
Broken, Abandoned, and
Forgotten Code, Part 6
Author: Zachary Cutlip

Note: It is assumed that the reader is debugging the processes described
in this and the next several posts using emulation and IDA Pro. Those
topics are outside the scope of this series and are covered in detail here
and here.

In the previous post, we switched gears and started looking at the web
server for the Netgear R6200. That's because the HTTP daemon's code
for upgrading the firmware is less broken and easier to analyze. We also
analyzed a stock firmware image downloaded from Netgear to see how it
is composed. Craig Heffner's binwalk identified three parts, a TRX
header at offset 58, followed by a compressed Linux kernel, followed by
a squashfs filesystem. All of those parts are well understood, which only
leaves the first 58 bytes to analyze.

With the goal of recreating the header using a stock TRX header, Linux
kernel, and filesystem, I described how we can use Bowcaster to create
fake header data to aid in debugging. When we left off, I had started
discussing httpd's abCheckBoardID() function at 0x0041C3D8, which
partially parses the firmware header. We identified a magic signature that
should be at the firmware image's offset 0, as well as some sort of size
field that should be at offset 4. We also discovered this header should be
big endian encoded even though the target system is little endian.

In this part, we'll clarify the purpose of the size field as well as identify a
checksum field. Identification of the checksum algorithm is tricky if you
don't have an eye for that sort of thing (I do not). I'll show how to deal

http://shadow-file.blogspot.com/2015/01/dynamically-analyzing-wifi-routers-upnp.html
http://shadow-file.blogspot.com/2015/01/patching-emulating-and-debugging.html
http://shadow-file.blogspot.com/2015/05/abandoned-part-05.html
https://github.com/zcutlip/bowcaster

with that. By the end of this part, we will have identified four fields,
accounting for 30 bytes of the 58-byte firmware header.

Updated Exploit Code
I last updated the exploit code for part 5, which added several Python
modules to aid in reverse engineering and reconstructing a firmware
image. In this part I've added a module to regenerate checksums found
in the header (see below). Additionally, the MysteryHeader class
populates a couple of new fields that we will cover this post. If you've
previously cloned the repository, now would be a good time to do a pull.
You can clone the git repo from:
https://github.com/zcutlip/broken_abandoned

Header Size
We know the field at offset 4 is a size field of some sort because it's used
as the size for a memcpy() operation[1]. Let's take a look at a stock
firmware image to see what value is in that field. It might correlate to
something obvious.

���

Above, we see the stock value is 0x0000003A, or 58 in decimal. Since
58 is also the amount of unidentified data before the TRX header, it's a
safe bet this field is the overall size of this unidentified header. It's also a
safe bet that this header is variable in size. The TRX header, whose size
is fixed, does not have a size field for the header alone, only for the
header plus data.

���
Checksumming the firmware header.

Checksum Fun
From abCheckBoardID() there are several calls to the
calculate_checksum() function. This is an imported symbol and is not
in the httpd binary itself. Strings analysis of libraries on the R6200's
filesystem reveals that this function is in the shared library
libacos_shared.so. We can disassemble this binary and analyze the
function.

���
Disassembly of calculate_checksum().

There's no need to completely reverse engineer this function. Sure, it
would be convenient to know what checksum algorithm this is[2] and if
there was a built-in python module to use. All we really need, however,
is code that calculates the same values this function does. It's easier in
this case to just reimplement the algorithm. I duplicated this function
one-for-one, where each line of MIPS disassembly became a line of
Python. It's a small function, so it didn't take long to do. That module is
included in this week's update to the git repo.

���
Python code fragment that looks suspiciously like IDA Pro disassembly.

A checksum is calculated across the first 58 bytes of the header. Then at
0x0041C5BC the checksum gets compared to 0x41623241, a value
extracted from the firmware data. Using Bowcaster's find_offset(), it
is revealed that offset 36 of the firmware header should contain the
checksum of the header itself. We'll need to calculate that value for the
header and insert it at this location. In abCheckBoardID() the checksum
field is zeroed out before the value is calculated. We should do the same
before calculating our own. The updated code in the git repository
performs this operation.

Board ID String
With the header checksum in place, we can move forward to the next
few basic blocks. A few checks are performed to verify the "board_id"
string of the firmware. There are a couple of hard-coded board_id strings
that are referenced. If neither of those match, NVRAM is queried to find
out the running device's board_id. It's possible to verify the proper board
ID is "U12H192T00_NETGEAR" by extracting the NVRAM
parameters from a live device[3]. Even if we didn't have that
information, we could still analyze a stock firmware, where we find the
same string embedded in the header.

���

As before, by looking at the pattern string that is compared, we can
identify the offset into the header where the board_id should be placed.

���

$./buildfw.py find=b3Ab4Ab5Ab6Ab7Ab8A kernel.lzma
squashfs.bin
 [@] Building firmware from input files: ['kernel.lzma',
'squashfs.bin']
 [@] TRX crc32: 0x0ee839c0
 [@] Creating ambit header.
 [+] Building header without checksum.
 [+] Calculating header checksum.
 [@] Calculated header checksum: 0x840d0ddd
 [+] Building header with checksum.
 [@] Finding offset of b3Ab4Ab5Ab6Ab7Ab8A
 [+] Offset: 40

The string b3Ab4Ab5Ab6Ab7Ab8A is located at offset 40.

It is worth noting that we suspected the header was variable length given
the presence of a size field. The board_id is a string and is the last field
in the header; it is likely responsible for the header's variable length.

At any rate, this is easy to add as a string section using Bowcaster. This
is the last check in abCheckBoardID().

The Mystery Header So Far
Here's a diagram of what we know about the header so far.

���

That's four fields identified, for a total of 30 bytes. 28 bytes remain.
Although the abCheckBoardID() function only inspected these four
fields, it did populate several integers in the global header_buf structure.
It remains to be seen how these fields get used.

Based on this information we can enhance the Python code to add the
necessary fields. Updated code in part_6 of the git repo looks similar to:

from bowcaster.development import OverflowBuffer
from bowcaster.development import SectionCreator

class MysteryHeader(object):
 MAGIC="*#$^"
 MAGIC_OFF=0

 HEADER_SIZE=58
 HEADER_SIZE_OFF=4

 HEADER_CHECKSUM_OFF=36

 BOARD_ID="U12H192T00_NETGEAR"
 BOARD_ID_OFF=40

 def
__init__(self,endianness,image_data,size=HEADER_SIZE,board_id=BOARD_ID,logger
=None):
 self.endianness=endianness
 self.size=size
 self.board_id=board_id

 chksum=0;
 logger.LOG_INFO("Building header without checksum.")
 header=self.__build_header(checksum=chksum,logger=logger)
 logger.LOG_INFO("Calculating header checksum.")
 chksum=self.__checksum(header)
 logger.LOG_INFO("Building header with checksum.")
 header=self.__build_header(checksum=chksum,logger=logger)
 self.header=header

 def __build_header(self,checksum=0,logger=None):

 SC=SectionCreator(self.endianness,logger=logger)
 SC.string_section(self.MAGIC_OFF,self.MAGIC,
 description="Magic bytes for header.")

 SC.gadget_section(self.HEADER_SIZE_OFF,self.size,"Size field
representing length of header.")

 SC.gadget_section(self.HEADER_CHECKSUM_OFF,checksum)
 SC.string_section(self.BOARD_ID_OFF,self.board_id,
 description="Board ID string.")
 buf=OverflowBuffer(self.endianness,self.size,
 overflow_sections=SC.section_list,
 logger=logger)

 def __checksum(self,header):
 data=str(header)
 size=len(data)
 chksum=LibAcosChecksum(data,size)
 return chksum.checksum

In the next post I'll discuss other functions that parse portions of the
header. I'll show how to identify what fields get used where. By the end
of the next installment we'll be able to generate a header sufficient to get
our firmware image written to flash.

[1] Wah wah...Buffer overflow.
[2] I'm pretty sure it's Fletcher32. I believe this because I asked Dion
Blazakis, and he thinks it is, and that dude is smart. Also I found a
Fletcher32 implementation on Google Code by Ange Albertini that gives
the same result as mine. And that guy is also smart.
[3] The NVRAM configuration can be extracted from /dev/mtd14. This,
plus libnvram-faker is covered independently of this series, in Patching,
Emulating, and Debugging a Netgear Embedded Web Server

http://shadow-file.blogspot.com/2015/06/abandoned-part-07.html
http://en.wikipedia.org/wiki/Fletcher's_checksum
https://twitter.com/justdionysus
https://code.google.com/p/kabopan/source/browse/branches/wip/checksum/?r=41#checksum%253Fstate%253Dclosed
https://twitter.com/angealbertini
http://shadow-file.blogspot.com/2015/01/patching-emulating-and-debugging.html

