
2 Reverse Engineering Star Raiders
by Lorenz Wiest

2.1 Introduction

STAR RAIDERS is a seminal computer game pub-
lished by Atari Inc. in 1979 as one of the first titles
for the original Atari 8-bit Home Computer System
(Atari 400 and Atari 800). It was written by Atari
engineer Doug Neubauer, who also created the sys-
tem’s POKEY sound chip. STAR RAIDERS is consid-

ered to be one of the ten most important computer
games of all time.2.

CONTROLLER JACKS

SYSTEM
RESET

OPTION

SELECT

START

21 3 4

PLYR 1 PLYR 2 PLYR 3 PLYR 4

The game is a 3D space combat flight simulation
where you fly your starship through space, shooting
at attacking Zylon spaceships.The game’s universe
is made up of a 16 × 8 grid of sectors Some of
them contain enemy Zylon units some a friendly
starbase The Zylon units converge toward the star-
bases and try to destroy them. The starbases serve
as repair and refueling points for your starship. You
move your starship between sectors with your hyper-
warp drive The game is over if you have destroyed
all Zylon ships, have ran out of energy, or if the
Zylons have destroyed all starbases.

At a time when home computer games were
pretty static – think SPACE INVADERS (1978) and
PAC MAN (1980) – STAR RAIDERS was a huge hit
because the game play centered on the very dynamic
3D first-person view out of your starship’s cockpit
window.

The original Atari 8-bit Home Computer System
2“Is That Just Some Game? No, It’s a Cultural Artifact.” Heather Chaplin, The New York Times, March 12, 2007.

5

has up to 48 KB RAM and uses a Motorola 6502
CPU. The same CPU is also used in the Apple II,
the Commodore C64 (a 6502 variant), and the T-
800 Terminator 3 Several proprietary Atari custom
chips provide additional capabilities to the system.
STAR RAIDERS shows off many of them: 5 Play-
ers (sprites), mixed text and pixel graphics modes,
dynamic Display Lists, a custom character set, 4-
channel sound, Vertical Blank Interrupt and Dis-
play List Interrupt code – even the BCD mode of
the 6502 CPU is used C

CONTROLLER JACKS21 3 4

PULL OPEN SYSTEMRESETOPTIONSELECTSTART

@angealbertini 2016

lig
ht

 p
en

so
un

d

se
ri

al
bu

s

pi
ct

ur
e

co
ns

ol
e

sw
it
ch

es

jo
ys

ti
ck

 t
ri

gg
er

s

ke
yb

oa
rd

keyboard
speaker

pa
dd

le
s

ke
yb

oa
rd

co
nt

ro
lle

rs

jo
ys

ti
ck

pa
dd

le
tr

ig
ge

rs

MOS
6502

RAM left
cartridge

right
cartridge OS

ROM
disk

drives

other
periph.

POtentiometer
KEYboard
integrated circuit

Peripheral
Interface
Adaptor

Color/Graphics
Television

Interface Adaptor16KB - 48KB

1.77-1,79Mhz

16bit freq counter mode
keyboard/paddle scanning
IRQ generator

Alpha-Numeric
Television
Interface
ControllerSALLY

Sprites: player/missile

display lists

processor busprocessor bus

I have been always wondering what made STAR
RAIDERS tick. I was especially curious how that
3D first-person view star field worked, in particu-
lar the rotations of the stars when you fly a turn.
So I decided to reverse engineer the game, aiming
at a complete, fully documented assembly language
source code of STAR RAIDERS.

;***
;* *
;* S T A R R A I D E R S *
;* *
;* for the Atari 8-bit Home Computer System *
;* *
;* Reverse-engineered and documented assembly language source code *
;* *
;* by *
;* *
;* Lorenz Wiest *
;* *
;* (lo.wiest(at)web.de) *
;* *
;* First Release *
;* 22-SEP-2015 *
;* *
;* Last Update *
;* 10-AUG-2016 *
;* *
;* STAR RAIDERS was created by Douglas Neubauer *
;* STAR RAIDERS was published by Atari Inc. *
;* *
;***

In the following sections I’ll show you how I ap-
proached the reverse engineering effort, introduce
my favorite piece of code in STAR RAIDERS, talk
about how the tight memory limits influenced the
implementation, reveal some bugs, point at some
mysterious code, and explain how I got a grip on
documenting STAR RAIDERS. From time to time, to
provide some context to you, I will reference memory
locations of the game, which you can look up in the
reverse engineered, complete, and fully documented
assembly language source code of STAR RAIDERS
available on GitHub.4

2.2 Getting Started

STAR RAIDERS is distributed as an 8 KB ROM car-
tridge, occupying memory locations $A000 to $BFFF.

The obvious first step was to prod a ROM dump
with a disassembler and to apply Atari’s published
hardware and OS symbols to the disassembly. To
my surprise this soon revealed that code and data
were clearly separated into three parts:
$A000 – $A149 Data (Part 1 of 2)
$A14A – $B8DE Code (6502 instructions)
$B8DF – $BFFF Data (Part 2 of 2)
This clear separation helped me instantly to get

an overview of the code part, as I could create a
disassembly of the code in one go and not having to
sift slowly through the bytes of the ROM, deciding
which ones are instructions and which ones are data.

Closer inspection of the code part revealed that it
was composed of neatly separated subroutines. Each
subroutine handles a specific task. The largest sub-
routine is the main game loop GAMELOOP ($A1F3),
shown in Figure 1. What I expected to be spaghetti
code – given the development tools of 1979 and the
substantial amount of game features crammed into
the 8K ROM – turned out to be surprisingly struc-
tured code. Table 1 lists all subroutines of STAR
RAIDERS, as their function emerged during the re-
verse engineering effort, giving a good overview how
the STAR RAIDERS code is organized.

Figure 2 shows the “genome sequence” of the
STAR RAIDERS 8 KB ROM: The 8192 bytes of the
game are stacked vertically, with each byte repre-
sented by a tiny, solid horizontal line of 8 pixels.
This stack is split into strips of 192 bytes, arranged
side-by-side. Alternating light and dark blue areas
represent bytes of distinct subroutines. Alternat-
ing light and dark green and purple areas repre-
sent bytes of distinct sections of data (lookup tables,
graphical shapes, etc.). When data bytes represent
graphical shapes, the solid line of a byte is replaced
by its actual bit pattern (in purple color).

There are a couple of interesting things to see:

• The figure reflects the ROM’s separation into
a data part (green and purple), a code part
(blue), and one more data part (green and pur-
ple).

• The first data part contains mostly the custom
3In the movie TERMINATOR (1984) there are scenes showing the Terminator’s point of view in shades of red. In these

scenes lines of source code are listed onscreen. Close inspection of still frames of the movie reveal this to be 6502 assembly
language source code.

4git clone https://github.com/lwiest/StarRaiders or unzip pocorgtfo13.pdf StarRaiders.zip

6

GAMELOOP
$A1F3

UPDATTCOMP Update Attack Computer Display
$A7BF

HYPERWARP Handle hyperwarp
$A89B

MANEUVER Maneuver our starship's and Zylon
photon torpedoes and Zylon ships$AA79

INITEXPL Initialize explosion
$AC6B

DOCKING Handle docking at starbase,
launch and return of transfer vessel$ACE6

MODDLST Modify Display List
$ADF1

CLRPLAYFIELD Clear PLAYFIELD memory
$AE0D

TRIGGER Handle joystick trigger
$AE29

NOISE Copy noise sound pattern
$AEA8

DAMAGE Damage or destroy one of our starship's subsystems
$AEE1

COLLISION Detect a collision of our starship's photon torpedoes
$AF3D

GAMEOVER Handle Game Over
$B10A

FLUSHGAMELOOP Handle remaining tasks at the end
of a game loop iteration$B4E4

DRAWLINES Draw horizontal and vertical lines
$A76F

PROJECTION Calculate pixel column (or row) number
from position vector$AA21

KEYBOARD Handle Keyboard Input
$AFFE

SETVIEW Set Front view
$B045

SELECTWARP Select hyperwarp arrival location
on Galactic Chart$B162

ROTATE Rotate position vector component
(coordinate) by fixed angle$B69B

SCREENCOLUMN Calculate pixel column number
from centered pixel column number$B6FB

SCREENROW Calculate pixel row number
from centered pixel row number$B71E

INITPOSVEC Initialize position vector of a space object
$B764

UPDPANEL Update Control Panel Display
$B804

DECENERGYDecrease energy
$B86F

Initialize program (cold start)
$A14A
INITCOLD

Entry point when SELECT function key was pressed
$A15A
INITSELECT

Entry point when program switches into demo mode
$A15C
INITDEMO

Entry point when START function key was pressed
$A15E
INITSTART

UPDTITLE Update title line
$B216

A B A is followed by B in memory A B A calls B (and returns)

A B A jumps to B (no return)

$A6D0

Figure 1. Simplified Call Graph of Start Up and Game Loop

7

1 $A14A INITCOLD I n i t i a l i z e program (Cold s t a r t)
$A15A INITSELECT Entry po int when SELECT func t i on key was pre s sed

3 $A15C INITDEMO Entry po int when program swi t che s in to demo mode
$A15E INITSTART Entry po int when START func t i on key was pre s sed

5 $A1F3 GAMELOOP Game loop
$A6D1 VBIHNDLR Ve r t i c a l Blank In t e r rup t Handler

7 $A718 DLSTHNDLR Display L i s t In t e r rup t Handler
$A751 IRQHNDLR Int e r rup t Request (IRQ) Handler

9 $A76F DRAWLINES Draw ho r i z on t a l and v e r t i c a l l i n e s
$A782 DRAWLINE Draw a s i n g l e ho r i z on t a l or v e r t i c a l l i n e

11 $A784 DRAWLINE2 Draw b l i p in Attack Computer
$A7BF UPDATTCOMP Update Attack Computer Display

13 $A89B HYPERWARP Handle hyperwarp
$A980 ABORTWARP Abort hyperwarp

15 $A987 ENDWARP End hyperwarp
$A98D CLEANUPWARP Clean up hyperwarp v a r i a b l e s

17 $A9B4 INITTRAIL I n i t i a l i z e s t a r t r a i l dur ing STAR TRAIL PHASE of hyperwarp
$AA21 PROJECTION Calcu la te p i x e l column (or row) number from po s i t i o n vec to r

19 $AA79 MANEUVER Maneuver our s t a r s h i p ’ s and Zylon photon torpedoes and Zylon sh ip s
$AC6B INITEXPL I n i t i a l i z e exp l o s i on

21 $ACAF COPYPOSVEC Copy a po s i t i o n vec to r
$ACC1 COPYPOSXY Copy x and y components (coo rd ina t e s) o f p o s i t i o n vec to r

23 $ACE6 DOCKING Handle docking at s tarbase , launch and return o f t r a n s f e r v e s s e l
$ADF1 MODDLST Modify Display L i s t

25 $AE0D CLRPLAYFIELD Clear PLAYFIELD memory
$AE0F CLRMEM Clear memory

27 $AE29 TRIGGER Handle j o y s t i c k t r i g g e r
$AEA8 NOISE Copy no i s e sound pattern

29 $AECA HOMINGVEL Calcu la te homing v e l o c i t y o f our s t a r s h i p ’ s photon torpedo 0 or 1
$AEE1 DAMAGE Damage or des t roy one o f our s t a r s h i p ’ s subsystems

31 $AF3D COLLISION Detect a c o l l i s i o n o f our s t a r s h i p ’ s photon torpedoes
$AFFE KEYBOARD Handle Keyboard Input

33 $B045 SETVIEW Set Front view
$B07B UPDSCREEN Clear PLAYFIELD, draw Attack

35 $B10A GAMEOVER Handle game over
$B121 GAMEOVER2 Game over (Miss ion s u c c e s s f u l)

37 $B162 SELECTWARP Se l e c t hyperwarp a r r i v a l l o c a t i o n on Ga lac t i c Chart
$B1A7 CALCWARP Calcu la te and d i sp l ay hyperwarp energy

39 $B216 UPDTITLE Update t i t l e l i n e
$B223 SETTITLE Set t i t l e phrase in t i t l e l i n e

41 $B2AB SOUND Handle sound e f f e c t s
$B3A6 BEEP Copy beeper sound pattern

43 $B3BA INITIALIZE More game i n i t i a l i z a t i o n
$B4B9 DRAWGC Draw Galac t i c Chart

45 $B4E4 FLUSHGAMELOOP Handle remaining ta sk s at the end o f a game loop i t e r a t i o n
$B69B ROTATE Rotate p o s i t i o n vec to r component (coord inate) by f i x ed ang le

47 $B6FB SCREENCOLUMN Calcu la te p i x e l column number from cente red p i x e l column number
$B71E SCREENROW Calcu la te p i x e l row number from cente red p i x e l row number

49 $B764 INITPOSVEC I n i t i a l i z e p o s i t i o n vec to r o f a space ob j e c t
$B7BE RNDINVXY Randomly i nv e r t the x and y components o f a po s i t i o n vec to r

51 $B7F1 ISSURROUNDED Check i f a s e c t o r i s surrounded by Zylon un i t s
$B804 UPDPANEL Control Panel Display

53 $B86F DECENERGY Decrease energy
$B8A7 SHOWCOORD Display a po s i t i o n vec to r component (coord inate) in

55 Control Panel Display
$B8CD SHOWDIGITS Display a value by a readout o f the Control Panel Display

Table 1. Star Raiders Subroutines

8

CODE DATABITMAP

+00

+08

+10

+18

+20

+28

+30

+38

+40

+48

+50

+58

+60

+68

+70

+78

+80

+88

+90

+98

+A0

+A8

+B0

+B8

+C0

GA
ME
LO
OP

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

A000 A180 A300 A480 A600 A780 A900 AA80 AC00 AD80 AF00 B080 B200 B380 B500 B680 B800 B980 BB00 BC80 BE00 BF80
 A0C0 A240 A3C0 A540 A6C0 A840 A9C0 AB40 ACC0 AE40 AFC0 B140 B2C0 B440 B5C0 B740 B8C0 BA40 BBC0 BD40 BEC0

W
O
R
D
T
A
B

W
O
R
D
T
A
B

MA
NE
UV
ER

MA
NE
UV
ER

F
L
U
S
H
G
A
M
E
L
O
O
P

Figure 2. Genome Sequence of the STAR RAIDERS ROM

font (in strips 1-2).

• The largest contiguous (dark) blue chunk rep-
resents the 1246 bytes of the main game loop
GAMELOOP ($A1F3) (in strips 3-10).

• At the beginning of the second data part are
the shapes for the Players (sprites) (in strips
34-36).

• The largest contiguous (light) green chunk rep-
resents the 503 bytes of the game’s word table
WORDTAB ($BC2B) (in strips 38-41).

A good reverse engineering strategy was to start
working from code locations that used Atari’s pub-
lished symbols, the equivalent of piecing together
the border of a jigsaw puzzle first before starting to
tackle the puzzle’s center. Then, however, came the
inevitable and very long stretch of reconstructing
the game’s logic and variables with a combination
of educated guesses, trial-and-error, and lots of pa-
tience. At this stage, the tools I used mostly were
nothing but a text editor (Notepad) and a word pro-
cessor (Microsoft Word) to fill the gaps in the doc-
umentation of the code and the data. I also created

a memory map text file to list the used memory lo-
cations and their purpose. These entries were con-
tinually updated – and more than often discarded
after it turned out that I had taken a wrong turn.

2.3 A Programming Gem: Rotating
3D Vectors

What is the most interesting, fascinating, and un-
expected piece of code in STAR RAIDERS? My pick
would be the very code that started me to reverse
engineer STAR RAIDERS in the first place: subrou-
tine ROTATE ($B69B), which rotates objects in the
game’s 3D coordinate space (shown in Figure 3).
And here is why: Rotation calculations usually in-
volve trigonometry, matrices, and so on – at least
some multiplications. But the 6502 CPU has only
8-bit addition and subtraction operations. It does
not provide either a multiplication or a division op-
eration – and certainly no trig operation! So how do
the rotation calculations work, then?

Let’s start with the basics: The game uses a 3D
coordinate system with the position of our starship
at the center of the coordinate system. The loca-
tions of all space objects (Zylon ships, meteors, pho-

9

ton torpedoes, starbase, transfer vessel, Hyperwarp
Target Marker, stars, and explosion fragments) are
described by a position vector relative to our star-
ship.

A position vector is composed of an x, y, and z
component, whose values I call the x, y, and z coor-
dinates with the arbitrary unit <KM>. The range
of a coordinate is −65536 to +65535 <KM>.

Each coordinate is a signed 17-bit integer num-
ber, which fits into three bytes. Bit 16 contains
the sign bit, which is 1 for positive and 0 for nega-
tive sign. Bits 15 to 0 are the mantissa as a two’s-
complement integer.

Sign Mantissa
2 B16 B15 . . . B8 B7 B0

| | | | |
4 0000000∗ ∗∗∗∗∗∗∗∗ ∗∗∗∗∗∗∗∗

Some example bit patterns for coordinates:

00000001 11111111 11111111 = +65535 <KM>
2 00000001 00000001 00000000 = +256 <KM>

00000001 00000000 11111111 = +255 <KM>
4 00000001 00000000 00000001 = +1 <KM>

00000001 00000000 00000000 = +0 <KM>
6 00000000 11111111 11111111 = −1 <KM>

00000000 11111111 11111110 = −2 <KM>
8 00000000 11111111 00000001 = −255 <KM>

00000000 11111111 00000000 = −256 <KM>
10 00000000 00000000 00000000 = −65536 <KM>

The position vector for each space object is
stored in nine tables (3 coordinates × 3 bytes for
each coordinate). There are up to 49 space objects
used in the game simultaneously, so each table is 49
bytes long:

XPOSSIGN XPOSHI XPOSLO
($09DE..$0A0E) ($0A71..$0AA1) ($0B04..$0B34)

YPOSSIGN YPOSHI YPOSLO
($0A0F..$0A3F) ($0AA2..$0AD2) ($0B35..$0B65)

ZPOSSIGN ZPOSHI ZPOSLO
($09AD..$09DD) ($0A40..$0A70) ($0AD3..$0B03)

With that explained, let’s have a look at sub-
routine ROTATE ($B69B). This subroutine rotates a
position vector component (coordinate) of a space
object by a fixed angle around the center of the
3D coordinate system, the location of our starship.
This operation is used in 3 out of 4 of the game’s
view modes (Front view, Aft view, Long-Range Scan
view) to rotate space objects in and out of the view.

2.3.1 Rotation Mathematics

The game uses a left-handed 3D coordinate system
with the positive x-axis pointing to the right, the
positive y-axis pointing up, and the positive z-axis
pointing into flight direction.

ry

z-axis

x-axis
x x’

z

z’

y--axis

x-axis

z-axis

A rotation in this coordinate system around the
y-axis (horizontal rotation) can be expressed as

x′ = cos(ry)x+ sin(ry)z (1)
z′ = − sin(ry)x+ cos(ry)z

where ry is the clockwise rotation angle around the
y-axis, x and z are the coordinates before this ro-
tation, and the primed coordinates x′ and z′ the
coordinates after this rotation. The y-coordinate is
not changed by this rotation.

rx

y-axis

z-axis
z z’

y

y’

y-axis

x-axis

z-axis

A rotation in this coordinate system around the
x-axis (vertical rotation) can be expressed as

z′ = cos(rx)z + sin(rx)y (2)
y′ = − sin(rx)z + cos(rx)y

where rx is the clockwise rotation angle around the
x-axis, z and y are the coordinates before this ro-
tation, and the primed coordinates z′ and y′ the
coordinates after this rotation. The x-coordinate is
not changed by this rotation.

2.3.2 Subroutine Implementation Overview

A single call of subroutine ROTATE ($B69B) is able
to compute one of the four expressions in Equa-
tions 1 and 2. To compute all four expressions to

10

get the new set of coordinates, this subroutine has
to be called four times. This is done twice in pairs
in GAMELOOP ($A1F3) at $A391 and $A398, and at
$A3AE and $A3B5, respectively.

The first pair of calls calculates the new x and
z coordinates of a space object due to a horizon-
tal (left/right) rotation of our starship around the
y-axis following the expressions of Equation 1.

The second pair of calls calculates the new y and
z coordinates of the same space object due to a ver-
tical (up/down) rotation of our starship around the
x-axis following the expressions of Equation 2.

If you look at the code of ROTATE ($B69B), you
may be wondering how this calculation is actually
executed, as there is neither a sine nor cosine func-
tion call. What you’ll actually find implemented,
however, are the following calculations:

Joystick Left

x := x+ z/64 (3)
z := −x/64 + z

Joystick Right

x := x− z/64 (4)
z := x/64 + z

Joystick Down

y := y + z/64 (5)
z := −y/64 + z

Joystick Up

y := y − z/64 (6)
z := y/64 + z

2.3.3 CORDIC Algorithm

When you compare the expressions of Equations 1–2
with expressions of Equations 3–6, notice the simi-
larity between the expressions if you substitute5

sin(ry)→ 1/64

cos(ry)→ 1

sin(rx)→ 1/64

cos(rx)→ 1

From sin(ry) = 1/64 and sin(rx) = 1/64 you can
derive that the rotation angles ry and rx by which
the space object is rotated (per game loop iteration)
have a constant value of 0.89◦, as arcsin(1/64) =
0.89◦.

What about cos(ry) and cos(rx)? The substi-
tution does not match our derived angle exactly,
because cos(0.89◦) = 0.99988 and is not exactly
1. However, this value is so close that substitut-
ing cos(0.89◦) with 1 is a very good approximation,
simplifying calculations significantly.

Another significant simplification results from
the division by 64, as the actual division operation
can be replaced with a much faster bit shift opera-
tion.

This calculation-friendly way of computing rota-
tions is also known as the “CORDIC (COordinate
Rotation DIgital Computer)” algorithm.

2.3.4 Minsky Rotation

There is one more interesting mathematical sub-
tlety: Did you notice that expressions of Equa-
tions 1 and 2 use a new (primed) pair of variables
to store the resulting coordinates, whereas in the
implemented Equations 3–6, the value of the first
coordinate of a coordinate pair is overwritten with
its new value and this value is used in the subsequent
calculation of the second coordinate? For example,
when the joystick is pushed left, the first call of this
subroutine calculates the new value of x according
to first expression of Equation 3, overwriting the old
value of x. During the second call to calculate z ac-
cording to the second expression of Equation 3, the
new value of x is used instead of the old one. Is this
to save the memory needed to temporarily store the
old value of x? Is this a bug? If so, why does the
rotation calculation actually work?

Have a look at the expressions of Equation 3 (the
other Equations 4–6 work in a similar fashion):

x := x+ z/64

z := −x/64 + z

If we substitute 1/64 with e, we get

x := x+ ez

z := −ex+ z

5This substitution gave a friendly mathematician who happened to see it a nasty shock. She yelled at us that cos2x+sin2x = 1
for all real x and forever, and therefore this could not possibly be a rotation; it’s a rotation with a stretch! We reminded her
of the old joke that in wartime the value of the cosine has been known to reach 4. —PML

11

Note that x is calculated first and then used in
the second expression. When using primed coordi-
nates for the resulting coordinates after calculating
the two expressions we get

x′ := x+ ez

z′ :=− ex′ + z

=− e(x+ ez) + z

=− ex+ (1− e2)z

or in matrix form(
x′

z′

)
=

(
1 e
−e 1− e2

)(
x
z

)
Surprisingly, this turns out to be a rotation ma-

trix, because its determinant is (1× (1−e2)− (−e×
e)) = 1. (Incidentally, the column vectors of this
matrix do not form an orthogonal basis, as their
scalar product is 1 × e + (−e × (1 − e2)) = −e2.
Orthogonality holds for e = 0 only.)

This kind of rotation calculation is described
by Marvin Minsky in AIM 239 HAKMEM6 and is
called “Minsky Rotation.”

2.3.5 Subroutine Implementation Details

To better understand how the implementation of
this subroutine works, we must again look at Equa-
tions 3–6. If you rearrange the expressions a little,
their structure is always of the form:

TERM1 := TERM1 SIGN TERM2/64

or shorter

TERM1 := TERM1 SIGN TERM3

where TERM3 := TERM2/64 and SIGN := + or − and
where TERM1 and TERM2 are coordinates. In fact, this
is all this subroutine actually does: It simply adds
TERM2 divided by 64 to TERM1 or subtracts TERM2
divided by 64 from TERM1.

When calling this subroutine the correct table
indices for the appropriate coordinates TERM1 and
TERM2 are passed in the CPU’s Y and X registers,
respectively.

What about SIGN between TERM1 and TERM3?
Again, have a look at Equations 3–6. To compute

the two new coordinates after a rotation, the SIGN
toggles from plus to minus and vice versa. The SIGN
is initialized with the value of JOYSTICKDELTA ($6D)
before calling subroutine ROTATE ($B69B, Figure 3)
and is toggled in every call of this subroutine. The
initial value of SIGN should be positive (+, byte
value $01) if the rotation is clockwise (the joystick is
pushed right or up) and negative (−, byte value $FF)
if the rotation is counter-clockwise (the joystick is
pushed left or down), respectively. Because SIGN is
always toggled in ROTATE ($B69B) before the adding
or subtraction operation of TERM1 and TERM3 takes
place, you have to pass the already toggled value
with the first call.

Unclear still are three instructions starting at ad-
dress $B6AD. They seem to set the two least signifi-
cant bits of TERM3 in a random fashion. Could this
be some quick hack to avoid messing with exact but
potentially lengthy two’s-complement arithmetic?

CX40

2.4 Dodging Memory Limitations

It is impressing how much functionality was
squeezed into STAR RAIDERS. Not surprisingly, the
bytes of the 8 KB ROM are used up almost com-
pletely. Only a single byte is left unused at the very
end of the code. When counting four more bytes
from three orphaned entries in the game’s lookup
tables, only five bytes in total out of 8,192 bytes are
actually not used. ROMmemory was extremely pre-
cious. Here are some techniques that demonstrate

6unzip pocorgtfo13.pdf AIM-239.pdf #Item 149, page 73.

12

; INPUT
2 ;

; X = Pos i t i on vector component index o f TERM2. Used va lues are :
4 ; $00 . . $30 −> z−component (z−coord inate) o f po s i t i on vector 0 . . 4 8

; $31 . . $61 −> x−component (x−coord inate) o f po s i t i on vector 0 . . 4 8
6 ; $62 . . $92 −> y−component (y−coord inate) o f po s i t i on vector 0 . . 4 8

;
8 ; Y = Pos i t i on vector component index o f TERM1. Used va lues are :

; $00 . . $30 −> z−component (z−coord inate) o f po s i t i on vector 0 . . 4 8
10 ; $31 . . $61 −> x−component (x−coord inate) o f po s i t i on vector 0 . . 4 8

; $62 . . $92 −> y−component (y−coord inate) o f po s i t i on vector 0 . . 4 8
12 ;

; JOYSTICKDELTA ($6D) = I n i t i a l value o f SIGN . Used va lues are :
14 ; $01 −> (= Pos i t i v e) Rotate r i gh t or up

; $FF −> (= Negative) Rotate l e f t or down
16

; TERM3 i s a 24−b i t value , r epre sented by 3 bytes as
18 ; $ (s i gn) (high byte) (low byte)

=006A L .TERM3LO = $6A ; TERM3 (high byte) , where TERM3 := TERM2 / 64
20 =006B L .TERM3HI = $6B ; TERM3 (low byte) , where TERM3 := TERM2 / 64

=006C L .TERM3SIGN = $6C ; TERM3 (s ign) , where TERM3 := TERM2 / 64
22

B69B BDAD09 ROTATE LDA ZPOSSIGN,X ;
24 B69E 4901 EOR #$01 ;

B6A0 F002 BEQ SKIP224 ; Skip i f s i gn o f TERM2 i s p o s i t i v e
26 B6A2 A9FF LDA #$FF ;

28 B6A4 856B SKIP224 STA L .TERM3HI ; I f TERM2 pos . −> TERM3 := $0000xx (= TERM2 / 256)
B6A6 856C STA L .TERM3SIGN ; I f TERM2 neg . −> TERM3 := $FFFFxx (= TERM2 / 256)

30 B6A8 BD400A LDA ZPOSHI ,X ; where xx := TERM2 (high byte)
B6AB 856A STA L .TERM3LO ;

32
B6AD AD0AD2 LDA RANDOM ; (?) Hack to avoid messing with two−complement ’ s

34 B6B0 09BF ORA #$BF ; (?) a r i thmet i c ? Provides two l e a s t s i g n i f i c a n t
B6B2 5DD30A EOR ZPOSLO,X ; (?) b i t s B1 . . 0 in TERM3.

36
B6B5 0A ASL A ; TERM3 := TERM3 ∗ 4 (= TERM2 / 256 ∗ 4 = TERM2 / 64)

38 B6B6 266A ROL L .TERM3LO ;
B6B8 266B ROL L .TERM3HI ;

40 B6BA 0A ASL A ;
B6BB 266A ROL L .TERM3LO ;

42 B6BD 266B ROL L .TERM3HI ;

44 B6BF A56D LDA JOYSTICKDELTA ; Toggle SIGN fo r next c a l l o f ROTATE
B6C1 49FF EOR #$FF ;

46 B6C3 856D STA JOYSTICKDELTA ;
B6C5 301A BMI SKIP225 ; I f SIGN negat ive then subtract , e l s e add TERM3

48
;∗∗∗ Addition ∗∗

50 B6C7 18 CLC ; TERM1 := TERM1 + TERM3
B6C8 B9D30A LDA ZPOSLO,Y ; (24− b i t add i t i on)

52 B6CB 656A ADC L .TERM3LO ;
B6CD 99D30A STA ZPOSLO,Y ;

54
B6D0 B9400A LDA ZPOSHI ,Y ;

56 B6D3 656B ADC L .TERM3HI ;
B6D5 99400A STA ZPOSHI ,Y ;

58
B6D8 B9AD09 LDA ZPOSSIGN,Y ;

60 B6DB 656C ADC L .TERM3SIGN ;
B6DD 99AD09 STA ZPOSSIGN,Y ;

62 B6E0 60 RTS ;

64 ;∗∗∗ Subtract ion ∗∗∗
B6E1 38 SKIP225 SEC ; TERM1 := TERM1 − TERM3

66 B6E2 B9D30A LDA ZPOSLO,Y ; (24− b i t subt rac t i on)
B6E5 E56A SBC L .TERM3LO ;

68 B6E7 99D30A STA ZPOSLO,Y ;

70 B6EA B9400A LDA ZPOSHI ,Y ;
B6ED E56B SBC L .TERM3HI ;

72 B6EF 99400A STA ZPOSHI ,Y ;

74 B6F2 B9AD09 LDA ZPOSSIGN,Y ;
B6F5 E56C SBC L .TERM3SIGN ;

76 B6F7 99AD09 STA ZPOSSIGN,Y ;
B6FA 60 RTS ;

Figure 3. ROTATE Subroutine at $B69B

13

the fierce fight for each spare ROM byte.

2.4.1 Loop Jamming

Loop jamming is the technique of combining two
loops into one, reusing the loop index and option-
ally skipping operations of one loop when the loop
index overshoots.

How much bytes are saved by loop jamming? As
an example, Figure 4 shows an original 19-byte frag-
ment of subroutine INITIALIZE ($B3BA) using loop
jamming. The same fragment without loop jam-
ming, shown in Figure 5, is 20 bytes long. So loop
jamming saved one single byte.

Another example is the loop that is set up at
$A165 in INITCOLD ($A14A). A third example is the
loop set up at $B413 in INITIALIZE ($B3BA). This
loop does not explicitly skip loop indices, thus sav-
ing four more bytes (the CMP and BCS instructions)
on top of the one byte saved by regular loop jam-
ming. Thus, seven bytes are saved in total by loop
jamming.

2.4.2 Sharing Blank Characters

One more technique to save bytes is to let strings
share their leading and trailing blank characters. In
the game there is a header text line of twenty char-
acters that displays one of the strings “LONG RANGE
SCAN,” “AFT VIEW,” or “GALACTIC CHART.” The dis-
play hardware directly points to their location in the
ROM. They are enclosed in blank characters (bytes
of value $00) so that they appear horizontally cen-
tered.

A naive implementation would use 3 × 20 = 60
bytes to store these strings in ROM. In the actual
implementation, however, the trailing blanks of one
header string are reused as leading blanks of the
following header, as shown in Figure 6. By shar-
ing blank characters the required memory is reduced
from 60 bytes to 54 bytes, saving six bytes.

2.4.3 Reusing Interrupt Exit Code

Yet another, rather traditional technique is to reuse
code, of course. Figure 7 shows the exit code of the
Vertical Blank Interrupt handler VBIHNDLR ($A6D1)
at $A715, which jumps into the exit code of the Dis-
play List Interrupt handler DLSTHNDLR ($A718) at
$A74B, reusing the code that restores the registers
that were put on the CPU stack before entering the
Vertical Blank Interrupt handler.

This saves another six bytes (PLA, TAY, PLA, TAX,
PLA, RTI), but spends three bytes (JMP JUMP004), in
total saving three bytes.

2.5 Bugs
There are a few bugs, or let’s call them glitches, in
STAR RAIDERS. This is quite astonishing, given the
complex game and the development tools of 1979,
and is a testament to thorough play testing. The
interesting thing is that the often intense game play
distracts the players’ attention from noticing these
glitches, just like what a skilled parlor magician
would do.

2.5.1 A Starbase Without Wings

When a starbase reaches the lower edge of the graph-
ics screen and overlaps with the Control Panel Dis-
play below (Figure 8 (left), screenshot) and you
nudge the starbase a little bit more downward, its
wings suddenly vanish (Figure 8 (right), screenshot).

The reason is shown in the insert on the right
side of the figure: The starbase is a composite of
three Players (sprites). Their bounding boxes are
indicated by three white rectangles. If the verti-
cal position of the top border of a Player is larger
than a vertical position limit, indicated by the tip
of the white arrow, the Player is not displayed. The
relevant location of the comparison is at $A534 in
GAMELOOP ($A1F3). While the Player of the central
part of the starbase does not exceed this vertical
limit, the Players that form the starbase’s wings do
so, and are thus not rendered.

This glitch is rarely noticed because players do
their best to keep the starbase centered on the
screen, a prerequisite for a successful docking.

2.5.2 Shuffling Priorities

There are two glitches that are almost impossible to
notice (and I admit some twisted kind of pleasure to
expose them, ;-):

• During regular gameplay, the Zylon ships and
the photon torpedoes appear in front of the
cross hairs (Figure 9 (left)), as if the cross hairs
were light years away.

• During docking, the starbase not only appears
behind the stars (Figure 9 (right)) as if the
starbase is light years away, but the transfer
vessel moves in front of the cross hairs!

14

1 B3BA A259 INITIALIZE LDX #89 ; Set 89(+1) GRAPHICS7 rows from DSPLST+5 on
B3BC A90D LOOP060 LDA #$0D ; Prep DL in s t r u c t i o n $0D (one row of GRAPHICS7)

3 B3BE 9D8502 STA DSPLST+5,X ; DSPLST+5,X := one row of GRAPHICS7
B3C1 E00A CPX #10 ;

5 B3C3 B005 BCS SKIP195 ;
B3C5 BDA9BF LDA PFCOLORTAB,X ; Copy PLAYFIELD co l o r tab l e to zero−page tab l e

7 B3C8 95F2 STA PF0COLOR,X ; (loop jamming)
B3CA CA SKIP195 DEX ;

9 B3CB 10EF BPL LOOP060 ;

Figure 4. INITIALIZE Subroutine at $B3BA (Excerpt)

1 B3BA A259 INITIALIZE LDX #89 ; Set 89(+1) GRAPHICS7 rows from DSPLST+5 on
B3BC A90D LOOP060 LDA #$0D ; Prep DL in s t r u c t i o n $0D (one row of GRAPHICS7)

3 B3BE 9D8502 STA DSPLST+5,X ; DSPLST+5,X := one row of GRAPHICS7
B3C1 CA DEX ;

5 B3C2 10F8 BPL LOOP060 ;
B3C4 A209 LDX #9 ;

7 B3C6 BDAABF LOOP060B LDA PFCOLORTAB,X ; Copy PLAYFIELD co l o r tab l e to zero−page tab l e
B3C9 95F2 STA PF0COLOR,X ;

9 B3CB CA DEX ;
B3CC 10F8 BPL LOOP060B ;

Figure 5. INITIALIZE Subroutine Without Loop Jamming (Excerpt)

The reason is the drawing order or “graphics pri-
ority” of the bit-mapped graphics and the Players
(sprites). It is controlled by the PRIOR ($D01B) hard-
ware register.

During regular flight, see Figure 9 (left), PRIOR
($D01B) has a value of $11. This arranges the dis-
played elements in the following order, from front to
back:

• Players 0-4 (photon torpedoes, Zylon ships,
. . .)

• Bit-mapped graphics (stars, cross hairs)

• Background.

This arrangement is fine for the stars as they are
bit-mapped graphics and need to appear behind the
photon torpedoes and the Zylon ships, but this ar-
rangement applies also to the cross hairs – causing
the glitch.

During docking, see Figure 9 (right), PRIOR
($D01B) has a value of $14. This arranges the dis-
played elements the following order, from front to
back:

• Player 4 (transfer vessel)

• Bit-mapped graphics (stars, cross hairs)

• Players 0-3 (starbase, . . .)

• Background.

This time the arrangement is fine for the cross
hairs as they are bit-mapped graphics and need to
appear in front of the starbase, but this arrangement
also applies to the stars. In addition, the Player of
the white transfer vessel correctly appears in front
of the bit-mapped stars, but also in front of the bit-
mapped cross hairs.

Fixing these glitches is hardly possible, as the
display hardware does not allow for a finer control
of graphics priorities for individual Players.

2.6 A Mysterious Finding
A simple instruction at location $A175 contained
the most mysterious finding in the game’s code.
The disassembler reported the following instruction,
which is equivalent to STA $0067,X. (ISVBISYNC has
a value of $67.)
A175 9D6700 STA ISVBISYNC,X

The object code assembled from this instruction
is unusual as its address operand was assembled
as a 16-bit address and not as an 8-bit zero-page
address. Standard 6502 assemblers would always
generate shorter object code, producing 9567 (STA
$67,X) instead of 9D6700 and saving a byte.

In my reverse engineered source code, the only
way to reproduce the original object code was the
following:

15

;∗∗∗ Header text o f Long−Range Scan view (share s spaces with f o l l ow ing header) ∗
2 A0F8 00006C6F LRSHEADER .BYTE $00 , $00 , $6C , $6F , $6E , $67 , $00 , $72 ; ‘ ‘ LONG RANGE SCAN’ ’

A0FC 6E670072
4 A100 616E6765 .BYTE $61 , $6E , $67 , $65 , $00 , $73 , $63 , $61

A104 00736361
6 A108 6E .BYTE $6E

8 ;∗∗∗ Header text o f Aft view (share s spaces with f o l l ow ing header) ∗∗∗∗∗∗∗∗∗∗∗∗∗
A109 00000000 AFTHEADER .BYTE $00 , $00 , $00 , $00 , $00 , $00 , $61 , $66 ; ‘ ‘ AFT VIEW ‘ ‘

10 A10D 00006166
A111 74007669 .BYTE $74 , $00 , $76 , $69 , $65 , $77 , $00 , $00

12 A115 65770000
A119 00 .BYTE $00

14
;∗∗∗ Header text o f Ga lac t i c Chart view ∗∗

16 A11A 00000067 GCHEADER .BYTE $00 , $00 , $00 , $67 , $61 , $6C , $61 , $63 ; ‘ ‘ GALACTIC CHART ‘ ‘
A11E 616C6163

18 A122 74696300 .BYTE $74 , $69 , $63 , $00 , $63 , $68 , $61 , $72
A126 63686172

20 A12A 74000000 .BYTE $74 , $00 , $00 , $00

Figure 6. Header Texts at $A0F8

A6D1 A9FF VBIHNDLR LDA #$FF ; Star t o f Ve r t i c a l Blank In t e r rupt handler
2 . . .

A715 4C4BA7 SKIP046 JMP JUMP004 ; End of Ve r t i c a l Blank In t e r rupt handler
4 . . .

A718 48 DLSTHNDLR PHA ; Star t o f Display L i s t In t e r rupt handler
6 . . .

A74B 68 JUMP004 PLA ; Restore r e g i s t e r s
8 A74C A8 TAY ;

A74D 68 PLA ;
10 A74E AA TAX ;

A74F 68 PLA ;
12 A750 40 RTI ; End of Display L i s t In t e r rupt Handler

Figure 7. VBIHNDLR and DLSTHNDLR Handlers Share Exit Code

1 ; HACK: Fake STA ISVBISYNC,X with 16b addr
A175 9D .BYTE $9D

3 A176 6700 .WORD ISVBISYNC

I speculated for a long time whether this strange
assembler output indicated that the object code of
the original ROM cartridge was produced with a
non-standard 6502 assembler. I have heard that
Atari’s in-house development systems ran on PDP-
11 hardware. Luckily, the month after I finished
my reverse engineering effort, the original STAR
RAIDERS source code re-surfaced.7 To my aston-
ishment it uses exactly the same “hack” to repro-
duce the three-byte form of the STA ISVBISYNC,X
instruction:

1 A175 9D .BYTE $9D ; STA ABS,X
A176 67 00 .WORD PAGE0 ; STA PAGE0,X (ABSOLUTE)

Unfortunately the comments do not give a clue
why this pattern was chosen. After quite some time

it made click: The instruction STA ISVBISYNC,X is
used in a loop which iterates the CPU’s X register
from 0 to 255 to clear memory. By using this instruc-
tion with a 16-bit address (“indexed” mode operand)
memory from $0067 to $0166 is cleared. Had the
code been using the same operation with an 8-bit ad-
dress (“indexed, zero-page” mode operand), memory
from $0067 to $00FF would have been cleared, then
the indexed address would have wrapped back to
$0000 clearing memory $0000 to $0066, effectively
overwriting already initialized memory locations.

2.7 Documenting Star Raiders

Right from the start of reverse engineering STAR
RAIDERS I not only wanted to understand how the
game worked, but I also wanted to document the re-
sult of my effort. But what would be an appropriate
form?

First, I combined the emerging memory map file
with the fledgling assembly language source code in

7https://archive.org/details/AtariStarRaidersSourceCode
unzip pocorgtfo13.pdf StarRaidersOrig.pdf

16

Figure 8. A Starbase’s Wings Vanish

Figure 9. Photon torpedo in front of cross hairs and a starbase behind the stars!

order to work with just one file. Then, I switched
the source code format to that of MAC/65, a well-
known and powerful macro assembler for the Atari
8-bit Home Computer System. I also planned, at
some then distant point in the future, to assemble
the finished source code with this assembler on an
8-bit Atari.

Another major influence on the emerging docu-
mentation was the Atari BASIC Source Book, which
I came across by accident8. It reproduced the com-
plete, commented assembly language source code of
the 8 KB Atari BASIC interpreter cartridge, a truly
non-trivial piece of software. But what was more:
The source code was accompanied by several chap-
ters of text that explained in increasing detail its
concepts and architecture, that is, how Atari BASIC
actually worked. Deeply impressed, I decided on
the spot that my reverse engineered STAR RAIDERS
source code should be documented at the same level
of detail.

The overall documentation structure for the
source code, which I ended up with was fourfold: On
the lowest level, end-of-line comments documented
the functionality of individual instructions. On the
next level, line comments explained groups of in-
structions. One level higher still, comments com-

posed of several paragraphs introduced each sub-
routine. These paragraphs provided a summary of
the subroutine’s implementation and a description
of all input and output parameters, including the
valid value ranges, if possible. On the highest level,
I added the memory map to the source code as a
handy reference. I also planned to add some chap-
ters on the game’s general concepts and overall ar-
chitecture, just like the Atari BASIC Source Book
had done. Unfortunately, I had to drop that idea
due to lack of time. I also felt that the detailed sub-
routine documentation was quite sufficient. How-
ever, I did add sections on the 3D coordinate system
and the position and velocity vectors to the source
code as a tip of the hat to the Atari BASIC Source
Book.

After I was well into reverse engineering STAR
RAIDERS, slowly adding bits and pieces of informa-
tion to the raw disassembly of the STAR RAIDERS
ROM and fleshing out the ever growing documen-
tation, I started to struggle with establishing a con-
sistent and uniform terminology for the documenta-
tion (Is it “asteroid,” “meteorite,” or “meteor”? “Ex-
plosion bits,” “explosion debris,” or “explosion frag-
ments”? “Gun sights” or “cross hairs”?) A look into
the STAR RAIDERS instruction manual clarified only

8The Atari BASIC Source Book by Wilkinson, O’Brien, and Laughton. A COMPUTE! publication.

17

a painfully small amount of cases. Incidentally, it
also contradicted itself as it called the enemies “Cy-
lons” while the game called them “Zylons,” such as
in the message “SHIP DESTROYED BY ZYLON FIRE.”

But I was not only after uniform documenta-
tion, I also wanted to unify the symbol names of
the source code. For example, I had created a
hodge-podge of color-related symbol names, which
contained fragments such as “COL,” “CLR,” “COLR,”
and “COLOR.” To make matters worse, color-related
symbol names containing “COL” could be confused
with symbol names related to (pixel) columns. The
same occurred with symbol names related to Players
(sprites), which contained fragments such as “PL,”
“PLY,” “PLYR,” “PLAY,” and “PLAYER,” or with sym-
bol names of lookup tables, which ended in “TB,”
“TBL,” “TAB,” and “TABLE,” and so on. In addition
to inventing uniform symbol names I also did not
want to exceed a self-imposed symbol name limit of
15 characters. So I refactored the source code with
the search-and-replace functionality of the text edi-
tor over and over again.

18

I noticed that I spent more and more time
on refactoring the documentation and the symbol
names and less time on adding actual content. In
addition, the actual formatting of the emerging doc-
umented source code had to be re-adjusted after ev-
ery refactoring step. Handling the source code be-
came very unwieldy. And worst of all: How could
I be sure that the source code still represented the
exact binary image of the ROM cartridge?

The solution I found to this problem eventually
was to create an automated build pipeline, which
dealt with the monotonous chores of formatting and
assembling the source code, as well as comparing the
produced ROM cartridge image with a reference im-
age. This freed time for me to concentrate on the
actual source code content. Yet another incarnation
of “separation of form and content,” the automated
build pipeline was always a pleasure to watch work-
ing its magic. (Mental note: I should have created
this pipeline much earlier in the reverse engineering
effort.) These are the steps of the automated build
pipeline:

1. The pipeline starts with a raw, documented as-
sembly language source code file. It is already
roughly formatted and uses a little propri-
etary markup, just enough to mark up sections
of meta-comments that are to be removed in
the output as well as subroutine documen-
tation containing multiple paragraphs, num-
bered, and unnumbered lists. This source code
file is fed to a pre-formatter program, which
I implemented in Java. The pre-formatter re-
moves the meta-comments. It also formats the
entries of the memory map and the subroutine

documentation by wrapping multi-line text at
a preset right margin, out- and indenting list
items, numbering lists, and vertically aligning
parameter descriptions. It also corrects the
number of trailing asterisks in line comments,
and adjusts the number of asterisks of the box
headers that introduce subroutine comments,
centering their text content inside the asterisk
boxes.

2. The output of the pre-formatter from step 1 is
fed into an Atari 6502 assembler, which I also
wrote in Java. It is available as open-source
on GitHub.9 Why write an Atari 6502 assem-
bler? There are other 6502 assemblers readily
available, but not all produce object code for
the Atari 8-bit Home Computer System, not
all use the MAC/65 source code format, and
not all of them can be easily tweaked when
necessary. The output of this step is both an
assembler output listing and an object file.

3. The assembler output listing from step 2 is the
finished, formatted, reverse engineered STAR
RAIDERS source code, containing the docu-
mentation, the source code, and the object
code listing.

4. The assembler output listing from step 2 is fed
into a symbol checker program, which I again
wrote in Java. It searches the documenta-
tion parts of the assembler output listing and
checks if every symbol, such as “GAMELOOP,” is
followed by its correct hex value, “($A1F3).” It
reports any symbol with missing or incorrect
hex values. This ensures further consistency
of the documentation.

5. The object file of step 2 is converted by yet an-
other program I wrote in Java from the Atari
executable format into the final Atari ROM
cartridge format.

6. The output from step 5 is compared with a
reference binary image of the original STAR
RAIDERS 8 KB ROM cartridge. If both im-
ages are the same, then the entire build was
successful: The raw assembly language source
code really represents the exact image of the
STAR RAIDERS 8 KB ROM cartridge

9git clone https://github.com/lwiest/Atari6502Assembler
unzip pocorgtfo13.pdf Atari6502Assembler.zip

19

Typical build times on my not-so-recent Win-
dows XP box (512 MB) were 15 seconds.

For some finishing touches, I ran a spell-checker
over the documented assembly language source code
file from time to time, which also helped to improve
documentation quality.

2.8 Conclusion
After quite some time, I achieved my goal to create a
reverse engineered, complete, and fully documented
assembly language source code of STAR RAIDERS.
For final verification, I successfully assembled it with
MAC/65 on an Atari 800 XL with 64 KB RAM (em-
ulated with Atari800Win Plus). MAC/65 is able to
assemble source code larger than the available RAM
by reading the source code as several chained files.
So I split the source code (560 KB) into chunks of 32
KB and simply had the emulator point to a hard disk
folder containing these files. The resulting assembler
output listing and the object file were written back
to the same hard disk folder. The object file, after
being transformed into the Atari cartridge format,
exactly reproduced the original STAR RAIDERS 8 KB
ROM cartridge.

2.9 Postscript
I finished my reverse engineering effort in Septem-
ber 2015. I was absolutely thrilled to learn that in
October 2015 scans of the original STAR RAIDERS
source code re-surfaced. To my delight, inspection
of the original source code confirmed the findings of
my reverse engineered version and caused only a few
trivial corrections. Even more, the documentation
of my reverse engineered version added a substan-
tial amount of information – from overall theory of
operation down to some tricky details – to the un-
derstanding of the often sparsely commented origi-
nal (quite expected for source code never meant for
publication).

20

