Broken, Abandoned, and
Forgotten Code, Part 5

Author: Zachary Cutlip

In previous installments I shared proof-of-concept code that would
exercise the Netgear R6200's hidden (and badly broken) SetFirmware
SOAP action. It satisfied the various wonky conditions necessary to get
into the sa_parseRcvcmd () function. Then I showed where in that
function a firmware would be decoded from the SOAP request and
written to flash. I showed how to identify a code path that leads to
firmware writing. In part four, I showed how an undersized malloc ()
means a stock firmware crashes upnpd. Although we'll work around that
bug later, for this and the next several installments we'll be working out
how the firmware image gets parsed so we can create our own.

Updated Exploit Code

I last updated the exploit code for part 3, in which I showed how to form
the complete SOAP request. In this part, ['ve added several Python
modules to aid in reverse engineering and reconstructing a firmware
image. If you've previously cloned the repository, now would be a good
time to do a pull. You can clone the git repo from:
https://github.com/zcutlip/broken abandoned

Analyzing httpd

We know that the code path in upnpd that accepts a firmware and writes
it to flash memory is severely broken. When given a legitimate firmware
obtained from Netgear, it crashes. In order to reverse engineer the
firmware format, it may be easier to analyze a program that is known to
work properly when upgrading: the web interface.

http://shadow-file.blogspot.com/2015/04/abandoned-part-01.html
http://shadow-file.blogspot.com/2015/04/abandoned-part-02.html
http://shadow-file.blogspot.com/2015/05/abandoned-part-03.html
http://shadow-file.blogspot.com/2015/05/abandoned-part-04.html
https://github.com/zcutlip/broken_abandoned

In the next several posts I'll describe analysis of the embedded HTTP
daemon to understand how it processes a firmware image file. I'll also
describe how to use the Bowcaster exploit development framework to
aid in dynamic analysis and to develop an understanding of the firmware
header composition. The goal is to generate a firmware image out of an
existing filesystem and kernel. Bonus points if we can either create a
firmware image that is identical to the original or if we can explain what
the differences are and why those differences don't get in the way.

You can debug the web server by copying GDB to the physical R6200
router, or you can debug the embedded httpd in emulation. The first
option requires less up-front effort, but the second option is more
convenient once you have it working. Running upnpd and httpd in
emulation requires faking some hardware and some binary patching.
Before proceeding, you may want to read my previous posts on
debugging with QEMU and IDA Pro and on patching, emulating and
debugging using IDA Pro (which specifically addresses httpd). If you're
playing along at home, I strongly recommend getting the web server and
the UPnP daemon up and running in QEMU and debugging them with
IDA Pro. During the next several posts, there will be a few aspects |
don't explain in depth. These these things will be relatively
straightforward if you have your working environment set up like mine.

Firmware Composition

Before we actually upload a firmware to the web interface, let's first see
how a firmware image file is composed, and identify any sections that
are already understood and don't need reverse engineering.

A good starting point is Craig Heffner's binwalk.

data-blogger-escaped-comment- HTML generated using hilite.me

https://github.com/zcutlip/bowcaster
http://shadow-file.blogspot.com/2015/01/dynamically-analyzing-wifi-routers-upnp.html
http://shadow-file.blogspot.com/2015/01/patching-emulating-and-debugging.html

Binwalk identifies three sections: A TRX header at offset 58, an LZMA
section at offset 86, and a Squashfs filesystem at offset 1328446. The
TRX header is well understood. It's a firmware header format that dates
back to at least the venerable Linksys WRT54g.

Here's a diagram (courtesy of the OpenWRT wiki) of the TRX header's
format:

0 1 2 3
0123456789 01234567890123456789°01
+——_———————————e——err - +
| magic number ('HDRO')
+——_———————————e——rerrr - +
| length (header size + data)
Fe—————— e - Fe————— e - F———————————————— +
| 32-bit CRC value |
Fe—————— e - Fe————— e - F———————————————— +
| TRX flags | TRX version
F———————————————— - F———————————————— +
| Partition offset[0]
+——_————————e———e——errr - +
| Partition offset[1]
+——_———————————e——errr - +

http://wiki.openwrt.org/doc/techref/header

There's no need for analysis here. In the part_5 directory in the git repo,
I've provided a module that generates a TRX header.

We also don't need to analyze the Squashfs filesystem. At least not yet.
Although there are many variations of Squashfs, there are also a lot of
tools that will generate Squashfs images. We'll investigate more closely
later, but for now, this is a known quantity.

When there is only one LZMA section, and it's near the beginning of an
image--after the TRX header and before the filesystem--that is often the
compressed Linux kernel. That's easy to verify. Extract out that section
and decompress it to see if it's a Linux kernel.

So we have the TRX header, compressed Linux kernel, and the squashfs
filesystem. The TRX header starts at offset 58, leaving only 58 bytes of
unidentified data. Not bad! What are the chances that this 58-byte header
is just a haiku about a man from Nantucket?

It's possible this header is documented somewhere, but if so, I'm not
aware of it. Even if it is, it's worth going to the trouble of reversing it.
Doing so is instructional. It also exposes interesting bugs in the HTTP
and UPnP daemons.

Part 5's example code takes advantage of a project I created, called
Bowcaster. Bowcaster has a class called overflowBuffer that generates
a pattern string for debugging buffer overflows. It also gives you the
ability to replace sections of that string with things like ROP gadgets,
fixed strings, and other data types. The pattern string Bowcaster
generates for you looks like:

AaOAalAa2ha3Aad4AabRhabAa7/Aa8Aa9Ab0AblAb2Ab3Ab4AbL5Ab6AD7AbLSA

In the pattern string, no sequence of three or more characters is ever
repeated. overflowBuffer provides a find offset () method. This
makes it easy to identify at what offset a given value seen in a register or
in memory during a debugging session is found.

Even though we're not debugging a buffer overflow, the
overflowBuffer class is still useful. As we identify each field and what
value it should contain, it's easy to plug in those values at the right
offsets as if they are ROP gadgets.

https://github.com/zcutlip/bowcaster

The following code fragment, taken from part 5's exploit code, uses
Bowcaster to generate a stand-in for the header:

from bowcaster.development import

from bowcaster.development import

class MysteryHeader (object

def init (self

self

The stand-in header is shown below:

[©] Hex View-1

TFDEB3A7
TFDEB3B7
TFDEB3C7
7FDEB3D7
7FDEB3E7
TFDEB3F7
TFDEB4O7
TFDEB417
TFDEB427
TFDEB437
TFDEB447
TFDEB4S7
TFDEBA67
TFDEB477

22
63
70
&
41
61
30
41
87
14
00
22
8A
01

UNKNOWN

3B
68
65
63
61
35
4l
62
00
00
00
8E
90

20
6B
3Aa
74
30
41
62
36
co
00
00
52
sc

66
22
20
65
41
61
31
41
39
00
00
10
Do

69
oD
61
74
61
36
41
62
ES
00
00
58
49

6C
OA
70
2D
31
41
62
37
OE
00
06
DC
97

6D
74
63
65
41
61
33
41
00
01
F9
8c
EB

65
65
61
61
61
38
41
48
ic
00
A3
OA
65

3D
6E
74
6D
33
41
62
44
00
86
64
4A
FA

7B DA 1E CB 60 51 5A 8E B8 E2 A6
7FDEB3D7: MEMORY:7FDEB3D7

Fake header
starts here.

ename="fw.

AaOAalAaZAaldAadh
aS5AabAa7AaB8Aa%Ab
OAbl1AbL2AbL3AbL4AADLS
AbSAbTADBAHDRO. .

+essB

TRX Header starts
here, with "HDRO".

Above we see Bowcaster's pattern string in memory just prior to the
TRX header.

The first parsing of this header takes place in the function
abCheckBoardID(), called by http d(). In this function the first header

field that is inspected is a strcmp () between the string "*#$~" and the
firmware data starting at offset O.

¥

e
EE’ICGGC 1bu $v0, 0(Sa2) #§ get 1 byte from from fw _data+48?7
0041C470 la $al, (asc_4DFFF8+48) # "get_ssid”
0041C474 la $t9, stremp
0041c478 sb $v0, 0($a3)
0041C47C addiu $al, (asc_4E2030 -~ Ox4E0000) # "*ps™"
0041c480 sb $zerxo, 0x32($tl)
0041C484 jalr $t9 ; strecmp
0041c488 move $a0, $s1 # strcmp(firmware_data,"*#§"")
0041c48C 1w $gp, OxAO4var 90(Ssp)
0041C490 beqz $v0, loc_41c4c4
0041C494 addiu $v0, $sl1, 4

This appears to be a magic number or signature. Adding it to our Python
header class:

from bowcaster.development import
from bowcaster.development import

class MysteryHeader (object

0
def init (self

#add the magic signature "*#S""
self self

self

If the firmware doesn't have this signature, no other parsing takes place.
Also, note that the signature string must be null terminated since the
comparison is performed using a strcmp().

The next few things worth pointing out involve what appears to be a size
field right after the signature string. Here's a look at a hex dump of our
generated firmware header:

@2 X[

Paste Undo Redo

00020
000210
000220
000230
000040
000250
000260

......

Hex

Save Copy Cut

2A 23 24 SE|
61 35 41 61|
30 41 62 31
41 62 36 41
87 00 CO 39
14 00 00 09

00 31 41 61
36 41 61 37
41 62 32 41
62 37 41 62
ES OFE 00 00
09 @@ 5D 00

00 00 00 00|00 06 AS 33
22 8E S2 10|58 DC 30 60
8A 90 9C D2 49 97 51 93
@1 78 DA 1E/CB 60 91 SA
ES 23 BE 83 04 14 72 C8
@S 43 SE F6/36 @F D6 7D

77 9B A6 63
54 2D F2 7F
75 DF 69 A7,
@A 87 85 EF

- -

- ..

56 E1 7A F4

21 73 42 A9
8B D1 A2 06
83 9F 98 Al

- -

—_-a e s

Little Endian Overwrite

fw.chk

32 41 61 33

41 61 28 41
62 33 41 62

41 61 34 41
61 39 41 62
34 41 62 35

38 41 48 4452 30 90 10

01 00 1C @0
@0 01 00 36
B8 F9 A3 64
E@ 8C OA 4A
8F E8 65 FA
3E B8 E2 A6
15 49 91 A°
87 AA SD @D
62 3D 55 D4
2D FC B8 56
FE D1 1C 36

00 @@ 04 45
Do 3B @2 00
4F @9 38 05
12 4 BC
FA
13
10

m

BT R
o w
RREN

NN
SR8

71
7B @6 DF 4F
2F F4 94 99
CC DA EA S6

>
Go To Offset

*#3A. 1Aa2Aa3Aadh
aSAabAa7Aa8AalAb
BAbIALZAB3Ab4ALS
Ab6AL7AbLSAHDR®. .

D1 73 DC 56 3D BE DE 0B

AR e e e e e A
~

Offset: 4 Selection: 4

Below we see a memcpy () at address 0x0041C550 that uses the size field
highlighted in the above hex dump:

0041C528 addiu
0041C52C 1la
0041C530 move
0041C534 =ove
0041C538 jalr
0041C53C 1i

0041C54C move
0041C550

0041C554 m=ove
0041C558 1w
0041C55C move
0041C560 la

$82,

$t9,
$a0,
$al,
§¢9

$a2,

0041C540 1w ;
0041C544 move S$al,
0041C548 la $t9,

Jalr

$sp, OxAO4var 88

unk_2AE76830
$82

$zoro
; memsot

Ox64 §# 'Q’

OxAO+var_90($sp)

$sl
unk 2AE766F0

$30

OxAO+var_ 90($sp)
s Szero

unk_2ABA1E6S

memcpy() size - - b

¢ | comes from $s0 e
fn T6 O00000A4E
77 T795F1BDO

s S0 00314161
§ des 81 TFBATFIE
o /:: e
$s0 contains s« ooooooas

85 00620000

0x00314161

FELEEECESEELESLTCSLTYS

There are a few things worth calling out here. First is the byte order.
This is a little endian system, so we would expect to see 0x61413100 in
register $s0. The byte order in the register matching the byte order on
disk means this data is interpreted as big endian. A couple of basic
blocks prior to the location of the memcpy () are where the byte-
swapping occurs to convert this big endian value to little endian. This is
the first sign that the 58-byte leading header should be big endian even
though the rest of the file, and indeed the target hardware itself, is little
endian.

Another thing; the null terminator of the "*#$~" string overlaps with the
high byte of the size field. It is serendipitous that the size field is big
endian encoded and its value is small enough to have a leading zero (the
stock firmware's size field contains 0x0000003a). This appears to be an
innocuous bug. Instead of a stremp () to check the signature string, a
memcmp () Or an integer comparison should have been used.

But wait, there's more! If you haven't guessed already, this is a buffer
overflow. It would be a really nice one, too, except that it requires
authentication. I won't discuss it in detail here, because we'll see an
identical one when we circle back to upnpd. But if you're playing along
at home, feel free check it out. Exploitation is straightforward.

The last thing worth noting is the overflowBuffer class's

find offset () method. The value found in register $s0 is a
combination of a null terminator plus three characters of the pattern
sequence: "\x001aa". We can use find_offset () to figure out where in
the header this value came from:

It's easy to encode the size value into the header using Bowcaster:
58

self self

In the next part, I'll continue discussing the abCheckBoardID() function.
I'll also discuss a checksum function whose algorithm is difficult to
identify and how we deal with that. Then I'll discuss what other
functions also are responsible for inspecting and parsing the firmware
header.

http://shadow-file.blogspot.com/2015/05/abandoned-part-06.html

