Broken, Abandoned, and
Forgotten Code, Part 6

Author: Zachary Cutlip

Note: It is assumed that the reader is debugging the processes described
in this and the next several posts using emulation and IDA Pro. Those
topics are outside the scope of this series and are covered in detail here
and here.

In the previous post, we switched gears and started looking at the web
server for the Netgear R6200. That's because the HTTP daemon's code
for upgrading the firmware is less broken and easier to analyze. We also
analyzed a stock firmware image downloaded from Netgear to see how it
is composed. Craig Heffner's binwalk identified three parts, a TRX
header at offset 58, followed by a compressed Linux kernel, followed by
a squashfs filesystem. All of those parts are well understood, which only
leaves the first 58 bytes to analyze.

With the goal of recreating the header using a stock TRX header, Linux
kernel, and filesystem, I described how we can use Bowcaster to create
fake header data to aid in debugging. When we left off, I had started
discussing httpd's abcheckBoard1D () function at 0x0041C3D8§, which
partially parses the firmware header. We identified a magic signature that
should be at the firmware image's offset 0, as well as some sort of size
field that should be at offset 4. We also discovered this header should be
big endian encoded even though the target system is little endian.

In this part, we'll clarify the purpose of the size field as well as identify a
checksum field. Identification of the checksum algorithm is tricky if you
don't have an eye for that sort of thing (I do not). I'll show how to deal

http://shadow-file.blogspot.com/2015/01/dynamically-analyzing-wifi-routers-upnp.html
http://shadow-file.blogspot.com/2015/01/patching-emulating-and-debugging.html
http://shadow-file.blogspot.com/2015/05/abandoned-part-05.html
https://github.com/zcutlip/bowcaster

with that. By the end of this part, we will have identified four fields,
accounting for 30 bytes of the 58-byte firmware header.

Updated Exploit Code

I last updated the exploit code for part 5, which added several Python
modules to aid in reverse engineering and reconstructing a firmware
image. In this part I've added a module to regenerate checksums found
in the header (see below). Additionally, the MysteryHeader class
populates a couple of new fields that we will cover this post. If you've
previously cloned the repository, now would be a good time to do a pull.
You can clone the git repo from:
https://github.com/zcutlip/broken_abandoned

Header Size

We know the field at offset 4 is a size field of some sort because it's used
as the size for a memcpy () operation[1]. Let's take a look at a stock
firmware image to see what value is in that field. It might correlate to
something obvious.

Save Copy Cut

002200 2A 23 24 SE
002010 F7 23 12 3C
000220 F7 23 12 3C
000230 30 30 SF 4E
000240 87 @@ (@ 39
000250 14 @@ 00 00
000260 ©0 @2 02 00
000070 22 8E 52 10
000280 &8A 9% 9C DO
002290 01 78 DA 1E
0022A0 ES 23 BE 83
000280 ©5 43 8E F6
0002C0 77 9B A6 63
002200 5S4 2D F2 7F
QO2RE® 75 DF 69 A7
QO02FQ ©A 37 85 EF

Type

32 bit unsigned
32 bit signed
A hit LincinnaAd

'Hex Big Endian

R6200-V1.0.0.28_1.0.24.chk

@ X

Paste Undo Redo

@0 00 00 3A
20 00 00 0
DE 5 09 5C
45 54 47 45
E8 OF 00 @0
@9 00 SD o
@0 06 A8 33
58 DC 30 6@
49 97 51 93
(B 6@ 91 5A
@4 14 72 C8
36 OE D6 70
56 E1 7A F4
21 73 42 A9
88 D1 A9 @6
83 9F 98 Al

Value
0x0000003A
58

Overwrite

21 01 00 22 1C 01 @0 18
00 87 10 0 00 00 00 00
S5 31 32 48|31 39 32 54
41 52 48 4452 30 @0 10
21 00 1C 20 00 00 04 45
22 01 00 86 D0 3B @0 00
BS FO A3 64 4F @9 38 05
EQ 8C @A 4A 12 AS E4 BC
8F E8 65 FA|FA AF 99 72
8E B8 E2 A6 13 32 @D B3
15 49 91 A9 1D 67 12 EC
87 AA SD @D|71 67 52 BC
62 3D 55 D4 7B 06 DF 4F
2D FC B8 56 2F F4 94 99
FE D1 1C 36/CC DA EA 56
D1 73 DC ss@so BE DE 0B

>
Go To Offset

T Gt e e e PPy ats
L#.<.e \UIZ2H192T
QO_NETGEARHDRO. .

Offset: 4 Selection: 4

Above, we see the stock value is 0Xx0000003A, or 58 in decimal. Since
58 is also the amount of unidentified data before the TRX header, it's a

safe bet this field is the overall size of this unidentified header. It's also a
safe bet that this header 1s variable in size. The TRX header, whose size

is fixed, does not have a size field for the header alone, only for the

header plus data.

ey

oodl1cs2e
0041cs2c
0041C530
0041C534
0041Cs538
0041C53C
0041CS40
0041C544
0041C548
0041CS4C
0041C550
0041C554
0041csse
0041CSSC
0041CS560
0041CS564
0041C568
0041CS6C
0041C570
0041C574
0041C578
0041C578
0041C578
0041C57C
0041c580
0041CcS80
0041cs8d
0041csse
0041CS8C
0041CS50
0041C594
0041C598
0041CS9¢C
0041CSA0
0041CSA4
0041CSAR
0041CSAC
0041C5B0

AASt =

Checksum Fun

addiu
la
move
move
jair
14

1w
2Ove

move
jalr
mOve
iw

move

move
move
jalr
=ove
1w

sove

la
mOove

move
jair
1i
1w
14
la
sove
sove
jalr
move
addu
addu

-t

$s52, $sp, OxAO4var_ 88

$t9, memset

$a0, $52 ¥ s

Sal, $zero ¥ c

$t9 ; menmset

$a2, Ox64 § ‘4" I n

Sgp, OxAO+var 90($sp)

Sal, $s1 # sre

$t9, me=cpy

$a0, $832 1§ dost

$t9 ; memcpy

$a2, $s0 4 n

$gp, OxAO+var_90($sp)

$a0, $zero

$t9, calculate checksum

$al, $zero # initialize the checksum

Sa2, Szero

$t9 ; calculate checksun

§sl, §t9

Sgp, OxAO+var 90(S$sp)

Sal, $32 # portion of firmware moscpy()ed above.
f This skould be the 58 byte header
with chocksum field zerced out,

$t9, calculate checksus

$a2, $80 # size value used in memcpy()
This is at offset 4 in header.

$t9, $s1

$t9

$a0, 1

Sgp, OxAO+var S0($sp)

$a0, 2

$t9, caleculate checksus

Sal, Szero ¥ fimanlize the checksus.

$t9, $s1

$t9

$a2, $zerxo

$vl, $s3, $sd

$vi, $s6

,oe ;o

Checksumming the firmware header.

From abcheckBoardiD () there are several calls to the

calculate checksum() function. This is an imported symbol and is not
in the httpd binary itself. Strings analysis of libraries on the R6200's

filesystem reveals that this function is in the shared library

libacos_shared.so. We can disassemble this binary and analyze the

function.

|

V) /action: fale = O, update~l, finallize~2
f calculate checksum(int actioa,char *data,izt byte count);

«globl calculate checksum
calovlate_okecksums

14 Sgp, Ox66278
addu $gp. 9

134 v, & | update
zeq $a0, $v0, loc_3roc
133 $v0, 2 | finalize
-—— 1 1 T 1
Fi.l:LA,_AA, ,,,,,,,,,,,, Fillr
beq $a0, $v0, leec 3EBd |
2cp llec _3POC: | update
blex $a2, lec 3E%
=ove $a3, Szexo
- L 3 — ——— 5] ~ —— T
= 1 M= M= . 3
beqz $a0, loc JXi9C § init 11 $t2, Oxe000
i $a2, 1 tog_JEsd) I finaline i $81, Oxdol
1YY 20, Ox6000¢ iw S0, (dword 62300 - 0x€0000) ($t2)
1% $8), Ox60000 iw $a0, (dword 62IA4 - OxEO000) (5t1)
v $v0, (dword_S23A0 -« Ox60000) ($00)
iw Svl, (dword €23A4 - OxE0000)(52))
andl $a0, SvO, Oxrryy

arl $v0, 14

addu $v0, Sa0

andi a2, Svi, Ourrvr
16

addu $vi, sa2

arl Sal, Sv0, 1s
addu al, svO

-l an L .

Disassembly of calculate_checksum().
There's no need to completely reverse engineer this function. Sure, it
would be convenient to know what checksum algorithm this is[2] and if
there was a built-in python module to use. All we really need, however,
1s code that calculates the same values this function does. It's easier in
this case to just reimplement the algorithm. I duplicated this function
one-for-one, where each line of MIPS disassembly became a line of
Python. It's a small function, so it didn't take long to do. That module is
included in this week's update to the git repo.

def (self,data):
size=len(data)
t@=self.dword_623A0
af=self.dword_623A4

az2=size

a3=0

while a3 != a2:
vl=ord(datal[a3])
a3+=1

a0=(a0+vl) & Oxffffffff
t0=(t0+a0) & Oxffffffff

self.dword_623A0=t0
self.dword_623A4=a0

return 1

def (self):
vO@=self.dword_623A0
vl=self.dword_623A4

ad=(v0 & Oxffff)
vo=(v0>>16)
vO=(v0+al) & Oxffffffff

Python code fragment that looks suspiciously like IDA Pro disassembly.

A checksum is calculated across the first 58 bytes of the header. Then at
0x0041CSBC the checksum gets compared to 0x41623241, a value
extracted from the firmware data. Using Bowcaster's find offset(), it
1s revealed that offset 36 of the firmware header should contain the
checksum of the header itself. We'll need to calculate that value for the
header and insert it at this location. In abCheckBoardiD() the checksum
field is zeroed out before the value is calculated. We should do the same
before calculating our own. The updated code in the git repository
performs this operation.

Board ID String

With the header checksum in place, we can move forward to the next
few basic blocks. A few checks are performed to verify the "board_id"
string of the firmware. There are a couple of hard-coded board_id strings
that are referenced. If neither of those match, NVRAM is queried to find
out the running device's board_id. It's possible to verify the proper board
ID is "UI2H192T00_NETGEAR" by extracting the NVRAM
parameters from a live device[3]. Even if we didn't have that
information, we could still analyze a stock firmware, where we find the
same string embedded in the header.

R6200-V1.0.0.28_1.0.24.chk

c 5 X l'j - Q, Hex search

Save Copy Cut Paste Undo Redo Go To Offset Find (Hex search)
000000 2A 23 24 SE|00 20 00 34|01 01 00 00/1C 01 00 18|F7 23 *a$A...:......... i
000012 12 3C 00 00|00 20 00 87(10 €0 00 00(00 00 F7 23/12 3C . <.iirriiinnn.. 2.<

000024 DE 65 @9 SC|55 31 32 48|31 39 32 5430 30 SF 4E|45 54 .e.\U12H192TOO_NET
000036 47 45 41 52 48 44 52 30|00 10 87 ©0/CO 39 E3 O |00 €@ GEARHDRO..... Osiarere

002048 O1 20 1C 00 00 20 04 45|14 00 02 20|00 €@ SD e@|@d 01 B,)i
002054 ©0 86 DO 3800 00 00 €0 00 00 00 ©6|A8 33 BE FOIA3 64 ...;......... 3...d
90206C 4F ©9 38 05|22 8E S2 10|58 DC 30 CO|EO 8C @A 4A|12 AS 0.8.".R.X.0"...J..
QOQ7E E4 BC 3A 99/9C DO 49 97|51 93 8F E8|65 FA FA AF|99 72 IRQM R e
Type Value

8 bit signed 85

8 bit unsigned 0x55

16 bit signed 21809

16 bit unsigned 0x5531

32 bit unsigned 0x55313248

32 bit signed 1429287496

64 bit unsigned 0x5531324831393254
64 bit signed 6138743052727562836

BGR
RGB
binary 01010101 00110001 00110010 01001000 00110001 00111001 00...

double (8 byte) 2.40722E+102
float (4 byte) 1.21768E+13

octal 125 061 062 110 061 071 062 124 060 060 137 116 105 124 107 1...
string U12H192T00_NETGEAR
Hex Big Endian Overwrite Offset: 28 Selection: 12

As before, by looking at the pattern string that is compared, we can
identify the offset into the header where the board_id should be placed.

S ./buildfw.py © ¢ b3Ab4Ab5Ab6AL7AbL8A kernel.lzma
squashfs.bin

The string b3Ab4Ab5Ab6Ab7ADbSA is located at offset 40.

It is worth noting that we suspected the header was variable length given
the presence of a size field. The board_id is a string and is the last field
in the header; it is likely responsible for the header's variable length.

At any rate, this is easy to add as a string section using Bowcaster. This
1s the last check in abCcheckBoardID().

The Mystery Header So Far

Here's a diagram of what we know about the header so far.

Byte

0-3 Magic: "*#3"

4-7 | Header Length

8-1

12-15

16-19

20-23

24-27

28-31

32-35

36-39 | Header Checksum

40-variable
board id

"U12H192T00 _NE
TGEAR"

That's four fields identified, for a total of 30 bytes. 28 bytes remain.
Although the abCheckBoardiD() function only inspected these four
fields, it did populate several integers in the global header_buf structure.
It remains to be seen how these fields get used.

Based on this information we can enhance the Python code to add the
necessary fields. Updated code in part_6 of the git repo looks similar to:

from bowcaster.development import
from bowcaster.development import

class MysteryHeader (object

0

58
4
36
40
def
__init (self
None
self
self
self
0
self
self
self
self
def build header(self 0 None
self

self self

self self

self
self self

self self

__checksum(self
str
len

In the next post I'll discuss other functions that parse portions of the
header. I'll show how to identify what fields get used where. By the end
of the next installment we'll be able to generate a header sufficient to get
our firmware image written to flash.

[1] Wah wah...Buffer overflow.

[2] I'm pretty sure it's Fletcher32. I believe this because I asked Dion
Blazakis, and he thinks it is, and that dude is smart. Also I found a
Fletcher32 implementation on Google Code by Ange Albertini that gives
the same result as mine. And that guy is also smart.

[3] The NVRAM configuration can be extracted from /dev/mtd14. This,
plus libnvram-faker is covered independently of this series, in Patching,

Emulating, and Debugging a Netgear Embedded Web Server

http://shadow-file.blogspot.com/2015/06/abandoned-part-07.html
http://en.wikipedia.org/wiki/Fletcher's_checksum
https://twitter.com/justdionysus
https://code.google.com/p/kabopan/source/browse/branches/wip/checksum/?r=41#checksum%253Fstate%253Dclosed
https://twitter.com/angealbertini
http://shadow-file.blogspot.com/2015/01/patching-emulating-and-debugging.html

