
Broken, Abandoned, and
Forgotten Code, Part 4
Author: Zachary Cutlip
In the last post, I described how upnpd's sa_parseRcvCmd() function
finds the body of a SOAP request and how it parses that SOAP request.
This is a large and complicated function that processes many types of
SOAP requests. I demonstrated how to work out the desired path of
execution to decode and write firmware. At the end I made an educated
guess as to how the SOAP request should be formed, and how the
firmware should be represented in the request body.

In this post, we'll start with some prototype code that will exercise the
portions of upnpd we have analyzed so far. It satisfies the conditions that
I described in parts 1, 2, and 3. Including:

• The necessary timing games described in parts 1 and 2
• The minimum Content-Length described in Part 1
• The HTTP headers I described in Part 2
• The SOAP request body I described in part 3

PoC Exploit Code
In the previous installment, I updated the git repository with working
exploit code that satisfies the above conditions. There is no update to the
code for Part 4; the previous part's code is sufficient for now. You can
clone the repo from:
https://github.com/zcutlip/broken_abandoned

http://shadow-file.blogspot.com/2015/05/abandoned-part-03.html
https://github.com/zcutlip/broken_abandoned

Emulation and Debugging
Strictly speaking, you don't need to debug upnpd for this installment,
although it may help a little. In the next several installations of this
series, however, it is assumed that readers who are following along will
be emulating and debugging the target processes. If you are following
along, it's worth checking out my post on remote debugging with QEMU
and IDA Pro. In that article, I walk you through running upnpd in
emulation and attaching IDA Pro for debugging.

The exploit code from Part 3 allows you to specify an optional file as a
command line argument to encode into the request. If you don't provide
an input file, then the entire firmware data will consist of a string "A"s.
This is a good starting point as a long string of "A"s is easy to identify in
a debugger's memory trace.

���
Debugger memory trace showing the SOAP request just before base64 decoding.

http://shadow-file.blogspot.com/2015/01/dynamically-analyzing-wifi-routers-upnp.html

Crash! Hopes and Dreams Wrecked
When I got to this point in my analysis, naturally the first thing I did was
encode a legitimate firmware file into the request, in hopes the firmware
would be successfully written. Surprise. This was not successful. The
upnpd deamon crashed processing the request. It was at this point in the
summer of 2013 that I chucked my laptop into the river and seriously
considered a career change.

Don't chuck your laptop into the river. Instead, let's figure out why the
program crashes when given a legitimate firmware. I encoded a
legitimate firmware file (obtained from Netgear's support website) into
the SOAP request. When I sent that request to the UPnP daemon, the
daemon crashed in sa_base64_decode(). My initial assumption was
that this was a non-standard, possibly buggy, base64 decoder. I spent
some time reversing the base64 decoding function. There was no
obvious problem with it. Laptops were chucked.

It turns out, the problem isn't with the base64 decoder, but something
more obvious. The problem is with the buffer that the firmware gets
decoded into.

���
Allocate a 4MB buffer for decoding

In the above screenshot, we see memory being allocated. The resulting
buffer is used to hold the base64 decoded firmware. Note the instruction
right after the jump to malloc() (On MIPS, the instruction right after a
jump gets executed at the same time as the jump):
lui $a0, 0x40
For those less familiar with MIPS assembly, the lui instruction means
"load upper immediate." This will load 0x40 into the upper half of the
$a0 register. That means $a0 will contain 0x400000, or 4194304 in
decimal. By convention, the $a0 register contains the first argument to a
function, in this case malloc(), resulting in a 4MB[1] buffer to decode
the firmware into. The size of a typical firmware image for this device is
over 8MB:
data-blogger-escaped-comment- HTML generated using hilite.me
zach@devaron:~/code/wifi-reversing/netgear/r6200 (0) $ ls -
l R6200-V1.0.0.28_1.0.24.chk
-rw-r--r-- 1 zach zach 8851514 Jan 27 2014 R6200-
V1.0.0.28_1.0.24.chk

In fact it's closer to 9MB. This is what crashes the program. It's unclear
why the decoding isn't done in place or why the distance between the
opening and closing <NewFirmware> tags, which is calculated right
before this operation, isn't used to allocate the buffer.

���

In any case, this is the surest sign yet that the SetFirmware SOAP action
isn't completely implemented, and likely never actually worked in
production firmware. If we're going to exercise this functionality without
crashing the program, it will be necessary to generate a replacement
firmware image than is dramatically smaller[2] than the stock firmware.
While possible, this is a non-trivial effort and will come with severe
limitations. I'll discuss shrinking the firmware in a later post.

Before spending time on making a smaller firmware, we have a few
other things to work through. We need to work out (1) what sort of
validation, if any, is done on the decoded firmware, and (2) how to
satisfy that validation. Further, there may be additional bugs in
upnpd preventing a firmware from being written to flash memory. If so,
there will be no point in figuring out how to shrink the firmware.

We'll start reverse engineering the firmware format in the next post.

[1] Technically this should be 4MiB, but in order to write that you have
to say "mebibytes," which is dumb. If you hear anyone saying
"mebibyte" in public, you should punch them in the face. So I'm kicking
it old-school with "MB."

[2] This is the first of two potential buffer overflows that I am aware of
in the firmware processing code. Some may see an opportunity here to
exploit a heap-based buffer overflow. The approach I went with was to
shrink the firmware to avoid crashing upnpd.

http://shadow-file.blogspot.com/2015/05/abandoned-part-05.html

