
6 A Tourist’s Phrasebook for Reversing Embedded ARM
in the Dialect of the Cortex M Series

by Travis Goodspeed and Ryan Speers

Ahoy there, neighbor!
Welcome to another installment of our series of

quick-start guides for reverse engineering embedded
systems. Our goal here is to get you situated with
the architecture of smaller devices as quickly as pos-
sible, with a minimum of fuss and formality.

Those of you who have already worked with
ARM might find it to be a useful refresher, while
those of you new to the architecture will find that
it isn’t really as strange as you’ve been led to be-
lieve. If you’ve already reverse engineered binaries
for any platform, even x86 Windows applications,
you’ll soon feel right at home.

We’ve written this guide with STM32 devices for
specific examples, but with minor differences it ap-
plies well enough to the Cortex M series as a whole.
These devices generally have a megabyte or less of
Flash and at most a few hundred kilobytes of RAM.
By and large, they only run the Thumb2 instruc-
tion set, without support for the older AARCH32
instruction set. For larger ARM chips, such as those
used in smartphones and tablets, you might be bet-
ter served by a different introduction.

6.1 At a Glance

Common Models
STM32, EFM32

Architecture
32-bit registers
16-bit and 32-bit Thumb(2) instructions

Registers
R15: Program Counter
R14: Link Register
R13: Stack Pointer
R0 to R12: General Use

6.2 Basics of the Instruction Set

Back in the day, ARM used fixed-width 32-bit RISC
instructions. Like the creation of the world, this
was widely regarded as a mistake, and many an-
gry people wrote comments complaining that it was

a waste of space, and that RISC wouldn’t “change
everything.” These instructions were always 32-bit
word aligned, so the lowest two bits of the Program
Counter (R15) were always zero.

Larger ARM chips, such as those in an early
smartphone, support two instructions sets. If
the least significant bit of the program counter is
clear (0), then the 32-bit instruction set is used,
whereas if that bit is set (1), the chip will use a
16-bit instruction set called Thumb. Registers are
still 32 bits wide, but the instructions themselves are
only a half-word. They must be half-word aligned.

Because Thumb instructions have fewer bits to
spare, code in larger ARM machines will switch be-
tween ARM and Thumb as it is convenient. You
can see this in the least significant bit of a function
pointer, where an ARM function’s address will be
even, while a Thumb function’s address will be odd.

The Cortex M3 devices speak a slimmer dialect
than the big-iron ARM chips. This dialect drops the
32-bit wide instruction set entirely, supporting only
Thumb and Thumb2 instructions.9 Because of this,
all functions and all interrupt handlers are referred
to by odd addresses, which are actually the address
of the byte after the real starting address! If you
see a call to 0x08005615, that is really a call to the
Thumb code at 0x08005614.

6.3 Registers and Calling Convention

Arguments are passed to the child function from R0
to R3. R4 to R11 hold local variables, and the child
function must restore them before returning to the
parent function. Values are returned in R0 to R3,
and these registers are not preserved by the child.

Much like in PowerPC and very unlike x86, the
Link Register (R14, a.k.a. LR) holds the return ad-
dress. A leaf function, having no children, might
never write its return pointer to the stack. The
BL instruction automatically moves the old Program
Counter into the Link Register when calling a child,
so parent functions must manually save R14 before
calling children. The return instruction, BLR, func-
tions by moving R14 (LR) into R15 (PC).

9Thumb2 instructions run from Thumb mode. The only thing new about them is that they can be longer than 16 bits, so
your disassembler might be slightly confused about their starting position.

20

512-Mbyte
block 0
Code

512-Mbyte
block 1
SRAM

512-Mbyte
block 2

Peripherals

512-Mbyte
block 3

FSMC bank1
& bank2

512-Mbyte
block 4

FSMC bank3
& bank4

512-Mbyte
block 5

FSMC registers

512-Mbyte
block 6

Not used

512-Mbyte
block 7

Cortex-M4´s
internal

peripherals

0X2002 0000 - 0X3fff ffff

0X2001 c000 - 0X2001 ffff

0X2000 0000 - 0X2001 bfff

0X1fff c008 - 0X1fff ffff

0X1fff c000 - 0X1fff c007
0X1fff 7a10 - 0X1fff 7fff

0X1fff 0000 - 0X1fff 7a0f

0X1001 0000 - 0X1ffe ffff

0X1000 0000 - 0X1000 ffff

0X0810 0000 - 0X0fff ffff
0X0800 0000 - 0X080f ffff

0X0010 0000 - 0X07ff ffff

0X0000 0000 - 0X000f ffff

0X4000 0000

0X4000 7fff
0X4000 7800 - 0X4000 ffff
0X4001 0000

0X4001 5fff
0X4001 5800 - 0X4001 ffff
0X4002 0000

0X4007 7fff
0X4008 0000 - 0X4fff ffff
0X5000 0000

0X5006 0bff
0X5006 0c00 - 0X5fff ffff
0X6000 0000

0Xa000 0fff
0Xa000 1000 - 0Xdfff ffff
0Xe000 0000 - 0Xe00f ffff
0Xe010 0000 - 0Xffff ffffReserved

CORTEX-M4 internal peripherals

Reserved

Reserved

Reserved

Reserved

Reserved

APB1

APB2

AHB1

AHB2

AHB3

Reserved

Reserved
Option Bytes

System memory + OTP
Reserved

CCM data RAM
(64 KB data SRAM)

Reserved

Reserved
Flash

Aliased to Flash, system
memory or SRAM depending

on the BOOT pins

Reserved
SRAM (16 Kb aliased

by bit-handling)
SRAM (112 Kb aliased

by bit-handling)

E

W
SSW

SE

NW

N NE

pastor

cortex
arm
flash

interrupt
radare

0Xffff ffff

0Xc000 0000
0Xbfff ffff

0Xe000 0000
0Xdfff ffff

0Xa000 0000
0X9fff ffff

0X8000 0000
0X7fff ffff

0X6000 0000
0X5fff ffff

0X4000 0000
0X3fff ffff

0X2000 0000
0X1fff ffff

0X0000 0000

STM32F40xxx

MEMORY MAP
pe

ri
ph

er
al

s

FS
M

C

Figure 3 – STM32F40xxx Memory Map

21

6.4 Memory Map

Figure 3 shows the memory layout of the
STM32F405, a Cortex M4 device. Study this map
for a moment, before we go on to how to use it in
your adventure!

Because Cortex M devices have four gigabytes of
address space but hardly a megabyte of Flash, they
keep functionally different parts of memory at very
different addresses.

Code memory is officially the range from
0x00000000 to 0x1FFFFFFF, but in nearly all cases,
you’ll find that Flash is mapped to begin at 0x0800-
0000. When reverse engineering an application,
you’ll find that it’s either written here or a few
dozens of kilobytes later, to leave room for a boot-
loader.

SRAM is usually mapped to begin at 0x2000-
0000, so it’s safe to assume that any read or write
to an absolute address in this region is a global vari-
able, and also that the stack and heap fit somewhere
in this range. Unlike a desktop application, which
loads its initial globals directly into a .data seg-
ment, an embedded application must manually ini-
tialize its data variables, possibly by copying a large
chunk from Flash into SRAM.

Peripheral memory begins at 0x40000000. Both
because peripherals are most often referred to by an
explicit address, and because Flash comes with no
linking systems or system calls, reads and writes to
this region are a gold mine for a reverse engineer!

System control registers are at 0xE0000000.
These are used to do things like moving the inter-
rupt table or reading the chip’s model number.

6.5 Making Sense of Pointers

Let us teach you some nifty tricks about pointers in
Thumb machines.

Back when ARM was first designed, 32-bit fixed-
width instructions with 32-bit alignment were all the
rage, and all the cool kids (POWER, SPARC, Al-
pha) used them. Later on, when the Thumb in-
struction set was being designed, its designers chose
16-bit instructions that could be mapped back to
the same 32-bit core. The CPU would fetch a 32-bit
ARM instruction if the least-significant bit of the
program counter were even, and a 16-bit Thumb in-
struction if the program counter were odd.

But these Cortex chips generally ship just
Thumb and Thumb2, without backward compatibil-
ity to 32-bit ARM instructions. So the trick, which

you can try in the next section, is that data pointers
are always even and instruction (function) pointers
are always odd.

6.6 Making Sense of the Interrupt
Table

Let’s take a look at the interrupt table from the be-
ginning of a Cortex M firmware image. These are
32-bit little endian addresses, which are to be read
backwards.

0000000 30 14 00 20 21 41 00 08
2 39 57 00 08 3d 57 00 08

0000010 41 57 00 08 45 57 00 08
4 49 57 00 08 00 00 00 00

0000020 00 00 00 00 00 00 00 00
6 00 00 00 00 51 57 00 08

0000030 4d 57 00 08 00 00 00 00
8 55 57 00 08 59 57 00 08

0000040 . . .

Note that the first word, 0x20001430, is in the
SRAM region; this is because the first word of a Cor-
tex M interrupt table is the initialization value for
the Stack Pointer (R13). The second word, 0x0800-
4121, is the initialization value for the Program
Counter (R15), so we know the entry point of the
application is Thumb2 code starting at 0x08004120.

Except for some reserved (zeroed) words, the
handler addresses are all in Flash memory and rep-
resent the interrupt handler functions. We can look
up the meaning of each handler in the specific chip’s
programming guide, then chase the ones that are
most relevant. For example, if we are reverse engi-
neering a USB device, powered by an STM32F3xx,
the STM32F37xx reference manual tells us that the
interrupts at offsets 0x000000D8 and 0x0000001C
handle USB events. These might be good handlers
to reverse early in the process.

6.7 Loading into IDA Pro or Radare2
To load the application into IDA Pro or Radare2,
you generally need to know the loading point and
the locations of some other memories.

The loading point will be at or near 0x08000000,
depending upon whether a bootloader comes before
your image. If you are working from a JTAG dump,
just use the address the image came from. If you
are working from a .dfu (Device Firmware Update)
file, it will contain a loading address in its header
metadata.

22

When given a raw dump without a starting ad-
dress, disassemble the instructions and try to find
a loading address at which the interrupt handlers
line up. (The interrupt vector table is usually at
0x08000000 at boot, but it can be moved to a new
address by software.)

6.8 Making Sense of the Peripherals

The Cortex M3 contains two peripheral regions. At
0x40000000, you will find the most useful ones for
reverse engineering applications, such as UART and
USB controllers, General Purpose IO (GPIO), and
other devices. Unfortunately, these peripherals are
not generic to the Cortex M3 as an architecture;
rather, they are specific to each individual chip.

Supposing you are reverse engineering an appli-
cation for the STM32F3xx series, you would down-
load the Peripheral Support Library for that chip
from its manufacturer and eventually find yourself
reading stm32f30x.h. For other chips, there are
similar headers, each of which is written around C
structs for register groups and preprocessor defini-
tions for peripheral base addresses and offsets.

Suppose we know from reverse engineering a cir-
cuit board that USART2 is used by our target ap-
plication to send packets to a radio chip, and we
would like to search for all functions that use this
peripheral. Working backwards, we find the follow-
ing relevant lines in stm32f30x.h.

1 //Abbrev ia ted USART r e g i s t e r s t r u c t .
typedef struct{

3 __IO uint32_t CR1; //+0x00
__IO uint32_t CR2;

5 __IO uint32_t CR3;
__IO uint16_t BRR;

7 uint16_t RESERVED1;
__IO uint16_t GTPR;

9 uint16_t RESERVED2;
__IO uint32_t RTOR;

11 __IO uint16_t RQR;
uint16_t RESERVED3;

13 __IO uint32_t ISR ;
__IO uint32_t ICR ;

15 __IO uint16_t RDR; //+0x24 RX Data Reg
uint16_t RESERVED4;

17 __IO uint16_t TDR; //+0x28 TX Data Reg
uint16_t RESERVED5;

19 } USART_TypeDef ;

21 //USART lo ca t i on d e f i n i t i o n s .
#define USART2 \

23 ((USART_TypeDef ∗) USART2_BASE)

#define USART2_BASE \
25 (APB1PERIPH_BASE + 0x00004400)

#define APB1PERIPH_BASE \
27 PERIPH_BASE

#define PERIPH_BASE \
29 ((uint32_t) 0x40000000)

This means that USART2’s data structure is lo-
cated at 0x40004400. From the USART_TypeDef
structure, we know that data is received from US-
ART2 by reading 0x40004424 and written to US-
ART2 by writing to 0x40004428! Searching for
these addresses ought to easily find us the read and
write functions for that port.

6.9 Other Oddities
Please note that this guide has left out some features
unique to the STM32 series, and that each chip has
its own little quirks. You’ll find different memory
maps on each implementation, and anything that
looks confusing is likely worth spending more time
to understand.

For example, some ARM devices offer Core-
Coupled Memory (CCM), which is SRAM that’s
wired directly to the CPU’s internal data bus rather
than to the main memory bus of the chip. This
makes fetches lightning fast, but has the complica-
tions that the memory is unusable for DMA or code
fetches. Care for a non-executable stack, anyone?

Another quirk is that many devices map the
same physical memory to multiple virtual locations.
In some high-performance code, the use of both
cached and uncached memory can allow for more
efficient operation.

Additionally, address zero often contains a dupli-
cate of the boot memory, which is usually Flash but
might be executable SRAM. Presumably this was
done to allow for code that has compatible imme-
diate addresses when booting from either memory,
but PoC‖GTFO 10:8 describes a nifty little jailbreak
that relies on dumping the 48K recovery bootloader
of an STM32F405 chip out of Flash through a null-
pointer read.

– — — – — — — — – — –
We hope that you’ve enjoyed this friendly lit-

tle guide to the Cortex M3, and that you’ll keep it
handy when reverse engineering firmware from that
platform.

23

