3 Carols of the Z-Wave Security Layer; or,
Robbing Keys from Peter to Unlock Paul

Ex(Nwk Key)+
)) CBC-MAC,

3.1 Adeste Fideles

Z-Wave is a physical, network, and application layer
protocol for home automation. It also allows mem-
bers of the disposable income class to feed their zeal
for domestic gadgetry, irrespective of genuine utility.
Z-Wave devices sit in their homes, quietly exchang-
ing sensor reports and actuating in response to user
commands or the environment.

The curious reader may use an SDR to learn
how, when, and what they communicate. Tools
like Scapy-radio (Picod, Lebrun, and Demay) and
EZ-Wave (Hall and Ramsey) demodulate Z-Wave
frames for inspection and analysis. The C++ source
code for OpenZwave is a great place to examine
characteristics of the Z-Wave application layer. Oth-
ers may still prefer to cross-compile OpenZwave to
their favorite target and examine the binary using a
custom disassembler built from ROP gadgets found
in the old shareware binary WOLF3D.EXE.

After tinkering with Z-Wave devices and an
SDR, the stimulated readers will quickly realize that
they can send arbitrary application layer commands
to devices where they are executed. To combat this,
some devices utilize the Z-Wave security layer, which
provides both integrity and confidentiality services
to prevent forgery, eavesdropping, and replay.

The first gospel of the Z-Wave security layer
was presented by Fouladi and Ghanoun at Black
Hat 2013. In it they identified and exploited a re-
mote rekeying vulnerability. In this second gospel
of the Z-Wave security layer, we validate and ex-
tend their analysis of the security layer, identify a
hardware key extraction vulnerability, and provide
open source PoC tools to inject authenticated and
encrypted commands to sleeping Z-Wave devices.

by Chris Badenhop and Ben Ramsey

Sensor

1

Egx(DATA) +
CBC-MAC,,«(DATA)

2

3.2 Deck the Home with Boughs of
Z-Wave

This Christmas, Billy Peltzer invests heavily in Z-
Wave home automation. The view of his festive
front porch reveals several of these gadgets. Billy
is a little paranoid after having to defend himself
from hordes of gremlins every Christmas, so he in-
stalls a Z-Wave door lock, which both Gizmo and
he are able to open using a smart phone or tablet.
Billy uses a Z-Wave smart plug to control Christmas
lights around his front window. He programs the
strand of lights to turn on when a Z-Wave PIR (pas-
sive infrared) sensor detects darkness and turn off
again at daylight. This provides a modest amount
of energy savings, which will pay for itself and his
Mogwai-themed ornament investment after approx-
imately 20 years.

The inquisitive reader may wonder if Billy’s front
door is secure. Could a gremlin covertly enter his
home using the Z-Wave application layer proto-
col, or must it instead cannonball through a win-
dow, alerting his dog Barney? Fortunately, sniff-
ing, replaying, or injecting wireless door commands
is fruitless because the door command class imple-
ments the Z-Wave security layer, which is rooted in
cryptography.

Z-Wave cryptography uses symmetric keys to
provide encryption and authentication services to
the application layer. It stores a form of these keys
in nonvolatile memory, so that the device does not
require rekeying upon power loss. Of the five locks
we have examined, the nonvolatile memory is al-
ways located in the inner-facing module, so a grem-
lin would have to destroy a large portion of the Z-

Wave door lock to extract the key. At that point it
would have physical access to the lock spindle any-
way, making the cryptographic system moot.
Wireless security is enabled on the 5th gener-
ation (i.e., Z-Wave Plus) devices on Billy’s front
porch. Thus, their memory contains the same keys
that keep gremlins from wirelessly unlocking his
door. A gremlin may crack open the outdoor smart
plug or PIR sensor, locate and extract the keys, and
send an authenticated unlock command to the door.
Billy has figuratively left a key under the doormat!

3.3 We Three Keys of AES Are

Since Z-Wave security hinges on the security of the
keys, it is important to know how they are stored
and used. Z-Wave encryption and authentication
services are provided by three 128-bit AES keys;
however, the security of an entire Z-Wave network
converges to a single key in the set. Like the three
wise men, only one of them was necessary to deliver
the gifts to Brian of Nazareth. The other two could
have just as well stayed home and added a few ex-
tra camels to haul the gifts. A card would also have
been nice.

The key of keys in this system is the network
key. This key is generated by the Z-Wave network
controller device and is shared with every device re-
quiring cryptographic services. It is used to derive
both the encrypting and signing keys. When a new
device is added to a Z-Wave network, the device may
declare a set of command classes that will be using
security (e.g., the door lock command class) to the
Z-Wave network controller. In turn, the controller
sends the network key to the new device. To provide
a razor-thin margin of opaqueness, this message is
encrypted and signed using a set of three default
keys known by all Z-Wave devices. The default en-
cryption and authentication keys are derived from a
default 128-bit network key of all zeros. If the ad-
herent reader recovers the encryption key from their
device, decrypts sniffed frames, and finds that the
plaintext is not correct, then they should attempt
to use the encryption key derived from the null net-
work key instead.®

An authentication key is derived from a network
key as follows. Using an AES cipher in ECB-mode,
a 16-byte authentication seed is encrypted using the
network key to derive the authentication key. The
derivation process for the encryption key is identical,

8unzip pocorgtfol2.pdf zwave.tar.bz2

except that a different 16-byte seed value is used. A
curious reader may want to know what these seeds
are, and any fortuitous reader in possession of a Mi-
CasaVerde controller will be able to tell you.

The MiCasaVerde controller uses an embedded
Linux OS and provides two mechanisms for ex-
tracting a keyfile from its filesystem, located at
/etc/cmh/keys. Using the web interface, one may
download a compressed archive of the controller
state. The archive contains the /etc directory of
the filesystem. Alternatively, a secure shell inter-
face is also provided to remotely explore the filesys-
tem. The MiCasaVerde binary key file (keys) is
exactly 48 bytes and contains all three keys. The
file is ordered with the network key first, the au-
thentication key second, and the encryption key
last. Billy Peltzer’s Z-Wave network controller is a
MiCasaVerde-Edge. In Figure 1, we show the result-
ing key file and dump the values of the keys for his
network (i.e., 0xe97a5631cb5686fa24450ebal03f -
945¢).

To find the seeds, one must simply decrypt the
authentication and encryption keys using an AES ci-
pher in ECB mode loaded with the network key, and
the resulting gifts will be the authentication and en-
cryption seeds respectively. From our own observa-
tions, the same seed values are recovered from both
3rd and 5Hth generation Z-Wave devices. Billy’s keys
are used in Figure 2 to recover the seeds. Given the
seed values and a network key, we have a method for
deriving the encryption key and the authentication
key from an extracted network key.

3.4 Away in an EEPROM, No ROM
for Three Keys

Z-Wave devices other than MiCasaVerde controllers
may not have an embedded Linux OS, so where are
the keys stored in these devices? Extracting and an-
alyzing the nonvolatile memory of Billy’s PIR sensor
and doorlock reveal that the network key is stored in
a lowly, unprotected 8-pin SPT EEPROM, which is
external to the proprietary Z-Wave transceiver chip.
In fact, only the network key is stored in the EEP-
ROM, implying that the encryption key and the au-
thentication key are derived upon startup and stored
in RAM.

Unless the device designers hoped to obscure the
key derivation process, the decision to store only
the network key in nonvolatile memory is unclear.

=

ot

N

©

11

13

15

[y

w

©

Moreover, it is not clear why the key is found in the
EEPROM rather than somewhere in the recesses of
the proprietary ZW0X01 Z-Wave transceiver mod-
ule, whose implementation details are protected by
an NDA. The transceiver certainly has available
flash memory, and there does not appear to be any-
one who has dumped the ZWO0501 5th generation
flash memory yet. Until this issue is fixed, anyone
with an EEPROM programmer and physical access
can acquire this key, derive the other two keys, and
issue authenticated commands to devices. We ex-
tract Billy’s network key by desoldering the EEP-
ROM from the main board of his PIR sensor and use
an inexpensive USB EEPROM programmer (Sign-
stek MiniPRO) to dump the memory to a file.

The circuit board from the PIR sensor is shown
in Figure 3. The ZWO0501 transceiver is the large
chip located on the right side of the board (a 3rd
generation system would have a ZW0301). In gen-
eral, the SPI EEPROM is the 8-pin package clos-
est to the transceiver. The reader may validate

that the SPI pins are shared between the EEP-
ROM and transceiver package to be sure. In fact,
the ATMLH436 EEPROM used in a 3rd generation
door lock is not in the MiniPRO schematics library,
so we trace the SPI pin outs of the ZM3102 (i.e.,
the postage-stamp transceiver package) to the SPI
EEPROM to identify its pin layout. We use this
information to select a compatible SOIC8 ATMEL
memory chip that is available in the MiniPRO li-
brary.

We are unable to provide a fixed memory address
of the network key, as it varies among device types.
Even so, because the memory is so empty (>99%
zeros), the key is always easy to find. In all three
of Billy’s Z-Wave devices, the key is within the only
string of at least 16 bytes in memory. The region
of the EEPROM memory of Billy’s PIR sensor con-
taining the same network key follows, with the key
itself starting at address 0x60A0.

~/Downloads/etc/cmh $ ls

alerts.json HW_Key user data.json.lzo.l
cmh. conf HW_ Key2 user _data.json.lzo.2
devices keys user data.json.lzo.3
dongle.3.83.dump.0 last_report user data.json.lzo .4
dongle.3.83.dump.1 PK AccessPoint user data.json.lzo.5
dongle.3.83.dump.2 servers.conf.default vera model
dongle.3.83.dump.3 sync kit wan _failover
dongle.3.83.dump.4 sync_rediscover zwave locale

ergy key user data.json.luup.lzo

first _boot user data.json.lzo

~/Downloads/etc/cmh $ xxd ./keys

0000000: e97a 5631 cb56 86fa 2445 Oeba 103f 945¢ .zV1.V..$E...7.\
0000010: 620d 486c¢ 6a65 2122 afel 086¢c 79e6 3740 b.Hlje!"...ly.7Q@Q
0000020: eec9 ef96 al55 a3d3 02al 8441 f5f3 T7eal U..... A7

Figure 1 — Keys found in Billy’s MiCasaVerde Edge Controller

“/POCs $./getSeeds
gcry cipher open worked
gcry cipher setkey worked
gcry cipher decrypt worked
A K: 62 0d 48 6¢ 6a 65 21
A Seed: 55 55 55 55 55 55
gcry cipher decrypt worked
E K: ee c9 ef 96 al 55 a3
E Seed: aa aa aa aa aa aa

22
55

d3
aa

../ keys/veraedge keyFile

af el 8 6¢c 79 e6 37 40
55 55 55 55 55 55 55 55 55

2 al 84 41 f5 f3 Te a0
aa aa aa aa aa aa aa aa aa

Figure 2 — The

seeds for the Encryption and Authentication Keys

Figure 3 — Location of the EEPROM DIP on a 5th gen Z-Wave PIR sensor (Aeotec Multisensor 4)

6090: 00000000 00000000 00000000 ff000001
60a0: e97a5631 cb5686fa 24450eba 103f945¢
60b0: 56001498 eff17275 13cc4201 00000000
60c0: 42326402 a8010000 00000000 00000000

For reference, the segment of memory in Billy’s
door lock containing the network key follows. The
network key starts at address 0x012D.

0110: 00000000 00000000 00000000 00000000
0120: 00000000 00420100 00000000 81e97a56
0130: 31cb5686 fa24450e bal03f94 5c560000
0140: 00000000 00000000 00000000 00000000

To summarize the above, each device contains a
network key, an authentication key, and an encryp-
tion key. The network key is common throughout
the network and is shared with the devices by us-
ing default authentication and encryption keys that
are the same for all 3rd and 5th generation Z-Wave
devices in the world. The authentication and the
encryption key on the device are derived from the
network key and the nonces of all 5s and all As re-
spectively.

3.5 Do You Hear What I Hear? A
Frame, a Frame, Encapsulated in
a Frame, Is Encrypted

Even armed with the keys, the patient reader still
needs to know how to use them. The Z-Wave se-
curity service provides immutable encryption and
authentication through the use of an encapsulation
frame. The encapsulation security frame (shown be-
low) is identified in the first two bytes of the applica-
tion layer payload. The first byte specifies the com-
mand class, and the second provides the command,
where an encapsulated security frame has byte val-
ues of 0x98 and 0x81, respectively. The remainder
of the frame contains the eight upper bytes of the
IV, used for both encryption and signing, the vari-
able length encapsulated and encrypted payload, the
nonce ID, and an 8-byte CMAC (cipher-based mes-
sage authentication code).

Encapsulated / Encrypted
Frame

K*AAAQA¥444*\

Cmd
class

Nonce|
D

0x98 | 0x81 | Upper IVI[8] ff‘sﬁl CMAC[8]

Cmd ‘

At a minimum, the frame encapsulated in the
security frame is three bytes. The first byte is used

10

for fragmentation; however, we have yet to observe
a value other than 0x00 in this field. The second
byte provides the command class and, like the ap-
plication layer, is followed by a single command byte
and zero or more bytes of arguments.

The application payload is encrypted using the
encryption key and an AES cipher in OFB mode
with a 16-byte block size. OFB mode requires a 16-
byte IV, which is established cooperatively between
the source and destination. The lower 8 bytes of
the IV are generated on request by the destination,
which OpenZwave calls a nonce, and are reported
to the requestor before the encapsulation frame is
sent. The first byte of this 8-byte nonce is what we
referred to as the nonce ID. The upper eight bytes
of the IV are generated by the sender and included
in the encapsulation security frame. When the des-
tination receives the encapsulated frame, it decrypts
the frame using the same cipher setting and key. It
is able to reconstruct the IV using the IV field of the
encapsulated frame and by using the nonce ID field
to search its cache of generated nonces.

From Bridge
to Ferris

o
O

(o}

Op o7
O P ~[Z2F0 00 0
°| With asetof
O

5| wonderful,
| fascinating
O

MECC]

you can span a
Imake-believe
river, then later
use the same steel

girders and
beams to build
a Ferris Wheel.

The wheel will |
turn and the
bridge can be |
raised for
steamers.
These are but two
of the working mo-
| delsillustrated and

described in our
catalog.

Write for illustrated catalog
and list of dealers.

B8O 0 0D O 600 600000

"

You can build many others with
Meccano, made mostly of brass
and polishedsteel. Asksomegood
toy or sporting goods store to
show you Meccano. Be sure to
get Meccano. Look for the name
on boxes and literature.

The Embossing Co.
23 Church St. Albany, N. Y.

Manufacturers of

““Toys that Teach’’

&Jo 000 00000 0D

¥o o c o}

(o el feigeliel ol GTsl BITSTRT ol (o) ol ol el WieT@iiel el el el (o) o) el el o

3.6 Joy to the Home,
Traffic is Revealed

Encrypted

Some cautious readers may become anxious when
two automations are having a private conversation
within their dwelling. This is especially true when
one of them is a sensor, and the other is connected
to the Internet. Fear not! Armed with knowledge
of the encapsulation security frame and possession
of the network or encryption key, the triumphant
reader can readily decrypt frames formerly hidden
from them. They will hopefully discover, as we have,
that Z-Wave messages are devoid of sensitive user
information. However, may the vigilant reader be
a sentry to warn us if any future transgressions do
occur in the name of commercialism and Orwellian-
ism.

To aid the holy sentry, we provide the PoC
decryptPCAPNG tool to decrypt Z-Wave encapsu-
lated Z-Wave frames. The user provides the network
or encryption key. The tool assumes the user is cap-
turing Z-Wave frames using either Scapy-radio or
EZ-Wave with an SDR, which sends observed frames
to Wireshark for capture and saving to PCAPNG
files.

3.7 What Frame Is This, Who Laid
to Rest, upon Receiver’s An-
tenna, Did Originate?

Secure Z-Wave devices do not act upon a command
issued in an encapsulation frame unless its CMAC
is validated. Thus, the active reader wishing to do
more than observe encrypted messages requires fur-
ther discourse. Certainly, the gremlin wishing to
open Billy’s front door desires the ability to gener-
ate an authenticated unlock-door command.

The Z-Wave CMAC is derived using the CBC-
MAC algorithm, which encrypts a message using an
AES cipher in CBC mode using a block size of 16
bytes. It uses the same IV as the encryption cipher,
and only the first eight bytes of the resulting 16-
byte digest are sent in the encapsulation frame to be
used for authentication. Instead of creating the di-
gest from the entire security encapsulation frame, a
subset of fields are composed into a variable-length
message. The first four bytes of this message are
always the security command class ID, source ID,
destination ID, and length of the message. The re-
maining portion of the message is the variable length

encapsulated frame (e.g., an unlock-door command,
including the fragmentation byte) after it has been

encrypted.
Encapsulated / Encrypted
Frame

A

~

Frag.
Field

~

Src
ID

Dst
1D

Msg
len

Cmd

0x98
class

Cmd

The recipient of the encapsulation security frame
validates the integrity of the frame using the in-
cluded 8-byte CMAC. It is able to generate its own
CMAC by reconstructing the message to generate
the digest using the available fields in the frame,
the IV, and the authentication key. If the generated
CMAC matches the declared value in the frame,
then the source ID, destination ID, length, and con-
tent of the encapsulated frame are validated. Note
that, since the other fields in the frame are not part
of the CMAC message, they are not validated. If
the generated digest does not match the CMAC in
the frame, the frame is silently discarded.

12

3.8 Bring a Heavy Flamer of Sanc-
tified Promethium, Jeanette, Is-
abella

Knock! Knock! Knock! Open the door for us!
Knock! Knock! Knock! Let’s celebrate!

We wrote OpenBarley as a PoC tool to demon-
strate how Z-Wave security works. Its default en-
capsulated command is to unlock a door lock, but
the user may specify alternative, arbitrary com-
mands. The tool works with the GNURadio Z-Wave
transceiver available in Scapy-radio or EZ-Wave to
inject authenticated and encrypted frames.

The reader must note that battery operated Z-
Wave devices conserve power by minimizing the
time the transceiver is active. When in low-power
mode, a beam frame is required to bring the re-
mote device into a state where it may receive the
application layer frame and transmit an acknowledg-
ment. Scapy-radio and EZ-Wave did not previously
support waking devices with beam frames, so we
have contributed the respective GNURadio Z-Wave
blocks to EZ-Wave to allow this.

3.9 It Came! Somehow or Other, It
Came Just the Same!

This Christmas, as we have done, may you, the
blessed reader, extract the network key from the
EEPROM of a Z-Wave device. May you use our
PoCs to send authenticated commands to any other
secured device on your network. May you enlighten
your friends and neighbors, affording them the op-
portunity to sanctify by fire, or with lesser, more
legal means, home automation lacking physical se-
curity in the name of Manion Butler and his holy
mother. May you use our PoCs to watch the au-
tomation for privacy breaches and data mining in
the time to come, and may you brew in peace.

