4Kc, 4Km, 4Kp, 5K, 5Kc, 20K, 20Kc, EC, MGB, SOC-it, SEAD, YAMON, ATLAS, JALGO, CoreLV

and MIPS-based are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Table of Contents

Chapter 1 ADOUL THIS BOOKceiiiiiiiiiiee ettt e e e o444 —— £ £t 2222224111 nb bt be e 1.
1.1 Typographical Conventions
0 R 1 = [= T PP OPPPRPPPPPPRPRN
L1.1.2 BOI TEXE .eeeeiiiiiiee ettt ettt e e .
R I 01U 1= g I =) PP PR OUP PRSPPI 1.
1.2 UNPREDICTABLE and UNDEFINED
1.2.1 UNPREDICTABLE.......coiitiiiiii ettt
1.2.2 UNDERINED.......coiitiie ittt ettt e sttt e bt e e s st et e 41t et 42t st s £ 45444 b et e e b b e e 2
1.3 Special Symbols in PSEUAOCOTE NOTALION...........uuiiiiiiiiiee i+ s——— et e 2122
R o Y To] (=N [0 (o T4 4 F= X o o RO PP PP PPPPPRPOPPI 5.

Chapter 2 Guide 10 the INSIIUCTION SET.........uuiiiiiiiii ettt ——— 2221 n b et e e e e neee 1.

2.1 Understanding the INStruCtion FIeldScuuiiiiiiiiiieii et s emmmmmneeeeeeesseeeeeeaeeeeeesennnis
2.1, INSEUCHON FIEIAS ...ttt e bt e e e ekt e et e e sme e e e e eaameee s aabbneeeeaanbeeeeeeane 8.
2.1.2 Instruction Descriptive Name and MNEMONICiiiuuiiiiiiiiie ettt eee e e e e e e e bbb e mmmmmnns oo 9
P e B o 1 = L =T o PP PPP T PPPPPP P 9.
2.1.4 PUIPOSE FHEI ...ttt ettt e e ekt e e e e e e s e e b et e e e e nbre e e e e annreas 10
2.1.5 DeSCHPLON FIEIH. ... ettt e et e e s n e e e e e e aann e e e e s sbbe e e e s annnneeeean 10
2.1.6 RESIICHONS FIEIAeeiiiiiiiiii ettt st e ek emmmmmneene st e e s annnneee e s 10
2.1.7 Operation Field
2.1.8 EXCEPLONS FII.....cceiiiiieiie ittt e ettt e e 4t ¢ s—— 11411 e s 11
2.1.9 Programming Notes and Implementation Notes FieldsS ... e 11

2.2 Operation Section Notation and Functions
2.2.1 Instruction EXeCUtion OFAEriNg..........uvteiiiiiiieeiiiiieie et
2.2.2 PSeUdOCOTE FUNCHONS.coiitiiiiieiiiiet ettt ettt st e e s nnsb e e e e

2.3 Op and Function Subfield NOtationccceieiiiiiiiiiic e

2.4 FPU INSIUCTIONSitteeeee ittt ettt ettt ettt e ettt e oo ekttt e e s 4k et e e a4k b et e e+ 442t £ ¢ o £ £ 4444118152422 1 kb eeeeeens

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecturecccooevevvvvvveenre e 21.....

3.1 Base ArchiteCture REQUITEIMENTS........uuuiiiiiieieeee i e iiiciie e e e e e e e s e s s s e e e e e eee e e s s s s st e nreerrereeeaeeessssnannnrnnnnees

3.2 Software Detection Of the ASEc.eeiiiii e

3.3 MIPSL6E OVEIVIEWeeiiiiiiiieeiiiieete e sttt e e s sttt e sttt e e e s sabbeee e e ssbeeeeesanabeeeessnsbeee e e s

3.4 MIPS16€ ASE FEALUIESotiiiiiiiiiei ittt e e e

3.5 MIPS16€ REQISIEr SEL....iiiiiiiiiieiiii e e e e e e e e eee e

3.6 MIPS16E ISA MOUEScuiviiiieiiitiiee ettt ettt e e s et e e s et e e e e e
3.6.1 Modes Available in the MIPS16e Architecture
3.6.2 Defining the ISA MOAE FIEIAueeiiiiiee e e e e e s mmmmeeeneeee e e e eeeeeeeaans
3.6.3 Switching Between Modes When an EXCEePtion OCCUIS......uuiiiiieeeeiiiiiiiiiiiieeeee e e e s e sesssnreeeeeee e s eeeeeeeens 24..
3.6.4 Using MIPS16e Jump INStructions to SWitCh MOAESuuviiiiiiiee i e e e

3.7 JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode

3.8 MIPS16€ INStrUCtION SUMMEIIESvveiieiiiiiiieeiiiiiee e st ee ettt e e st ee s seaee e e e s anneeee e s s

3.9 MIPS16€ PC-RelAtiVE INSITUCLIONSiiiiiiiiiiie ittt e s st e e e s ree e e e e emneeesseeeeesanneneeas

3.10 MIPS16€e EXtENSIDIE INSIIUCHIONSiiiiiiiiiiiiee ettt s mn e et s e b e e e e e e

3.11 MIPS16e Implementation-Definable Macro INStrUCHIONS.........cuvivieeiiii i s mmemmeee e

3.12 MIPS16e Jump and Branch INStIUCLIONS............uuuiiiiiiiie et e e e s e e e e e e smmmmmmeeeeeeeenre e eeeeee s

3.13 MIPSL16€ INSLrUCHON FOMMIALSueiiiiiiiiiiee ittt ettt e s sttt e e sttt e e s rtbe e e e e s sab e e eeemeaeeeeseeeesabbeeeeenans 31
10 I 0 A B Y/ o T T S 1T 1o T 0 1 0 = TP
3.13.2 RI-type INSrUCHION fOIMAL........eeiiiiiie e e e e e e s e s e e e e e e e e e e eaeesnannnrennneeeeeaeeas
3.13.3 RR-type iNStrUCiON fOrMALccii i e e e e e e e smmmmnmemmmmmmr oo e s e nnnes
3.13.4 RRI-type inStruction fOrmMat..........ccoccuiiiiiiiiiec e e
3.13.5 RRR-type inStruCtion fOrMat..........ccccvvriiiiiiiie e e e e e e

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 i

3.13.6 RRI-A type iNSIIUCION FOMMIAL.eiiiiiiieiiiiie et e s mmmmeeeeeeee e e e e e e e e e e aaa 33

3.13.7 Shift INSrUCHION FOIMAL.........eiiiiiiiiie e et e e e e e et e e mommmmmeme e eeeeeeeeaeeeeeena 33
3.13.8 18-type INSLIUCTION FOIMALueiiiiiiie it e et e e e e e e e e e s sannb b e e reeeeeaaeeas 33
3.13.9 18_MOVR32 instruction format (used only by the MOVR32 instruction)ccoovvvvvvvrviivininnnns 33......
3.13.10 18_MOV32R instruction format (used only by MOV32R iNStruction)ccceeeieiiiiiiiieieeeeeeeeeee, 34........
3.13.11 18_SVRS instruction format (used only by the SAVE and RESTORE instructions)...................... 3.........
3.13.12 JAL and JALX instruction format
3.13.13 EXT-1INStrUCiON FOMMALeeiiiiiiieiiiiiiiei et
3.13.14 ASMACRO inStruction fOrMAaL.........ccoiiiiuiiiiiiiieiee e
3.13.15 EXT-RIINSIIUCLION FOMMIAL......ceiiiiiiiiiiiiiitie ettt e ettt e+ s e e e e
3.13.16 EXT-RRIINSIUCHON FOMMAL.......oiiiiiiiiiieieeeie et e e mmmeemeenm e e e
3.13.17 EXT-RRI-A INSIrUCION FOIMAL.......ci ittt me e e e eeeeer e e e e e e e e as
3.13.18 EXT-SHIFT instruction format
3.13.19 EXT-I8 INSIIUCLION FOMMIALeeiiiiiieiiie ittt ettt e+ s——— et
3.13.20 EXT-I8_SVRS instruction format (used only by the SAVE and RESTORE instructions).............. 35........
3.14 INSrUCtiON Bit ENCOUINGuuiiiiiiii i s e s e e e e e e e e e e e e e e e e e et e e aaaeeeaeaeeeeaeeeeeneenneens 35
3.15 MIPS16e Instruction Stream Organization and ENdianness.............ccoooviiiiiiriiiiiieviiii s s |
Chapter 4 The MIPS16€™ ASE INSIIUCHION SEL.....c.iiuuiiiiiiiiiiee ettt ee e s smeeeese s enbre e e e e snneee 39
4.1 MIPS16€ INSIrUCLION DESCIIPLIONS ...cittiieeeiitii ettt ettt e et e e e ettt e e e sab e e e mmeemeemmmnne e e e e e nbreeeeannes 39
4.1.1 MIPS16e-Specific PSeUdOCOdE FUNCLIONSoiuiiiiiiiiiiie ettt mmn e e e emmn e 39
APPENTIX A REVISION HISOIY ...eiiiiiei ittt e e e e e e e st e e et e e ee e e s s sss s memmmmm———— s s b nbaneeeeeeeeeeesannn 151
ii MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:
Figure 2-15:
Figure 2-16:
Figure 2-17:
Figure 2-18:
Figure 2-19:
Figure 2-20:
Figure 2-21:
Figure 2-22:

Example of INStruCtioN DESCIPLIONuuiiiiiiiiiieii ittt e e e e e e s sommmmemeeeeenss et eeeeaeeeeeeaannnnnes 8.
Example of INSTUCLION FIEIASoooiiiiie e e bbb e e e e e e e e e 9.
Example of Instruction Descriptive Name and Mnemonic
Example of Instruction Format
Example of Instruction Purpose
Example of Instruction Description
Example of Instruction Restrictions
Example of Instruction Operation
Example of Instruction Exception
Example of Instruction Programming NOTES.........c.uuiiiiiiiiiieiiii it ———— e e
COP_LW Pseudocode Function
COP_LD Pseudocode Function
COP_SW Pseudocode Function
COP_SD PseudoCode FUNCHION..........ccoeiiiiiieie e s e s e e e e e e e e e e e e e s e mennmmn e e e e eeeeaaaaeaeees 14
AddressTranslation Pseudocode Function 14
LoadMemory Pseudocode Function 15

StoreMemory Pseudocode Function .15
Prefetch PSEUdOCOAE FUNCHIONoiiii ittt et e et e et e e st mmmmmmmmmmm———— s seaa s sabasesnnnsnns 16
ValueFPR PSeUdOCOUE FUNCLONciiii ettt e et e e et mmmmmm—m———— e e s b e esbases 17

StoreFPR Pseudocode Function
SyncOperation Pseudocode Function
SignalException Pseudocode Function

Figure 2-23: NullifyCurrentinstruction PSeudoCode FUNCHON.......cccooiiiiiii i e e e e e e e e e e e e e e eeeees 19
Figure 2-24: CoprocessorOperation PSEUdOCOAE FUNCHION.........oiiiiiiiiiiiiiiie et e e e e e mnee e 19
Figure 2-25: JumpDelaySlot PSeudocode FUNCHONuiiiiiiiiiiiiie et oeneeeeeeeeeeaa e 19
Figure 2-26: FPConditionCode PSeudocode FUNCLION.............uuiiiiiiiiiiie i e e ee e e e e e e e e e e 20
Figure 2-27: SetFPConditionCode Pseudocode Function .20
Figure 4-1: Xlat PSEUAOCOUE FUNCHION...........uiiiiiiiieee e e e ettt — 1111115 a s 39
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 iii

List of Tables

Table 1-1:
Table 2-1:
Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:
Table 3-5:
Table 3-6:
Table 3-7:
Table 3-8:
Table 3-9:

Table 3-10:
Table 3-11:
Table 3-12:
Table 3-13:
Table 3-14:
Table 3-15:
Table 3-16:
Table 3-17:
Table 3-18:
Table 3-19:
Table 3-20:
Table 3-21:
Table 3-22:
Table 3-23:
Table 3-24:
Table 3-25:
Table 3-26:
Table 3-27:

Symbols Used in Instruction Operation StatemMeENtSuuuiiiiiiiiiiiiii e eeeeee e e 3
AccessLength Specifications fOr LOAAS/STOIEScooiiiiiiiiiiiiiiiiee et e e 16
MIPS16€e General-PUurpoSe REQISIEISuui ittt ettt e e rmmmme e e e e e e e aeas b reeeeaeaeeas 22
MIPS16€e Special-PUurpoSE REQISIEIScoiiiiiiiiiiiiite ettt e e e e e e e e e e e e e e nnbebeees 23

IY ANV (oo [N = A =t o o T[] o 1= PPN 24
MIPS16e Load and Store INSIIUCLIONScoiiiueiiiiiieeieeie ettt e e e e et e e e e e e e e e e e ssnnnbbereeeeaaaeeas
MIPS16e Save and Restore INSrUCHIONS.ccuuuiiiiiiiiiiee et
MIPS16e ALU ImMmediate INSIIUCTIONScociiiiiiiiiiiiit ettt s 121111
MIPS16e Arithmetic One, Two or Three Operand Register INStrUCtIONSooiiiviiiiiiiiieiee e s
MIPS16€ SPECIAI INSIIUCLIONSuutiiiiiiieiee ettt e e e e e e e eee e e e eeaaamme e e e e e s e s annbnbeeeeeeas
MIPS16e Multiply and Divide INSITUCHIONS......ccociiiiiiiiiiiiieee ettt mmmmmeeeeeenn e e e e e e e e
MIPS16e Jump and BranCh INSIIUCHIONSoooiiiiiiiiiiiiiiii et s e
MIPSL16€ Shift INSIFUCTIONS.cciiiiieiiie ettt ettt e e e+ e+ 22t e 222222 e e 1 nnnne
Implementation-Definable Macro INSITUCHIONS.uuuiiiiiiiie e
PC-Relative MIPSL16€ INSIIUCLIONSiiiiiiiiiiiieeiieiiitite ettt e e e e e e s smmmmme e et s o1 nbeeee e
PC-Relative Base Used for ADdress CalCUlAtioncc.uuuiiiiiiiiiiiiiiiiiiiiecee e s 220
MIPS16€e EXtensible INSITUCHIONSoooiiiiiiieeiiee e mmmmmmeee et eeeaeeeeeas 30
MIPS16€ INSIIUCION FIEIAS ...ceeiiiieieiie e mmmme e e e eeeee e e e e e e e e e eennbbeeeeeas 32
Symbols Used in the Instruction Encoding Tables........ccccoooiiiiiii i eeeememm e 35
MIPS16e Encoding of the Opcode FIeldooiiiiiiiiiiii e 36
MIPS16e JAL(X) Encoding of the X FIeldccoo oo e e e e 36
MIPS16e SHIFT Encoding Of the f FIeldcooiiiii i s e eeaees 36
MIPS16e RRI-A Encoding of the f Fielduuuiii e 36
MIPS16e 18 Encoding of the fUNCE FIeld............uuuniiiii i e e e e e e e e e e 36
MIPS16e RRR Encoding of the f Field ..o e e e e e 37
MIPS16e RR Encoding of the Funct Field .. e eeeieieeeeeeeeeaeaeteeeeeereteeeresess mmmmm——rrrere i [
MIPS16e I8 Encoding of the s Field when funct SVRS G ¥ 4
MIPS16e RR Encoding of the ry Field when fal@L)R(C)vvvveiiiiiiiiiii e 31...
MIPS16e RR Encoding of the ry Field when fa@BEVToooremiieiiiccce e 37...

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Chapter 1

About This Book

The MIPS32™ Architecture for Programmers Volume IV-a comes as a multi-volume set.

» Volume | describes conventions used throughout the document set, and provides an introduction to the MIPS32™
Architecture

» Volume |l provides detailed descriptions of each instruction in the MIPS32™ instruction set

* Volume 11l describes the MIPS32™ Privileged Resource Architecture which defines and governs the behavior of the
privileged resources included in a MIPS32™ processor implementation

* Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

* Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS32™ Architecture and is not
applicable to the MIPS32™ document set

* Volume IV-c describes the MIPS-3D™ Application-Specific Extension to the MIPS64™ Architecture and is not
applicable to the MIPS32™ document set

* \olume IV-d describes the SmartMIPS™ Application-Specific Extension to the MIPS32™ Architecture

1.1 Typographical Conventions

This section describes the usetalfic, bold andcourier fonts in this book.

1.1.1 Iltalic Text
* is used foemphasis

* is used fobits, fields registers that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and vditmating point instruction formatsuch ass, D, andPS

* is used for the memory access types, sudaesedanduncached

1.1.2 Bold Text
 represents a term that is beuhefined

* is used fobits andfields that are important from a hardware perspective (for instaggister bits, which are not
programmable but accessible only to hardware)

* is used for ranges of numbers; the range is indicated by an ellipsis. For inStdnndjcates numbers 5 through 1
* is used to emphasiz¢éNPREDICTABLE andUNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 1

Chapter 1 About This Book

1.2 UNPREDICTABLE and UNDEFINED

The termdUNPREDICTABLE andUNDEFINED are used throughout this book to describe the behavior of the
processor in certain caséNDEFINED behavior or operations can occur only as the result of executing instructions
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never callldDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can caud®lPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE . UNPREDICTABLE operations may cause a result to be generated or not. If aresultis generated,
it is UNPREDICTABLE . UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

Implementations of operations generatiiyPREDICTABLE results must not depend on any data source (memory
or internal state) which is inaccessible in the current processor mode

UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which is
inaccessible in the current processor mode. For exatdNIBREDICTABLE operations executed in user mode
must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another process

UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instrudh@EFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer coddiNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor
to an operational state

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are Tiatdd i1

MIPS32™ Architecture for Programmers Volume 1V-a, Revision 0.96

1.3 Special Symbols in Pseudocode Notation

Table 1-1 Symbols Used in Instruction Operation Statements

binary
efix is

Symbol Meaning
- Assignment
=% Tests for equality and inequality
Il Bit string concatenation
xY A y-bit string formed by copies of the single-bit value
A constant valua in baseb. For instance 10#100 represents the decimal value 100, 2#100 represents the
b#n value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" pr
omitted, the default base is 10.
X Selection of bitg/ throughz of bit stringx. Little-endian bit notation (rightmost bit is 0) is usedyli less than
y..Z z, this expression is an empty (zero length) bit string.
+, - 2's complement or floating point arithmetic: addition, subtraction
0 x 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwise logical XOR
and Bitwise logical AND
or Bitwise logical OR
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPRI[X] CPU general-purpose registerThe content o6PR[0] is always zero.
FPR[x] Floating Point operand register
FCC[CC] Floating Point condition code CECCJ0] has the same value @OC[1].
FPR[X] Floating Point (Coprocessor unit 1), general register
CPRJ[z,x,s] Coprocessor unit, general registex, selects
CCRJ[z,X] Coprocessor unit, control registek
COCJz] Coprocessor unit condition signal
Xlat[x] Translation of the MIPS16e GPR numizénto the corresponding 32-bit GPR number
Endian mode as configured at chip reset.(Gttle-Endian, 1- Big-Endian). Specifies the endianness of t
BigEndianMem memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the end
of Kernel and Supervisor mode execution.

ne
lanness

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Chapter 1 About This Book

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol Meaning
The endianness for load and store instructions (Ottle-Endian, 1 Big-Endian). In User mode, this
BigEndianCPU endianness may be switched by settingRifihit in the Statusregister. Thus, BigEndianCPU may be comput

as (BigendianMem XOR ReverseEndian).

ed

ReverseEndian

Signal to reverse the endianness of load and store instructions. This feature is available in User mode gnly, and

is implemented by setting tHREDbit of the Statusregister. Thus, ReverseEndian may be computed asg SR
User mode).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-wiritiis set

when a linked load occurs; it is tested and cleared by the conditional store. It is cleared, during other GPU
operation, when a store to the location would no longer be atomic. In particular, it is cleared by exception return

instructions.

This occurs as a prefix @perationdescription lines and functions as a label. It indicates the instruction fime

during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the curre
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to
label ofl. Sometimes effects of an instruction appear to occur either earlier or later — that is, during th
instruction time of another instruction. When this happens, the instruction operation is written in sections |
with the instruction time, relative to the current instructioim which the effect of that pseudocode appears
occur. For example, an instruction may have a result that is not available until after the next instruction. S
instruction has the portion of the instruction operation description that writes the result register in a se
labeledl +1.

The effect of pseudocode statements for the current instruction labellexppears to occur “at the same timg
as the effect of pseudocode statements labldiecthe following instruction. Within one pseudocode sequen
the effects of the statements take place in order. However, between sequences of statements for diffe
instructions that occur “at the same time,” there is no defined order. Programs must not depend on a f
order of evaluation between such sections.

nt

A time
e
abeled
to

uch an
tion

ce,
ent
articular

PC

TheProgram Countewralue. During the instruction time of an instruction, this is the address of the instru
word. The address of the instruction that occurs during the next instruction time is determined by assig
value toPC during an instruction time. If no value is assigneB@during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e inst
or 4 before the next instruction time. A taken branch assigns the target addresP@dhgng the instruction
time of the instruction in the branch delay slot.

tion
ning a

uction)

PABITS

The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 p
address bits were implemented, the size of the physical address space w6l '5e=22%6 bytes.

hysical

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 33
FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32 64-b|
in which 64-bit data types are stored in any FPR.

In MIPS32 implementation§;P32RegistersModes always a 0. MIPS64 implementations have a compatibi
mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a c3
FP32RegisterModes computed from the FR bit in thetatusregister. If this bit is a 0, the processor operat
as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value oFP32RegistersModds computed from the FR bit in ti8tatusregister.

» 32-bit
it FPRs

ity
1se
es

InstructioninBranchD
elaySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a

jump. This condition reflects thdyynamicstate of the instruction, not tsé&tic state. That is, the value is fals|
if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
executed in the delay slot of a branch or jump.

pranch or
e
is not

SignalException(exce
ption, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the 3
parameter as an exception-specific argument). Control does not return from this pseudocode function

rgument
- the

exception is signaled at the point of the call.

MIPS32™ Architecture for Programmers Volume 1V-a, Revision 0.96

1.4 For More Information

1.4 For More Information
Various MIPS RISC processor manuals and additional information about MIPS products can be found atthe MIPS URL.:
http://www.mips.com
Comments or questions on the MIPS32™ Architecture or this document should be directed to
Director of MIPS Architecture
MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043

or via E-mail to architecture@mips.com.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 5

Chapter 1 About This Book

6 MIPS32™ Architecture for Programmers Volume 1V-a, Revision 0.96

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2-1shows an example instruction. Following the figure are descriptions of the fields listed below:
* “Instruction Fields” on page 8

* “Instruction Descriptive Name and Mnemonic” on page 9

» “Format Field” on page 9

» “Purpose Field” on page 10

» “Description Field” on page 10

» “Restrictions Field” on page 10

» “Operation Field” on page 11

» “Exceptions Field” on page 11

» “Programming Notes and Implementation Notes Fields” on page 11

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 7

Chapter 2 Guide to the Instruction Set

Instruction Mnemonic

and Descriptive Name —# Example Instruction Name EXAMPLE

Instruction encodin

constant and variabg:e\ 31 26 25 21 20 16 15 11 10 6 5 0

field names and values SPECIAL rs rt rd 0 EXAMPLE
000000 00000 000000

Architecture level at 6 5 5 5 5 6

which instruction was

defined/redefined and

assembler format(s) fOI'/V Format: EXAMPLE rd, rs,rt MIPS32

each definition
Short description ———————» Purpose:to execute an EXAMPLE op

Symbolic description i A
Description: rd « rs exampleop rt

Full description of / This section describes the operation of the instruction in text, tables, and
instruction operation illustrations. It includes information that would be difficult to encode in the
Operation section.

Restrictions on Restriction
instruction and strictions

operands This section lists any restrictions for the instruction. This can include values of the
instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory
access for addressed locations.

High-level language .
description ofinstruction\> Oper.atlon: . . .) L
operation * This section describes the operation of an instruction in a */
/* high-level pseudo-language. It is precise in ways that the */
[* Description section is not, but is also missing information */
[* that is hard to express in pseudocode.*/
temp ~ GPR][rs] exampleop GPR]rt]
GPR[rd] ~ temp

Exceptions that

. . Exceptions:
instruction can cause

A list of exceptions taken by the instruction

Notes for programmers —— g Programming Notes:
Information useful to programmers, but not necessary to describe the operation of
the instruction
Notes for impl t .
Otes Torimplementors ——— g | nlementation Notes:
Like Programming Notesexcept for processor implementors

Figure 2-1 Example of Instruction Description

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The following
rules are followed:

8 MIPS32™ Architecture for Programmers Volume 1V-a, Revision 0.96

2.1 Understanding the Instruction Fields

» The values of constant fields and tdpeodenames are listed in uppercase (SPECIAL and ADBigare 2-3.
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

All variable fields are listed with the lowercase names used in the instruction descrigtidrafidrd in Figure 2-2.

Fields that contain zeros but are not named are unused fields that are required to be zero (bigwE&®H]. If
such fields are set to non-zero values, the operation of the procddBREDICTABLE .

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADD
rs rt rd
000000 00000 100000
6 5 5 5 5 6

Figure 2-2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, a§isfuve/n in
2-3.

Add Word ADD

Figure 2-3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in theFormatfield. If the instruction definition was later extended, the architecture levels at which it was extended
and the assembler formats for the extended definition are shown in their order of extension (for an example, see
C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in previous
levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the extended
architecture.

Format: ADDd,rs, rt MIPS32 (MIPS I)

Figure 2-4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at which
the instruction was first defined, for example “MIPS32” is shown at the right side of the page. If the instruction was
originally defined in the MIPS | through MIPS V levels of the architecture, that information is enclosed in parentheses.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data

show an assembly format with the actual assembler mnemonic for each valid valuenofitid. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 9

Chapter 2 Guide to the Instruction Set

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purposefield gives a short description of the use of the instruction.

Purpose:
To add 32-bit integers. If an overflow occurs, then trap.

Figure 2-5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the righDeéthiption
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Description: rd < rs+rt
The 32-bit word value in GPR is added to the 32-bit value in GP&Ro produce a 32-bit result.

* If the addition results in 32-bit 2’'s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs

« If the addition does not overflow, the 32-bit result is placed into PR

Figure 2-6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description irOherationsection.

This section uses acronyms for register descriptions. “GHR CPU general-purpose register specified by the
instruction fieldrt. “FPRTS’ is the floating point operand register specified by the instruction feltCP1 registerfd”
is the coprocessor 1 general register specified by the instructiofdfielCSR is the floating pointControl /Status
register.

2.1.6 Restrictions Field
TheRestrictiondield documents any possible restrictions that may affect the instruction. Most restrictions fall into one
of the following six categories:
« Vdid values for instruction fields (for example, see floating point ADD.fmt)
» ALIGNMENT requirements for memory addresses (for example, see LW)
« Valid values of operands (for example, see DADD)
« Valid operand formats (for example, see floating point ADD.fmt)

 Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards for
which some processors do not have hardware interlocks (for example, see MUL).

 Valid memory access types (for example, see LL/SC)

10 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

2.1 Understanding the Instruction Fields

Restrictions:

None

Figure 2-7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operationfield describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. This formal description complement®dseriptionsection; it is not complete in itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation:

temp ~ (GPR[rs] 3;]IGPR[rs] 310) +(GPR[rt] 3]|IGPR[rt] 31 0)
iftemp 3, #temp 3; then

SignalException(IntegerOverflow)
else

GPR[rd] « temp
endif

Figure 2-8 Example of Instruction Operation

See Section 2.2 , "Operation Section Notation and Functions" on page 12 for more information on the formal notation
used here.

2.1.8 Exceptions Field

TheExceptiondield lists the exceptions that can be cause@lpgrationof the instruction. It omits exceptions that can

be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by
asynchronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship

between load and store instructions and external error indications, like Bus Error, are dependent upon the
implementation.

Exceptions:

Integer Overflow

Figure 2-9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not preseBkaeti@nssection.

2.1.9 Programming Notes and Implementation Notes Fields

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 11

Chapter 2 Guide to the Instruction Set

The Notessections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Programming Notes:
ADDU performs the same arithmetic operation but does not trap on overflow.

Figure 2-10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

12

In an instruction description, tl@perationsection uses a high-level language notation to describe the operation
performed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 12

» “Pseudocode Functions” on page 12

2.2.1 Instruction Execution Ordering

Each of the high-level language statements irQperationssection are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and include
the following:

» “Coprocessor General Register Access Functions” on page 12
» “Load Memory and Store Memory Functions” on page 14
» “Access Functions for Floating Point Registers” on page 16

» “Miscellaneous Functions” on page 18

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and how
a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted into the
functions described in this section.

COP_LW
The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a load

word operation. The action is coprocessor-specific. The typical action would be to store the contents of memword in
coprocessor general register

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

2.2 Operation Section Notation and Functions

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt : Coprocessor general register specifier
memword A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW
Figure 2-11 COP_LW Pseudocode Function

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory during
a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the contents of
memdouble in coprocessor general regigter

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt . Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD
Figure 2-12 COP_LD Pseudocode Function

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word operation.
The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register

dataword ~ COP_SW (z, rt)
z: The coprocessor unit number
rt : Coprocessor general register specifier
dataword : 32-bit word value
[* Coprocessor-dependent action */

endfunction COP_SW
Figure 2-13 COP_SW Pseudocode Function

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store
doubleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 13

Chapter 2 Guide to the Instruction Set

datadouble ~ COP_SD (z, rt)
z: The coprocessor unit number
rt : Coprocessor general register specifier
datadouble : 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD
Figure 2-14 COP_SD Pseudocode Function

2.2.2.2 Load Memory and Store Memory Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In theOperationpseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the
AccesslLengtfield. The valid constant names and values are showalite 2-1 The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly from
the AccessLengthnd the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cache coherence algorithm,
describing the mechanism used to resolve the memory reference.

Given the virtual addresgAddr, and whether the reference is to Instructions or Dat®j, find the corresponding
physical addresp@ddr) and the cache coherence algorithBCA) used to resolve the reference. If the virtual address
is in one of the unmapped address spaces, the physical addreS€Amde determined directly by the virtual address.

If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU determines the
physical address and access type; if the required translation is not present in the TLB or the desired access is not
permitted, the function fails and an exception is taken.

(pAddr, CCA) ~ AddressTranslation (vAddr, lorD, LorS)
/¥ pAddr: physical address */
/* CCA Cache Coherence Algorithm, the method used to access caches*/
I* and memory and resolve the reference */
I* vAddr : virtual address */
I* lorD : Indicates whether access is for INSTRUCTION or DATA */
/¥ LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

Figure 2-15 AddressTranslation Pseudocode Function

LoadMemory

The LoadMemory function loads a value from memory.

14 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

2.2 Operation Section Notation and Functions

This action uses cache and main memory as specified in both the Cache Coherence AlgGArand the access

(lorD) to find the contents cAccessLengtimemory bytes, starting at physical locatipfddr The data is returned in a
fixed-width naturally aligned memory elemeMgmElen. The low-order 2 (or 3) bits of the address and the
AccessLengtimdicate which of the bytes withiMemElemeed to be passed to the processor. If the memory access type
of the reference isncachedonly the referenced bytes are read from memory and marked as valid within the memory
element. If the access typedachedbut the data is not present in cache, an implementation-spsizéiandalignment

block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this block is the entire
memory element.

MemElem — LoadMemory (CCA, AccessLength, pAddr, vAddr, lorD)

/* MemElem Data is returned in a fixed width with a natural alignment. The */

[* width is the same size as the CPU general-purpose register, */

I* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

I* respectively. */

* CCA Cache Coherence Algorithm, the method used to access caches */
I* and memory and resolve the reference */

/¥ AccessLength : Length, in bytes, of access */

I* pAdadr: physical address */
/* vAddr : virtual address */
/* lorD Indicates whether access is for Instructions or Data */

endfunction LoadMemory

Figure 2-16 LoadMemory Pseudocode Function

StoreMemory
The StoreMemory function stores a value to memory.

The specified data is stored into the physical locgtidddrusing the memory hierarchy (data caches and main memory)
as specified by the Cache Coherence Algorit6@A). TheMemElemcontains the data for an aligned, fixed-width
memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the bytes that are
actually stored to memory need be valid. The low-order two (or three) bgddfirand theAccessLengtfield indicate
which of the bytes within th®lemElendata should be stored; only these bytes in memory will actually be changed.

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA Cache Coherence Algorithm, the method used to access */
* caches and memory and resolve the reference. */

/* AccessLength : Length, in bytes, of access */

/* MemElem Data in the width and alignment of a memory element. */

1* The width is the same size as the CPU general */

1* purpose register, either 4 or 8 bytes, */

I* aligned on a 4- or 8-byte boundary. For a */

[* partial-memory-element store, only the bytes that will be*/
I* stored must be valid.*/

I* pAdadr: physical address */

/¥ vAddr : virtual address */

endfunction StoreMemory

Figure 2-17 StoreMemory Pseudocode Function

Prefetch

The Prefetch function prefetches data from memory.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 15

Chapter 2 Guide to the Instruction Set

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may increase
performance but must not change the meaning of the program or alter architecturally visible state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA Cache Coherence Algorithm, the method used to access */
[* caches and memory and resolve the reference. */

/¥ pAddr: physical address */

/* vAddr : virtual address */

/* DATA Indicates that access is for DATA */

/* hint : hint that indicates the possible use of the data */

endfunction Prefetch

Figure 2-18 Prefetch Pseudocode Function

Table 2-1lists the data access lengths and their labels for loads and stores.

Table 2-1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

2.2.2.3 Access Functions for Floating Point Registers
The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are interpreted

to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a load
(uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

16 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

2.2 Operation Section Notation and Functions

value ~ ValueFPR(fpr, fmt)
/* value: The formattted value from the FPR */

[*fpr: The FPR number */
/* fmt: The format of the data, one of: */

* S, D, W, ¥/
/* OB, QH, */

* UNINTERPRETED_WORD, */

* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:
valueFPR « FPR]fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (fpr o #0)then
valueFPR ~ UNPREDICTABLE
else
valueFPR « FPR[fpr +1] || FPR[fpr]
endif

DEFAULT:
valueFPR ~ UNPREDICTABLE

endcase
endfunction ValueFPR

Figure 2-19 ValueFPR Pseudocode Function

StoreFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instructions.
Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a different
format.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 17

Chapter 2 Guide to the Instruction Set

StoreFPR (fpr, fmt, value)

[* fpr: The FPR number */
[* fmt: The format of the data, one of: */

I S,D, W, */

I OB, QH, */

I UNINTERPRETED_WORD, */

I UNINTERPRETED_DOUBLEWORD */

/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:
FPR[fpr] ~ value

D, UNINTERPRETED_DOUBLEWORD:
if (fpr o #0)then
UNPREDICTABLE

else
FPR[fpr] ~ value
FPR[fpr +1] « value
endif
endcase

endfunction StoreFPR

Figure 2-20 StoreFPR Pseudocode Function

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SyncOperation
The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicsitgaebgcur in the same order for all
processors.

SyncOperation(stype)
/¥ stype : Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

Figure 2-21 SyncOperation Pseudocode Function

SignalException

The SignalException function signals an exception condition.

18 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

2.2 Operation Section Notation and Functions

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a return
from this function call.

SignalException(Exception, argument)

/¥ Exception The exception condition that exists. */
[* argument: A exception-dependent argument, if any */

endfunction SignalException
Figure 2-22 SignalException Pseudocode Function
NullifyCurrentinstruction
The NullifyCurrentinstruction function nullifies the current instruction.

The instruction is aborted. For branch-likely instructions, nullification kills the instruction in the delay slot during its
execution.

NullifyCurrentinstruction()
endfunction NullifyCurrentinstruction
Figure 2-23 NullifyCurrentinstruction PseudoCode Function
CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

* z: Coprocessor unit number */
/¥ cop_fun : Coprocessor function from function field of instruction */
[* Transmit the cop_fun value to coprocessor z*

endfunction CoprocessorOperation
Figure 2-24 CoprocessorOperation Pseudocode Function
JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the four PC-relative instructions. The function returns TRUE
if the instruction avAddris executed in a jump delay slot. A jump delay slot always immediately follows a JR, JAL,
JALR, or JALX instruction.

JumpDelaySlot(vAddr)
/* vAddr :Virtual address */

endfunction JumpDelaySlot

Figure 2-25 JumpDelaySlot Pseudocode Function

FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 19

Chapter 2 Guide to the Instruction Set

tf —FPConditionCode(cc)
/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then

FPConditionCode —~ FCSRy3
else

FPConditionCode — FCSRy44cc
endif

endfunction FPConditionCode

Figure 2-26 FPConditionCode Pseudocode Function

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

SetFPConditionCode(cc)
if cc = 0 then
FCSR « FCSR31. 24 |l tf|| FCSR 22.0
else
FCSR «— FCSR3y o54¢c || tf|| FCSR 23+cc..0
endif

endfunction SetFPConditionCode
Figure 2-27 SetFPConditionCode Pseudocode Function

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfiedgsandfunctioncan have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 andunction=ADD. In other cases, a single field has both fixed and variable subfields, so the name contains
both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (sutth as
immediate and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in
uppercase.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
examplers=basein the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

Bit encodings for mnemonics are given in Volume |, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See Section 2.3 , "Op and Function Subfield Notation" on page 20 for a descriptioopéatigfunctionsubfields.

20 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Chapter 3

The MIPS16e™ Application-Specific Extension to the MIPS32™
Architecture

This chapter describes the purpose and key features of the MIPS16e™ Application-Specific Extension (ASE) to the
MIPS32™ Architecture. The MIPS16e ASE is an enhancement to the previous MIPS16™ ASE which provides
additional instructions to improve the compaction of the code.

3.1 Base Architecture Requirements

The MIPS16e ASE requires the following base architecture support:

e The MIPS32 or MIPS64 Architecture: The MIPS16e ASE requires a compliant implementation of the MIPS32 or
MIPS64 Architecture.

3.2 Software Detection of the ASE

Software may determine if the MIPS16e ASE is implemented by checking the state of the CA idnftg@2CPO
register.

3.3 MIPS16e Overview

The MIPS16e ASE allows embedded designs to substantially reduce system cost by reducing overall memory
requirements. The MIPS16e ASE is compatible with any combination of the MIPS32 or MIPS64 Architectures, and
existing MIPS binaries can be run without modification on any embedded processor implementing the MIPS16e ASE.

The MIPS16e ASE must be implemented as part of a MIPS based host processor that includes an implementation of the
MIPS Privileged Resource Architecture, and the other components in a typical MIPS based system.

This volume describes only the MIPS16e ASE, and does not include information about any specific hardware
implementation such as processor-specific details, because these details may vary with implementation. For this
information, please refer to the specific processor’s user manual.

This chapter presents specific information about the following topics:

* “MIPS16e ASE Features” on page 22

* “MIPS16e Register Set” on page 22

* “MIPS16e ISA Modes” on page 23

* “JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode” on page 25

* “MIPS16e Instruction Summaries” on page 25

* “MIPS16e PC-Relative Instructions” on page 29

» “MIPS16e Extensible Instructions” on page 29

» “MIPS16e Implementation-Definable Macro Instructions” on page 31

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 21

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

* “MIPS16e Jump and Branch Instructions” on page 31
» “MIPS16e Instruction Formats” on page 31
* “Instruction Bit Encoding” on page 35

* “MIPS16e Instruction Stream Organization and Endianness” on page 37

3.4 MIPS16e ASE Features

The MIPS16e ASE includes the following features:

« allows MIPS16e instructions to be intermixed with existing MIPS instruction binaries

* is compatible with the MIPS32 and MIPS64 instruction sets

« allows switching between MIPS16e and 32-bit MIPS Mode

 supports 8, 16, 32, and 64-bit data types (64-bit only in conjunction with MIPS64)

« defines eight general-purpose registers, as well as a number of special-purpose registers

« defines special instructions to increase code density (Extend, PC-relative instructions)

The MIPS16e ASE contains some instructions that are available on MIPS64 host processors only. These instructions

must cause a Reserved Instruction exception on 32-bit processors, or on 64-bit processors on which 64-bit operations
have not been enabled.

3.5 MIPS16e Register Set

22

The MIPS16e register set is listedliable 3-1landTable 3-2 This register set is a true subset of the register set available
in 32-bit mode; the MIPS16e ASE can directly access 8 of the 32 registers available in 32-bit mode.

In addition to the eight general-purpose registers, 0-7, listéalle 3-1 specific instructions in the MIPS16e ASE
reference the stack pointer registe)(the return address registea), the condition code registetd], and the program
counter PC). Of these Table 3-1listssp, ra, andt8, andTable 3-2ists the MIPS16e special-purpose registers, including
PC.

The MIPS16e ASE also contains two move instructions that provide access to all 32 general-purpose registers.

Table 3-1 MIPS16e General-Purpose Registers

MIPS16e | 32-Bit MIPS Symbolic Description
Register Register Name
Encoding® | Encoding® (From
ArchDefsh)¢
0 16 sO General-purpose register
1 17 sl General-purpose register
2 2 v0 General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General-purpose register

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.6 MIPS16e ISA Modes

Table 3-1 MIPS16e General-Purpose Registers

MIPS16e | 32-Bit MIPS Symbolic Description
Register Register Name
Encoding® | Encoding® (From
ArchDefsh)®
6 6 a2 General-purpose register
7 7 a3 General-purpose register

MIPS16eCondition Codeegister;

N/A 24 t8 implicitly referenced by the BTEQZ,
BTNEZ, CMP, CMPI, SLT, SLTU,

SLTI, and SLTIU instructions

N/A 29 sp Stack pointer register

N/A 31 ra Return address register

a. “0-7" correspond to the register's MIPS16e binary encoding and show how that encoding relates to the
MIPS registers. “0-7" never refer to the registers, except within the binary MIPS16e instructions. From
the assembler, only the MIPS names ($16, $17, $2, etc.) or the symbolic names (s0, s1, v0, etc.) refer to
the registers. For example, to access register number 17 in the register file, the programmer references
$17 or s1, even though the MIPS16e binary encoding for this register is 001.

b. General registers not shown in the above table are not accessible through the MIPS16e instruction set, ex-
cept by using the Move instructions. The MIPS16e Move instructions can access all 32 general-purpose

registers.
¢. The MIPS16e condition code register is referred to as T, t8, or $24 throughout this document, depending

on the context. All three names refer to the same physical register.

Table 3-2 MIPS16e Special-Purpose Registers

Symbolic Name Purpose
PC Program counter. The PC-relative Add and Load
instructions can access this register as an operand.
HI Contains high-order word of multiply or divide result.
LO Contains low-order word of multiply or divide result.

3.6 MIPS16e ISA Modes

This section describes the following:

» the ISA modes available in the architecture, page 23

* the purpose of thiSA Modefield, page 24

» how to switch between 32-bit MIPS and MIPS16e modes, page 24

« the role of the jump instructions when switching modes, page 24

3.6.1 Modes Available in the MIPS16e Architecture

There are two ISA modes defined in the MIPS16e Architecture, as follows:
* MIPS 32-bit mode (32-bit instructions)
* MIPS16e mode (16-bit instructions)

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

23

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

24

3.6.2 Defining the ISA Mode Field

TheISA Modebit controls the type of code that is executed, as follows:

Table 3-3 ISA Mode Bit Encodings

Encoding Mode

240 MIPS 32-bit mode. In this mode, the processor execytes
32-bit MIPS instructions.

o#1 MIPS16e mode. In this mode, the processor executes
MIPS16e instructions.

In MIPS 32-bit mode and MIPS16e mode, the JALX, JR, JALR, JALRC, and JRC instructions can chai®feNhade
bit, as described in Section 3.6.4 , "Using MIPS16e Jump Instructions to Switch Modes".

3.6.3 Switching Between Modes When an Exception Occurs

When an exception occurs (including a Reset exception)IAdviodebit is cleared so that exceptions are handled by
32-bit code.

After the processor switches to 32-bit mode following a Reset exception, the processor starts execution at the 32-bit
mode Reset exception vector.

3.6.4 Using MIPS16e Jump Instructions to Switch Modes

The MIPS16e application-specific extension supports procedure calls and returns from both MIPS16e and 32-bit MIPS
code to both MIPS16e and 32-bit MIPS code. The following instructions are used:

» The JAL instruction supports calls to the same ISA.

» The JALX instruction supports calls that change the ISA.

» The JALR and JALRC instructions support calls to either ISA.

» The JR and JRC instructions support returns to either ISA.

The JAL, JALR, JALRC, and JALX instructions save I8& Modebit in bit O of the general register containing the

return address. The contents of this general register may be used by a future JR, JRC, JALR, or JALRC instruction to
return and restore the ISA Mode.

The JALX instruction in both modes switches to the other ISA (it changes, 221 and 2#1- 2#0).

The JR and JALR instructions in both modes loadl& Modebit from bit O of the general register holding the target
address. Bit 0 of the general register is not part of the target address; bit 0 of PC is loaded with a 0 so that no address
exceptions can occur.

The JRC and JALRC instructions in MIPS16e mode load 8feModebit from bit O of the general register holding the

target address. Bit O of the general register is not part of the target address; bit 0 of PC is loaded with a 0 so that no address
exceptions can occur.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.7 JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode

3.7 JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode

The behavior of three of the 32-bit MIPS instructions—JALX, JR, JALR—differs between those processors that
implement MIPS16e and those processors that do not.

In processors that implement the MIPS16e ASE, the three instructions behave as follows:

The JALX instruction executes a JAL and switches to the other mode.

JR and JALR instructions load tHe@A Modebit from bit O of the source register. Bit 0 of PC is loaded with a 0, and
no Address exception can occur when bit O of the source register is a 1 (MIPS16e mode).

In CPUs that do not implement the MIPS16e ASE, the three instructions behave as follows:

JALX instructions cause a Reserved Instruction exception.

JR or JALR instructions cause an Address exception on the target instruction fetch when bit O of the source register is
al.

3.8 MIPS16e Instruction Summaries

This section describes the various instruction categories and then summarizes the MIPS16e instructions included in each
category. Extensible instructions are also identified.

There are six instruction categories:

Loads and Stores—These instructions move data between memory and the GPRs.

Save and Restore-These instructions create and tear down stack frames.

Computational—These instructions perform arithmetic, logical, and shift operations on values in registers.
Jump and Branch—These instructions change the control flow of a program.

Special—This category includes the Break and Extend instructions. Break transfers control to an exception handler,
and Extend enlarges tiramediatefield of the next instruction.

Implemention-Definable Macro Instructions—This category includes the capability of defining macros that are
replaced at execution time by a set of 32-bit MIPS instructions, with appropriate parameter substitution.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 25

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

Tables3-4 through3-12list the MIPS16e instruction set.

Table 3-4 MIPS16e Load and Store Instructions

Mnemonic Instruction Extensible Implemented Only on
Instruction? MIPS64 Processors?
LB Load Byte Yes No
LBU Load Byte Unsigned Yes No
LH Load Halfword Yes No
LHU Load Halfword Unsigned Yes No
LW Load Word Yes No
SB Store Byte Yes No
SH Store Halfword Yes No
SW Store Word Yes No

Table 3-5 MIPS16e Save and Restore Instructions

Mnemonic Instruction Extensible Implemented Only on
Instruction? MIPS64 Processors?
RESTORE Restore Registers and Deallocate Stack Frame Yes No
SAVE Save Registers and SetUp Stack Frame Yes No

Table 3-6 MIPS16e ALU Immediate Instructions

Mnemonic Instruction Extensible Implemented Only on
Instruction? MIPS64 Processors?
ADDIU Add Immediate Unsigned Yes No
CMPI Compare Immediate Yes No
LI Load Immediate Yes No
SLTI Set on Less Than Immediate Yes No
SLTIU Set on Less Than Immediate Unsigned Yes No

Table 3-7 MIPS16e Arithmetic One, Two or Three Operand Register Instructions

Mnemonic Instruction Extensible Implemented Only on
Instruction? MIPS64 Processors?
ADD Add Unsigned No No
AND AND No No
CMP Compare No No
MOVE Move No No
NEG Negate No No
NOT Not No No
OR OR No No
SEB Sign-Extend Byte No No
SEH Sign-Extend Halfword No No
SLT Set on Less Than No No

26 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.8 MIPS16e Instruction Summaries

Mnemonic Instruction Extensible Implemented Only on
Instruction? MIPS64 Processors?
SLTU Set on Less Than Unsigned No No
SUBU Subtract Unsigned No No
XOR Exclusive OR No No
ZEB Zero-extend Byte No No
ZEH Zero-Extend Halfword No No

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

27

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

28

Table 3-8 MIPS16e Special Instructions

Mnemonic Instruction Extensible Implemented Only on
Instruction? MIPS64 Processors?
BREAK Breakpoint No No
EXTEND Extend No No
Table 3-9 MIPS16e Multiply and Divide Instructions
Mnemonic Instruction Extensible Implemented Only on
Instruction? MIPS64 Processors?
DIV Divide No No
DIVU Divide Unsigned No No
MFHI Move From HI No No
MFLO Move From LO No No
MULT Multiply No No
MULTU Multiply Unsigned No No
Table 3-10 MIPS16e Jump and Branch Instructions
Mnemonic Instruction Extensible Implemented Only on
Instruction? MIPS64 Processors?
B Branch Unconditional Yes No
BEQZ Branch on Equal to Zero Yes No
BNEZ Branch on Not Equal to Zero Yes No
BTEQZ Branch on T Equal to Zero Yes No
BTNEZ Branch on T Not Equal to Zero Yes No
JAL? Jump and Link No No
JALR Jump and Link Register No No
JALRC Jump and Link Register Compact No No
JALX? Jump and Link Exchange No No
JR Jump Register No No
JRC Jump Register Compact No No

a. The JAL and JALX instructions are not extensible because they are inherently 32-bit instructions.

Table 3-11 MIPS16e Shift Instructions

Mnemonic Instruction Extensible Implemented Only on

Instruction? MIPS64 Processors?
SRA Shift Right Arithmetic Yes No
SRAV Shift Right Arithmetic Variable No No
SLL Shift Left Logical Yes No
SLLV Shift Left Logical Variable No No
SRL Shift Right Logical Yes No
SRLV Shift Right Logical Variable No No

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.9 MIPS16e PC-Relative Instructions

Table 3-12 Implementation-Definable Macro Instructions

Mnemonic Instruction Extensible Implemented Only on
Instruction? MIPS64 Processors?

ASMACRO Implementation-Definable Macro Instructions Yes No

a. The Implementation-Definable Macro Instructions are always extended instructions. There are no 16-bit macro instruction

3.9 MIPS16e PC-Relative Instructions

The MIPS16e ASE provides PC-relative addressing for four instructions, in both extended and non-extended versions.
The two instructions are listed Table 3-13

Table 3-13 PC-Relative MIPS16e Instructions

Instruction Use
Load Word LW rx, offset(pc)
Add Immediate Unsigned ADDIU rx, pc, immediate

These instructions use the PC value of either the PC-relative instruction itself or the PC value for the preceding
instruction as the base for address calculation.

Table 3-14summarizes the address calculation base used for the various instruction combinations.

Table 3-14 PC-Relative Base Used for Address Calculation

Instruction BasePC Value

Non-extended PC-relative instruction not in Jum . .
Delay Slot Rddress of instruction

Extended PC-relative instruction Address of Extend instruction

Non-extended PC-relative instruction in JR or JA . .
jump delay slot Hadress of JR or JALR instruction

Non-extended PC-relative instruction in JAL or Address of first JAL or JALX
JALX jump delay slot halfword

The JRC and JALRC instructions do not have delay slots and do not affect the PC-relative base address calculated for
an instruction immediately following the JRC or JALRC.

In the descriptive summaries of PC-relative instructions, located in T8hl8and3-14, the PC value used as the basis

for calculating the address is referred to as the BasePC value. The BasePC edtrate fition Program Count¢EPC)
value associated with the PC-relative instruction.

3.10 MIPS16e Extensible Instructions

This section explains the purpose oftaxtendinstruction, how to use it, and which MIPS16e instructions are extensible.

The Extend instruction allows you to enlarge themediatdield of any MIPS16e instruction whosmmediatefield is

smaller than thenmediatefield in the equivalent 32-bit MIPS instruction. The Extend instruction must always
immediately precede the instruction whasenediatdield you want to extend. Every extended instruction uses 4 bytes

in program memory instead of 2 bytes (2 bytes for Extend and 2 bytes for the instruction being extended), and it can
cross a word boundary. The PC value of an extended instruction is the address of the halfword containing the Extend.

For example, the following MIPS16e instruction contains a fiverbitediate

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 29

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

30

LW ry, offset(rx)

Theimmediateexpands to 16 bits (2#0000000p6ffset|| 2#00) before execution in the pipeline. This allows 32

different offset values of 0, 4, 8, and up through 124, in increments of 4. Once extended, this instruction can hold any of
the 65,536 values in the range -32768 through 32767 that are also available with the 32-bit MIPS version of the LW
instruction.

Shiftinstructions are extended to unsigmathediats of 5 bits. All other immediate instructions expand to either signed
or unsigned 16-bit immediates. There is only one exception which can be extended to a 15-hihsipukake

ADDIU ry, rx, immediate

Unlike most other extended instructions, an extended RESTORE or SAVE instruction provides both a larger frame size
adjustment, and the ability to save and restore more registers than the non-extended version.

There is only one restriction on the location of extensible instructions: They may not be placed in jump delay slots. Doing
so cause’INPREDICTABLE results.

Table 3-15ists the MIPS16e extensible instructions, the size of ineénediateand how much eacdmmediatecan be
extended when preceded with an Extend instruction.

Table 3-15 MIPS16e Extensible Instructions

Mnemonic MIPS16e Instruction MIPS16e Immediate Extended Immediate
4 (ADDIU ry, rx, imm) 15 (ADDIU ry, rx, imm)

ADDIU Add Immediate Unsigned

8 16
B Branch Unconditional 11 16
BEQZ Branch on Equal to Zero 8 16
BNEZ Branch on Not Equal to Zero 8 16
BTEQZ Branch on T Equal to Zero 8 16
BTNEZ Branch on T Not Equal to Zero 8 16
CMPI Compare Immediate 8 16
LB Load Byte 5 16
LBU Load Byte Unsigned 5 16
LD Load Doubleword 5 16
LH Load Halfword 5 16
LHU Load Halfword Unsigned 5 16
LI Load Immediate 8 16
LW Load Word 5 (or 8) 16
RESTORE 'I;zsisl%oere Registers and Deallocate Stack 4 8
SAVE Save Registers and Set Up Stack Frame 4 8
SB Store Byte 16
SH Store Halfword 5 16
SLL Shift Left Logical 3 5

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.11 MIPS16e Implementation-Definable Macro Instructions

Mnemonic MIPS16e Instruction MIPS16e Immediate Extended Immediate
SLTI Set on Less Than Immediate 8 16
SLTIU Set on Less Than Immediate Unsigned 8 16
SRA Shift Right Arithmetic 3
SRL Shift Right Logical 3
SW Store Word 5 (or 8) 16
3.11 MIPS16e Implementation-Definable Macro Instructions

3.12

3.13

Previous revisions of the MIPS16e ASE assumed that most MIPS16e instructions mapped to a single 32-bit MIPS
instruction. However, there are several MIPS16e instructions for which there is no corresponding 32-bit MIPS
instruction equivalent. The addition of the SAVE and RESTORE instructions introduced the possibility that a single
MIPS16e instruction expand to a fixed sequence of multiple 32-bit instructions. The obvious extension to this capability
is the ability to define Macro capability in which a single extended MIPS16e instruction can be expanded into a
sequence of 32-bit MIPS instructions, with parameter substitution done between fields of the macro instruction and
fields of the expanded instructions. This is the concept behind the addition of Implementation-Definable Macro
Instructions to the MIPS16e ASE.

The term “Implementation-Definable” refers to the fact that the macro definitions are created when the processor is
implemented, rather than via a programmable mechanism that is available to the user of the processor. The macro
definitions, expansions, and parameter substitutions are defined when the processor is implemented, and is therefore
implementation-dependent. The programmer visible representation of this macro capability is provided by the
ASMACRO (for Application Specific Macro) instruction, as defined in the next chapter.

MIPS16e Jump and Branch Instructions

Jump and Branch instructions change the control flow of a program.

The JAL, JALR, JALX, and JR instructions occur with a one-instruction delay. That is, the instruction immediately
following the jump is always executed, whether or not the jump is taken.

Branch instructions and the JALRC and JRC jump instructions do not have a delay slot. If a branch or jump is taken, the
instruction immediately following the branch or jump is never executed. If the branch or jump is not taken, the instruction
following the branch or jump is always executed.

Branch, jump and extended instructions may not be placed in jump delay slots. Doing st/BERRE®ICTABLE
results.

MIPS16e Instruction Formats

This section defines the fornfdfbr each MIPS16e instruction type and includes formats for both normal and extended
instructions.

Every MIPS16e instruction consists of 16 bits aligned on a halfword boundary. All variable subfields in an instruction
format (such asx , ry , rz , andimmediate) are shown in lowercase letters.

1As used here, the terfarmatmeans the layout of the MIPS16e instruction word.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 31

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

32

The two instruction subfieldsp andfunct have constant values for specific instructions. These values are given in their
uppercase mnemonic names. For examyids LB in the Load Byte instructiomp is RRR andunction is ADDU
in the Add Unsigned instruction.

Definitions for the fields that appear in the instruction formats are summarizabl@&3-16

Table 3-16 MIPS16e Instruction Fields

Field Definition
funct or f Function field
immediate 4-, 5-, 8-, or 11-bitimmediate, branch displacement, or
orimm address displacement
op 5-bit major operation code
rx 3-bit source or destination register specifier
ry 3-bit source or destination register specifier
rz 3-bit source or destination register specifier
sa 3- or 5-bit shift amount

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.13 MIPS16e Instruction Formats

3.13.1 I-type instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| op immediate

3.13.2 RI-type instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| op rx immediate

3.13.3 RR-type instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RR rx | n? | funct

a. When the funct field is eith&NVTor J(AL)R(C) thery field encodes a sub-function to
be performed rather than a register number

3.13.4 RRI-type instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

op rx ry immediate

3.13.5 RRR-type instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| RRR | rx ry rz | f |

3.13.6 RRI-A type instruction format
15 14 13 12 11 10 9 8 7 6 5
| RRI-A | rx ry |

4 3 2 1 O
|

f immediate

3.13.7 Shift instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SHIFT rx ry sd | f |

a. The three-bisafield can encode a shift amount of O through 7. 0 bit shifts (NOPs) are
not possible; a 0 value translates to a shift amount of 8.

3.13.8 18-type instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| 18 | funct immediate |

3.13.9 18 _MOVR32 instruction format (used only by the MOVR32 instruction)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

18 | funct ry | r32[4:0] |

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 33

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

3.13.10 18 _MOV32R instruction format (used only by MOV32R instruction)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
18 | funct | r32[2:0,4:3} | rz |

a. Ther32 field uses special bit encoding. For example, the encoding for $7
(00111) is 11100 in the32 field.

3.13.11 I18_SVRS instruction format (used only by the SAVE and RESTORE instructions)
15 14 13 12 11 10 9 8 7 6 5 4 3 0

18 | SVRS | s| ra| sq sjr framesize

3.13.12 JAL and JALX instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JAL | Xa| immediate 20:16 immediate 25:21r immediate 15:0

a. If x=0, instruction is JAL. If x=1, instruction is JALX.

3.13.13 EXT-l instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate 10:5 immediate 15:11 op | |O | O| 0| 0| 0| 0 immediate|4:0

3.13.14 ASMACRO instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTEND select p4 p3 RRR p2 | pl | p0

3.13.15 EXT-RI instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND immediate 10:5 | immediate 15:1jr op rx | |0 | 0 | 0 immediate 4:0

3.13.16 EXT-RRI instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND immediate 10:5 | immediate 15:ljr op rx | ry | immediate 4|:0

3.13.17 EXT-RRI-A instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND immediate 10:4 imm 14:11 RRI-A x| y | [f imm3o0

3.13.18 EXT-SHIFT instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND sa 4:0 | 8 o] o] o] o] o SHIFT x | n |o[olo] 1]

a. s5is equivalent to sa5, the most significant bit of the 6-bit shift amaahfiéld. For extended DSLL shifts, this bit may be either 0 or 1. For all 32-bit
extended shifts, s5 must be 0. None of the extended shift instructions perform the 0-to-8 mapping, so 0 bit shifts are possible using the extended forma

34 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.14 Instruction Bit Encoding

3.13.19 EXT-I8 instruction format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
EXTEND immediate 10:5 | immediate 15:ljr 18 | funct| |O | 0 | 0 immediate 4:0

3.13.20 EXT-18_SVRS instruction format (used only by the SAVE and RESTORE instructions)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTEND xsregs framesize 7:‘11 p aregs| 18 | SVR|S | s| ra| sqi sl framesi#e 3:0

3.14 Instruction Bit Encoding

Table 3-18hrough Table 3-25 describe the encoding used for the MIPS16e Feblie 3-17describes the meaning of
the symbols used in the tables.

Table 3-17 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

0 Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

(Also italic field name.) Operation or field codes marked with this symbol denotes a field glass.
o) The instruction word must be further decoded by examining additional tables that show valyes for
another instruction field.

B Operation or field codes marked with this symbol represent a valid encoding for a higher-prder
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exceptjon.

Operation or field codes marked with this symbol represent instructions which are not legal|if the
processor is configured to be backward compatible with MIPS32 processors. If the processor is
executing in Kernel Mode, Debug Mode, or 64-bit instructions are enabled, execution proceeds
ad normally. In other cases, executing such an instruction must cause a Reserved Instruction
Exception (non-coprocessor encodings or coprocessor instruction encodings for a coprocessor to
which access is allowed) or a Coprocessor Unusable Exception (coprocessor instruction
encodings for a coprocessor to which access is not allowed).

Operation or field codes marked with this symbol are available to licensed MIPS partners| To

avoid multiple conflicting instruction definitions, the parther must notify MIPS Technologies,|Inc.

9 when one of these encodings is used. If no instruction is encoded with this value, executing such
an instruction must cause a Reserved Instruction Exce@BRCIAL2ncodings or coprocessar

instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unlisable

Exception (coprocessor instruction encodings for a coprocessor to which access is not allowed).

Field codes marked with this symbol represent an EJTAG support instruction and implemerjtation
of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encodipg is
implemented, it must match the instruction encoding as shown in the table.

Operation or field codes marked with this symbol are reserved for MIPS Application Spedific
€ Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

Operation or field codes marked with this symbol are obsolete and will be removed from a future
¢ revision of the MIPS64 ISA. Software should avoid using these operation or field codes.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 35

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

Table 3-18 MIPS16e Encoding of the Opcode Field

opcode | bits 13..11
0 1 2 3 4 5 6 7
bits 15..14t 000 001 010 011 100 101 110 111
0| 00 | ADDIUSF|ADDIUPCP B JAL(X)d BEQZ BNEZ SHIFTS B
1| 01| RRI-A3 | ADDIUS8® SLTI SLTIU 18 & LI CMPI B
2| 10 LB LH LWSH Lw LBU LHU LWPC*® B
3| 11 SB SH swspk SwW RRR3 RRd& EXTENDS B

a. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction
b. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction
c. The ADDIUS8 opcode is used by the ADDIU rx, immediate instruction

d. The LWSP opcode is used by the LW rx, offset(sp) instruction

e. The LWPC opcode is used by the LW rx, offset(pc) instruction

f. The SWSP opcode is used by the SW rx, offset(sp) instruction

Table 3-19 MIPS16e JAL(X) Encoding of the x Field

X bit 26

0 1
JAL JALX

Table 3-20 MIPS16e SHIFT Encoding of the f Field

f bits 1..0
0 1 2 3
00 01 10 11
SLL B SRL SRA

Table 3-21 MIPS16e RRI-A Encoding of the f Field

f bit 4

0 1
ADDIU? B

a. The ADDIU function is used by the AD-
DIU ry, rx, immediate instruction

Table 3-22 MIPS16e 18 Encoding of the funct Field

funct bits 10..8
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
BTEQZ BTNEZ | SWRASP| ADJSP SVRS | MOV32R® * MOVR32¢9

a. The SWRASP function is used by the SW ra, offset(sp) instruction
b. The ADJSP function is used by the ADDIU sp, immediate instruction
c. The MOV32R function is used by the MOVE r32, rz instruction

d. The MOVR32 function is used by the MOVE ry, r32 instruction

36 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

3.15 MIPS16e Instruction Stream Organization and Endianness

Table 3-23 MIPS16e RRR Encoding of the f Field

f bits 1..0
0 1 2 3
00 01 10 11
B ADDU B SUBU

Table 3-24 MIPS16e RR Encoding of the Funct Field

funct bits 2..0
0 1 2 3 4 5 6 7
bits 4..3 000 001 010 011 100 101 110 111
0| 00 [J(AL)R(C)d| SDBBP SLT SLTU SLLV BREAK SRLV SRAV
1| 01 B * CMP NEG AND OR XOR NOT
2| 10 MFHI CNVT3 MFLO B B * B B
3| 11 MULT MULTU DIV DIVU B B B B

Table 3-25 MIPS16e 18 Encoding of the s Field when funct=SVRS

S bit 7

0 1
RESTORE SAVE

Table 3-26 MIPS16e RR Encoding of the ry Field when funsti(AL)R(C)

ry bits 7..5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
JR rx JRra JALR JRC rx JRCra JALRC

Table 3-27 MIPS16e RR Encoding of the ry Field when funeCNVT

ry bits 7..5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
ZEB ZEH B * SEB SEH B *

3.15 MIPS16e Instruction Stream Organization and Endianness

The instruction halfword is placed within the 32-bit (or 64-bit) memory element according to system endianness.

* On a 32-bit processor in big-endian mode, the first instruction is read from bits 31..16 and the second instruction is
read from bits 15..0

» On a 32-bit processor in little-endian mode, the first instruction is read from bits 15..0 and the second instruction is
read from bits 31..16

The above rule also applies to all extended instructions, since they consist of two 16-bit halfwords. Similarly, JAL and
JALX instructions should be viewed as consisting of two 16-bit halfwords, which means this rule also applies to them.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 37

Chapter 3 The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture

For a 16-bit-instruction sequence, instructions are placed in memory so that an LH instruction with the PC as an
argument fetches the instruction independent of system endianness.

38 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

4.1 MIPS16e Instruction Descriptions

Chapter 4

The MIPS16e™ ASE Instruction Set

4.1 MIPS16e Instruction Descriptions

This chapter provides an alphabetical listing of the instructions list@dlite 3-4throughTable 3-12 Instructions that
are legal only in 64-bit implementations are not listed, as they are not part of a MIPS32 implementation of MIPS16e.

4.1.1 MIPS16e-Specific Pseudocode Functions

This section defines the pseudocode functions that are specific to the MIPS16e ASE. These functions are used in the
Operation section of each MIPS16e instruction description.

4.1.1.1 Xlat

The Xlat function translates the MIPS16e register field index to the correct 32-bit MIPS physical register index. It is
used to assure that a value of 2#000 in a MIPS16e register field maps to GPR 16, and a value of 2#001 maps to GPR 17.
All other values (2#010 through 2#111) map directly.

PhyReg ~ Xlat(i)
I* PhyReg: Physical register index, in the range 0..7 */
* i Opcode register field index */
if (i < 2) then
Xlat i +16
else
Xlat < i

endif

endfunction Xlat

Figure 4-1 Xlat Pseudocode Function

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 39

Chapter 4 The MIPS16e™ ASE Instruction Set

40 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

41

Add Immediate Unsigned Word (2-Operand) ADDIU

15 11 10 8 7 0
ADDIU8
rx immediate
01001
5 3 8
Format: ADDIU rx, immediate MIPS16e
Purpose:

To add a constant to a 32-bit integer.

Description: rx « rx + immediate

The 8-bitimmediatds sign-extended and then added to the contents of GR&form a 32-bit result. The result is
placed in GPRx.

No integer overflow exception occurs under any circumstances.

Restrictions:
None

Operation:
temp ~ GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat(rx)] ~ temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

42 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Add Immediate Unsigned Word (2-Operand, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND ADDIUS8 0
imm 10:5 imm 15:11 rx imm 4:0
11110 01001 000
5 6 5 5 3 3 5
Format: ADDIU rx, immediate MIPS16e
Purpose:

To add a constant to a 32-bit integer.

Description: rx « rx + immediate

The 16-bitimmediates sign-extended and then added to the contents of @R&form a 32-bit result. The result is
placed in GPRx.

No integer overflow exception occurs under any circumstances.

Restrictions:
None

Operation:
temp ~ GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat(rx)] ~ temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 43

Add Immediate Unsigned Word (3-Operand) ADDIU

15 11 10 8 7 5 4 3 0
RRI-A ADDIU
rx ry immediate
01000 0
5 3 3 1 4
Format: ADDIU ry, rx, immediate MIPS16e
Purpose:

To add a constant to a 32-bit integer.

Description: ry < rx + immediate

The 4-bitimmediatéds sign-extended and then added to the contents of GR&form a 32-bit result. The result is
placed into GPRy.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp < GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat(ry)] ~ temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

44 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Add Immediate Unsigned Word (3-Operand, Extended) ADDIU

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0
EXTEND imm RRI-A ADDIU
imm 10:4 rx ry imm 3:0
11110 14:11 01000 0
5 7 4 5 3 3 1 4
Format: ADDIU ry, rx, immediate MIPS16e
Purpose:

To add a constant to a 32-bit integer.

Description: ry < rx + immediate

The 15-bitimmediates sign-extended and then added to the contents of GR&form a 32-bit result. The result is
placed into GPRy.

No integer overflow exception occurs under any circumstances.

Restrictions:
None

Operation:
temp «~ GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat(ry)] ~ temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 45

Add Immediate Unsigned Word (3-Operand, PC-Relative) ADDIU

15 11 10 8 7 0
ADDIUPC
rx immediate
00001
5 3 8
Format: ADDIU rx, pc, immediate MIPS16e
Purpose:

To add a constant to the program counter.

Description: rx « PC + immediate

The 8-bitimmediates shifted left two bits, zero-extended, and added to either the address of the ADDIU instruction
or the address of the jump instruction in whose delay slot the ADDIU is executed. This result (with its two lower bits
cleared) is placed in GPR.

No integer overflow exception occurs under any circumstances.

Restrictions:

None
Operation:
I-1: base pc ~ PC
I: if not (JumpDelaySlot(PC)) then
base_pc ~ PC
endif
temp < (base_pc gprLen-1.2 T zero_extend(immediate)) || O 2)
GPR[Xlat(rx)] ~ temp
Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

Since the 8-biilmmediateis shifted left two bits before being added to the PC, the range is 0, 4, 8..1020.
The assembler LA (Load Address) pseudo-instruction is implemented as a PC-relative add.

46 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND ADDIUPC 0
imm 10:5 imm 15:11 rx imm 4.0
11110 00001 000
5 6 5 5 3 3 5
Format: ADDIU rx, pc, immediate MIPS16e
Purpose:

To add a constant to the program counter.

Description: rx < PC + immediate

The 16-bitimmediatds sign-extended and added either to the address of the ADDIU instruction. Before the addition,
the two lower bits of the instruction address are cleared.

The result of the addition is placed in GBR

No integer overflow exception occurs under any circumstances.

Restrictions:

A PC-relative, extended ADDIU may not be placed in the delay slot of a jump instruction.

Operation:
temp < (PC gprien.1 2 |10 ?) + sign_extend(immediate)
GPR[Xlat(rx)] « temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

The assembler LA (Load Address) pseudo-instruction is implemented as a PC-relative add.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 47

Add Immediate Unsigned Word (2-Operand, SP-Relative) ADDIU

15 11 10 8 7 0
18 ADJSP
immediate
01100 011
5 3 8
Format: ADDIU sp, immediate MIPS16e
Purpose:

To add a constant to the stack pointer.

Description: sp < sp + immediate

The 8-bitimmediateis shifted left three bits, sign-extended, and then added to the contents of GPR 29 to form a
32-bit result. The result is placed in GPR 29.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp «~ GPR[29] + sign_extend(immediate || O 3)
GPR[29] « temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

48 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND 3] ADJSP 0
imm 10:5 imm 15:11 imm 4.0
11110 01100 011 000
5 6 5 5 3 3 5
Format: ADDIU sp, immediate MIPS16e
Purpose:

To add a constant to the stack pointer.

Description: sp < sp + immediate

The 16-bitimmediatds sign-extended, and then added to the contents of GPR 29 to form a 32-bit result. The result is
placed in GPR 29.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp « GPR[29] + sign_extend(immediate)
GPR[29] « temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 49

Add Immediate Unsigned Word (3-Operand, SP-Relative) ADDIU

15 11 10 8 7 0
ADDIUSP
rx immediate
00000
5 3 8
Format: ADDIU rx, sp, immediate MIPS16e
Purpose:

To add a constant to the stack pointer.

Description: rx « SP + immediate

The 8-bitimmediatds shifted left two bits, zero-extended, and then added to the contents of GPR 29 to form a 32-bit
result. The result is placed in GPR

No integer overflow exception occurs under any circumstances.

Restrictions:
None

Operation:

temp < GPR[29] + zero_extend(immediate || O 2)

GPR[Xlat(rx)] ~ temp

Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

50 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Add Immediate Unsigned Word (3-Operand, SP-Relative, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND ADDIUSP 0
imm 10:5 imm 15:11 rx imm 4:0
11110 00000 000
5 6 5 5 3 3 5
Format: ADDIU rx, sp, immediate MIPS16e
Purpose:

To add a constant to the stack pointer.

Description: rx < sp + immediate

The 16-bitimmediates sign-extended and then added to the contents of GPR 29 to form a 32-bit result. The result is
placed in GPRXx.

No integer overflow exception occurs under any circumstances.

Restrictions:
None

Operation:
temp « GPR[29] + sign_extend(immediate
GPR[Xlat(rx)] ~ temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 51

Add Unsigned Word (3-Operand) ADDU

15 11 10 8 7 5 4 2 1 0
RRR ADDU
rx ry rz
11100 01
5 3 3 3 2
Format: ADDU rz, rx, ry MIPS16e
Purpose:

To add 32-bit integers.

Description: rz « rx+ry
The contents of GPR and GPRy are added together to form a 32-bit result. The result is placed intaZGPR

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp «~ GPR[Xlat(rx)] + GPR[Xlat(ry)]
GPR[Xlat(rz)] ~ temp
Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

52 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

And AND
15 11 10 8 7 0
RR AND
X
11101 01100
5 3 5
Format: AND rx, ry MIPS16e

Purpose:
To do a bitwise logical AND.

Description: rx « rx AND ry

The contents of GPRy are combined with the contents of GIPRIn a bitwise logical AND operation. The result is

placed in GPRXx.

Restrictions:
None

Operation:
GPR[Xlat(rx)] ~ GPR[Xlat(rx)] and GPR[Xlat(ry)]

Exceptions:
None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

53

Application-Specific Macro Instructions ASMACRO

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0
EXTEND RRR
select p4 p3 p2 pl pO
11110 11100
5 3 3 5 5 3 3 5
Format: ASMACRO select,p0,p1,p2,p3,p4 MIPS16e

54

The format listed is the most generic assembler format and is unlikely to be used for an actual implementation of
application-specific macro instructions. Rather, the assembler format is likely to represent the use of the macro, with
the assembler turning that format into the appropriate bit pattern required by the instruction.

Purpose:

To execute an implementation-definable macro instruction.

Description:

The ASMACRO instruction is the programming interface to the implementation-definable macro instruction facility
that is defined by the MIPS16e architecture.

The selectfield specifies which of 8 possible macros is expanded. The definition of each macro specifies how the
parameterp0, pl, p2, p3, andp4 are substituted into the 32-bit instructions with which the macro is defined. The exe-
cution of the 32-bit instructions occurs while PC remains unchanged.

It is implementation-dependent whether a processor implements any implementation-definable macro instructions
and, if it does, how many. It is implementation-dependent whether the macro is executed with interrupts disabled.
Restrictions:

The 32-bit instructions with which the macro is defined must by chosen with care. Issues of atomicity, restartability of
the instruction sequence, and similar factors must be considered when using the implementation-definable macro
instruction facility. Failure to do so can caldsPREDICTABLE behavior.

If implementation-definable macro instructions are not implemented by the processor, amefdbtfield references
a specific macro which is not implemented by the processor, a Reserved Instruction exception is signaled.
Operation:

ExecuteMacro(sel,p0,p1,p2,p3,p4)

Exceptions:

Reserved Instruction

Others as may be generated by the 32-bit instructions included in each macro expansion.
Programming Notes:

Refer to the Users Guide for each processor which implements this capability for a list of macros defined and imple-
mented by that processor.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Unconditional Branch B

15 11 10 0
B
offset
00010
5 11
Format: B offset MIPS16e
Purpose:

To do an unconditional PC-relative branch.

Description: branch

The 11-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. The program branches to the target address unconditionally.

Restrictions:

None

Operation:
I: PC ~ PC + 2 + sign_extend(offset || 0)

Exceptions:
None

Programming Notes:

In MIPS16e mode, the brandiffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets theoffsetvalue as word-aligned.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 55

Unconditional Branch (Extended) B

56

31 27 26 21 20 16 15 11 10 5 4 0
EXTEND B 0
offset 10:5 offset 15:11 offset 4.0
11110 00010 000000
5 6 5 5 6 5
Format: B offset MIPS16e
Purpose:

To do an unconditional PC-relative branch.

Description: branch

The 16-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. The program branches to the target address unconditionally.

Restrictions:

None

Operation:
I: PC — PC + 4 + sign_extend(offset || 0)

Exceptions:
None

Programming Notes:

In MIPS16e mode, the brandiffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets theoffsetvalue as word-aligned.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Branch on Equal to Zero BEQZ

15 11 10 8 7 0
BEQZ
rx offset
00100
5 3 8
Format: BEQZ rx, offset MIPS16e
Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: if (rx = 0) then branch

The 8-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GRRre equal to zero, the program branches to the target address.

Restrictions:

None
Operation:

I tgt_offset ~ sign_extend(offset || 0)
condition — (GPR[Xlat(rx)] =0 GPRLEN
if condition then

PC — PC + 2 +tgt_offset
endif
Exceptions:
None

Programming Notes:

In MIPS16e mode, the brandifsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets theoffsetvalue as word-aligned.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 57

Branch on Equal to Zero (Extended) BEQZ
31 27 26 21 20 16 15 11 10 7 4 0
EXTEND BEQZ 0
offset 10:5 offset 15:11 rx offset 4.0
11110 00100 000
5 6 5 5 3 3 5
Format: BEQZ rx, offset MIPS16e

58

Purpose:

To test a GPR then do a PC-relative conditional branch.

Description: if (rx = 0) then branch

The 16-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GRre equal to zero, the program branches to the target address.

Restrictions:

None

Operation:
I:

Exceptions:
None

tgt_offset ~ sign_extend(offset || 0)
condition ~ (GPR[Xlat(rx)] =0

if condition then

PC — PC + 4 +tgt_offset

endif

Programming Notes:

In MIPS16e mode, the brandiffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets theoffsetvalue as word-aligned.

GPRLEI)I

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Branch on Not Equal to Zero BNEZ
15 11 10 8 7 0
BNEZ
rx offset
00101
5 3 8
Format: BNEZ rx, offset MIPS16e

Purpose:
To test a GPR then do a PC-relative conditional branch.

Description: if (rx # 0) then branch

The 8-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GRre not equal to zero, the program branches to the target address.

Restrictions:

None
Operation:

I tgt_offset — sign_extend(offset || 0)
condition « (GPR[Xlat(rx)] # QGPRLEY
if condition then

PC ~ PC + 2 +tgt_offset
endif
Exceptions:
None

Programming Notes:

In MIPS16e mode, the brandifsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-

prets theoffsetvalue as word-aligned.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

59

Branch on Not Equal to Zero (Extended) BNEZ
31 27 26 21 20 16 15 11 10 7 4 0
EXTEND BNEZ 0
offset 10:5 offset 15:11 rx offset 4.0
11110 00101 000
5 6 5 5 3 3 5
Format: BNEZ rx, offset MIPS16e

60

Purpose:

To test a GPR then do a PC-relative conditional branch.

Description:

if (rx # 0) then branch

The 16-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of G Rre not equal to zero, the program branches to the target address.

Restrictions:

None

Operation:
I:

Exceptions:
None

tgt_offset — sign_extend(offset || 0)

condition ~ (GPR[Xlat(rx)]

if condition then

PC — PC + 4 +tgt_offset

endif

Programming Notes:

In MIPS16e mode, the brandifsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets theoffsetvalue as word-aligned.

£ OGPRLEI)I

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Breakpoint BREAK

15 11 10 8 7 5 4 0
RR BREAK
code
11101 00101
5 6 5
Format: BREAK immediate MIPS16e
Purpose:

To cause a Breakpoint exception.

Description:
A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler.

Restrictions:
None

Operation:
SignalException(Breakpoint)

Exceptions:
Breakpoint

Programming Notes:

The codefield is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory halfword containing the instruction.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 61

Branch on T Equal to Zero BTEQZ

15 11 10 8 7 0
I8 BTEQZ
offset
01100 000
5 3 8
Format: BTEQZ offset MIPS16e
Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T =0) then branch

The 8-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are equal to zero, the program branches to the target address.

Restrictions:

None
Operation:

I: tgt_offset ~ sign_extend(offset || 0)
condition — (GPR[24]=0 CGPRLEY
if condition then

PC « PC + 2 + tgt_offset
endif
Exceptions:
None

Programming Notes:

In MIPS16e mode, the brandiffsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets theoffsetvalue as word-aligned.

62 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Branch on T Equal to Zero (Extended) BTEQZ

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND 18 BTEQZ 000
offset 10:5 offset 15:11 offset 4:0
11110 01100 000 0
5 6 5 5 3 3 5
Format: BTEQZ offset MIPS16e
Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T =0) then branch

The 16-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are equal to zero, the program branches to the target address.

Restrictions:

None
Operation:

I: tgt_offset ~ sign_extend(offset || 0)
condition ~ (GPR[24]=0 GPRLEI)!
if condition then

PC — PC + 4 +1gt_offset
endif
Exceptions:
None

Programming Notes:

In MIPS16e mode, the brandifsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets theoffsetvalue as word-aligned.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 63

Branch on T Not Equal to Zero BTNEZ

15 11 10 8 7 0
18 BTNEZ
offset
01100 001
5 3 8
Format: BTNEZ offset MIPS16e
Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T # 0) then branch

The 8-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are not equal to zero, the program branches to the target address.
Restrictions:

None

Operation:

I: tgt_offset ~ sign_extend(offset || 0)
conditon ~ (GPR[24] # OGPRLEY
if condition then

PC ~ PC + 2 + tgt_offset
endif
Exceptions:

None

Programming Notes:

In MIPS16e mode, the brandifsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets theoffsetvalue as word-aligned.

64 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Branch on T Not Equal to Zero (Extended) BTNEZ

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND 18 BTNEZ 000
offset 10:5 offset 15:11 offset 4.0
11110 01100 001 0
5 6 5 5 3 3 5
Format: BTNEZ offset MIPS16e
Purpose:

To test special register T then do a PC-relative conditional branch.

Description: if (T # 0) then branch

The 16-bitoffsetis shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are not equal to zero, the program branches to the target address.
Restrictions:

None

Operation:

I tgt_offset « sign_extend(offset || 0)
condition — (GPR[24] # 0 GPRLEN
if condition then

PC — PC +4 +tgt_offset
endif
Exceptions:

None

Programming Notes:

In MIPS16e mode, the brandifsetis interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets theoffsetvalue as word-aligned.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 65

Compare CMP

15 11 10 8 7 5 4 0
RR CMP
rx ry
11101 01010
5 3 3 5
Format: CMP rx, ry MIPS16e
Purpose:

To compare the contents of two GPRs.

Description: T « rx XOR ry
The contents of GPR/ are Exclusive-ORed with the contents of GRRThe result is placed into GPR 24.

Restrictions:
None

Operation:
GPR[24] ~ GPR[Xlat(ry)] xor GPR[Xlat(rx)]

Exceptions:

None

66 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Compare Immediate CMPI

15 11 10 8 7 0
CMPI
rx immediate
01110
5 3 8
Format: CMPI rx, immediate MIPS16e
Purpose:

To compare a constant with the contents of a GPR.

Description: T « rx XOR immediate

The 8-bitimmediatas zero-extended and Exclusive-ORed with the contents of &PRhe result is placed into GPR
24,

Restrictions:
None

Operation:
GPR[24] ~ GPR[Xlat(rx)] xor zero_extend(immediate)

Exceptions:
None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 67

Compare Immediate (Extended) CMPI
31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND CMPI 000
imm 10:5 imm 15:11 rx imm 4:0
11110 01110 0
5 6 5 5 3 3 5

Format: CMPI rx, immediate MIPS16e
Purpose:

68

To compare a constant with the contents of a GPR.

Description: T « rx XOR immediate

The 16-bitimmediateis zero-extended and Exclusive-ORed with the contents of &PRhe result is placed into

GPR 24.

Restrictions:

None

Operation:

GPR[24]

Exceptions:

None

~ GPR[Xlat(rx)] xor zero_extend(immediate)

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Divide Word DIV
15 11 10 0
RR DIV
rx ry
11101 11010
5 3 3 5
Format: DIV rx, ry MIPS16e

Purpose:

To divide 32-bit signed integers.

Description: (LO, HI) —rxlry

The 32-bit word value in GPR is divided by the 32-bit value in GPR), treating both operands as signed values.
The 32-bit quotient is placed into special regit®r and the 32-bit remainder is placed into special redititer

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPRYy is zero, the arithmetic resulttiNPREDICTABLE .

Operation:

g « GPR[Xlat(rx)] div GPR[Xlat(ry)]

r «— GPR[Xlat(rx)] mod GPR[Xlat(ry)]

LO «q
HI ~r

Exceptions:
None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

69

Divide Word (cont.) DIV

70

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero divi-
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception withdefield value to signal

the problem to the system software.

As an example, the C programming language in a URiBvironment expects division by zero to either terminate

the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if a zero is detected.

Where the size of the operands are known, software should place the shorter operandyn T3#Rmay reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to ré&or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS IlI, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
guent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Divide Unsigned Word DIVU

15 11 10 8 7 5 4 0
RR DIVU
X ry
11101 11011
5 3 3 5
Format: DIVU rx, ry MIPS16e
Purpose:

To divide 32-bit unsigned integers.

Description: (LO, HI) —rx/lry

The 32-bit word value in GPR is divided by the 32-bit value in GPR, treating both operands as unsigned values.
The 32-bit quotient is placed into special regitt®r and the 32-bit remainder is placed into special redititer
Restrictions:

If the divisor in GPRYy is zero, the arithmetic resultBiNPREDICTABLE .

Operation:
q < (0] GPR[Xlat(rx)]) div (0 || GPR[Xlat(ry)])
r < (0] GPR[Xlat(rx)]) mod (O || GPR[Xlat(ry)])
LO «q
HI «r

Exceptions:

None

Programming Notes:
See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
guent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 71

Jump and Link JAL

31 27 26 25 21 20 16 15 0
JAL X target target
target 15:0
00011 0 20:16 25:21
5 1 5 5 16
Format: JAL target MIPS16e
Purpose:

72

To execute a procedure call within the current 256 MB-aligned region and preserve the current ISA.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit O reflects the current
value of thd SA Modebit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is thegetfield shifted left 2 bits. The remaining upper bits are the correspond-
ing bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, preserving the ISA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

The opcode field describes a general jump-and-link operation, with fieéd as a variable. The individual instruc-
tions, JAL and JALX have specific values for this variables.
Restrictions:

An extended instruction should not be placed in a jump delay slot as it causes one-half of an instruction to be exe-
cuted.

Processor operation WNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:
I: GPR[31] ~ (PC+6) GPRLEN-1..1 || ISAMode
|+1: PC < PC GPRLEN-1..28 ” target ” 0 2
Exceptions:
None

Programming Notes:

Forming the jump target address by catenating PC and the 26-bit target address rather than addingfisgtined

the PC is an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It
allows a branch from anywhere in the region to anywhere in the region, an action not allowed by a signedi&lative
set

This definition creates the boundary case where the jump instruction is in the last word of a 256 MB region and can
therefore jump only to the following 256 MB region containing the jump delay slot.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Jump and Link Register JALR

15 11 10 8 7 6 5 4 0
RR nd I ra J(AL)R(C)
X
11101 0 1 0 00000
5 3 1 1 1 5
Format: JALRra, rx MIPS16e
Purpose:

To execute a procedure call to an instruction address in a register.

Description: ra — return_addr, PC < X

The program unconditionally jumps to the address contained in QPRith a delay of one instruction. The instruc-
tion sets théSA Modebit to the value in GPR bit 0.

The address of the instruction following the delay slot is placed into GPR 31. The value stored in GPR 31 bit 0
reflects the current value of tH&A Modebit.

Bit O of the target address is always zero so that no Address Exceptions occur when bit O of the source register is one.

The opcode and function field describe a general jump-thru-register operation, witld ¢he delay slot)] (link),

andra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have specific
values for these variables.

Restrictions:

The effective target address in GPPRmust be naturally-aligned. If bit O is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in a jump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation WNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I: GPR[31] « (PC+4) gprLEN-1.1 |l ISAMode
I+1: PC ~ GPR[Xlat(rx)] GPRLEN-1.1 |1 O
ISAMode ~ GPR[Xlat(rx)] 0

Exceptions:

None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 73

Jump and Link Register, Compact JALRC

74

15 11 10 8 7 6 5 4 0
RR nd I ra J(AL)R(C)
X
11101 1 1 0 00000
5 3 1 1 1 5
Format: JALRC ra, rx MIPS16e
Purpose:

To execute a procedure call to an instruction address in a register

Description: ra « return_addr, PC B

The program unconditionally jumps to the address contained in GPW®ith no delay slot instruction. The instruc-
tion sets théSA Modebit to the value in GPR bit 0.

The address of the instruction following the jump is placed into GPR 31. The value stored in GPR 31 bit O reflects the
current value of théSA Modebit.

Bit O of the target address is always zero so that no Address Exceptions occur when bit O of the source register is one.

The opcode and function field describe a general jump-thru-register operation, witl (he delay slot)] (link),
andra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have specific
values for these variables.

Restrictions:

The effective target address in GPRmust be naturally-aligned. If bit O is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.

Operation:
I: GPR[31] « (PC+2) gprien-1.1 || ISAMode
PC ~ GPR[Xlat(rx)] GPRLEN-1..1 1l O
ISAMode ~ GPR[Xlat(rx)] 0
Exceptions:
None.

Programming Notes:
Unlike most MIPS “jump” instructions, JALRC does not have a delay slot.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Jump and Link Exchange (MIPS16e Format) JALX

31 27 26 25 21 20 16 15 0
JAL X target target
target 15:0
00011 1 20:16 25:21
5 1 5 5 16

Format: JALX target MIPS16e
Purpose:
To execute a procedure call within the current 256 MB-aligned region and change the ISA Mode from MIPS16e to
32-bit MIPS.
Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit O reflects the current
value of thdSA Modebit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is thegetfield shifted left 2 bits. The remaining upper bits are the correspond-
ing bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, toggling the ISA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

The opcode field describes a general jump-and-link operation, witk fieéd as a variable. The individual instruc-
tions, JAL and JALX have specific values for this variables.
Restrictions:

An extended instruction should not be placed in a jump delay slot, because this causes one-half an instruction to be
executed.

Processor operation WNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I: GPR[31] « (PC+6) gprien-11 |l ISAMode
I+1: PC — PCgprLEN-1.28 |l target|| O 2
ISAMode ~ (not ISAMode)
Exceptions:

None

Programming Notes:

Forming the jump target address by catenating PC and the 26-bit target address rather than adding#isstioed
the PC is an advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It
allows a jump to anywhere in the region from anywhere in the region which a signed oéfaéitwould not allow.

This definition creates the boundary case where the jump instruction is in the last word of a 256 MB region and can
therefore jump only to the following 256 MB region containing the jump delay slot.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 75

Jump and Link Exchange (32-bit MIPS Format) JALX

76

31 26 25 0
JALX
instr_index
011101
6 26
Format: JALX target MIPS32 with MIPS16e
Purpose:

To execute a procedure call within the current 256 MB-aligned region and change the ISA Mode from 32-bit MIPS to
MIPS16e.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit O reflects the current
value of thdSA Modebit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is thstr_indexfield shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, toggling the ISA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

Restrictions:

Processor operation SNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: GPR[31] - PC +8
1+1: PC — PCgprLEn.2g || instr_index || O
ISAMode ~ (not ISAMode)

2

Exceptions:
None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Jump Register Through Register ra JR

15 11 10 8 7 6 5 4 0
RR nd I ra J(AL)R(C)
000
11101 0 0 1 00000
5 3 1 1 1 5
Format: JRra MIPS16e
Purpose:

To execute a branch to the instruction address in the return address register.

Description: PC « ra

The program unconditionally jumps to the address specified in GPR 31, with a delay of one instruction. The instruc-
tion sets théSA Modebit to the value in GPR 31 bit 0.

Bit O of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function field describe a general jump-thru-register operation, witl (he delay slot)] (link),

andra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have specific
values for these variables.

Restrictions:

The effective target address in GPR 31 must be naturally-aligned. If bit O is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in a jump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation WNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I+1: PC « GPR[3]1] gprien-1.1 IO
ISAMode ~ GPR[31] g

Exceptions:
None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 77

Jump Register Through MIPS16e GPR JR

78

15 11 10 8 7 6 5 4 0
RR nd I ra J(AL)R(C)
X
11101 0 0 0 00000
5 3 1 1 1 5
Format: JRrx MIPS16e
Purpose:

To execute a branch to an instruction address in a register.

Description: PC « rx

The program unconditionally jumps to the address specified in &PRith a delay of one instruction. The instruc-
tion sets théSA Modebit to the value in GPR bit 0.

Bit O of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function field describe a general jump-thru-register operation, witl (he delay slot)] (link),

andra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have specific
values for these variables.

Restrictions:

The effective target address in GPRmust be naturally aligned. If bit O is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in a jump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation WNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I+1: PC « GPR[Xlat(rx)] GPRLEN-1.1 |1 O
ISAMode ~ GPR[Xlat(rx)] 0

Exceptions:
None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Jump Register Through Register ra, Compact JRC
15 11 10 7 5 0
RR nd ra J(AL)R(C)
000
11101 1 1 00000
5 3 1 1 5
Format: JRCra MIPS16e

Purpose:

To execute a branch to the instruction address in the return address register.

Description: PC ~ ra

The program unconditionally jumps to the address specified in GPR 31, with no delay slot instruction. The instruction

sets thdSA Modebit to the value in GPR 31 bit 0.

Bit O of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function field describe a general jump-thru-register operation, witl (he delay slot)] (link),
andra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have specific

values for these variables.

Restrictions:

The effective target address in GPR 31 must be naturally-aligned. If bit O is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

Operation:

I PC «~ GPRI31] gprren-1.1 10

ISAMode — GPR[31] g

Exceptions:
None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

79

Jump Register Through MIPS16e GPR, Compact JRC
15 11 10 8 7 5 0
RR nd ra J(AL)R(C)
X
11101 1 0 00000
5 3 1 1 5
Format: JRC rx MIPS16e

80

Purpose:

To execute a branch to an instruction address in a register

Description: PC « rx

The program unconditionally jumps to the address specified in @PRith no delay slot instruction. The instruction
sets thdSA Modebit to the value in GPRR bit O.

Bit O of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function field describe a general jump-thru-register operation, witl the delay slot)] (link),
andra (source register is ra) fields as variables. The individual instructions, JALR, JR, JALRC, and JRC have specific

values for these variables.

Restrictions:

The effective target address in GPRmust be naturally-aligned. If bit O is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

Operation:
I: PC — GPR[XIat(rX)] GPRLEN-1..1 ” 0
ISAMode ~ GPR[Xlat(rx)] 0
Exceptions:
None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Load Byte LB
15 11 10 8 7 4 0
LB
rx offset
10000
5 3 5
Format: LB ry, offset(rx) MIPS16e

Purpose:
To load a byte from memory as a signed value.

Description: ry — memory[rx + offset]

The 5-bitoffsetis zero-extended, then added to the contents of GRR form the effective address. The contents of
the byte at the memory location specified by the effective address are sign-extended and loadedrinto GPR

Restrictions:
None

Operation:
VAddr ~ zero_extend(offset) + GPR[Xlat(rx)]

(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddr pgize.1.o || (PAddr 1 o Xor ReverseEndian
memword— LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)

byte — VAddr ; o xor BigEndianCPU 2

GPR[Xlat(ry)] ~ sign_extend(memword 7.g«pyte. g*byte

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

%)

81

Load Byte (Extended)

82

LB

31 27 26 21 20 16 15 11 10 8 7 5 4 0

EXTEND LB

offset 10:5 offset 15:11 rx ry offset 4:0
11110 10000
5 6 5 3 3 5
Format: LB ry, offset(rx) MIPS16e
Purpose:

To load a byte from memory as a signed value.

Description: ry

The 16-bitoffsetis sign-extended, then added to the contents of BRB form the effective address. The contents of

~ memory[rx + offset]

the byte at the memory location specified by the effective address are sign-extended and loadedrinto GPR

Restrictions:

None

Operation:

vAddr
(pAddr, CCA)
pAddr

~ sign_extend(offset) + GPR[Xlat(rx)]
— AddressTranslation (vAddr, DATA, LOAD)

« PAddr pgizg.1.2

|| (pAddr

10 Xor ReverseEndian ?)

memword— LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)

byte

GPR[Xlat(ry)]

~ VAddr , ¢ xor BigEndianCPU
~ sign_extend(memword

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

7+8*byte. 8*byte)

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Load Byte Unsigned LBU
15 11 10 8 7 4 0
LBU
rx ry offset
10100
5 3 3 5
Format: LBU ry, offset(rx) MIPS16e

Purpose:
To load a byte from memory as an unsigned value

Description: ry — memory[rx + offset]

The 5-bitoffsetis zero-extended, then added to the contents of BRR form the effective address. The contents of
the byte at the memory location specified by the effective address are zero-extended and loadedynto GPR

Restrictions:
None

Operation:
VAddr ~ zero_extend(offset) + GPR[Xlat(rx)]

(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)

pAddr — pAddr pgize.1.o || (PAddr 1 o Xor ReverseEndian

memword— LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)

byte ~ VAddr , ¢ xor BigEndianCPU

GPR[Xlat(ry)] — zero_extend(memword 7.g«pyte. g*byte

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

)

83

Load Byte Unsigned (Extended)

84

LBU
31 27 26 21 20 16 15 11 10 7 4 0
EXTEND LBU
offset 10:5 offset 15:11 rx ry offset 4:0
11110 10100
5 6 5 5 3 3 5
Format: LBU ry, offset(rx) MIPS16e

Purpose:

To load a byte from memory as an unsigned value

Description: ry

— memory[rx + offset]

The 16-bitoffsetis sign-extended, then added to the contents of BRB form the effective address. The contents of
the byte at the memory location specified by the effective address are zero-extended and loadedynto GPR

Restrictions:
None

Operation:

VAddr — sign_extend(offset) + GPR[Xlat(rx)]
~ AddressTranslation (vAddr, DATA, LOAD)

(pAddr, CCA)
PAddr — pAddr pgzg.1.2

|| (pAddr

memword— LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte — vAddr ; o xor BigEndianCPU 2

GPR[Xlat(ry)]

Exceptions:

~ zero_extend(memword

TLB Refill, TLB Invalid, Bus Error, Address Error

7+8*byte..8*byte

10 Xor ReverseEndian ?)

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Load Halfword

LH
15 11 10 8 7 0
LH
rx offset
10001
5 3 5
Format: LH ry, offset(rx) MIPS16e

Purpose:
To load a halfword from memory as a signed value.

Description: ry — memory[rx + offset]

The 5-bitoffsetis shifted left 1 bit, zero-extended, then added to the contents ofts RRform the effective address.
The contents of the halfword at the memory location specified by the effective address are sign-extended and loaded

into GPRry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

VAddr ~ zero_extend(offset || 0) + GPR[Xlat(rx)]

if vAddr o #0then
SignalException(AddressError)

endif

(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddr pgize_1.»> |l (PAddr 1.0 Xor (ReverseEndian || 0))
memword — LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)

byte ~ VAddr 1 g xor (BigendianCPU || 0)

GPR[Xlat(ry)] — sign_extend(memword {5.gxpyte. 8*byte

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

85

Load Halfword (Extended) LH
31 27 26 21 20 16 15 11 10 7 4 0
EXTEND LH
offset 10:5 offset 15:11 rx ry offset 4:0
11110 10001
5 6 5 5 3 3 5
Format: LH ry, offset(rx) MIPS16e

Purpose:
To load a halfword from memory as a signed value.

Description: ry — memory[rx + offset]

The 16-bitoffsetis sign-extended and then added to the contents of GR& form the effective address. The con-
tents of the halfword at the memory location specified by the effective address are sign-extended and loaded into GPR

ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

VAddr — sign_extend(offset) + GPR[Xlat(rx)]
if vAddr o #0then
SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)

pAddr — pAddr pgize_1.»> |l (PAddr 1.0 Xor (ReverseEndian || 0))
memword — LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)

byte ~ VAddr 1 g xor (BigendianCPU || 0)
GPR[Xlat(ry)] — sign_extend(memword {5.gxpyte. 8*byte

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

86

)

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Load Halfword Unsigned LHU
15 11 10 8 7 0
LHU
rx offset
10101
5 3 5
Format: LHU ry, offset(rx) MIPS16e

Purpose:

To load a halfword from memory as an unsigned value.

Description: ry — memory[rx + offset]

The 5-bitoffsetis shifted left 1 bit, zero-extended, then added to the contents ofts RRform the effective address.
The contents of the halfword at the memory location specified by the effective address are zero-extended and loaded

into GPRry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

VAddr ~ zero_extend(offset || 0) + GPR[Xlat(rx)]

if vAddr o #0then
SignalException(AddressError)

endif

(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
pAddr — pAddr pgize_1.»> |l (PAddr 1.0 Xor (ReverseEndian || 0))
memword — LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)

byte ~ VAddr 1 g xor (BigendianCPU || 0)

GPR[Xlat(ry)] — zero_extend(memword {5.gxpyte. 8*byte

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

87

Load Halfword Unsigned (Extended) LHU
31 27 26 21 20 16 15 11 10 7 4 0
EXTEND LHU
offset 10:5 offset 15:11 rx ry offset 4:0
11110 10101
5 6 5 5 3 3 5
Format: LHU ry, offset(rx) MIPS16e

Purpose:

To load a halfword from memory as an unsigned value.

Description: ry — memory[rx + offset]

The 16-bitoffsetis sign-extended and then added to the contents of GR& form the effective address. The con-
tents of the halfword at the memory location specified by the effective address are zero-extended and loaded into GPR

ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

VAddr — sign_extend(offset) + GPR[Xlat(rx)]
if vAddr o #0then
SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)

pAddr — pAddr pgize_1.»> |l (PAddr 1.0 Xor (ReverseEndian || 0))
memword — LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)

byte ~ VAddr 1 g xor (BigendianCPU || 0)
GPR[Xlat(ry)] — zero_extend(memword {5.gxpyte. 8*byte

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

88

)

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Load Immediate
15 11 10 0
LI
rx immediate
01101
5 3 8
Format: LI rx, immediate MIPS16e
Purpose:
To load a constant into a GPR.
Description: rx — immediate
The 8-bitimmediates zero-extended and then loaded into GRR
Restrictions:
None
Operation:
GPR[Xlat(rx)] ~ zero_extend(immediate)
Exceptions:
None
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

LI

89

Load Immediate (Extended) LI

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LI 0
immediate 10:5 immediate 15:11 rx iummediate 4:0
11110 01101 000
5 6 5 5 3 3 5
Format: LI rx, immediate MIPS16e
Purpose:

To load a constant into a GPR.

Description: rx « immediate

The 16-bitimmediatas zero-extended and then loaded into GPR

Restrictions:
None

Operation:

GPR[Xlat(rx)] ~ zero_extend(immediate)

Exceptions:
None

920 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Load Word LW

15 11 10 8 7 5 4 0
LW
rx ry offset
10011
5 3 3 5
Format: LW ry, offset(rx) MIPS16e
Purpose:

To load a word from memory as a signed value.

Description: ry « memory[rx + offset]

The 5-bit offsetis shifted left 2 bits, zero-extended, then added to the contents of IGR& form the effective
address. The contents of the word at the memory location specified by the effective address are loadedyinto GPR

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ~ zero_extend(offset || O 2) + GPR[Xlat(rx)]
if vAddr 1 o #0 2then

SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
memword— LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)] ~ memword

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 91

Load Word (Extended) LW

92

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND Lw
offset 10:5 offset 15:11 rx ry offset 4:0
11110 10011
5 6 5 5 3 3 5
Format: LW ry, offset(rx) MIPS16e
Purpose:

To load a word from memory as a signed value.

Description: ry — memory[rx + offset]

The 16-bitoffsetis sign-extended and then added to the contents of GR& form the effective address. The con-
tents of the word at the memory location specified by the effective address are loaded injo GPR

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

VAddr — sign_extend(offset) + GPR[Xlat(rx)]
ifvAddr ;o #0 ?then

SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
memword— LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)] ~ memword

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Load Word (PC-Relative) LW

15 11 10 8 7 0
Ii\(/)\/f 1% rx offset
5 3 8
Format: LW rx, offset(pc) MIPS16e
Purpose:

To load a PC-relative word from memory as a signed value.

Description: rx — memory[PC + offset]

The 8-bitoffsetis shifted left 2 bits, zero-extended, and added either to the address of the LW instruction or to the
address of the jump instruction in whose delay slot the LW is executed. The 2 lower bits of this result are cleared to
form the effective address. The contents of the 32-bit word at the memory location specified by the effective address
are loaded into GPK.

Restrictions:

None

Operation:

I-1: base_pc ~ PC
I: if not (JumpDelaySlot(PC)) then
base_pc ~ PC

endif
VAddr « (base_pc gprien-1.2 *+ zero_extend(offset)) || O
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
memword— LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat(rx)] ~ memword

Exceptions:
TLB Refill, TLB Invalid, Bus Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 93

Load Word (PC-Relative, Extended) LW

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LWPC 0
offset 10:5 offset 15:11 rx offset 4:0
11110 10110 000
5 6 5 5 3 3 5
Format: LW rx, offset(pc) MIPS16e
Purpose:

To load a PC-relative word from memory as a signed value.

Description: rx « memory[PC + offset]

The 16-bitoffsetis sign-extended and added either to the address of the LW instruction or to the address of the jump
instruction in whose delay slot the LW is executed; this forms the effective address. Before the addition, the 2 lower
bits of the instruction address are cleared. The contents of the 32-bit word at the memory location specified by the
effective address are loaded into GIRR

Restrictions:

A PC-relative, extended LW may not be placed in the delay slot of a jump instruction.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ~ (PC GPRLEN-1..2 || 02) + sign_extend(offset)
if vAddr ;o #0 “then

SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
memword— LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat(rx)] ~ memword

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

94 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Load Word (SP-Relative) LW

15 11 10 8 7 0
LWSP
rx offset
10010
5 3 8
Format: LW rx, offset(sp) MIPS16e
Purpose:

To load an SP-relative word from memory as a signed value.

Description: rx « memory[sp + offset]

The 8-bit offsetis shifted left 2 bits, zero-extended, then added to the contents of GPR 29 to form the effective
address. The contents of the word at the memory location specified by the effective address are loadedxinto GPR

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ~ zero_extend(offset || O 2) + GPR[29]
if vAddr 1 o #0 2then

SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
memword— LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)] ~ memword

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 95

Load Word (SP-Relative, Extended) LW

96

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LWSP 0
offset 10:5 offset 15:11 rx offset 4:0
11110 10010 000
5 6 5 5 3 3 5
Format: LW rx, offset(sp) MIPS16e
Purpose:

To load an SP-relative word from memory as a signed value.

Description: rx « memory[sp + offset]

The 16-bitoffsetis sign-extended and then added to the contents of GPR 29 to form the effective address. The con-
tents of the word at the memory location specified by the effective address are loaded imto GPR

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr sign_extend(offset) + GPR[29]
if vAddr 1 o #0 2then

SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, LOAD)
memword— LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat(ry)] ~ memword

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Move From HI Register MFHI

15 11 10 8 7 5 4 0
RR 0 MFHI
X
11101 000 10000
5 3 3 5
Format: MFHI rx MIPS16e
Purpose:

To copy the special purpos# register to a GPR.

Description: rx « HI

The contents of special registér are loaded into GPK.
Restrictions:
None

Operation:

GPR[Xlat(rx)] ~ HI

Exceptions:
None

Historical Information:

In the MIPS 1, II, and Il architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI @NPREDICTABLE . This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 97

Move From LO Register MFLO

15 11 10 8 7 5 4 0
RR 0 MFLO
X
11101 000 10010
5 3 3 5
Format: MFLO rx MIPS16e
Purpose:

To copy the special purpos® register to a GPR.

Description: rx « LO

The contents of special registed are loaded into GPE.

Restrictions:
None

Operation:
GPR[Xlat(rx)] ~ LO

Exceptions:
None

Historical Information:

In the MIPS |, II, and Il architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI @WNPREDICTABLE . This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

98 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Move MOVE
15 11 10 0
18 MOV32R r32 r32
rz
01100 101 2:0 4:3
5 3 3 2 3
Format: MOVE r32, rz MIPS16e
Purpose:
To move the contents of a GPR to a GPR.
Description: 132 « rz
The contents of GPR are moved into GPR r32, and r32 can specify any one of the 32 GPRs.
Restrictions:
None
Operation:
GPR[r32] < GPR[Xlat(rz)]
Exceptions:
None
Programming Notes:
move $0, $0, expressed as NOP, is the assembly idiom used to denote no operation.
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 99

Move MOVE

15 11 10 8 7 5 4 0
18 MOVR32
ry r32
01100 111
5 3 3 5
Format: MOVE ry, r32 MIPS16e
Purpose:

To move the contents of a GPR to a GPR.

Description: ry « r32
The contents of GPR r32 are moved into GiRwnd r32 can specify any one of the 32 GPRs.

Restrictions:
None

Operation:
GPR[Xlat(ry)] ~ GPR[r32]

Exceptions:
None

100 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Multiply Word MULT

15 11 10 8 7 5 4 0
RR MULT
X ry
11101 11000
5 3 3 5
Format: MULT rx, ry MIPS16e
Purpose:

To multiply 32-bit signed integers.

Description: (LO, HI) —rx Xry

The 32-bit word value in GPRk is multiplied by the 32-bit value in GPR), treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is placed into special relg3teand the
high-order 32-bit word is splaced into special registier

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ~ GPR[Xlat(rx)] * GPR[Xlat(ry)]

LO ~ sign_extend(prod 31.0)

HI ~ sign_extend(prod 63.32)
Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to ré&or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operandinT®izRmay reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 101

Multiply Unsigned Word MULTU

15 11 10 8 7 5 4 0
RR MULTU
rx ry
11101 11001
5 3 3 5
Format: MULTU rx, ry MIPS16e
Purpose:

To multiply 32-bit unsigned integers.

Description: (LO, HI) —rx Xry

The 32-bit word value in GPR is multiplied by the 32-bit value in GPHRy, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special re@stend the
high-order 32-bit word is placed into special register

No arithmetic exception occurs under any circumstances.

Restrictions:
None

Operation:

prod « (0[] GPR[Xlat(rx)]) * (O || GPR[Xlat(ry)])
LO « sign_extend(prod 31.0)
HI « sign_extend(prod 63.32)

Exceptions:
None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to ré&or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operandinT®izRmay reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

102 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Negate NEG
15 11 10 0
RR NEG
rx ry
11101 01011
5 3 3 5
Format: NEG rx, ry MIPS16e
Purpose:
To negate an integer value.
Description: rx < 0-ry
The contents of GPR are subtracted from zero to form a 32-bit result. The result is placed imMGPR
Restrictions:
None
Operation:
temp ~ O- GPR[Xlat(ry)]
GPR[Xlat(rx)] ~ sign_extend(temp
Exceptions:
None
MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 103

No Operation NOP

15 11 10 8 7 5 4 3 2 0
18 MOV32R 0 0 0
01100 101 000 00 000
5 3 3 2 3
Format: NOP MIPS16e Assembly Idiom
Purpose:

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as
MOVE $0,$16.

Restrictions:
None

Operation:
None

Exceptions:
None

Programming Notes:

The 0x6500 instruction word, which represents MOVE $0,$16, is the preferred NOP for software to use to fill jump
delay slots and to pad out alignment sequences.

104 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Not

15 11

10

NOT

RR
11101

X

NOT
01111

Format: NOTrx, ry

Purpose:

To complement an integer valu

Description: rx « (NOT ry)

The contents of GPRy are bitwise-inverted and placed in GBR

Restrictions:

None

Operation:
GPR[Xlat(rx)]

Exceptions:

None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

« (not GPR[Xlat(ry)])

MIPS16e

105

Or OR

15 11 10 8 7 5 4 0
RR OR
rx ry
11101 01101
5 3 3 5
Format: ORx, ry MIPS16e
Purpose:

To do a bitwise logical OR.

Description: rx « rx ORry

The contents of GPRy are combined with the contents of GPRIn a bitwise logical OR operation. The result is
placed in GPRXx.

Restrictions:
None

Operation:
GPR[Xlat(rx)] «— GPR[Xlat(rx)] or GPR[Xlat(ry)]

Exceptions:
None

106 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Restore Registers and Deallocate Stack Frame RESTORE

15 11 10 8 7 5 4 0
18 SVRS 5
ra sO sl framesize
01100 100 0

5 3 1 1 1 1 4
Format: RESTORE {ra,}{s0/s1/s0-1,{framesize} (All args are optional) MIPS16e
Purpose:
To deallocate a stack frame before exit from a subroutine, restoring return address and static registers, and adjusting
stack
Description: ra Stack and/or GPR[17] —~ Stack and/or GPR[16] ~ Stack,

sp « sp + (framesize*8)

Restore the ra and/or GPR 16 and/or GPR 17 (sO and s1 in the MIPS ABI calling convention) registers from the stack

if the correspondinga, sO, or s1bits of the instruction are set, and adjust the stack pointer by 8 timdsatinesize

value. Registers are loaded from the stack assuming higher numbered registers are stored at higher stack addresses. A
framesizevalue of 0 is interpreted as a stack adjustment of 128.

The opcode and function field describe a general save/restore operation, vgiftettie as a variables. The individual
instructions, RESTORE and SAVE have specific values for this variable.
Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any 1&f, @ or s1bits are set, then an
Address Error exception will occur.

Operation:
if framesize =0then
temp ~ GPR[29] +128
else
temp « GPR[29] +(0 || (framesize << 3))
endif
temp2 — temp
ifra =1then

temp — temp -4

GPR[31] ~ VirtualMemory[temp]
endif
ifsl =1then

temp — temp-4

GPR[17] ~ VirtualMemory[temp]
endif
ifsO =1then

temp — temp -4

GPR[16] ~ VirtualMemory[temp]
endif
GPR[29] ~ temp2

Exceptions:
TLB refill, TLB invalid, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of loads from memory. A
full restart of the sequence of operations will be performed on return from any exception taken during execution.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 107

Restore Registers and Deallocate Stack Frame (Extended) RESTORE

108

31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 3 0
EXTEND 18 SVRS | s
xsregs framesize 7:4 aregs ra| sO sl framesize 3:0
11110 01100 100 0
5 3 4 4 5 3 1 11 1 4
Format: RESTORE {ra}{sregs,}{aregs,{framesize}(All arguments optional) MIPS16e
Purpose:

To deallocate a stack frame before exit from a subroutine, restoring return address and static registers from an
extended static register set, and adjusting the stack

Description: ra ~ Stack and/or GPR[18-23,30] ~ Stack and/or GPR[17] ~ Stack
and/or GPR[16] ~ Stack and/or GPR[4-7] ~ Stack, sp ~ sp + (framesize 0s)

Restore the ra register from the stack if thebit is set in the instruction. Restore from the stack the number of regis-
ters in the set GPR[18-23,30] indicated by the value ok#reggfield. Restore from the stack GPR 16 and/or GPR 17

(sO and sl in the MIPS ABI calling convention) from the stack if the corresporsfignds1 bits of the instruction

are set, restore from the stack the number of registers in the range GPR[4-7] indicatechiggtiield, and adjust

the stack pointer by 8 times the 8-bit concatendtathesizevalue. Registers are loaded from the stack assuming
higher numbered registers are stored at higher stack addresses.

Interpretation of the aregsField

In the standard MIPS ABIs, GPR[4-7] are designated as argument passing registers, a0-a3. When they are so used,
they must be saved on the stack at locations allocated by the caller of the routine being entered, but need not be

restored on subroutine exit. In other MIPS16e calling sequences, however, it is possible that some of the registers

GPRJ[4-7] need to be saved as static registers on the local stack instead of on the caller stack, and restored before
return from the subroutine. The encoding used forategsfield of an extended RESTORE instruction is the same as

that used for the extended SAVE, but since argument registers can be ignored for the purposes of a RESTORE, only
the registers treated as static need be handled. The following table shows the RESTORE encodirepsfi¢he

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Restore Registers and Deallocate Stack Frame (Extended, cont.) RESTORE

aregs Registers Restored as Static
Encoding Registers
(binary)
0000 None
0001 GPR[7]
0010 GPR[6], GPR[7]
0011 GPR[5], GPR[6], GPR[7]
1011 GPR[4], GPRI[5], GPR[6]. GPR[7]
0100 None
0101 GPR[7]
0110 GPR[6], GPR[7]
0111 GPR[5], GPR[6], GPR[7]
1000 None
1001 GPRJ[7]
1010 GPRI[6], GPR[7]
1100 None
1101 GPR[7]
1110 None
1111 Reserved

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any d,th@ s1, or xsregsfields are
non-zero or tharegsfield contains an encoding that implies a register load, then an Address Error exception will
occur.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 109

Restore Registers and Deallocate Stack Frame (Extended, cont.) RESTORE

Operation:

temp « GPR[29] +(0 || (framesize << 3))
temp2 — temp
ifra =1then
temp — temp -4
GPR[31] ~ VirtualMemory[temp]
endif
if xsregs >0 then
if xsregs > 1 then
if xsregs > 2 then
if xsregs > 3 then
if xsregs > 4 then
if xsregs > 5 then
if xsregs > 6 then
temp — temp -4
GPR[30] ~ VirtualMemory[temp]
endif
temp — temp -4
GPR[23] ~ VirtualMemory[temp]
endif
temp — temp -4
GPR[22] <~ VirtualMemory[temp]
endif
temp — temp " 4
GPR[21] ~ VirtualMemory[temp]
endif
temp — temp -4
GPR[20] <~ VirtualMemory[temp]
endif
temp — temp -4
GPR[19] ~ VirtualMemory[temp]
endif
temp — temp -4
GPR[18] <~ VirtualMemory[temp]
endif
ifsl =1then
temp — temp -4
GPR[17] ~ VirtualMemory[temp]
endif
ifsO =1then
temp — temp -4
GPR[16] ~ VirtualMemory[temp]
endif
case aregs of
2#0000 2#0100 2#1000 2#1100 2#1110: astatic -0
2#0001 2#0101 2#1001 2#1101: astatic ~1
2#0010 2#0110 2#1010: astatic -2
2#0011 2#0111: astatic ~3
2#1011: astatic 4
otherwise: UNPREDICTABLE
endcase

110 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Restore Registers and Deallocate Stack Frame (Extended, cont.) RESTORE

if astatic >0 then
temp — temp -4
GPR[7] « VirtualMemory[temp]
if astatic > 1 then
temp ~ temp -4
GPR[6] ~ VirtualMemory[temp]
if astatic > 2 then
temp — temp -4
GPR[5] < VirtualMemory[temp]
if astatic > 3 then
temp ~ temp -4
GPR[4] ~ VirtualMemory[temp]
endif
endif
endif
endif
GPR[29] ~ temp2

Exceptions:

TLB refill, TLB invalid, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of loads from memory. A
full restart of the sequence of operations will be performed on return from any exception taken during execution.

Behavior of the processor WNPREDICTABLE for Reserved values afegs

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 111

Save Registers and Set Up Stack Frame SAVE

112

15 11 10 8 7 5 4 0
18 SVRS 5
ra sO sl framesize
01100 100 1
5 3 1 1 1 1 4
Format: SAVE {ra,}{s0/s1/s0-1,}{framesize} (All arguments are optional) MIPS16e
Purpose:

To set up a stack frame on entry to a subroutine, saving return address and static registers, and adjusting stack

Description: Stack ~ ra and/or Stack — GPR[17] and/or Stack — GPR][16],

sp « sp - (framesize * 8)

Save thaa and/or GPR 16 and/or GPR 17 (sO and sl in the MIPS ABI calling convention) on the stack if the corre-
spondinga, sO, ands1bits of the instruction are set, and adjust the stack pointer by 8 timdsathesizesalue. Reg-

isters are stored with higher numbered registers at higher stack addredem®.esizevalue of 0 is interpreted as a
stack adjustment of 128.

The opcode and function field describe a general save/restore operation, vgiftettie as a variables. The individual
instructions, RESTORE and SAVE have specific values for this variable.
Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any K&, 6@ or s1bits are set, then an
Address Error exception will occur.

Operation:
temp GPR[29]
ifra =1then
temp ~ temp —4
VirtualMemory[temp] ~ GPRJ[31]
endif
ifsl =1then
temp ~ temp —4
VirtualMemory[temp] ~ GPR[17]
endif
ifsO =1then
temp ~ temp —4
VirtualMemory[temp] ~ GPRJ[16]
endif
if framesize =0then
temp ~ GPR[29] -128
else
temp <« GPR[29] —(0 || (framesize <<3))
endif

GPR[29] < temp

Exceptions:
TLB refill, TLB invalid, TLB modified, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of stores to memory. A full
restart of the sequence of operations will be performed on return from any exception taken during execution.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Save Registers and Set Up Stack Frame (Extended) SAVE

31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 3 0
EXTEND 18 SVRS | s
xsregs framesize 7:4 aregs ra| sO sl framesize 3:0
11110 01100 100 1
5 3 4 4 5 3 1 1 1 1 4

Format: SAVE {ra,}{sregs,}{aregs,}{framesize} (All arguments optional) MIPS16e
Purpose:
To set up a stack frame on entry to a subroutine, saving return address, static, and argument registers, and adjusting
the stack
Description: Stack « ra and/or Stack ~ GPRJ[18-23,30] and/or Stack ~ GPR[17] and/or
Stack ~ GPRJ[16] and/or Stack ~ GPR[4-7], sp ~ sp - (framesize * 8)

Save registers GPR[4-7] specified to be treated as incoming argumentsdngdbéeld. Save the ra register on the
stack if thera bit of the instruction is set. Save the number of registers in the set GPR[18-23, 30] indicated by the
value of thexsregsfield, and/or GPR 16 and/or GPR 17 (sO and sl in the MIPS ABI calling convention) on the stack
if the corresponding0andslbits of the instruction are set. Save the number of registers in the range GPR[4-7] that
are to be treated as static registers as indicated bgrégsfield, and adjust the stack pointer by 8 times the 8-bit con-
catenatedramesizevalue. Registers are stored with higher numbered registers at higher stack addresses.

Interpretation of the aregsField

In the standard MIPS ABIs, GPR[4-7] are designated as argument passing registers, a0-a3. When they are so used,
they must be saved on the stack at locations allocated by the caller of the routine being entered. In other MIPS16e
calling sequences, however, it is possible that some of the registers GPR[4-7] will need to be saved as static registers
on the local stack instead of on the caller stack. The encoding @frdgsfield allows for 0-4 arguments, 0-4 statics,

and for mixtures of the two. Registers are bound to arguments in ascending order, a0, al, a2, and a3, and thus
assigned to static values in the reverse order, GPR[7], GPR[6], GPR[5], and GPR[4]. The following table shows the
encoding of tharegsfield.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 113

Save Registers and Set Up Stack Frame (Extended, cont.) SAVE

aregs Registers Saved as Registers Saved as Static Registers|
Encoding Arguments
(binary)

0000 None None

0001 None GPRI[7]

0010 None GPR[6], GPR[7]

0011 None GPR[5], GPR[6], GPR[7]

1011 None GPRI[4], GPR[5], GPR[6], GPR[7]

0100 a0 None

0101 a0 GPR[7]

0110 a0 GPR[6], GPR[7]

0111 a0 GPRI[5], GPR[6], GPR[7]

1000 a0, a1 None

1001 a0, al GPRJ[7]

1010 a0, al GPRI[6], GPR[7]

1100 a0, al, a2 None

1101 a0, al, a2 GPR[7]

1110 a0, al, a2, a3 None

1111 Reserved Reserved

Restrictions:

If either of the 2 least-significant bits of the stack pointer are not zero, and any rd,th@ s1, or xsregsfields are
non-zero or tharegsfield contains an value that implies a register store, then an Address Error exception will occur.

114 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Save Registers and Set Up Stack Frame (Extended, cont.)

Operation:

temp < GPR[29]
temp2 ~ GPR[29]
case aregs of
2#0000 2#0001 2#0010 2#0011 2#1011: args <0
2#0100 2#0101 2#0110 2#0111: args <1
2#1000 2#1001 2#1010: args -2
2#1100 2#1101: args -3
2#1110: args ~ 4
otherwise: UNPREDICTABLE
endcase
ifargs >0then
VirtualMemory[temp] ~ GPR[4]
ifargs >1then
VirtualMemory[temp +4] ~ GPR[5]
ifargs >2then
VirtualMemory[temp +8] ~ GPR[6]
ifargs >3then
VirtualMemory[temp +12] ~ GPR[7]

endif
endif
endif
endif
ifra =1then

temp — temp —4
VirtualMemory[temp] ~ GPRJ[31]
endif
if xsregs >0 then
if xsregs > 1 then
if xsregs > 2 then
if xsregs > 3 then
if xsregs > 4 then
if xsregs > 5 then
if xsregs > 6 then
temp — temp —4
VirtualMemory[temp] ~ GPR[30]
endif
temp — temp —4
VirtualMemory[temp] ~ GPR[23]
endif
temp — temp —4
VirtualMemory[temp] ~ GPR[22]
endif
temp — temp —4
VirtualMemory[temp] ~ GPR[21]
endif
temp — temp —4
VirtualMemory[temp] ~ GPR[20]
endif
temp — temp —4
VirtualMemory[temp] ~ GPR[19]
endif
temp — temp —4
VirtualMemory[temp] ~ GPR[18]
endif

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

SAVE

115

Save Registers and Set Up Stack Frame (Extended, cont.) SAVE

if s1 =1 then
temp — temp —4
VirtualMemory[temp] ~ GPR[17]
endif
ifsO =1then
temp — temp —4
VirtualMemory[temp] ~ GPRJ[16]
endif
case aregs of
2#0000 2#0100 2#1000 2#1100 2#1110: astatic <0
2#0001 2#0101 2#1001 2#1101.: astatic <1
2#0010 2#0110 2#1010: astatic - 2
2#0011 2#0111: astatic <3

2#1011: astatic — 4
otherwise: UNPREDICTABLE

endcase
if astatic >0 then
temp — temp —4
VirtualMemory[temp] ~ GPRJ[7]
if astatic > 1 then
temp — temp —4
VirtualMemory[temp] ~ GPRJ[6]
if astatic > 2 then
temp — temp —4
VirtualMemory[temp] ~ GPR[5]
if astatic > 3 then
temp — temp —4
VirtualMemory[temp] ~ GPR[4]
endif
endif
endif
endif
temp « temp2 — (0 || (framesize << 3))

GPR[29] « temp

Exceptions:
TLB refill, TLB invalid, TLB modified, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of stores to memory. A full
restart of the sequence of operations will be performed on return from any exception taken during execution.

Behavior of the processor WNPREDICTABLE for Reserved values afegs

116 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Store Byte SB
15 11 10 8 7 0
SB
rx ry offset
11000
5 3 3 5
Format: SBry, offset(rx) MIPS16e

Purpose:
To store a byte to memory.

Description: memory[rx + offset] -1y

The 5-bitoffsetis zero-extended, then added to the contents of GRR form the effective address. The least-signif-

icant byte of GPRy is stored at the effective address.

Restrictions:

None
Operation:
vAddr ~ zero_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA) AddressTranslation (vAddr, DATA, STORE)
pAddr « PAddr pgize.1.2 |l (PAddr 1.0 Xor ReverseEndian
bytesel — VAddr 1 o xor BigEndianCPU
dataword — GPR[] 31 gwyteselo |10 EP¥ese

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

2)

117

Store Byte (Extended) SB

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND SB
offset 10:5 offset 15:11 rx ry offset 4:0
11110 11000
5 6 5 5 3 3 5
Format: SBry, offset(rx) MIPS16e
Purpose:

To store a byte to memory.

Description: memory[rx + offset] “ry

The 16-bitoffsetis sign-extended and then added to the contents of PR form the effective address. The
least-significant byte of GP® is stored at the effective address.

Restrictions:

None
Operation:
vAddr ~ sign_extend(offset) + GPR[Xlat(rx)]
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, STORE)
pAddr ~ pAddr pgize.1.2 |l (pPAddr 1.0 Xor ReverseEndian 2)
bytesel — VAddr ; o xor BigEndianCPU 2
dataword - GPR[M] 31 gwytesel.o 110 FPVe

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

118 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Software Debug Breakpoint

15 11 10
RR SDBBP
code
11101 00001
5 6 5

Format: SDBBP code

Purpose:
To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. The code field can be used
for passing information to the debug exception handler, and is retrieved by the debug exception handler only by load-
ing the contents of the memory word containing the instruction, using the DEPC register. The CODE field is not used

in any way by the hardware.
Restrictions:

Operation:

If DebugDM = 0 then
SignalDebugBreakpointException()

else
SignalDebugModeBreakpointException()

endif

Exceptions:
Debug Breakpoint Exception

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MIPS16e EJITAG

SDBBP

119

Sign-Extend Byte SEB

15 11 10 8 7 5 4 0
RR SEB CNVT
X
11101 100 10001
5 3 3 5
Format: SEB rx MIPS16e
Purpose:

Sign-extend least significant byte in register rx.

Description: rx ~ sign_extend(rx 7.0)
The least significant byte of rx is sign-extended and the value written back to rx.

Restrictions:
None

Operation:

temp ~ GPR[Xlat(rx)]
GPR[Xlat(rx)] ~ sign_extend(temp 7.)

Exceptions:
None

Programming Notes:
None.

120 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Sign-Extend Halfword

15 11 10 8 7

SEH

RR
11101

X

SEH
101

CNVT
10001

Format: SEH rx

Purpose:
Sign-extend least significant word in register rx.

Description: rx < sign_extend(rx 15 ¢);

MIPS16e

The least significant halfword of rx is sign-extended and the value written back to rx.

Restrictions:
None.

Operation:

temp ~ GPR[Xlat(rx)]
GPR[Xlat(rx)] ~ sign_extend(temp 15 ¢)

Exceptions:
None

Programming Notes:
None.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

121

Store Halfword

122

SH
15 11 10 8 7 5 4 0
SH
rx ry offset
11001
5 3 3 5
Format: SH ry, offset(rx) MIPS16e

Purpose:
To store a halfword to memory.

Description: memory[rx + offset] -1y

The 5-bitoffsetis shifted left 1 bit, zero-extended, and then added to the contents ofriGRRform the effective
address. The least-significant halfword of Gl stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr ~ zero_extend(offset || 0) + GPR[Xlat(rx)]

if vAddr ¢ # 0 then
SignalException(AddressError)
endif

(pAddr, CCA) — AddressTranslation (vAddr, DATA, STORE)

PAddr — pAddr pgize.; > |l (PAddrl

1.0 Xor (ReverseEndian || 0))

bytesel ~ vAddrl ; o xor (BigEndianCPU || 0)
dataword — GPRIXlat(ry)] 31 geyteselo 110 EPvtese!
StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Store Halfword (Extended) SH
31 27 26 21 20 16 15 11 10 7 4 0
EXTEND SH
offset 10:5 offset 15:11 rx ry offset 4:0
11110 11001
5 6 5 5 3 3 5
Format: SH ry, offset(rx) MIPS16e

Purpose:

To store a halfword to memory.

Description: memory[rx + offset] Y

The 16-bitoffsetis sign-extended and then added to the contents of GPR form the effective address. The
least-significant halfword of GPR is stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address

Error exception occurs.

Operation:

VAddr — sign_extend(offset) + GPR[Xlat(rx)]

if vAddr o # 0 then
SignalException(AddressError)

endif

(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, STORE)
pAddr — pAddr pgize.1.o |l (PAddrl 1.0 Xor (ReverseEndian || 0))

bytesel ~ vAddrl ; g xor (BigEndianCPU || 0)
dataword ~ GPR[Xlat(ry)] 31-8*bytesel..0 [|O

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

8*bytesel

123

Shift Word Left Logical SLL

15 11 10 8 7 5 4 2 1 0
SHIFT SLL
rx ry sa
00110 00
5 3 3 3 2
Format: SLL rx, ry, sa MIPS16e
Purpose:

To execute a left-shift of a word by a fixed number of bits—1 to 8 bits.

Description: rx « ry<<sa

The 32-bit contents of GPRy are shifted left, and zeros are inserted into the emptied low-order bits. Thes&-bit
field specifies the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The result is placed into
GPRrx.

Restrictions:
None

Operation:

ifsa=0 3then
S « 8
else
s <02 sa
endif
temp < GPR[Xai(ry)] @310 [0 °
GPR[Xlat(rx)] ~ temp

Exceptions:
None

124 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Shift Word Left Logical (Extended) SLL

31 27 26 22 21 16 15 11 10 8 7 5 4 2 1 0
EXTEND 0 SHIFT 0 SLL
sa4:0 rx ry
11110 000000 00110 000 00
5 5 6 5 3 3 3 2
Format: SLLrx, ry, sa MIPS16e

Purpose:

To execute a left-shift of a word by a fixed number of bits—0 to 31 bits.

Description: rx « ry<<sa

The 32-bit contents of GPRy are shifted left, and zeros are inserted into the emptied low-order bits. Thes&-bit
field specifies the shift amount. The result is placed into GPR

Restrictions:

None

Operation:

S « sa
temp «~ GPR[Xlat(ry)] @rs.0 110 °°
GPR[Xlat(rx)] ~ temp

Exceptions:
None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 125

Shift Word Left Logical Variable SLLV

126

15 11 10 8 7 5 4 0
RR SLLV
rx ry
11101 00100
5 3 3 5
Format: SLLV ry, rx MIPS16e
Purpose:

To execute a left-shift of a word by a variable number of bits.

Description: ry « ry <<rx

The 32-bit contents of GPR are shifted left, and zeros are inserted into the emptied low-order bits; the result word
is and placed back in GRRR The 5 low-order bits of GPR specify the shift amount.

Restrictions:

None

Operation:

S « GPR[XIat(rX)] 4.0
temp «~ GPR[Xlat(ry)] (31-5)..0 || O
GPR[Xlat(ry)] ~ temp

Exceptions:

None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Set on Less Than SLT
15 11 10 8 7 0
RR SLT
X
11101 00010
5 3 5
Format: SLTrx, ry MIPS16e

Purpose:

To record the result of a less-than comparison.

Description: T « (rx<ry)

The contents of GPRy are subtracted from the contents of GRRConsidering both quantities as signed integers, if
the contents of GPR are less than the contents of GBRthe result is set to 1 (true); otherwise, the result is setto 0

(false). This result is placed into GPR 24.

Restrictions:
None

Operation:

if GPR[Xlat(rx)] < GPR[Xlat(ry)] then
GPR[24] . 0 GPRLEN-d|I
else
GPR[24] . 0 GPRLEN
endif

Exceptions:
None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

127

Set on Less Than Immediate SLTI

128

15 11 10 8 7 0
SLTI
rx immediate
01010
5 3 8
Format: SLTI rx, immediate MIPS16e
Purpose:

To record the result of a less-than comparison with a constant.

Description: T « (rx < immediate)

The 8-bitimmediateis zero-extended and subtracted from the contents of GPRonsidering both quantities as
signed integers, if GPK is less than the zero-extendiedmediatethe result is set to 1 (true); otherwise, the result is
set to O (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < zero_extend(immediate) then
GPR[24] 0 GPRLEN-1}I

else
GPR[24] « 0 GPRLEN

endif

Exceptions:
None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Set on Less Than Immediate (Extended) SLTI
31 27 26 21 20 16 15 11 10 7 0
EXTEND SLTI 0
imm 10:5 imm 15:11 rx imm 4:0
11110 01010 000
5 6 5 5 3 3 5
Format: SLTI rx, immediate MIPS16e
Purpose:

To record the result of a less-than comparison with a constant.

Description: T « (rx < immediate)

The 16-bitimmediateis sign-extended and subtracted from the contents of GPRonsidering both quantities as
signed integers, if GPK is less than the sign-extendimdmediatethe result is set to 1 (true); otherwise, the result is
set to O (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < sign_extend(immediate) then
« 0 GPRLEN-1)| 1

else

GPR[24]

GPR[24]
endif

Exceptions:

None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

<0 GPRLEN

129

Set on Less Than Immediate Unsigned SLTIU
15 11 10 8 7 0
SLTIU
rx immediate
01011
5 3 8
Format: SLTIU rx, immediate MIPS16e

130

Purpose:

To record the result of an unsigned less-than comparison with a constant.

Description: T « (rx < immediate)

The 8-bitimmediateis zero-extended and subtracted from the contents of GPRonsidering both quantities as
unsigned integers, if GPR is less than the zero-extendatimediatethe result is set to 1 (true); otherwise, the result
is set to O (false). The result is placed into GPR 24.

Restrictions:
None

Operation:

if (0 || GPR[Xlat(rx)]) < (0 || zero_extend(immediate)) then

GPR[24] « 0 GPRLEN-} 7
else

GPR[24] 0 GPRLEN
endif

Exceptions:

None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Set on Less Than Immediate Unsigned (Extended) SLTIU
31 27 26 21 20 16 15 11 10 8 7 0
EXTEND SLTIU 0
imm 10:5 imm 15:11 rx imm 4:0
11110 01011 000
5 6 5 5 3 3 5

Format: SLTIU rx, immediate MIPS16e
Purpose:

To record the result of an unsigned less-than comparison with a constant.

Description: T « (rx < immediate)

The 16-bitimmediateis sign-extended and subtracted from the contents of GPRonsidering both quantities as
unsigned integers, if GPR is less than the sign-extendedmediatethe result is set to 1 (true); otherwise, the result

is set to O (false). The result is placed into GPR 24.

Restrictions:

None

Operation:
if (0 || GPR[Xlat(rx)]) < (0 || sign_extend(immediate)) then

GPR[24] « 0 GPRLEN-1} 7
else
GPR[24] 0 GPRLEN
endif
Exceptions:
None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

131

Set on Less Than Unsigned SLTU
15 11 10 8 7 5 4 0
RR SLTU
X ry
11101 00011
5 3 3 5
Format: SLTUrx, ry MIPS16e

132

Purpose:

To record the result of an unsigned less-than comparison.

Description: T « (rx<ry)

The contents of GPRy are subtracted from the contents of GRRConsidering both quantities as unsigned integers,
if the contents of GPRx are less than the contents of GBRset the result to 1 (true); otherwise, set the result to 0
(false). The result is placed into GPR 24.

Restrictions:
None

Operation:

if (0 || GPR[Xlat(rx)]) < (0 || GPR[Xlat(ry)]) then
GPR[24] ~ 0 GPRLEN-l” 1

else
GPR[24] « 0 CPRLEN
endif

Exceptions:
None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Shift Word Right Arithmetic SRA
15 11 10 1
SHIFT SRA
rx ry sa
00110 11
5 3 3 3 2
Format: SRATx, ry, sa MIPS16e

Purpose:

To execute an arithmetic right-shift of a word by a fixed number of bits—1 to 8 bits.

Description: rx « ry >> sa (arithmetic)

The 32-bit contents of GPR/ are shifted right, and the sign bit is replicated into the emptied high-order bits. The
3-bit safield specifies the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The resultis placed

into GPRrx.

Restrictions:

None
Operation:
s «0?]sa
if (s = 0) then
S <8
endif
temp < (GPR[Xlat(ry)]
GPR[Xlat(rx)] ~ temp
Exceptions:
None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

31) ° || GPR[XIat(ry)]

3l.s

133

Shift Word Right Arithmetic (Extended) SRA

31 27 26 22 21 16 15 11 10 8 7 5 4 2 1 0
EXTEND 0 SHIFT 0 SRA
sa4:0 rx ry
11110 000000 00110 000 11
5 5 6 5 3 3 3 2
Format: SRATx, ry, sa MIPS16e

Purpose:

To execute an arithmetic right-shift of a word by a fixed number of bits—O0 to 31bits.

Description: rx « ry >> sa (arithmetic)

The 32-bit contents of GPRy are shifted right, and the sign bit is replicated into the emptied high-order bits. The
5-bit safield specifies the shift amount. The result is placed into QPR

Restrictions:

None

Operation:

S « sa
temp < (GPR[Xlat(ry)] a1) 3 || GPR[Xlat(ry)] 31.s
GPR[Xlat(rx)] ~ sign_extend(temp31..0)

Exceptions:
None

134 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Shift Word Right Arithmetic Variable SRAV

15 11 10 8 7 5 4 0
RR SRAV
rx ry
11101 00111
5 3 3 5
Format: SRAV ry, rx MIPS16e
Purpose:

To execute an arithmetic right-shift of a word by a variable number of bits.

Description: ry « ry >> rx (arithmetic)

The 32-bit contents of GPRy are shifted right, and the sign bit is replicated into the emptied high-order bits; the
word result is placed back in GRiR The 5 low-order bits of GPR specify the shift amount.

Restrictions:

None

Operation:

s « GPR[Xlat(rx)] 4.0
temp ~ (GPR[Xlat(ry)] 31) ° || GPR[XIat(ry)] 3L.s
GPR[Xlat(ry)] ~ temp

Exceptions:
None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 135

Shift Word Right Logical SRL

15 11 10 8 7 5 4 2 1 0
SHIFT SRL
rx ry sa
00110 10
5 3 3 3 2
Format: SRLrx, ry, sa MIPS16e
Purpose:

To execute a logical right-shift of a word by a fixed number of bits—1 to 8 bits.

Description: rx « ry >> sa (logical)

The 32-bit contents of GPRy are shifted right, and zeros are inserted into the emptied high-order bits. Thea-bit
field specifies the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The result is placed into
GPRrx.

Restrictions:

None

Operation:

ifsa=0 3then
S « 8
else
s «0?]sa
endif
temp « 0 5 || GPR[Xlat(ry)] 315
GPR[Xlat(rx)] ~ temp

Exceptions:
None

136 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Shift Word Right Logical (Extended) SRL

31 27 26 22 21 16 15 11 10 8 7 5 4 2 1 0
EXTEND 0 SHIFT 0 SRL
sa4:0 rx ry
11110 000000 00110 000 10
5 5 6 5 3 3 3 2
Format: SRLrx, ry, sa MIPS16e

Purpose:

To execute a logical right-shift of a word by a fixed number of bits—O0 to 31 bits.

Description: rx « ry >> sa (logical)

The 32-bit contents of GPRy are shifted right, and zeros are inserted into the emptied high-order bits. The&-bit
field specifies the shift amount. The result is placed into GPR

Restrictions:

None

Operation:

S <« sa
temp < 0 S| GPR[Xlat(ry)] 3.5
GPR[Xlat(rx)] ~ stemp

Exceptions:
None

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 137

Shift Word Right Logical Variable SRLV

15 11 10 8 7 5 4 0
RR SRLV
X ry
11101 00110
5 3 3 5
Format: SRLVry, rx MIPS16e
Purpose:

To execute a logical right-shift of a word by a variable number of bits.

Description: ry « ry >> rx (logical)

The 32-bit contents of GPRy are shifted right, and zeros are inserted into the emptied high-order bits; the word
result is placed back in GRiR The 5 low-order bits of GPR specify the shift amount.

Restrictions:

None

Operation:

s < GPR[Xlat(rx)] 4.0
temp «— 0 ° || GPR[XIat(ry)] 3l.s
GPR[Xlat(ry)] ~ temp

Exceptions:
None

138 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Subtract Unsigned Word SUBU

15 11 10 8 7 5 4 2 1 0
RRR SUBU
rx ry rz
11100 11
5 3 3 3 2
Format: SUBU rz, rx, ry MIPS16e
Purpose:

To subtract 32-bit integers.

Description: rz « rx-ry

The 32-bit word value in GPRy is subtracted from the 32-bit value in GPRand the 32-bit arithmetic result is
placed into GPRz.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp «~ GPR[Xlat(rx)] - GPR[Xlat(ry)]
GPR[Xlat(rz)] ~ sign_extend(temp31..0)
Exceptions:
None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 139

Store Word SW

140

15 11 10 8 7 5 4 0
SW
rx ry offset
11011
5 3 3 5
Format: SW ry, offset(rx) MIPS16e
Purpose:

To store a word to memory.

Description: memory[rx + offset] 1y

The 5-bitoffsetis shifted left 2 bits, zero-extended, and then added to the contents ofGteRorm the effective
address. The contents of GBRare stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ~ zero_extend(offset || O 2) + GPR[Xlat(rx)]
if vAddr ; o #0 2then

SignalException(AddressError)
endif
(pAddr, CCA) —~ AddressTranslation (vAddr, DATA, STORE)
dataword ~ GPR[Xlat(ry)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Store Word (Extended) SW

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND SW
offset 10:5 offset 15:11 rx ry offset 4:0
11110 11011
5 6 5 5 3 3 5
Format: SW ry, offset(rx) MIPS16e
Purpose:

To store a word to memory.

Description: memory[rx + offset] 1y

The 16-bitoffsetis sign-extended and then added to the contents of GR& form the effective address. The con-
tents of GPRYy are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

VAddr ~ sign_extend(offset) + GPR[Xlat(rx)]
if vAddr ; o #0 2then
SignalException(AddressError)
endif
(pAddr, CCA) —~ AddressTranslation (vAddr, DATA, STORE)
dataword ~ GPR[Xlat(ry)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 141

Store Word rx (SP-Relative) SW
15 11 10 8 7 4 0
SWSP
rx offset
11010
5 3 8
Format: SW rx, offset(sp) MIPS16e

142

Purpose:
To store an SP-relative word to memory.

Description: memory[sp + offset] « X

The 8-bitoffsetis shifted left 2 bits, zero-extended, and then added to the contents of GPR 29 to form the effective

address. The contents of GBRare stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr — zero_extend(offset || O 2) + GPR[29]
ifvAddr ;. #02then

SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, STORE)
dataword ~ GPR[Xlat(rx)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Store Word rx (SP-Relative, Extended) SW
31 27 26 21 20 16 15 11 10 7 4 0
EXTEND SWSP 0
offset 10:5 offset 15:11 rx offset 4:0
11110 11010 000
5 6 5 5 3 3 5
Format: SW rx, offset(sp) MIPS16e

Purpose:
To store an SP-relative word to memory.

Description: memory[sp + offset] — X

The 16-bitoffsetis sign-extended and then added to the contents of GPR 29 to form the effective address. The con-

tents of GPRx are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the two least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr — sign_extend(offset) + GPR[29]
ifvAddr ;o #0 2then
SignalException(AddressError)
endif
(pAddr, CCA) AddressTranslation (vAddr, DATA, STORE)
dataword ~ GPR[Xlat(rx)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

143

Store Word ra (SP-Relative) SW
15 11 10 8 7 0
18 SWRASP
offset
01100 010
5 3 8
Format: SW ra, offset(sp) MIPS16e

144

Purpose:

To store registera SP-relative to memory.

Description: memory[sp + offset]

« ra

The 8-bitoffsetis shifted left 2 bits, zero-extended, and then added to the contents of GPR 29 to form the effective
address. The contents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ~ zero_extend(offset || O

ifvAddr ;o #0 ?then

2) + GPR[29]

SignalException(AddressError)

endif

(pAddr, CCA) —~ AddressTranslation (vAddr, DATA, STORE)

dataword ~ GPR[31]

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Store Word ra(SP-Relative, Extended) SW
31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND 18 SWRASP 0
offset 10:5 offset 15:11 offset 4:0
11110 01100 010 000
5 6 5 5 3 3 5
Format: SW ra, offset(sp) MIPS16e

Purpose:

To store registera SP-relative to memory.

Description: memory[sp + offset]

« ra

The 16-bitoffsetis sign-extended and then added to the contents of GPR 29 to form the effective address. The con-
tents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr
if vAddr

1.0

SignalException(AddressError)

endif

(pAddr, CCA)

dataword

— GPR[31]

~ sign_extend(offset) + GPR[29]
0 2 then

— AddressTranslation (vAddr, DATA, STORE)

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

145

Exclusive OR

146

XOR
15 11 10 8 7 0
RR XOR
rx ry
11101 01110
5 3 3 5
Format: XORrx, ry MIPS16e

Purpose:

To do a bitwise logical Exclusive OR.

Description: rx « rx XOR ry

The contents of GPRy are combined with the contents of GPRin a bitwise Exclusive OR operation. The result is

placed in GPRXx.

Restrictions:
None

Operation:

GPR[Xlat(rx)]

Exceptions:
None

~ GPR[Xlat(rx)] xor GPR[Xlat(ry)]

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Zero-Extend Byte

15 11 10 8 7

ZEB

RR
11101

X

ZEB
000

CNVT
10001

Format: ZEB rx

Purpose:
Zero-extend least significant byte in register rx.

Description: rx — zero_extend(rx 7.0);

The least significant byte of rx is zero-extended and the value written back to rx.

Restrictions:
None

Operation:

temp « GPR[Xlat(rx)]
GPR[Xlat(rx)] < 0fltemp; o

Exceptions:
None

Programming Notes:
None.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MIPS16e

147

Zero-Extend Halfword ZEH

15 11 10 8 7 5 4 0
RR ZEH CNVT
X
11101 001 10001
5 3 3 5
Format: ZEH rx MIPS16e
Purpose:

Zero-extend least significant halfword in register rx.

Description: rx — zero_extend(rx 150);

The least significant halfword of rx is zero-extended and the value written back to rx.

Restrictions:
None

Operation:

temp « GPR[Xlat(rx)]
GPR[Xlat(rx)] < 0fltemp 45 o

Exceptions:
None

Programming Notes:
None.

148 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96 149

150 MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

Appendix A

Revision History

Revision Date Description

0.90 November 1, 2000 External review copy of reorganized and updated architecture documentation.

Changes in this revision:

» Correct table 3-10 description of branch instructions (branches really are
implemented in the 32-bit architecture and are extensible)

0.91 November 15, 2000

» Correct the pseudo code for all MIPS16 branches - the offset value thould
be added to the address of the instruction following the branch, not the

branch itself.

Changes in this revision:
0.92 December 15, 2000

» Add missing I8_MOVERS32 instruction format.

Changes in this revision:

0.93 January 25, 2001 » Correct minor typos in the previous version.

» Add the 32-bit MIPS version of JALX and update the instruction

descriptions of JAL and JALX.

0.95 March 12, 2001 Document cleanup for next external release.

Changes in this revision:

 Declassify the MIPS32 Architecture for Programmers volume.

* Fix PDF bookmarks for the MIPS16 instructions.

0.96 November 12, 2001

 Fix formatting in instruction translation section.

» Correct the description of the shift count for extended SRA and SLL.

» Change all uses of “MIPS16” to “MIPS16e”.

MIPS32™ Architecture for Programmers Volume IV-a, Revision 0.96

151

	MIPS32™ Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to ...
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1� Typographical Conventions
	1.1.1� Italic Text
	1.1.2� Bold Text
	1.1.3� Courier Text

	1.2� UNPREDICTABLE and UNDEFINED
	1.2.1� UNPREDICTABLE
	1.2.2� UNDEFINED

	1.3� Special Symbols in Pseudocode Notation
	1.4� For More Information

	Guide to the Instruction Set
	2.1� Understanding the Instruction Fields
	2.1.1� Instruction Fields
	2.1.2� Instruction Descriptive Name and Mnemonic
	2.1.3� Format Field
	2.1.4� Purpose Field
	2.1.5� Description Field
	2.1.6� Restrictions Field
	2.1.7� Operation Field
	2.1.8� Exceptions Field
	2.1.9� Programming Notes and Implementation Notes Fields

	2.2� Operation Section Notation and Functions
	2.2.1� Instruction Execution Ordering
	2.2.2� Pseudocode Functions
	2.2.2.1� Coprocessor General Register Access Functions
	COP_LW
	COP_LD
	COP_SW
	COP_SD

	2.2.2.2� Load Memory and Store Memory Functions
	AddressTranslation
	LoadMemory
	StoreMemory
	Prefetch

	2.2.2.3� Access Functions for Floating Point Registers
	ValueFPR
	StoreFPR

	2.2.2.4� Miscellaneous Functions
	SyncOperation
	SignalException
	NullifyCurrentInstruction
	CoprocessorOperation
	JumpDelaySlot
	FPConditionCode
	SetFPConditionCode

	2.3� Op and Function Subfield Notation
	2.4� FPU Instructions

	The MIPS16e™ Application-Specific Extension to the MIPS32™ Architecture
	3.1� Base Architecture Requirements
	3.2� Software Detection of the ASE
	3.3� MIPS16e Overview
	3.4� MIPS16e ASE Features
	3.5� MIPS16e Register Set
	3.6� MIPS16e ISA Modes
	3.6.1� Modes Available in the MIPS16e Architecture
	3.6.2� Defining the ISA Mode Field
	3.6.3� Switching Between Modes When an Exception Occurs
	3.6.4� Using MIPS16e Jump Instructions to Switch Modes

	3.7� JALX, JR, and JALR Operations in MIPS16e and MIPS32 Mode
	3.8� MIPS16e Instruction Summaries
	3.9� MIPS16e PC-Relative Instructions
	3.10� MIPS16e Extensible Instructions
	3.11� MIPS16e Implementation-Definable Macro Instructions
	3.12� MIPS16e Jump and Branch Instructions
	3.13� MIPS16e Instruction Formats
	3.13.1� I-type instruction format
	3.13.2� RI-type instruction format
	3.13.3� RR-type instruction format
	3.13.4� RRI-type instruction format
	3.13.5� RRR-type instruction format
	3.13.6� RRI-A type instruction format
	3.13.7� Shift instruction format
	3.13.8� I8-type instruction format
	3.13.9� I8_MOVR32 instruction format (used only by the MOVR32 instruction)
	3.13.10� I8_MOV32R instruction format (used only by MOV32R instruction)
	3.13.11� I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)
	3.13.12� JAL and JALX instruction format
	3.13.13� EXT-I instruction format
	3.13.14� ASMACRO instruction format
	3.13.15� EXT-RI instruction format
	3.13.16� EXT-RRI instruction format
	3.13.17� EXT-RRI-A instruction format
	3.13.18� EXT-SHIFT instruction format
	3.13.19� EXT-I8 instruction format
	3.13.20� EXT-I8_SVRS instruction format (used only by the SAVE and RESTORE instructions)

	3.14� Instruction Bit Encoding
	3.15� MIPS16e Instruction Stream Organization and Endianness

	The MIPS16e™ ASE Instruction Set
	4.1� MIPS16e Instruction Descriptions
	4.1.1� MIPS16e-Specific Pseudocode Functions
	4.1.1.1� Xlat

	ADDIU (2-Operand)
	ADDIU (2-Operand, Extended)
	ADDIU (3-Operand)
	ADDIU (3-Operand, Extended)
	ADDIU (3-Operand, PC-Relative)
	ADDIU (3-Operand, PC-Relative, Extended)
	ADDIU (2-Operand, SP-Relative)
	ADDIU (2-Operand, SP-Relative, Extended)
	ADDIU (3-Operand, SP-Relative)
	ADDIU (3-Operand, SP-Relative, Extended)
	ADDU (3-Operand)
	AND
	ASMACRO
	B
	B (Extended)
	BEQZ
	BEQZ (Extended)
	BNEZ
	BNEZ (Extended)
	BREAK
	BTEQZ
	BTEQZ (Extended)
	BTNEZ
	BTNEZ (Extended)
	CMP
	CMPI
	CMPI (Extended)
	DIV
	DIVU
	JAL
	JALR
	JALRC
	JALX (MIPS16e Format)
	JALX (MIPS32 Format)
	JR ra
	JR rx
	JRC ra
	JRC rx
	LB
	LB (Extended)
	LBU
	LBU (Extended)
	LH
	LH (Extended)
	LHU
	LHU (Extended)
	LI
	LI (Extended)
	LW
	LW (Extended)
	LW (PC-Relative)
	LW (PC-Relative, Extended)
	LW (SP-Relative)
	LW (SP-Relative, Extended)
	MFHI
	MFLO
	MOVE r32, rz
	MOVE ry, r32
	MULT
	MULTU
	NEG
	NOP
	NOT
	OR
	RESTORE
	RESTORE (Extended)
	SAVE
	SAVE (Extended)
	SB
	SB (Extended)
	SDBBP
	SEB
	SEH
	SH
	SH (Extended)
	SLL
	SLL (Extended)
	SLLV
	SLT
	SLTI
	SLTI (Extended)
	SLTIU
	SLTIU (Extended)
	SLTU
	SRA
	SRA (Extended)
	SRAV
	SRL
	SRL (Extended)
	SRLV
	SUBU
	SW
	SW (Extended)
	SW rx (SP-Relative)
	SW rx (SP-Relative, Extended)
	SW ra (SP-Relative)
	SW ra (SP-Relative, Extended)
	XOR
	ZEB
	ZEH

	Revision History

