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Hello again friendly and distinguished neighbors!
As you can see, I’ve already started compliment-
ing you, in part to distract from the tiny horrors
ahead. Lately I’ve been spending some time ex-
perimenting on chips, injecting faults, and gener-
ally trying to guess how they are programmed. The
results are a delightful topic that we have visited
some in the past, and I’ll surely weave some new sto-
ries about my results in the brighter days to come.
For now, deep in the thick of things, you see, the
glitching is monotonous work. Today’s article is a
tidbit about one particular solution to a problem I
found while experimenting with voltage glitching a
network-connected microcontroller.

Problem with Time Bubbles

Slow experiments repeat for days, and the experi-
ments are often made slower on purpose by under-
clocking, broadening the little glitch targets we hope
to peck at in order for the chip to release new secrets.
To whatever extent I can, I like to control the clock
frequency of a device under investigation. It helps
to vary at least one clock to understand which parts
of the system are driven by which clock sources. A
slower clock can reduce the complexity of the tools
you need for power analysis, accurate fault injection,
and bus tracing.

If we had a system with a fully static design
and a single clock, there wouldn’t be any limit
to the underclocking, and the system would follow
the same execution path even if individual clock
edges were delivered bi-weekly by pigeon. In real-
ity, systems usually have additional clock domains
driven by free-running oscillators or phase-locked
loops (PLLs). This system design can impose lim-
its on the practical amount of underclock you can
achieve before the PLL fails to lock, or a watchdog
timer expires before the software can make sufficient
progress. On the bright side, these individual limita-
tions can themselves reveal interesting information
about the system’s construction, and it may even
be possible to introduce timing-related glitches in-
tentionally by varying the clock speed.

These experiments create a bubble of alternate
time, warped to your experiment’s advantage. Any
protocol that traverses the boundary between un-
derclocked and real-time domains may need to be

modified to account for the time difference. An SPI
peripheral easily accepts a range of SCLK frequen-
cies, but a serial port expecting 115,200 baud will
have to know it’s getting 25,920 baud instead. Most
serial peripherals can handle this perfectly accept-
ably, but you may notice that operating systems and
programming APIs start to turn their nose up at
such a strange bit rate. Things become even less
convenient with fixed-rate protocols like USB and
Ethernet.

As fun as it would be to implement a custom
Ethernet PHY that supports arbitrary clock scal-
ing, it’s usually more practical to extend the time
bubble, slowing the input clock presented to an oth-
erwise mundane Ethernet controller. For this tech-
nique to work, the peripheral needs a flexible inter-
facing clock. A USB-to-Ethernet bridge like the one
on-board a Raspberry Pi could be underclocked, but
then it couldn’t speak with the USB host controller.
PCI Express would have a similar problem.

SPI peripherals are handy for this purpose. My
earlier Facewhisperer mashup of Facedancer and
ChipWhisperer spoke underclocked USB by includ-
ing a MAX3421E chip in the victim device’s time
domain. This can successfully break free from the
time bubble, thanks to this chip talking over an SPI
interface that can run at a flexible rate relative to
the USB clock.

At first I tried to apply this same technique to
Ethernet, using the ENC28J60, a 10baseT Ethernet
controller that speaks SPI. This is even particularly
easy to set up in tandem with a (non-underclocked)
Raspberry Pi, thanks to some handy device tree
overlays. This worked to a point, but the ENC28J60
proved to be less underclockable than my target mi-
crocontroller.

There aren’t many SPI Ethernet controllers to
choose from. I only know of the ’28J60 from Mi-
crochip and its newer siblings with 100baseT sup-
port. In this case, it was inconvenient that I was
dealing with two very different internal PHY designs
on each side of the now very out-of-spec Ethernet
link. I started making electrical changes, such as re-
moving the AC coupling transformers, which needed
somewhat different kludges for each type of PHY.
This was getting frustrating, and seemed to be lim-
iting the consistency of detecting a link successfully
at such weird clock rates.
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At this point, it seemed like it would be awfully
convenient if I could just use the exact same kind of
PHY on both sides of the link. I could have rewrit-
ten my glitch experiment request generator program
as a firmware for the same type of microcontroller,
but I preferred to keep the test code written in
Python on a roomy computer so I could prototype
changes quickly. These constraints pointed toward a
fun approach that I had not seen anyone try before.

Ethernet over GDB
When I’m designing anything, but especially when
I’m prototyping, I get a bit alarmed any time the de-
sign appears to have too many degrees of freedom.
It usually means I could trade some of those extra
freedoms for the constraints offered by an existing
component somehow, and save from reinventing all
the boring wheels.

The boring wheel I’d imagined here would have
been a firmware image that perhaps implements a
simple proxy that shuttles network frames and per-
haps link status information between the on-chip
Ethernet and an arbitrary SPI slave implementa-
tion. The biggest downside to this is that the SPI
interface would have to speak another custom pro-
tocol, with yet another chunk of code necessary
to bridge that SPI interface to something usable
like a Linux network tap. It’s tempting to imple-
ment standard USB networking, but an integrated
USB controller would ultimately use the same clock
source as the Ethernet PHY. It’s tempting to emu-
late the ENC28J60’s SPI protocol to use its exist-
ing Linux driver, but emulating this protocol’s quick
turnaround between address and data without get-
ting an FPGA involved seemed unlikely.

In this case, the microcontroller hardware was
already well-equipped to shuttle data between its
on-chip Ethernet MAC and a list of packet buffers
in main RAM. I eventually want a network device
in Linux that I can really hang out with, captur-
ing packets and setting up bridges and all. So, in
the interest of eliminating as much glue as possi-
ble, I should be talking to the MAC from some code
that’s also capable of creating a Linux network tap.
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int main (void ) {
2 MAP_SysCtlMOSCConfigSet (SYSCTL_MOSC_HIGHFREQ) ;

g_ui32SysClock = MAP_SysCtlClockFreqSet ( (SYSCTL_XTAL_25MHZ |
4 SYSCTL_OSC_MAIN |

SYSCTL_USE_PLL |
6 SYSCTL_CFG_VCO_480) , 120000000) ;

8 PinoutSet ( true , f a l s e ) ;

10 MAP_SysCtlPeripheralEnable (SYSCTL_PERIPH_EMAC0) ;
MAP_SysCtlPeripheralReset (SYSCTL_PERIPH_EMAC0) ;

12 MAP_SysCtlPeripheralEnable (SYSCTL_PERIPH_EPHY0) ;
MAP_SysCtlPeripheralReset (SYSCTL_PERIPH_EPHY0) ;

14 while ( ! MAP_SysCtlPeripheralReady (SYSCTL_PERIPH_EMAC0) ) ;

16 MAP_EMACPHYConfigSet(EMAC0_BASE,
EMAC_PHY_TYPE_INTERNAL |

18 EMAC_PHY_INT_MDI_SWAP |
EMAC_PHY_INT_FAST_L_UP_DETECT |

20 EMAC_PHY_INT_EXT_FULL_DUPLEX |
EMAC_PHY_FORCE_10B_T_FULL_DUPLEX) ;

22
MAP_EMACReset(EMAC0_BASE) ;

24
MAP_EMACInit(EMAC0_BASE, g_ui32SysClock ,

26 EMAC_BCONFIG_MIXED_BURST | EMAC_BCONFIG_PRIORITY_FIXED,
8 , 8 , 0) ;

28
MAP_EMACConfigSet(EMAC0_BASE,

30 (EMAC_CONFIG_FULL_DUPLEX |
EMAC_CONFIG_7BYTE_PREAMBLE |

32 EMAC_CONFIG_IF_GAP_96BITS |
EMAC_CONFIG_USE_MACADDR0 |

34 EMAC_CONFIG_SA_FROM_DESCRIPTOR |
EMAC_CONFIG_BO_LIMIT_1024) ,

36 (EMAC_MODE_RX_STORE_FORWARD |
EMAC_MODE_TX_STORE_FORWARD ) , 0) ;

38
MAP_EMACFrameFilterSet(EMAC0_BASE, EMAC_FRMFILTER_RX_ALL) ;

40
init_dma_frames ( ) ;

42
MAP_EMACTxEnable(EMAC0_BASE) ;

44 MAP_EMACRxEnable(EMAC0_BASE) ;

46 while (1 ) {
capture_phy_regs ( ) ;

48 __asm__ volat i le ( "bkpt" ) ;
}

50 }

Figure 5. TM4C129x Firmware
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This is where GDB, OpenOCD, and the Rasp-
berry Pi really save the day. I thought I was go-
ing to be bit-banging the Serial Wire Debug (SWD)
protocol again on some microcontroller, then build-
ing up from there all of the device-specific goodies
necessary to access the memory and peripheral bus,
set up the system clocks, and finally do some ac-
tual internetworking. It involves a lot of tedious
reimplementation of things the semiconductor ven-
dor already has working in a different language or
a different format. But with GDB, we can make a
minimal Ethernet setup firmware with whatever li-
braries we like, let it initialize the hardware, then
inspect the symbols we need at runtime to handle
packets.

At this point I can already hear some of you
groaning about how slow this must be. While this
debug bus won’t be smoking the tires on a 100baseT
switch any time soon, it’s certainly usable for experi-
mentation. In the specific setup I’ll be talking about
in more detail below, the bit-bang SWD bus runs at
about 10 megabits per second peak, which turns into
an actual sustained Ethernet throughput of around
130 kilobytes per second. It’s faster than many in-
ternet connections I’ve had, and for microcontroller
work it’s been more than enough.

There’s a trick to how this crazy network driver
is able to run at such blazingly adequate speeds.
Odds are if you’re used to slow on-chip debugging,
most of the delays have been due to slow round trips
in your communication with the debug adapter.
How bad this is depends on how low-level your de-
bug adapter protocol happens to be. Does it make
you schedule a USB transfer for every debug trans-
action? There goes a millisecond. Some adapters
are much worse, some are a little better. Thanks
to the Raspberry Pi 2 and 3 with their fast CPU
and memory-mapped GPIOs, an OpenOCD process
in userspace can bitbang SWD at rates competi-
tive with a standalone debug adapter. By elimi-
nating the chunky USB latencies we can hold con-
versations between hardware and Python code im-
pressively fast. Idle times between SWD transfers
are 10-50 microseconds when we’re staying within
OpenOCD, and as low as 150µs when we journey
all the way back to Python code.

After building up a working network interface,
it’s easy to go a little further to add debugging hooks
specific to your situation. In my voltage glitching
setup, I wanted some hardware to know in advance
when it was about to get a specific packet. I could

add some string matching code to the Python proxy,
using the Pi’s GPIOs to signal the results of catego-
rizing packets of interest. This signal itself won’t be
synchronized with the Ethernet traffic, but it was
perfect for use as context when generating synchro-
nized triggers on a separate FPGA.

You’re being awfully vague, I thought
there was a proof of concept here?

Okay, okay. Yes, I have one, and of course I’ll share
it here. But I did have a point; the whole process
turned out to be a lot more generic than I expected,
thanks to the functionality of OpenOCD and GDB.
The actual code I wrote is very specific to the SoC
I’m working with, but that’s because it reads like a
network driver split into a C and a Python portion.

If you’re interested in a flexibly-clocked Ether-
net adapter for your Raspberry Pi, or you’re hack-
ing at another network-connected device with the
same micro, perhaps my code will interest you as-is,
but ultimately I hope my humble PoC might inspire
you to try a similar technique with other micros and
peripherals.
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Tiva GDBthernet
So the specific chip I’ve been working with is a 120
MHz ARM Cortex-M4F core with on-board Ether-
net, the TM4C129x, otherwise known as the Tiva-C
series from Texas Instruments. Luckily there’s al-
ready a nice open source project to support building
firmware for this platform with GCC.17 The plat-
form includes some networking examples based on
the uIP and lwIP stacks. For our purposes, we need
to dig a bit lower. The on-chip Ethernet MAC uses
DMA both to transfer packet contents and to access
a queue made from DMA Descriptor structures.

This data structure is convenient enough to
access directly from Python when we’re shuttling
packets back and forth, but setting up the periph-
eral involves a boatload of magic numbers that I’d
prefer not to fuss with. We can mostly reuse ex-
isting library code for this. The main firmware file
gdbthernet.c uses a viscous wad of library calls to
set up all the hardware we need, before getting itself
stuck in a breakpoint loop, shown in Figure 5.

Everything in this file only needs to exist for
convenience. The micro doesn’t need any firmware
whatsoever, we could set up everything from GDB.
But it’s easier to reuse whatever we can. You may
have noticed the call to capture_phy_regs() above.
We have only indirect access to the PHY registers
via the Ethernet MAC, so it was a bit more conve-
nient to reuse existing library code for reading those
registers to determine the link state.

On the Raspberry Pi side, we start with a shell
script proxy.sh that spawns an OpenOCD and
GDB process, and tells GDB to run gdb_net_-
host.py. Some platform-specific configuration for
OpenOCD tells it how to get to the processor and
which micro we’re dealing with. GDB provides quite
high-level access to parse expressions in the target
language, and the Python API wraps those results
nicely in data structures that mimic the native lan-
guage types. My current approach has been to use
this parsing sparingly, though, since it seems to
leak memory. Early on in gdb_net_host.py, we
scrape all the constants we’ll be needing from the
firmware’s debug symbols. (Figure 6.)

From here on, we’ll expect to chug through all
of the Raspberry Pi CPU cycles we can. There’s
no interrupt signaling back to the debugger, every-
thing has to be based on polling. We could poll for
Ethernet interrupts, but it’s more expedient to poll
the DMA Descriptor directly, since that’s the data
we actually want. Here’s how we receive Ethernet
frames and forward them to our tap device. (Fig-
ure 7.)

The transmit side is similar, but it’s driven by
the availability of a packet on the tap interface. You
can see the hooks for GPIO trigger outputs in Fig-
ure 8.

That’s just about all it takes to implement a
pretty okay network interface for the Raspberry Pi.
Attached you’ll find the few necessary but boring
tidbits I’ve left out above, like link state detection
and debugger setup. I’ve been pretty happy with
the results. This approach is even comparable in
speed to the ENC28J60 driver, if you don’t mind
the astronomical CPU load. I hope this trick in-
spires you to create weird peripheral mashups using
GDB and the Raspberry Pi. If you do, please be a
good neighbor and consider documenting your ex-
perience for others. Happy hacking!

17git clone https://github.com/yuvadm/tiva-c
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i n f = gdb . s e l e c t e d_ i n f e r i o r ( )
2 num_rx = int ( gdb . parse_and_eval ( ’ s i z e o f g_rxBuffer / s i z e o f g_rxBuffer [ 0 ] ’ ) )

num_tx = int ( gdb . parse_and_eval ( ’ s i z e o f g_txBuffer / s i z e o f g_txBuffer [ 0 ] ’ ) )
4 g_phy_bmcr = int ( gdb . parse_and_eval ( ’ ( i n t )&g_phy . bmcr ’ ) )

g_phy_bmsr = int ( gdb . parse_and_eval ( ’ ( i n t )&g_phy . bmsr ’ ) )
6 g_phy_cfg1 = int ( gdb . parse_and_eval ( ’ ( i n t )&g_phy . c fg1 ’ ) )

g_phy_sts = int ( gdb . parse_and_eval ( ’ ( i n t )&g_phy . s t s ’ ) )
8 rx_status = [ int ( gdb . parse_and_eval (

’ ( i n t )&g_rxBuffer [%d ] . desc . u i 32Ct r lS ta tu s ’ % i ) ) for i in range (num_rx) ]
10 rx_frame = [ int ( gdb . parse_and_eval (

’ ( i n t ) g_rxBuffer [%d ] . frame ’ % i ) ) for i in range (num_rx) ]
12 tx_status = [ int ( gdb . parse_and_eval (

’ ( i n t )&g_txBuffer [%d ] . desc . u i 32Ct r lS ta tu s ’ % i ) ) for i in range (num_tx) ]
14 tx_count = [ int ( gdb . parse_and_eval (

’ ( i n t )&g_txBuffer [%d ] . desc . ui32Count ’ % i ) ) for i in range (num_tx) ]
16 tx_frame = [ int ( gdb . parse_and_eval ( ’ ( i n t ) g_txBuffer [%d ] . frame ’ % i ) ) for i in range (num_tx) ]

Figure 6. Fetching Debug Symbols

next_rx = 0
2

de f rx_poll_demand ( ) :
4 # Rx Po l l Demand (wake up MAC i f i t ’ s suspended )

i n f . write_memory (0x400ECC08 , s t r u c t . pack ( ’<I ’ , 0xFFFFFFFF) )
6

de f pol l_rx ( tap ) :
8 g l oba l next_rx

10 s t a tu s = s t r u c t . unpack ( ’<I ’ , i n f . read_memory ( rx_status [ next_rx ] , 4) ) [ 0 ]
i f s t a tu s & (1 << 31) :

12 # Hardware s t i l l owns t h i s bu f f e r ; t ry l a t e r
re turn

14
i f s t a tu s & (1 << 11) :

16 p r i n t ( ’RX Overflow e r r o r ’ )
e l i f s t a tu s & (1 << 12) :

18 p r i n t ( ’RX Length e r r o r ’ )
e l i f s t a tu s & (1 << 3) :

20 p r i n t ( ’RX Receive e r r o r ’ )
e l i f s t a tu s & (1 << 1) :

22 p r i n t ( ’RX CRC e r r o r ’ )
e l i f ( s t a tu s & (1 << 8) ) and ( s t a tu s & (1 << 9) ) :

24 # Complete frame ( f i r s t and l a s t par t s ) , s t r i p 4−byte FCS
length = ( ( s t a tu s >> 16) & 0x3FFF) − 4

26 frame = i n f . read_memory ( rx_frame [ next_rx ] , l ength )
i f VERBOSE:

28 p r i n t ( ’RX %r ’ % b i n a s c i i . b2a_hex ( frame ) )
tap . wr i t e ( frame )

30 e l s e :
p r i n t ( ’RX unhandled s t a tu s %08x ’ % s ta tu s )

32
# Return the bu f f e r to hardware , advance to the next one

34 i n f . write_memory ( rx_status [ next_rx ] , s t r u c t . pack ( ’<I ’ , 0x80000000 ) )
next_rx = ( next_rx + 1) % num_rx

36 rx_poll_demand ( )
re turn True

Figure 7. Ethernet Frame RX
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1 next_tx = 0
tx_buffer_stuck_count = 0

3
de f tx_poll_demand ( ) :

5 # Tx Po l l Demand (wake up MAC i f i t ’ s suspended )
i n f . write_memory (0x400ECC04 , s t r u c t . pack ( ’<I ’ , 0xFFFFFFFF) )

7
de f pol l_tx ( tap ) :

9 g l oba l next_tx
g l oba l tx_buffer_stuck_count

11
s t a tu s = s t r u c t . unpack ( ’<I ’ , i n f . read_memory ( tx_status [ next_tx ] , 4) ) [ 0 ]

13 i f s t a tu s & (1 << 31) :
p r i n t ( ’TX wait ing for bu f f e r %d ’ % next_tx )

15 tx_buffer_stuck_count += 1
i f tx_buffer_stuck_count > 5 :

17 gdb . execute ( ’ run ’ )
update_phy_status ( )

19 tx_poll_demand ( )
re turn

21
tx_buffer_stuck_count = 0

23 i f not s e l e c t . s e l e c t ( [ tap . f i l e n o ( ) ] , [ ] , [ ] , 0) [ 0 ] :
r e turn

25 frame = tap . read (4096)

27 match_low = TRIGGER and frame . f i nd (TRIGGER_LOW) >= 0
match_high = TRIGGER and frame . f i nd (TRIGGER_HIGH) >= 0

29
i f VERBOSE:

31 p r in t ( ’TX %r ’ % b i n a s c i i . b2a_hex ( frame ) )

33 i f match_low :
i f VERBOSE:

35 p r in t ( ’− ’ ∗ 60)
GPIO. output (TRIGGER_PIN, GPIO.LOW)

37
i n f . write_memory ( tx_frame [ next_tx ] , frame )

39 i n f . write_memory ( tx_count [ next_tx ] , s t r u c t . pack ( ’<I ’ , l en ( frame ) ) )
i n f . write_memory ( tx_status [ next_tx ] , s t r u c t . pack ( ’<I ’ ,

41 0x80000000 | # DES0_RX_CTRL_OWN
0x20000000 | # DES0_TX_CTRL_LAST_SEG

43 0x10000000 | # DES0_TX_CTRL_FIRST_SEG
0x00100000 ) ) # DES0_TX_CTRL_CHAINED

45 next_tx = ( next_tx + 1) % num_tx

47 i f match_high :
GPIO. output (TRIGGER_PIN, GPIO.HIGH)

49 i f VERBOSE:
p r i n t ( ’+ ’ ∗ 60)

51
tx_poll_demand ( )

53 re turn True

Figure 8. Ethernet Frame TX
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