
Broken, Abandoned, and
Forgotten Code, Part 10
Zachary Cutlip

Debugging and De-bricking the Netgear R6200 via
UART
Update: I forgot to credit my former colleague, Tim (@bjt2n3904), for
helping me locate the UART header. This project would have been way
more challenging without the serial connection. It would have involved
desoldering the flash memory chip, probably replacing it with a ZIF
socket, and then removing and reprogramming the chip for each
iteration of testing.

In the previous installment, we filled out the ambit firmware header just
enough to satisfy Netgear's broken UPnP server. We also patched out
several ioctl() calls in upnpd in order to test the SetFirmware exploit
in emulation.

We're now at the point that emulation is no longer adequate; we need to
start testing against actual hardware. There are subtle and not-so-subtle
differences between emulation and hardware that affect how the exploit
works. Some exploits, such as command injections and even buffer
overflows, can be tested and developed entirely in emulation. Since this
exploit writes a firmware image to flash memory, we need to ensure it is
written to physical storage properly and will successfully boot and run.

Experimentation with modifying a device's firmware calls for some sort
of connectivity at a lower level than just a Linux shell. If the operating
system fails to boot, there is no shell. We'll need to connect to the device
in order to diagnose the problem and recover. The iterative process of

https://twitter.com/bjt2n3904
http://shadow-file.blogspot.com/2015/06/abandoned-part-09.html

developing the small, bootstrap firmware that I will describe later entails
many incomplete builds that will leave the device in a semi-broken state.
Knowing that you can recover by restoring a good firmware makes the
project much less risky.

What you'll need for this part:
• USB to UART cable (described below)
• Soldering iron
• Torx screwdriver set (I like this one)
• Solid copper wire in a few colors (I think 22 gauge is fine here)
• 3 male-to-female jumper wires of different colors (black, orange,

and yellow are ideal)

Hunting for UART Header
Fortunately the R6200 has a UART header you can connect to using a
serial terminal application such as Minicom. With Minicom, you can
interact with the bootloader to see diagnostic messages and even drop
into a recovery console.

To interface with the R6200's UART, you can use a cable like the FTDI
3.3V USB to Serial cable, (part number TTL-232R-3V3-2MM). It's
available from Allied Electronics, Amazon, SparkFun, and others.

http://www.amazon.com/gp/product/B000FGQ1G6/ref=oh_aui_search_detailpage?ie=UTF8&psc=1
http://www.amazon.com/Jumper-Wires-Premium-200mm-Female/dp/B008MRZSH8
http://www.alliedelec.com/1/products/13504-6-cond-usb-serial-ttl-assembly-cable-mfr-part-ttl-232r-3v3-2mm.html
http://www.amazon.com/Ftdi-TTL-232r-3v3-Serial-Converter-Cable/dp/B00M41OUYA
https://www.sparkfun.com/products/9717

���
USB to UART cable for serial debugging

The UART connection isn't exactly set up and ready for you to use,
though. This means taking apart your router and heating up your
soldering iron.

There are couple of torx screws that hold the base on.

���

Then there are a couple more torx screws that hold the outer shell
together. These are the same size as the previous ones, but different
length. Keep them organized if you plan to put the router back together.

���
More screws.

With the outer screws removed, you can start separating the front and
back half of the clamshell. There are plastic tabs all the way around that
hold it together. I broke a few trying to get it open. Once you get the
front half off, you'll find the PCB held in by more torx screws.

���

Once you remove the PCB, you can locate the UART header, which is
exposed as four solder pads.

���

The solder pads, from left to right, are VCC, ground, transmit, and
receive. You don't need VCC; it's +3.3V power. The USB adapter is
powered by your computer's USB port, instead. That leaves ground, TX,
and RX. The transmit and receive are relative to the device, so transmit
from the device connects to receive of your cable and vice versa. Solder
short leads to the appropriate pads, and connect your jumper wires to
them. Then, route the jumpers out of the case so you can access the

UART once you reassemble your router. I drilled a small hole in the top
for a passthrough.

Here's how the UART header maps to the USB adapter's pinout:

• Device GND <-> Adapter GND (black)
• Device TX <-> Adapter RX (yellow)
• Device RX <-> Adapter TX (orange)

If you have orange, yellow, and black jumpers, connecting them up so
the colors match the USB adapter will save you some trouble. Sadly, I
had green, pink, and blue on hand, so mine is exciting and confusing
every time I hook it up.

���

Then, I zip-tied the leads to reduce stress on them.

���

Connecting Using Minicom
You may want to test the serial connection before reassembling. The
baud rate is 115,200 and serial port settings should be 8,N,1. Here's my
mincom configuration for the R6200. Obviously adjust your ttyUSB
device as appropriate, but it's usually /dev/ttyUSB0.

data-blogger-escaped-comment- HTML generated using hilite.me
###
#############
Minicom configuration file - use "minicom -s" to change
parameters.
pu port /dev/ttyUSB0
pu baudrate 115200
pu bits 8
pu parity N
pu stopbits 1
pu rtscts No
###
#############

When you connect with Minicom and power on the R6200, you can see
the boot text scrolling across the console. If you let it boot, and hit return
in the console, it gives you a root prompt. It's not a great terminal
environment, though. There's no scrollback, for example. Once you have
a serial console, use netgear-telnetenable[1] to fire up the telnet
backdoor.

Shitty terminal environments aside, the serial console is great for
restoring to a non-broken firmware. As long as nothing trashed the flash
partition that contains the CFE boot loader, you can break in to a debug
prompt and do a restore.

When you first power on the device and see CFE loading, break in with
ctrl+c. You need to break in right after CFE starts, but before it finishes
loading the kernel and operating system from flash. Incidentally, this
gets trickier after we shrink the firmware down from nearly 9MB to
under 4MB because the load time shortens dramatically, narrowing the
window when you can break in.

Recovering a Bricked Router
If you break in at just the right time (I just mash ctrl+c repeatedly), you
should get a CFE> prompt. Once you've got the prompt you can start up
CFE's TFTP server with the tftpd command to restore a factory
firmware.

���

The router's network configuration is 192.168.1.1/24. There's no DHCP
server in this mode, so you'll need to configure your own network
interface manually. You'll need a tftp client to upload the firmware
image. TIP: Be sure to switch your client to binary mode. This gets me
every time.

When you reboot, the router should be back to normal. Now you can
iteratively test custom firmware knowing that it only takes a minute or
two to restore back to a good one.

In the next part, we'll regenerate the SquashFS filesystem. We'll also
work on shrinking the firmware down to 4MB to avoid crashing upnpd
during exploitation. We'll need to hunt down and eliminate nonessential
services, while avoiding breaking the boot sequence. Stay tuned!

[1] Did you know that nearly every one of Netgear's consumer devices
has a well-known but unacknowledged backdoor? It's true. What the
fuck are we even doing here. Who needs trojaned firmware when
Netgear devices already have a backdoor. http://wiki.openwrt.org/toh/
netgear/telnet.console

http://wiki.openwrt.org/toh/netgear/telnet.console

