Broken, Abandoned, and
Forgotten Code, Part 3

Author: Zachary Cutlip

In the previous posts, I talked about the hidden "SetFirmware" SOAP
action in the Netgear R6200's UPnP daemon, and the weird timing
games we have play to deal with UPnP daemon's broken networking
code. I also discussed the haphazard parsing of the HTTP headers across
multiple functions. I made a guess at what headers might get our
SetFirmware SOAP request passed to the sa_parseRcvcmd () function
where hopefully an encapsulated firmware image will be decoded.

In this post I'll discuss how the sa_parseRcvCmd () function actually
parses, or attempts to parse, the SOAP request body.

Updated Exploit Code

Previously, I published a git repository containing proof-of-concept code
that demonstrates what I discussed in part 2. The repository has been
updated for part 3, so if you've cloned it, now is good time to do a pull.
The new code will generate the complete SetFirmware SOAP request to
flash an updated firmware to the router. You can get the repo here:
https://github.com/zcutlip/broken abandoned

Parsing the SOAP Request Body
The sa_parseRcvCmd () function is large and difficult to describe.
Attempting to reverse engineer the entire function would be tiresome.

http://shadow-file.blogspot.com/2015/04/abandoned-part-01.html
http://shadow-file.blogspot.com/2015/04/abandoned-part-02.html
https://github.com/zcutlip/broken_abandoned

e o Graph overview

Graph view of the sa_parseRcvCmd function
The above figure is a bird's eye view of this function. To give some
perspective, the following figure is the first basic block, which includes
the function prologue that sets up a long list of local variables in addition
to the first bit of parsing of the SOAP request body.

IDA View-A

e _parsalovind s TSIy s oYy sy 1
§OBATA TAEF) e £1293C 30 434098 o

var_C0be

war_C00=

Aette
Narael slee de ~fumrc
fleld L6 2o -Suard
WAT_BFee ~Suard
WAS_Bros ~duars
WAl BICe ~SuRDC
WAL _BIbe ~2unzn
Ar_BEAe JSelnd
ar_BES= JQukEd
var ISCw JQelas
ol fsate Sulid
wvar e ek
var_ 0= Gwiid
ar_ SO0 ~guplc

_alees ~Bunie
fleld Bbe -Suncd
fleld L -2unce
fleld 20« ~2uaac
fleld 32e ~Sunan
WAL _330e ~2uad
Ahis Fetha ma sp= »Dadas
Al _MhEs el
var A00= J2uNd
var _BiCe JGubad
var_Bibe JSubid
war_Mks Gubid
"

var_alds -Suadd

R b
rar_Sh3w LGebid
var_A5As LGuidSA
ar_AShe iy
nesdles ~2use
BAyYsachs ~Buls
War_0s st
WAr_4Ce -Suet
WAE_Abe ~2uur
WAL _the ~2atn
At _40= «Ouid
pie= Qe
ar_3he «Bab
rar dbe WGeds
ar 0w «3udb
var 20 Gl
ar_ibe ~3udd
var_idde ad
war_lCs guit
war_Lbs Ouln
war_Lbs -Ouln
ar_Los auil
War_Cs «8wc
Ar_Be -8
Al b= o8

b2,
v Bep, ~BwCin

B3, SeCilevas I8(8e3)
n!, SwCilevasr COR[$e3)
Bed, a3

i Bai, Swiecooe
is BAD, shewhe
v Bak, Cabody < Ondioo9) LI
jalr BAY o steenr
1 o aeeas o hep
~ 3 tvar_Chhifep)
LA

. Sa3
o Sa), Sap, Sucitevar ad

Check out all those local variables.

Rather than try to understand the entire function, an easier approach is to
decide where in the function we want execution to reach and work
backwards from there. This way offers a better chance of finding out if
the desired code is reachable, and if it is, what paths will lead there.

If we spend some time browsing the disassembly, we start to see what
appears to be a group of blocks responsible for decoding the firmware
from the SOAP request body and writing it to flash memory.

® @ Graph overview

I

Firmware decoded §
and written to
flash here.

_[h“.

| -

s

f
L

—— e Y ! :
1]
i L)

Looking even closer, we can identify the actual block where the
firmware is written to flash.

L

CODE XREF: sa_parseRovCmd+EECj
3 write
§s0 i
o:gxa+v.r_coa(8-p)

$v0, loc_4247E0

It's easy to guess that this block writes to flash memory based on the
blocks that lead up to it (an earlier block opens /dev/mtd1 for writing)

as well as the error string that will be printed if the write fails. This

block at 0x0042466C is our goal and the path that leads to it is how we

must get there.

Working backwards, we come to a block at 0x00423C38 that appears,

based on symbols and error strings, to base64 decode the firmware

image.

=

la
move

addiu
jalr
addiu
1w
1w

la

la
addiu
jalr
move
1w
lbu
la

la
move
jalr
addiu
1w

la
nop
jalr
1i

1w
bnez
addiu

$t9, 0x420000
$a2, $sl

$
$t9, (sa_basetd_decode - 0x420000)
$t9 ; sa_basecétd_decode
$al, $sp, OxCi8+var CO0
$gp, OxCl8+var_ CO8(S$sp)
$al, OxCil8+var_ CO00($sp)
$a0, 0x440000
$t9, printf
$a0, (aSa_base6d_deco ~ 0x440000) 4§ "sa basefd_decode, lenw=id\n"
$t9 ; printf
$50, $t9
$gp, OxCl8+var COB(S$sp)
$87, 7($s6)
$a0, 0x440000
$t9, printf
$t9, $=0 § printf
$t9 f printf

$a0, (aSoapFirmwareUp - 0x440000) 1§ "SOAP firmware upgrade checking ...

$ O0xCl8+var COB($Ss
$t9, sa_CheckBoardID

$t9 ; sa_CheckBoardlD
$al, 512

$gp, OxCl8+var COB($sp)
$v0, loc_424318

$t0, $s86, O0x10

$vl, (aNtdNritoPailWr - O0x440000) # “mtd write fall writtenwid, count=id.\n"

From this we can guess that the firmware image should be base64
encoded into the SOAP request body. We might also guess that the
sa_CheckBoardID() function in the above figure performs some sort of
parsing of the decoded firmware. Once we've worked out the code path
that gets to this block, we'll start working forwards again and spend
some time investigating this function.

Working backwards even further, we find a cluster of blocks with many
outbound paths. One of these paths (the block at 0x004238C8) leads to
the base64 decoding section. This part of the function is particularly
tortured, so here's the summary. This cluster appears to be a part of a
large loop. On each pass through the loop, a variable is checked against
a number of constants. Each comparison, if a match, results in a branch
to a different path of execution. The constant that leads to the base64
decoding operation is OxFF3A. While not actionable at the moment, this
is worth noting.

SC(isp)]

(R P L]
b

14 Svo,

vabu L9, B3, Bl

' Ive, OaCibewar 30(isp)
- Svd, OxCllevar 4C(isp)
14 Svo,

f COODE XREF: sa_parseRcvCadrdic §

Lloc 42

bae Bal, Sv0, lec_ 423000
L A, OxCilewar S4(8sp)
, e
e
Loc 4230CH § COOE IREF: sa_parseRoveadedec §
i1 0, O
deq Fad, Sv0, Joc_s2)Nr0
i %0, O»
o 1
e
'
loc_423Nr0: f COOE XREF: sa_parseRcvOnd+lsSe)
v $v0, SaCiftvar_44(88p)
oy
o33 $v0, loo a23E2C § Lf sot sero, 9o to
f malloc and dasedd decode
sll Svi, Sfp. &

1
Looking for several constants. OXFF3A leads to firmware decoding.

From there we can go backwards a little further and reach the function
prologue, discussed earlier. With a general idea of the path that is

required to get the firmware decoded and written, we can start working
forwards again. We now have a better idea of what code paths to focus
on and what ones can be ignored.

It is at the start of sa_parseRcvCmd () where we find the first hints at
how the actual body of the SOAP request should be structured. At the
very beginning of this function, a substring search for ":Body>" is
performed. This would find the canonical <soap-ENV:Body> XML tag
that surrounds a SOAP message body. It would also find the non-
canonical <HOLY-SHIT-THIS-CODE-IS-SHITTY:Body> XML tag. So, you
know, whatever.

var_ye -y
var_4= -4

addu Sgp, §t9
addiu $sp, -0xCl8

W $xa, OxCl8evar 4(Ssp)
W $fp, OxCl8svar_ B8($sp)
W $s87, OxCl8+var_ C($sp)
sW $s6, OxCl8+var_ 10($sp)
oW §s85, OxCl8+var_l4(Ssp)
(3] $84, OxCl8+var_ l18(Ssp)
(3 $83, OxCl8evar 1C($sp)
W $52, OxCl8svar 20($sp)
W $s1, OxCl8+var_24($sp)
W $s0, OxCl8+var 28(Ssp)
W Sgp, O0xCl8+var COB(S$sp)
move $83, Sal

la $al, 0x440000

la $t9, strstr

addiu $al, (aBody - 0x440000) i ":1Body>"

jalr §t9 ; strstr

vo $sl, $Sa0
iw $gp, OxCl8evar COB(S$sp)
ve $s2, $vO

a

ve $a2, $sl
ddiu $a3, $sp, OxClB+var_ B30
laddiu §t0, §s1, Ox30

100237BC 004237BC: sa_parseRcvCmd+48

Naive string search for ":Body>".

Once the body is located, the function loops over a table of strings,
called s_keyword. This is the loop described earlier that checks for a
series of constants on each iteration. The s_keyword table is an array of
structs that are formed approximately like the following:

struct

uint32_t
char
uint32_ t

For each of these structures, the request body is searched for an opening
and closing XML tag constructed from the corresponding keyword. If a
tag 1s found then the keyword's corresponding action code is checked to
determine the code path to take.

® o Graph overview

Loop over the
s_keyword

table. If a keyword
is found, checK its

action code. —] Igﬂ _

LR 3

loc_423928: § CODE XREF: sa_parseRcvCad+138°j
$t9, memset

$zero, 0xCi8+var B94($sp)
$zero, 0xCl8+var B90($sp)
$zero, 0xCl84var BBC(Ssp)
$zero, OxCi8+var_ B88($sp)
$zero, 0xCl8+var_ B84 ($sp)
$zero, 0xCl8+4var BBO(S$sp)
$zoro, OxCi8+var BIC($sp)
$zero, O0xCl8+var_B78($sp)
$zero, 0xCl8+var B74(Ssp)
$zero, O0xCl8+var B70(S$sp)
$zero, 0xCl8+var_ B6C($sp)
$zero, 0xCl8+var B68(S$sp)
S$zero, O0xCl8+var B64(Ssp)

ve $al, $zerxo fc
14 $a2, 0x32 § '2’ in
1w $s4, 0(Ss6)
jalr $t9 ; memset
|move $a0, $s87 is
1w Sgp, OxCl8+var CO8(Ssp)
iw $a0, OxCl8+needle($sp) s
la $v0, 0x430000
la $t9, sprintf
ve $a2, $s0 § Points to next string in s_keyword table.
addiu $al, $vO0, (as_1 - 0x430000) § "<is"
jalr $t9 ; sprintf
ve $s81, $t9
E $gp, O0xCl8+var_ COB($sp)
ve $a2, $s0
la $vl, 0x430000
la $t9, sprintf
addiu $al, $vl, (as_0 - 0x430000)) "</ie>"
ve $t9, $sl
jalr $t9
ve $a0, $s7
1w $gp, O0xCl8+var COB(Ssp)
iw $a0, OxCl8+haystack($sp) § haystack
la $t9, strstr
1w $al, OxCl8+needle($s § necedle

§ for each string in s_keyword table.

ve 3‘0, $t9

1w $gp, OxCl8+var_CO0B($sp)
beqz $v0, loc_423BEC
ve $a0, $vO s

Perform a strstr() for the first string in the s_keyword table.

Inspecting the s_keyword table reveals the keyword that corresponds to
the magic OxFF3A action code: "NewFirmware".

.data:00452488 .word Ox3E8

.data:0045248C .word OxFF38

.data:004524C0 .word aNewtimezone # "NewTimeZone”
.data:004524C4 .word 0x40

.data:004524C8 .word OxFF39

.data:004524CC .word aNewdaylightsav # “NewDaylightSaving"
.data:00452400 .word 1

.data:00452404 .word OxFF3A

.data:00452408 .word aNewfirmware §# "NewFirmware"
.data:004524DC .word 0x600000

.data:004524E0 .word OxFF3B

.data:004524E4 .word aNewloaddefault # "Newloaddefault”
.data:004524E8 .word 1

.data:004524EC .word OxFF3C

.data:004524F0 .word aNewwpspinenabl # “NewWPSPINEnable"

If a <NewFirmware> tag is found inside the soap body tag, then execution
proceeds to allocate memory for the decoded firmware, and then on to
writing it to flash memory as discussed above.

In the previous part, I made a guess at what HTTP headers would get the
request into the sa_parseRecvCmd function. At this point we now have

enough information to speculate as to how the body of the SOAP request
should be formed.

POST /soap/server_sa/SetFirmware HTTP/1.1
Accept-Encoding: identity

Content-Length: 102401

Soapaction: "urn:DeviceConfig"

Host: 127.0.0.1

User-Agent: Python-urllib/2.7

Connection: close

Content-Type: text/xml ;charset="utf-8"

<SOAP-ENV:Body>
<NewFirmware>

</NewFirmware>
</Body>

If this guess is right, the function first looks for the opening Body tag.
Then it looks for one of a variety of inner tags, NewFirmware being the

one we're interested in. And inside that, hopefully, it will find our base64
encoded firmware image and will decode and write it to flash. Are we
almost home free? Stay tuned.

http://shadow-file.blogspot.com/2015/05/abandoned-part-04.html

