
A 5.25-inch floppy disk has 35 tracks, numbered $00 to $22 (hex).
The format of each track is disk-specific. Most disks split each track
into 16 “sectors,” but older disks use 13 sectors per track. Some
games use 12, 11, or 10. Newer games can squeeze up to 18
sectors in a single track! Just figuring out how data is stored on disk
can be a challenge.

Disk Layout

4am

Apples have a built-in “monitor” and naive disassembler.
Confusing this disassembler is not hard!

to deprotect
and preserve

Disk Boot
A disk is booted in stages, starting from ROM:
$C600 ROM finds track 0 and reads sector 0 into $800
$0801 RAM re-uses part of $C600 code to read more sectors
 (usually into $B600+)
$B700 RAM uses RWTS at $B800+ to read rest of disk

tip: $C600 is read-only. But the code there is surprisingly flexible;
It will run at $9600, $8600, even $1600. If you copy it to RAM,
you can insert your own code before jumping to $0801.

Prologue And Epilogue
Many protected disks start with DOS 3.3 and change prologue/
epilogue values. Here's where to look:

 0x read write

 D5 $B955 $BC7A
 prologue AA $B95F $BC7F
 / 96 $B96A $BC84
ADDRESS
 \ DE $B991 $BCAE
 epilogue AA $B99B $BCB3
 EB ----- $BCB8

 0x read write

 D5 $B8E7 $B853
 prologue AA $B8F1 $B858
 / AD $B8FC $B85D
DATA
 \ DE $B935 $B89E
 epilogue AA $B93F $B8A3
 EB ----- $B8A8

Every pirate needs:
-

-

-

-

Know Your Tools
a NIBBLE EDITOR for inspecting raw nibbles and determining disk
structure (Copy II Plus, Nibbles Away, Locksmith)
a SECTOR EDITOR for searching, disassembling, patching
sector-based disks (Disk Fixer, Block Warden, Copy II Plus)
a DEMUFFIN TOOL for converting disks to a standard format
(Advanced Demuffin, Super Demuffin)
a FAST DISK COPIER for backing up your work-in-progress!
(Locksmith Fast Disk Backup, FASTDSK, Disk Muncher)

Common Code Obfuscation

Self-modifying code
BB03- 4E 06 BB LSR $BB06 <-- modifies the next instruction
BB06- 71 6E ADC ($6E),Y
BB08- 0A ASL
BB09- BB ???

By the time $BB06 is executed...

BB03- 4E 06 BB LSR $BB06
BB06- 38 SEC <-- the code has changed!
BB07- 6E 0A BB ROR $BB0A

Branches into the middle of an instruction
AEB5- A0 02 LDY #$02
AEB7- 8C EC B7 STY $B7EC
AEBA- 88 DEY
AEBB- 8C F4 B7 STY $B7F4
AEBE- 88 DEY
AEBF- F0 01 BEQ $AEC2 <-- Y = 0 here, so this branches...
AEC1- 6C 8C F0 JMP ($F08C)
AEC4- B7 ???
AEC5- 8C EB B7 STY $B7EB

AEBF- F0 01 BEQ $AEC2
AEC1- 6C
AEC2- 8C F0 B7 STY $B7F0 <-- ...to here (JMP is never executed)
AEC5- 8C EB B7 STY $B7EB

Manual stack manipulation
0800- A9 51 LDA #$0F <-- push address to stack ($0FFF)
0802- 48 PHA
0803- A9 8E LDA #$FF
0805- 48 PHA
0806- 20 5D 6A JSR $080C <-- call subroutine (also pushes to stack)
0809- 4C 00 08 JMP $0800
080C- 68 PLA <-- remove address pushed by JSR
080D- 68 PLA
080E- 60 RTS <-- "return" to $0FFF+1 = $1000

JMP at $0809 is never executed! Execution continues at $1000.

Undocumented opcodes
0801- 74 ??? <-- huh?
0802- 4C B0 1C JMP $1CB0

$74 is an undocumented 6502 opcode that does nothing, but takes a
one-byte operand. Here is what actually executes:

0801- 74 4C DOP $4C,X
0803- B0 1C BCS $0821 <-- actually a branch-on-carry (not a JMP)

JMP at $0802 is never executed!

Disk Control
Disk control is through “soft-switches,” not function calls:
$C080-7,X move drive arm (phase 0 off/on, phase 1 off/on... until 3)
$C088,X turn off drive motor
$C089,X turn on drive motor
$C08C,X read raw nibble from disk
$C08D,X reset data latch (used in desync nibble checks)
(X = boot slot x $10)

CC BY 4.0 - Ange Albertini 2015with apologies to Beagle Bros.

Peeks,Pokes and Pirates

38

7 A Brief Description of Some Popular Copy-Protection Techniques
on the Apple][Platform

by Peter Ferrie (qkumba, san inc)

§ page
7.9 Write-protection 44
7.10 Sector-level protections 44
7.11 Track-level protections 58
7.12 Illegal opcodes 62
7.13 CPU bugs 62
7.14 Magic stack values 63
7.15 Obfuscation 63
7.16 Virtual machines 67
7.17 ROM regions 68
7.18 Sensitive memory locations 68
7.19 Catalog tricks 71
7.20 Basic tricks 72
7.21 Rastan 73

7.1 Ancient history

I’ve been. . . let’s call it “preserving” software since
about 1983, albeit under a different name. However,
the most interesting efforts have been recent, requir-
ing skills that I definitely didn’t have until now: I
am the author of the only two-side 16-sector con-
version of Prince of Persia31, the six-side 16-sector
conversion of The Toy Shop32, the single file con-
version of Joust, Moon Patrol, and Mr. Do!, as
well as the DOS and ProDOS file-based conversions
of Aquatron, Conan33, The Goonies, Jungle Hunt,
Karateka, Lady Tut (including the long-lost ending
from side B), Mr. Do!, Plasmania, and Swashbuck-
ler, to name a few. I am also the only one to crack
Rastan cleanly on the IIGS, just 25 years late.34
Yes, I do 16-bit, too.

I’ve spent 13 years writing articles for the Virus
Bulletin35 journal. My faithful readers will recog-
nise the style.

7.2 Isn’t it ironic

4am36 declined to write this document himself, but
his work and approval inspired me to do it instead.
Since his collection is so varied, and his write-ups
so detailed, they served as a rich source of informa-
tion, which I coupled with my own analyses, to fill
in the gaps for titles that I don’t have. Everyone
knows already that he’s funny, but he’s also quite
friendly and very generous. Together, we corrected
a few mistakes in the write-ups, so I gave something
back. I even consider us friends now, so I think that
I got the better deal.

While I don’t regret writing this paper, I do have
to say that, considering the time and effort that it
required, he probably made a wise decision. . . ;-)

I have tried to associate at least one example of a
real program for each technique, but in Section 7.20
you’ll find some nifty new protection techniques that
I’ve developed just for this paper.

7.3 Why why why?

Why the Apple][? It’s because I grew up with the
Apple][, I learned to code on the Apple][, I know
the Apple][.

Why now? Because the disks that were fresh
when the Apple][was current are failing, and if we
do not work to preserve them now, some of the titles
will be lost forever.

This paper is dedicated to anyone who has an in-
terest in helping to preserve what’s left, I sincerely
hope it may help to recognise and defeat the copy-
protection that they have come across.

7.4 Okay, let’s split

We can separate copy protection into two categories;
they are either What You Have or What You Know.
What You Have protections are generally protected
disks, while What You Know protections are gener-

31http://pferrie.host22.com/misc/lowlevel14.htm
32http://pferrie.host22.com/misc/lowlevel15.htm
33http://pferrie.host22.com/misc/lowlevel16.htm
34http://www.hackzapple.com/phpBB2/viewtopic.php?t=952
35http://www.virusbtn.com
36https://archive.org/details/apple_ii_library_4am

39

ally off-disk, such as requests to type in a word from
the manual.

What You Know protections come in several
forms. One is an explicit challenge with immedi-
ate effect; you must answer now to continue. An-
other is an explicit challenge with delayed effect; if
you answer incorrectly now, the game becomes un-
playable later. Yet another is an implicit challenge;
in order to proceed, you should perform an action as
described in the manual, but the game will appear
to be playable without it.

Infocom were infamous for their use of all three:

Starcross issued a direct challenge with immedi-
ate effect, and you could not even leave the second
room without typing the correct co-ordinates from
the star chart.37

Spellbreaker38 issued a direct challenge with de-
layed effect, along the lines of “name the wizard
who. . . ” Any name from their word list is accepted,
but an incorrect answer results in the player receiv-
ing the wrong key. This key cannot unlock a critical
door much later in the game, causing the character
to be killed instead.

Border Zone made use of an implicit challenge.
It required reading the manual in order to know the
correct words to excuse yourself — Oopzi Dazi!39—
after bumping into someone, in order to establish
contact with the friendly spy. Failure to make con-
tact within the allotted time ended the game.

Brøderbund’s Prince of Persia had a variety of
delayed effects, depending on which of the several
copy protection checks failed. One of them included
crashing immediately before showing the closing
scene upon winning the game. That is, after com-
pleting fourteen levels!

However, the What You Have is perhaps the
more interesting, given the vast number of possi-
bilities.

7.5 Accept your limitations

The first important component that we will con-
sider in the Apple][is the MOS 6502 or 65C02
CPU. These CPUs have no separation of code and
data. That is, they are a Von Neumann, not Har-
vard architecture. All memory and I/O addresses
are executable, and everything that is not in ROM
is writable, including the stack.

Since the stack is writable directly, it introduces
the possibility of tricks relating to transfer of con-
trol. (§7.14.) Since the stack is executable, it intro-
duces the possibility of hosting code. (§7.18.5.)

The CPU has no prefetch queue, only a sin-
gle prefetched byte of the next instruction (which
is why the minimum instruction execution time is
two cycles—one for the instruction, and one for the
prefetch), as the last stage in the execution of the
current instruction. This introduces the possibility
of self-modifying code, including the next instruc-
tion to execute, because any memory write will have
completed before the prefetch occurs. (§7.15.2.)

7.6 Lay it out for me

The second important component that we will con-
sider in the Apple][is the Disk][controller. The
Disk][controller is a peripheral which is placed in
a slot. It exposes an interface through memory-
mapped I/O, so the various soft-switches can be read
and written, just like regular RAM. The interface
looks like accesses to $C0sX, where s is #$80 plus
the slot times 16, and X is the switch to access.

The Disk][controller runs independently of the
CPU. Once the drive is turned on and spinning the
disk, the drive will continue to spin the disk until the
drive is turned off again. The drive rotates the disk
at a fixed speed—approximately 300 RPM, and five
rotations per second, which works out to be 200ms
per rotation. However, the speed varies somewhat
from drive to drive. For 5.25" disks, the data den-
sity is equal across all tracks. At 300 RPM, each

37http://infocom.elsewhere.org/gallery/starcross/starcross-map.gif
38http://gallery.guetech.org/spellbreaker/spellbreaker.html
39http://infodoc.plover.net/manuals/temp/borderzo.pdf p19

40

track holds 50000 bits, which is equal to 6250 8-bit
nibbles.

The data on a disk is simply a stream of bits
to be read. For a 5.25" disk, those bits are usually
gathered into 16 sectors of 256 bytes each, spread
across 35 tracks—256× 16× 35 = 143, 360 bytes, or
140kb. When reading from a disk, the Disk][con-
troller shifts in bits at a rate equivalent to one bit
every four CPU cycles, once the first one-bit is seen.
Thus, a full nibble takes the equivalent of 32 CPU
cycles to shift in. After the full nibble is shifted in,
the controller holds it in the QA switch of the Data
Register for the equivalent of another four CPU cy-
cles, to allow it to be fetched reliably. After those
four CPU cycles elapse, and once a one-bit is seen,
the QA switch of the Data Register will be zeroed,
and then the controller will begin to shift in more
bits. As a result, programmers must count CPU cy-
cles carefully to avoid missing nibbles fetched by the
controller.

The Disk][controller cannot tell you on which
track the head resides. It also cannot tell you on
which sector the head resides. (The Shugart SA400
on which the Disk][controller is based does have
this capability via index detector circuits, but that
feature was removed from the Disk][controller to
reduce the cost to manufacture it.) As a result, sec-
tors are usually prepended with a structure known
as the “address field”, which holds the sector’s track
and sector number. The controller does not need or
use this information. Only the boot PROM makes
use of it when requested to read a sector. Beyond
that, the information exists solely for the purpose of
the program which interprets it.

gap 2
(14-24b)

address field gap 3
(5-10b)

data field

D5 AA 96
 volume
 track
 sector
 checksum
DE AA

D5 AA AD
 data (342b)
 checksum
DE AA

gap 1
(40-95b)

... ...

disk data

Following the address field that defines a sec-
tor’s location on the disk, there is another structure
known as the “data field”, which holds the sector
body. One reason for the separate address and data
fields is to allow the sector body to be skipped, as

opposed to stored and then decoded, in the event
that the sector address is not the desired one. An-
other reason is that it allows a sector to be updated
in-place, by overwriting the data field only, instead
of rewriting the entire track to update all of the sec-
tors.

(If the sector were a single structure, the CPU
time required to verify that the desired sector has
been found is so long that the write would begin af-
ter the start of the sector body and extend beyond
the original end of the sector, overwriting part of
the following sector.)

Between the sectors are dead space, which can
be filled with a sequence of self-synchronizing val-
ues, timing bits, and protection-specific bytes.

The two structures that define a sector are each
bounded by a prologue and an epilogue. The pro-
logues for the address and data fields are composed
of three values. Two of those values are never used
in the sector body, to distinguish the structures from
the sector body, and the third value is different be-
tween the two structures, to distinguish them from
each other. The epilogues for the address and data
fields are composed of two values. One of those val-
ues is common to both epilogues but never used in
the sector body, to distinguish it from the sector
data.

The Disk][controller cannot even tell you where
it is within the bitstream. The problem is that
the stream does not have an explicit start and end.
Instead, a specific sequence must be laid on the
track, to form an implicit start. That way, the
hardware can find the start of the stream reliably.
These values are the “self-synchronizing values.” For
DOS 3.3, and systems with a compatible sector for-
mat, the self-synchronising values are composed of
a minimum of five ten-bit “FF”s. A ten-bit “FF” is
eight bits of one followed by two bits of zero. Self-
synchronising values are usually placed before both
structures that define a sector, to allow synchroni-
sation to occur at any point on the disk. However,
this is not a requirement if read-performance is not
a consideration.40 That is, the fewer the number of
self-synchronizing values that are present, the more
data that can be placed on a track. However, the
fewer the number of self-synchronizing values that
are present, the more the controller must read be-
fore it can enter a synchronized state, and then start

40It is a requirement if the data field can be written independently of its address field. Since the write is not guaranteed to
begin on a byte boundary, the self-synchronizing values are required for the controller to synchronize itself when reading the
data again.

41

to return meaningful data.
Finally, the Disk][controller can write—but not

read reliably—arbitrary eight-bit values. Instead, for
reading each eight-bit value, only seven of the bits
can be used—the top bit must always be set, in order
for the hardware to know when all eight bits have
been read, without the overhead of having to count
them. (See §7.10.15 for a deeper discussion about an
effect made possible by the lack of a counter.) In ad-
dition to requiring the top bit to be set, there should
not be more than two consecutive zero-bits in a row
for the modern drive. (The original disk system did
not allow even that. See §7.10.13 for a deeper dis-
cussion about the effect of excessive zeroes)

AND
ORA
EOR

ADC
SBC

DEC INC
DEX INX
DEY INY

ASL LSR
ROL ROR

TAX TXA
TAY TYA
TSX TXS

LDA
LDX
LDY

STA
STX
STY

PLA PLP

PHA PHP

JSR BRK
RTS RTI
JMP

BMI BPL
BVS BVC
BEQ BNE
BCS BCC

CLV
SEC CLC
SED CLD
SEI CLI

CMP
CPX
CPY

BIT

ALU

flags

lo
gi

c
lo

gi
c

ar
ith

m
et

ic

RMWRMWRMW
loadload

transfertransfer

storestore

ct
rl

flo
w

stackstack

NOP

7.7 Copy me, I want to travel

Now that we understand the format of data on the
disk, we consider the ways in which that data can
be copied.

First is the sector-copier. It relies on sectors be-
ing well-defined, and requires knowing only the val-
ues for the prologues and epilogues. The sectors are
copied one at a time in sequential order, for each of
the tracks on the disk, discarding the data between
the sectors, and writing new self-synchronizing val-
ues instead. Some sector-copiers rely on DOS to
perform the writing. In order for that to work, the
disk must be formatted first, because that kind of

sector-copier will not write new address fields to the
disk. Instead, it will reuse the existing ones, since
only the data field needs to be updated to place
a sector on a track. In any case, the sector-copier
cannot deal easily with deviations from the standard
format, and requires a lot of interaction to copy sec-
tors for which the prologue and/or epilogue values
are not constant. Some sector-copiers can be di-
rected to ignore the sectors that they cannot read,
but obviously this can lead to important data being
missed.

Second is the track-copier. It also relies on sec-
tors being well-defined, with known the values for
the prologues and epilogues. However, it reads the
sectors in the order in which they arrive, and then
writes the entire track in one pass41, by itself. It
shares the same limitations as the sector-copier re-
garding reading sectors and discarding the data be-
tween them, but it keeps the sectors in the same
order as they were originally, which can be impor-
tant. (§7.10.9.)

Third is the bit-copier. Unlike the previous two,
it makes as few assumptions as possible about the
data on the disk. Instead, it treats tracks as the
bitstream that they are, and attempts to measure
the length of the track while reading.42 It intends
to write the track exactly as it appears on the disk,
including the data between the sectors, in one pass.
Some bit-copiers can be directed to copy the addi-
tional zero-bits in the stream, but there is a limit
to how reliably these bits can be detected, and the
method to detect them can be exploited. Some bit-
copiers can be directed to attempt to reproduce the
layout of the disk across track boundaries. See sec-
tions 7.10.12 and 7.11.3.

The most important point about copiers in gen-
eral is that there is simply no way to read data off of
a disk with 100% accuracy, unless you can capture
the complete bitstream on the disk itself, which can
be done only with specialised hardware. There is no
way for software alone to read all of the bits explic-
itly and understand how the controller will behave
while parsing them

41As opposed to reading the sectors in sequential order, and then writing the entire track—that would only make it a sector-
copier with a faster write routine.

42A sector-copier can use the collection of sectors as a basic track length; the bit-copier has no such luxury. Instead, it is left
to “guess”, and might be forced to discard or insert additional data to reconstruct a track of the same length. The difference
occurs when the rotation speed of the drive that is being used to make the copy is not the same as that of the drive that was
used to make the original.

42

7.8 Super-super decoder ring

Despite the quite strict requirements regarding the
format of data on the disk, DOS introduced two ad-
ditional requirements regarding the format of data
within a sector. The first requirement is that there
must not be more than one pair of zero-bits in the
value. The second requirement is that there be at
least one pair of consecutive one-bits, excluding the
sign bit.

If we ignore the DOS requirements for the mo-
ment, and consider instead all possible values which
comply with the hardware requirement to have no
more than two consecutive zero-bits, then there are
81 legal values.

10010010 (92) 10101101 (AD) 11001110 (CE) 11101011 (EB)
10010011 (93) 10101110 (AE) 11001111 (CF) 11101100 (EC)
10010100 (94) 10101111 (AF) 11010010 (D2) 11101101 (ED)
10010101 (95) 10110010 (B2) 11010011 (D3) 11101110 (EE)
10010110 (96) 10110011 (B3) 11010100 (D4) 11101111 (EF)
10010111 (97) 10110100 (B4) 11010101 (D5) 11110010 (F2)
10011001 (99) 10110101 (B5) 11010110 (D6) 11110011 (F3)
10011010 (9A) 10110110 (B6) 11010111 (D7) 11110100 (F4)
10011011 (9B) 10110111 (B7) 11011001 (D9) 11110101 (F5)
10011100 (9C) 10111001 (B9) 11011010 (DA) 11110110 (F6)
10011101 (9D) 10111010 (BA) 11011011 (DB) 11110111 (F7)
10011110 (9E) 10111011 (BB) 11011100 (DC) 11111001 (F9)
10011111 (9F) 10111100 (BC) 11011101 (DD) 11111010 (FA)
10100100 (A4) 10111101 (BD) 11011110 (DE) 11111011 (FB)
10100101 (A5) 10111110 (BE) 11011111 (DF) 11111100 (FC)
10100110 (A6) 10111111 (BF) 11100100 (E4) 11111101 (FD)
10100111 (A7) 11001001 (C9) 11100101 (E5) 11111110 (FE)
10101001 (A9) 11001010 (CA) 11100110 (E6) 11111111 (FF)
10101010 (AA) 11001011 (CB) 11100111 (E7)
10101011 (AB) 11001100 (CC) 11101001 (E9)
10101100 (AC) 11001101 (CD) 11101010 (EA)

If we introduce the first of the DOS requirements
that there not be more than one pair of zero-bits,
then there are only 72 compliant values, as we see
here:
10010101 (95) 10110010 (B2) 11010010 (D2) 11101011 (EB)
10010110 (96) 10110011 (B3) 11010011 (D3) 11101100 (EC)
10010111 (97) 10110100 (B4) 11010100 (D4) 11101101 (ED)
10011010 (9A) 10110101 (B5) 11010101 (D5) 11101110 (EE)
10011011 (9B) 10110110 (B6) 11010110 (D6) 11101111 (EF)
10011101 (9D) 10110111 (B7) 11010111 (D7) 11110010 (F2)
10011110 (9E) 10111001 (B9) 11011001 (D9) 11110011 (F3)
10011111 (9F) 10111010 (BA) 11011010 (DA) 11110100 (F4)
10100101 (A5) 10111011 (BB) 11011011 (DB) 11110101 (F5)
10100110 (A6) 10111100 (BC) 11011100 (DC) 11110110 (F6)
10100111 (A7) 10111101 (BD) 11011101 (DD) 11110111 (F7)
10101001 (A9) 10111110 (BE) 11011110 (DE) 11111001 (F9)
10101010 (AA) 10111111 (BF) 11011111 (DF) 11111010 (FA)
10101011 (AB) 11001010 (CA) 11100101 (E5) 11111011 (FB)
10101100 (AC) 11001011 (CB) 11100110 (E6) 11111100 (FC)
10101101 (AD) 11001101 (CD) 11100111 (E7) 11111101 (FD)
10101110 (AE) 11001110 (CE) 11101001 (E9) 11111110 (FE)
10101111 (AF) 11001111 (CF) 11101010 (EA) 11111111 (FF)

If we introduce the second of the DOS require-
ments that there be at least one pair of consecutive
one-bits, excluding the sign bit, then there are only
64 compliant values:

10010110 (96) 10110100 (B4) 11010110 (D6) 11101101 (ED)
10010111 (97) 10110101 (B5) 11010111 (D7) 11101110 (EE)
10011010 (9A) 10110110 (B6) 11011001 (D9) 11101111 (EF)
10011011 (9B) 10110111 (B7) 11011010 (DA) 11110010 (F2)
10011101 (9D) 10111001 (B9) 11011011 (DB) 11110011 (F3)
10011110 (9E) 10111010 (BA) 11011100 (DC) 11110100 (F4)
10011111 (9F) 10111011 (BB) 11011101 (DD) 11110101 (F5)
10100110 (A6) 10111100 (BC) 11011110 (DE) 11110110 (F6)
10100111 (A7) 10111101 (BD) 11011111 (DF) 11110111 (F7)
10101011 (AB) 10111110 (BE) 11100101 (E5) 11111001 (F9)
10101100 (AC) 10111111 (BF) 11100110 (E6) 11111010 (FA)
10101101 (AD) 11001011 (CB) 11100111 (E7) 11111011 (FB)
10101110 (AE) 11001101 (CD) 11101001 (E9) 11111100 (FC)
10101111 (AF) 11001110 (CE) 11101010 (EA) 11111101 (FD)
10110010 (B2) 11001111 (CF) 11101011 (EB) 11111110 (FE)
10110011 (B3) 11010011 (D3) 11101100 (EC) 11111111 (FF)

That leaves us with eight values for which there
is not more than one pair of zero-bits, but also not
one pair of consecutive one-bits, excluding the sign
bit. DOS reserves some of these value for a separate
purpose.
10010101 (95)
11010010 (D2)
11010100 (D4)
11010101 (D5)
10100101 (A5)
10101001 (A9)
10101010 (AA)
11001010 (CA)

That leaves us with 17 values for which there
are not more than two consecutive zero-bits, which
seems like a missed opportunity for a better encod-
ing:
10010010 (92) 10101001 (A9) 11100100 (E4)
10010011 (93) 10101010 (AA)
10010100 (94) 11001001 (C9)
10010101 (95) 11001010 (CA)
10011001 (99) 11001100 (CC)
10011100 (9C) 11010010 (D2)
10100100 (A4) 11010100 (D4)
10100101 (A5) 11010101 (D5)

Having exactly 64 entries in the table allows us
to represent all of the values using six bits. That
leads us to an encoding method known as “6-and-2
Group Code Recording (GCR)” or more commonly
“6-and-2” encoding.

In “6-and-2” encoding, an eight-bit value is split
into two parts, where the high six bits are separated
from the low two bits. (The disk system for which
DOS 3.2 was first written had an additional restric-
tion that did not allow consecutive zero-bits, and
so used “5-and-3” encoding for the same purpose.)
To encode an entire sector, each of the two-bit val-
ues are gathered together, such that three of them
form another six-bit value in reverse order, and are
stored first, followed by each of the regular six-bit
values. Prior to storing any of the values, they must
be transformed into the values in our table of 64
nibbles. This is done by using the original value as
an index into the nibble table, and writing the value
from the table instead.

43

When we place the original value beside the nib-
ble value, the table looks like this:
00 = 96 10 = B4 20 = D6 30 = ED
01 = 97 11 = B5 21 = D7 31 = EE
02 = 9A 12 = B6 22 = D9 32 = EF
03 = 9B 13 = B7 23 = DA 33 = F2
04 = 9D 14 = B9 24 = DB 34 = F3
05 = 9E 15 = BA 25 = DC 35 = F4
06 = 9F 16 = BB 26 = DD 36 = F5
07 = A6 17 = BC 27 = DE 37 = F6
08 = A7 18 = BD 28 = DF 38 = F7
09 = AB 19 = BE 29 = E5 39 = F9
0A = AC 1A = BF 2A = E6 3A = FA
0B = AD 1B = CB 2B = E7 3B = FB
0C = AE 1C = CD 2C = E9 3C = FC
0D = AF 1D = CE 2D = EA 3D = FD
0E = B2 1E = CF 2E = EB 3E = FE
0F = B3 1F = D3 2F = EC 3F = FF

DOS reserved two values from our fourth table—
#$AA and #$D5—for the prologue signatures. These
values are good candidates for the purpose of iden-
tifying the headers, because they do not conform to
the “at least one pair of consecutive one-bits” cri-
terion, and thus do not conflict with the entries in
the “nibbilisation” table. It is not a coincidence that
they have alternating bit values; #$D5 is #$55 with-
out the sign bit. By reserving these values, it en-
sures that the bitstream generated by arbitrary sec-
tor data cannot contain a long string of ones (pre-
vented by reserving #$FF), or alternating zeroes and
ones (prevented by reserving #$AA and #$D5), re-
gardless of the user’s data.

The third value of the prologue signature (#$96
or #$AD) need be unique only between the headers,
in order to distinguish between the two. The combi-
nation of unique values and non-unique values still
produces a unique sequence.

DOS reserved one value from our fourth table—
#$AA—for the second byte of the epilogue signatures,
for the same reason as for the prologue. The first
byte of the epilogue signature need not be unique
with respect to sector data (because the combina-
tion of unique values and non-unique values still pro-
duces a unique sequence), but obviously it must not
match the first byte of the prologue, because the
third byte of the epilogue (intended to be #$EB) is
written sometimes with only limited success (and it
is never verified for this reason), and so could poten-
tially be read as the third byte of a prologue instead,
with unpredictable results.

The decoding process requires a reverse transfor-
mation, via a table which is typically filled with all
of the values in a six-bit number. (See the sections
on Race Conditions and SpiraDisc for two counter-
examples.) The layout of the table is the special
thing, though—the nibbles that are read from disk
are used as an index into the table, in order to re-
cover the original six-bit value. So the table has
gaps between some of the values, because the legal
values of the nibbles are not consecutive.

Note that convention is a powerful force. There
is no reason for the table to have the nibbilisation
entries in that order, or to exclude #$AA or #$D5 (or
any of the other 15 entries from the last table) from
the set. Further, according to John Brooks, it is pos-
sible to use all 81 values from our first table, com-
bined with a special encoding method, which would
increase the data density by 105.5%, and potentially
even more.43

7.9 Write-protection
The absolute simplest possible protection against a
copy is to check if the disk is write-protected. The
vast majority of owners of duplicated software won’t
bother to write-protect the disk. If the disk is not
write-protected, then the image is considered to be
a copy, rather than the original.

Alien Addition uses this technique.

1 ; assumes s l o t 6
7975 LDA $C0ED ; reque s t s t a tu s

3 7978 LDA $C0EE ; read s t a tu s
797B BPL $7985 ; taken i f write−

enabled

A more generic version of the technique is
slightly longer:

0000 LDX $2B ; f e t ch s l o t (x16)
2 0002 LDA $C08D , X ; r eque s t s t a tu s

0005 LDA $C08E , X ; read s t a tu s
4 0008 BPL $0008 ; hang i f write−

enabled

7.10 Sector-level protections
7.10.1 Altered prologue/epilogue

This is one of the simpler techniques available, and
was used by many titles. Standard DOS 3.3 uses

43http://www.bigmessowires.com/2015/08/27/apple-ii-copy-protection/#comment-227325

44

the sequence #$D5 #$AA #$96 to identify the ad-
dress field prologue, #$D5 #$AA #$AD to identify the
data field prologue, and #$DE #$AA to identify both
of the epilogues. Of course, it is possible to choose
from the 17 values from our fifth table, for either the
first two bytes of the prologue values, or the second
byte of the epilogue. It is also possible to choose
from among the 81 values from our first table, for
either the third byte of the prologue, or the first byte
of the epilogue.

Most commonly, only one value is changed in the
prologue or epilogue, and that same value is used for
every sector on every track of the disk.

Lucifer’s Realm uses this technique; the epilogue
was changed from #$DE #$AA to #$DF #$AA.

The Tracer Sanction extended the technique by
carrying a table of values, and using a different value
for each track.

Masquerade extended the technique to the sec-
tor level, by requiring that each even sector has one
value, and each odd sector has another value. The
routine extracts bit zero of the sector number, and
then inverts it, to create the key which is applied to
the identification byte. Thus, even sectors use #$D5
(the standard value), and odd sectors use #$D4. This
is necessary because sector zero of track zero must
have the regular value in order to be readable by the
boot PROM.

The Coveted Mirror used exactly the same
technique–and almost the exact same code–at only
the track level.

Due to size limitations, the boot PROM does
not verify the epilogue bytes44 allowing all sectors
on all tracks—including the boot sector itself—to be
protected. The most common technique involved al-
tering the epilogue values to something other than
the default value. This protection cannot be repro-
duced by a sector-copier or track-copier, which re-
quires the default values to be seen, because they
will fail to copy the sector. Operation Apocalypse
uses this technique.

Given that the boot PROM does not verify the
epilogue bytes, a very light protection technique is
to change the epilogue values to something other
than the default values for sector zero of track zero
only, leaving all other sectors readable. This pro-
tection cannot be reproduced by a sector-copier or
track-copier which requires the default values to be
seen, because they will fail to copy the boot-sector,
leaving the disk unusable. Alien Addition makes use

of this technique.
A common technique to defeat this protection is

to ignore read errors for all sectors, in the hope that
it is caused by the non-default epilogue values alone.
However, given the degrading state of floppy disks
these days, ignoring read errors can hide the fact
that the disk is truly failing.

The address field contains more than just the
track and sector numbers. It also contains a vol-
ume number. This value can be used as a quick
method to determine which disk from a set is cur-
rently inserted into the drive. However, support for
it—even in DOS—is poor. So many programs, in-
cluding DOS itself, assume that the volume number
is the default value. When it is changed, the read
fails. By hard-coding the new value in DOS, the
disk will be readable only by itself. Algebra Arcade
uses this technique.

This technique can also be used in a slightly dif-
ferent way. Since each sector can have its own vol-
ume number, any value can be put there, as long as
the program is aware of that fact.

Randamn sets the volume number to a check-
sum calculated from the current track and sector,
and hangs if the values do not match.

Both the address field and data field contain
a checksum of the data that precede it, prior to
the epilogue. The checksum algorithm is usually
a rolling exclusive-OR of each of the bytes, with a
zero seed. However, there is no requirement that
either of these things is used, for sectors other than
sector zero of track zero. For other sectors, the seed
can be set to any value, and the algorithm can be a
cumulative ADD or anything else at all. This pro-
tection cannot be reproduced by a sector-copier or
track-copier which relies on the regular algorithm,
because the disk will appear to be corrupted.

Hellfire Warrior uses a slight variation on this
technique. It maintains a counter at address $40,
which coincides with the track number which is
stored by the boot PROM. In order to break out
of the loop that reads sectors into memory, the pro-
gram requests the boot PROM to read a sector with
an intentionally bad checksum. This causes the boot
PROM to rewrite the value at address $40. The
new value is exactly what the program requires as
the exit condition. This protection cannot be re-
produced by a sector-copier or track-copier, because
they will fail to copy this sector, resulting in a disk
that has only sectors with good checksums. The disk

44It also ignores the address field checksum and volume number.

45

will not boot because it will never exit the loop.
The volume number is normally an eight-bit

value. For efficiency of encoding it, DOS uses a “4-
and-4” encoding, where the four odd bits are sepa-
rated from the low even bits, and converted to nib-
bles. To recombine them, it is a simple matter to
shift the nibble holding the odd bits (“abcd”) one
to the left, resulting in an encoding that looks like
“a1b1c1d1”, and then to AND the result with the nib-
ble holding the even bits (“efgh”), whose encoding
that looks like “1e1f1g1h”. This method requires 16
bytes to describe the address field. Since the track,
sector, and checksum, are known to fit into six bits
each, it is easy to see that if the volume number is
disregarded, a “6-and-0” encoding can be used in-
stead. This method requires only four nibbles to
describe the address field. Algernon uses this tech-
nique.

The entries in the address field have a defined
order because the boot PROM needs to read them
to identify sector zero of track zero, and any other
sector which the PROM is asked to read. However,
it is possible to change the order of the entries for
other sectors on the disk, and then to read the sec-
tors manually.

7.10.2 Fewer sectors

The major reason for using 16 sectors per track is
because that is the maximum number that can fit
within the standard format created by DOS 3.3.
DOS 3.2 supported only 13 sectors per track, be-
cause of the limitation of the hardware regarding
consecutive zeroes. Copy protection techniques are
free to use fewer sectors than either of those values.

Wavy Navy uses ten sectors per track, while
Olympic Decathlon uses eleven and Karateka uses
a dozen. The sectors in these examples are all the
regular size, but encoded in a wasteful manner. (Pri-
marily the “4-and-4” encoding was used because the
decoder is very small, but sometimes “5-and-3” be-
cause the decoder looks weird when compared with
the more familiar “6-and-2” encoding.) The wasteful
encoding is the reason for the reduced sector count;
there really isn’t more room for more sectors.

7.10.3 More sectors

The standard DOS 3.3 format disk uses 16 individ-
ual sectors per track, with relatively large gaps be-
tween the sectors. Consider how much space would
be available if those sectors were combined into a
single large sector, with a single field that combines
both address (specifically, only the track number)
and data fields. Yes, it would require reading the
entire track in order to find the field again once the
track had been verified, but for some applications,
performance is not that critical. This is what Info-
com did, on programs such as A Mind Forever Voy-
aging. Once the track had been found, and the data
field found again, then the program read (and dis-
carded) sectors sequentially until the required one
was found. Again, if the performance is not that
critical, the fact that the routine can fetch only one
sector at a time is not an issue. In fact, the imple-
mentation works well enough for the text-adventure
scenario in which it was used. Since the user will
be reading the text while additional text is loading,
the time required for that loading goes mostly un-
noticed.

Consider how much space would be available if
those gaps were reduced to the minimum of five self-
synchronizing values before the address field pro-
logue, with just a few bytes of gap between the
address and data headers. Then reducing the pro-
logue byte count from three to two, and the epilogue
byte count from two to one. Consider how much
space would be available by merging groups of sec-
tors. If you converted the track into six sectors of
three times the size, you would have RWTS18. This
is a good compromise between speed and density.
On one side, having fewer sectors means less pro-
cessing; and on the other side, having more sectors
means less latency to find a sector. The RWTS18
routine also supports “read scattering” by assign-
ing a dummy write address to the pages that aren’t
needed.

This second technique was used very heavily by
Brøderbund, on programs such as Airheart (and
even three years later, on Prince of Persia), but other
companies made use of it, too, such as Infogrames
in Hold-Up. Interestingly, in the case of Airheart,
after compressing the title screen to reduce its size

46

on the disk, the rest of the game fit on a regular
16-sector disk.

7.10.4 Big sectors

There is no requirement to define multiple sectors
per track. It is possible to define a single sector that
spans the entire track.45 However, there can be a
significant time penalty while reading such a track,
because it requires up to one complete rotation in
order to find the start of the sector.

Lady Tut uses a single sector per track, at a size
equivalent to eleven 256-bytes sectors.

7.10.5 Encoded sectors

As noted previously, there is no reason for a disk
to use our sixth table—there is no reason to have
the nibbilisation entries in that order, nor even to
use those values at all. Any alteration to the ta-
ble results in a disk that can be copied freely, but
whose contents cannot be read from the outside.
Further, the DOS on such a disk cannot write files
from the inside to the outside. The reason why the
read would fail is because the standard table would
be applied to data that requires the alternative ta-
ble to decode, resulting in the wrong decoding. The
reason why the write would fail is because the alter-
native table would be applied to data that requires
the standard table to encode, resulting in the wrong
encoding.

Maze Craze Construction Set uses an alternative
nibble table—all of the values from #$A9-FF from
our first table. These values might have been cho-
sen because they provide the least sparse array when
used as indexes.

Bop’N Wrestle uses the regular nibble table (and
a standard DOS 3.3), but in reverse order.

7.10.6 Duplicated sectors

The address field carries the sector number, but the
controller does not need or use this information, ex-
cept when the boot PROM is requested to read a
sector. Therefore, it is possible to have multiple
sectors with the same number.46 There are numer-
ous ways in which they could be distinguished, such

as by the volume number. A protection technique
could set every sector number to the same value in
the address field. It could set them all to zero, pro-
vided that the checksum algorithm is changed, so
that the boot PROM will read successfully only the
true sector zero, in order to boot the disk. It could
also use the volume number from the address field as
the page number in which to write the sector data.
This would be a very compact way to load data with-
out the need to pass the address as a parameter to
the loader.

Math Blaster has two sectors numbered zero
on track zero. The program distinguishes between
them by examining the first nibble after the address
field epilogue, but the checksum of the second sec-
tor zero also fails verification, which is why the boot
PROM does not see it. This protection cannot be re-
produced by a sector-copier or track-copier, because
those copiers will write only a single sector zero to
a track. It is unpredictable which of the two sector
zeroes would be written, but even if the true one is
chosen, the copy is revealed by the program missing
the duplicated sector.

7.10.7 Sector numbering

The address field carries the sector number, but the
controller does not need or use this information,
except when the boot PROM is requested to read
a sector. Therefore, it is possible to have sectors
whose number is not in the range of zero to 15.47
Any eight-bit value can be used, as long as the pro-
gram is expecting it. This protection cannot be re-
produced by a sector-copier, because the copier will
not copy those sectors at all.

7.10.8 Sector location

The address field carries the track and sector num-
ber, but the controller does not need or use this in-
formation, except when the boot PROM is requested
to read a sector. Therefore, it is possible for a sector
to “lie” about its location on the disk. For example,
the address field of sector three on track zero could
label itself as sector zero on track three. This protec-
tion cannot be reproduced by a sector-copier which
relies on DOS to perform the write, because they will

45This would be the equivalent of about 18.5 256-bytes sectors in “6-and-2” encoding. Using 19 sectors is possible, if the full
range of values from the first figure is used, but it introduces a problem to identify the start of the sector, since there are no
single values that can be reserved exclusively. One possible solution is to find a sequence which cannot appear in user-data due
to particular characteristics of the decoding process. Just because it is possible, it doesn’t mean that it’s easy.

46The same is true for the track number, and Jumble Jet has multiple tracks which claim to be track zero.
47The same is true for the track number. That is, a number which is not in the range of zero to 34.

47

0
1

C

D

E

F

B

A

9 8 7

6

5

4

3

2

0 D

6
4

2
F

8
A

C E 1
3

5
7

9
B

DOS

0
1

C

D

E

F

B

A

9 8 7

6

5

4

3

2

0 8

6
E

7
F

D
5

C 4 B
3

A
2

9
1

Pascal
(then ProDOS)

physical
sectors

physical
sectors

logical
numbering

logical
numbering

gap: [7-8]

gap: [2-3]

0
1

C

D

E

F

B

A

9 8 7

6

5

4

3

2

0

D

6

4

2
F

8
A

C

E
1

3

5

79

B

Hard Hat Mack

physical
sectors

gap: 1

Figure 16 – Floppy sectors interleaving.

not duplicate this information, because DOS will fill
in the address field by itself when placing the sector
on the disk. Thus, a program that seeks to a track
that contains “misplaced” sectors will not find any
misplaced sectors, or will receive the wrong content
instead.

Discover uses this technique; it changes the iden-
tity of one particular sector in the sector interleave
table, on one particular track.

7.10.9 Synchronised sectors

Since the approximate rotation speed of the drive
is known (∼300 RPM), it becomes possible to place
sectors at specific locations on a track, such that
they have a special position relative to other sec-
tors on the same track. This is difficult to repro-
duce because of the delay that is introduced while a
sector-copier is writing the data.

Hard Hat Mack takes this to the extreme, by re-
quiring that one track has all 16 sectors in incremen-
tal order. This protection is highly unlikely to be
reproduced by using a sector-copier, because after
factoring in the rotation speed of the drive, the next
sector is more likely to be placed halfway around the
disk.

7.10.10 Bad sectors

Some protections rely on the fact that intentionally
bad sectors (for example, checksum mismatch in the
simplest case, but potentially physical damage could
be used, too) should return a read error.

Drelbs uses this technique. This protection can-
not be reproduced even with a bit-copier, because

the copy will have no sectors that cannot be read.

7.10.11 Dead-space bytes

The data for a sector is well defined, but apart from
the optional presence of the self-synchronizing val-
ues, the data between sectors is not defined at all.
As a result, it is not often copied, either. It is possi-
ble to place specific counts of specific values in this
location, which can be checked later. A program
can detect a copy by the absence or wrong count of
the special values.

Randamn checks the value of the byte immedi-
ately before the prologue of a particular sector, and
reboots if the value looks like a self-synchronizing
value. (A bit-copier might insert this values when
asked to match the track length, and a sector-copier
would always insert the value.)

Binomial Multiplication counts the number of
values that appear between the address field epi-
logue and the data field prologue, and between the
data field epilogue and the next sector address field
prologue, for all of the sectors on a particular track.
This protection cannot be reproduced by a sector-
copier or a track-copier, because those copiers will
discard the original data between the sectors.

7.10.12 Timing bits

The Disk][controller shifts in bits at a rate equiv-
alent to one bit every four CPU cycles, once the

48

first one-bit is seen. Thus, a full nibble takes the
equivalent of 32 CPU cycles to shift in. After the
full nibble is shifted in, the controller holds it in the
QA switch of the Data Register for the equivalent of
another four CPU cycles, to allow it to be fetched
reliably. After those four CPU cycles elapse, and
once a one-bit is seen, the QA switch of the Data
Register will be zeroed, and then the controller will
begin to shift in more bits. The significant part of
that statement is “once a one-bit is seen.” It is pos-
sible to intentionally introduce “timing” (zero) bits
into the stream in order to delay the reset. For each
zero-bit that is present, the previous value will be
held for another eight CPU cycles. For code that is
not expecting these zero-bits to be present, a nib-
ble that is being held back will be indistinguishable
from a nibble that has newly arrived.

Creation uses this technique. It looks like this:

; wait f o r n ibb l e to a r r i v e
2 B94F LDA $C08C ,X

B952 BPL $B94F
4 ; watch f o r #$D5

B954 CMP #$D5
6 B956 BNE $B948

; de lay to ensure > 4 cy c l e s w i l l e l ap s e
8 ; b e f o r e the next read occurs

B958 NOP
10 ; read data l a t ch

B959 LDA $C08C ,X
12 ; check i f n ibb l e has changed

; i f zero−b i t i s present ,
14 ; then read value l a s t s l onge r

B95C CMP #$D5
16 B95E BEQ $B972

Hacker II requires a pattern of zero-bits to be
present in the stream. The effect of the delayed
shift becomes clear when we count cycles.

; i n i t i a l i s e mask
2 403A LDA #$08

. . .
4 ; wait f o r n ibb l e to a r r i v e

4044 LDY $C08C ,X
6 4047 BPL $4044 ; 2 c y c l e s

; watch f o r #$FB
8 4049 CPY #$FB ;2 c y c l e s

404B BNE $403A ;2 c y c l e s
10 ; not a do−nothing i n s t r u c t i o n !

; e x i s t s to be timing−i d e n t i c a l
12 ; to the BEQ at $4062

404D BEQ $404F ; 3 c y c l e s
14 404F NOP ; (2 c y c l e s)

4050 NOP ; (2 c y c l e s)
16 ; read data l a t ch

4051 LDY $C08C ,X ; (4 c y c l e s)
18 ; check how many b i t s have s h i f t e d in

4054 CPY #$08

20 ; s h i f t car ry in to A
4056 ROL

22 ; u n t i l a s e t b i t i s s h i f t e d out
; (takes f i v e rounds)

24 4057 BCS $4064
; wait f o r n ibb l e to a r r i v e

26 4059 LDY $C08C ,X
405C BPL $4059 ; 2 c y c l e s

28 ; watch f o r #$FF
405E CPY #$FF ;2 c y c l e s

30 4060 BNE $403A ;2 c y c l e s
4062 BEQ $404F ; 3 c y c l e s

32 ; wait f o r n ibb l e to a r r i v e
4064 LDY $C08C ,X

34 4067 BPL $4064
; remember i t s va lue

36 4069 STY $07
; check i f proper pattern was seen

38 ; (a l t e r n a t i n g zero−b i t yes and no)
406B CMP #$0A

40 406D BNE $403A
; wait f o r n ibb l e to a r r i v e

42 406F LDA $C08C ,X
4072 BPL $406F

44 ; checksum aga in s t prev ious va lue
; both must be #$FF to pass

46 4074 SEC
4075 ROL

48 4076 AND $07
4078 EOR #$FF

50 407A BEQ $4080

The timing loop is long enough for four nibbles
to be shifted in if no zero-bit is present, resulting in
a value of at least #$08. (Specifically the right-hand
“F” from the value “FF”.) If a zero-bit is present,
then fewer than four nibbles will be shifted in, re-
sulting in a value of less than #$08. This explains
the “CPY #$08” instruction at $4054. It is checking
if a one-bit has been shifted in four times or three
times.

The “CMP #$0A” instruction at $406B is check-
ing the final results of the multiple CPYs that were
made. In binary, the results look like 01010 but
prior to that, the results progress like this:
00010000
00100001
01000010
10000101
00001010

That means it is expecting the first pass to have
a value of less than eight (carry clear), then a value
of at least eight (carry set), then a value of less than
eight (carry clear), then a value of at least eight
(carry set), and finally a value of less than eight
(carry clear), followed by two “FF”s. That requires
the stream to look like FB 0 FF FF 0 FF FF 0 Fx

49

FF FF

7.10.13 Floating bits

What happens if more than two consecutive zero-
bits are present in a stream? Something random.
The Automatic Gain Control circuit will eventually
insert a one-bit because of amplified noise. It might
happen immediately after the second zero-bit, or
it might happen after several more zero-bits. The
point is that reading that part of the stream repeat-
edly will yield different responses

Mr. Do! uses this technique.

; s e t counter to be used l a t e r
2 0710 LDY #$06

. . .
4 ; s e t s t a t e

0713 LDA #$FF
6 0715 STA $07C2

; wait f o r n ibb l e to a r r i v e
8 0718 LDA $C088 ,X

071B BPL $0718
10 ; watch f o r #$D5

071D CMP #$D5
12 071F BNE $0718

; wait f o r n ibb l e to a r r i v e
14 0721 LDA $C088 ,X

0724 BPL $0721
16 ; watch f o r #$9B

0726 CMP #$9B
18 0728 BNE $071D

; wait f o r n ibb l e to a r r i v e
20 072A LDA $C088 ,X

072D BPL $072A
22 ; watch f o r #$AB

072F CMP #$AB
24 0731 BNE $071D

; wait f o r n ibb l e to a r r i v e
26 0733 LDA $C088 ,X

7036 BPL $0733
28 ; watch f o r #$B2

0738 CMP #$B2
30 073A BNE $071D

; wait f o r n ibb l e to a r r i v e
32 073C LDA $C088 ,X

073F BPL $073C
34 ; watch f o r #$9E

0741 CMP #$9E
36 0743 BNE $071D

; wait f o r n ibb l e to a r r i v e
38 0745 LDA $C088 ,X

0748 BPL $0745
40 ; watch f o r #$BE

074A CMP #$BE
42 074C BNE $071D

; wait f o r n ibb l e to a r r i v e
44 074E LDA $C088 ,X

0751 BPL $074E
46 ; loop s i x t imes

0753 DEY
48 0754 BNE $074E

; change s t a t e
50 0756 INC $07C2

0759 BNE $2761
52 ; s t o r e l a s t read value on f i r s t pass

075B STA $07C3
54 ; a l low complete r evo l u t i on and read again

075E JMP $071D
56 ; check l a s t read value on subsequent pass

; must be d i f f e r e n t from the f i r s t pass
58 0761 CMP $07C3

0764 BNE $0771
60 ; r e t r y up to four t imes

0766 INC $07C2
62 0769 LDA $07C2

076C CMP #$08
64 076E BNE $271D

On the first pass, the program watches for the
sequence $#D5 #$9B #$AB #$B2 #$9E #$BE, skips
the next five nibbles, and then reads and saves the
sixth nibble. On subsequent passes, the program
watches again for the sequence $#D5 #$9B #$AB
#$B2 #$9E #$BE, skips the next five nibbles, and
then reads and compares the sixth nibble against
the sixth nibble that was read initially. The value
that is read will always be a legal value, but on the
original disk, with multiple zero-bits in the stream,
the value that was read in one of the subsequent
passes will not match the value that was read in
the first pass. No matter how many extra zero-bits
existed in the stream, the bit-copier will not write
them out. Instead, it will “freeze” the appearance
of the stream, and normalise it so that there are no
more than two zero-bits emitted. As a result, the
sixth nibble that was read will have the same value
for all passes, and therefore fail the protection check

7.10.14 Nibble count

Since a track is simply a stream of bits, it is possible
to control the layout of the values in that stream, as
long as it follows the rules of the hardware. The
number of self-sychronizing values can be reduced
to a single set of the minimum number, if perfor-
mance is not a consideration. That means there are
no other zero-bits present on the track. However, a
bit-copier cannot detect the zero-bits reliably (nei-
ther their presence, nor their number), so it is left to
guess if the value #$FF must be stored using eight
or ten bits. (That is, if it is a data nibble or a
self-synchronizing value.) If there are enough #$FF
bytes on a track, and if the bit-copier assumes that
every one of them must be ten bits wide, then it
is possible that the bit-copier will write more data

50

than can fit on the track, resulting in part of the
track being overwritten when the revolution com-
pletes before the write completes.

As a separate technique, it is also possible to re-
duce the speed of the drive while writing the data to
the original disk, resulting in a track that is so dense,
that the data cannot fit on a disk when written at
regular speed. This is known as a “fat” track.

The more common technique is to simply use a
sequence of nibbles with enough zero-bits between
them, that the “delayed fetch” effect is triggered.
(§7.10.12.) When the zero-bits are present, and if
the fetch is fast enough (that is, it polls the QA
switch of the Data Register while the top bit is clear,
stores the fetched value, and then resumes polling),
then there will appear to be more nibbles of a par-
ticular value than really exist, because the next bit
will not be ready to shift in. A program that counts
the number of nibbles will see more nibbles in the
copy than in the original.

If the fetch is slow enough. . . now, this is an in-
teresting case. Bit-copiers try to read the data as
quickly as it comes in. This is done not by polling
the QA switch of the Data Register, but by checking
if the top bit is already set, in an unrolled loop, like
this:

; 2 c y c l e de lay so
2 ; s h i f t might f i n i s h

TDL1 NOP
4 ; t ry to de t e c t t iming b i t

LDA $C0EC, X
6 BMI TDS2

TDL2 LDA $C0EC, X
8 BMI TDS2

; t iming b i t probably pre sent
10 LDA $C0EC, X

BMI TDS3
12 LDA $C0EC, X

BMI TDS3
14 LDA $C0EC, X

BMI TDS3
16 LDA $C0EC, X

BMI TDS3
18 ; 3 cy c l e pena l ty i f taken !

BPL TDL2
20 TDS2 STA ($0) , Y

. . .
22 RTS

; s t o r e va lue with t iming b i t
24 ; l o s e s one b i t as a r e s u l t

TDS3 AND #$7F
26 STA ($0) , Y

. . .
28 RTS

This code is a disassembly from Essential Data

Duplicator (E.D.D.), but apart from the BPL in-
struction, it is shared by Copy][+. (Someone
copied!) Normally, a nibble will be shifted in be-
fore TDL2 completes, so that TDS2 is reached, and
the nibble is stored intact. However, by using only
six fetches, the code is vulnerable to a well-placed
timing bit, such that the BPL will be reached just
before the last bit of the nibble is shifted in. That
three-cycle time penalty when the branch is taken
is just enough that, when combined with the two-
cycle instruction before it, the shift will complete,
and the four CPU cycles will elapse, before the next
read occurs. The result is that the nibble is missed,
and the next few nibbles that arrive will reach TDS3
instead, losing one bit each. When those data are
written to disk by the bit-copier, the values will be
entirely wrong.

Create With Garfield: Deluxe Edition uses this
technique. (The original Create With Garfield uses
an entirely different protection.) It has one track
that is full of repeated sequences. Each of the se-
quences has a prologue of five bytes in length. Every
second one of the prologues has a timing bit after
each of the five bytes in the prologue. In the mid-
dle of the track is a collection of bytes which do not
match the sequence, so the track is essentially split
into two groups of these repeated sequences. The
size of the two groups is the same. When the bit-
copier attempts to read the data, the timing bits
cause about half of the sequences to be lost. What
remain are far fewer sequences than exist on the
original disk. (Enough of them that the bit-copier
mistakenly believes that it has copied the track suc-
cessfully.) A program can detect a copy by the small
count of these sequences. This technique is likely to
have been created to defeat E.D.Dṡpecifically, but
Copy][+ is also affected. However, the protection
can be reproduced with the use of a peripheral that
connects to the drive controller (and thus see the
zero-bits for exactly what they are), or by inserting
an additional fetch in the software.

7.10.15 Bit-flip, or defeat bit-copiers with
this one weird trick

Deeply technical content follows. Prepare yourself!
Let’s take this simple sentence (sorry, but it’s the

best example that I could create at the time):
ITHASGOTTOBETHISLANDAHEAD

And split it according to some potential word
boundaries:
IT HAS GOT TO BE THIS LAND AHEAD

51

Now we skip a bit:
OTTO BETH ISLAND AHEAD

A bit more:
TO BETH ISLAND AHEAD

A bit more still:
BET HIS L AND A HEAD

Okay, that last one doesn’t make much sense,
but I wanted a sentence which could be read differ-
ently, depending on where you started reading, as
opposed to a series of arbitrary overlapping words.
In any case, it’s clear that depending on where you
start reading, you can get vastly different results.
Something similar is possible while reading the bit-
stream from the disk. After a nibble is shifted in
(determined by the top bit being set), and the four
CPU cycles have elapsed, and once the one-bit is
seen, then the QA switch of the Data Register is set
to zero. The absence of a counter allows the hard-
ware to be fooled about how many bits have been
read. Specifically, the controller can be convinced
to discard some of the bits that it has read from the
disk while forming a nibble, and then the starting
position within the stream will be shifted accord-
ingly. This is possible with a single instruction, in
conjunction with an appropriate delay.

After issuing an access of Q6H ($C08D+(slot ×
16)), the QA switch of the Data Register will receive
a copy of the status bits, where it will remain acces-
sible for four CPU cycles. After four CPU cycles,
the QA switch of the Data Register will be zeroed.
Meanwhile, assuming that the disk is spinning at
the time, the Logic State Sequencer (LSS) contin-
ues to shift in the new bits. When the QA switch of
the Data Register is zeroed, it discards the bits that
were already shifted in, and the hardware will shift
in bits as though nothing has been read previously.
Let’s see that in action

Tinka’s Mazes does it this way, beginning with
some preamble code which is common to many pro-
grams that used this technique

BB6A LDY #0
2 ; wait f o r n ibb l e to a r r i v e

BB6C LDA $C08C ,X
4 BB6F BPL $BB6C

BB71 DEY
6 ; r e t r y up to 256 t imes

BB72 BEQ $BBBB
8 ; watch f o r #$D5

BB74 CMP #$D5
10 BB76 BNE $BB6C

BB78 LDY #0
12 ; wait f o r n ibb l e to a r r i v e

BB7A LDA $C08C ,X
14 BB7D BPL $BB7A

BB7F DEY
16 ; r e t r y up to 256 t imes

BB80 BEQ $BBBB
18 ; watch f o r #$E7

BB82 CMP #$E7
20 BB84 BNE $BB7A

; wait f o r n ibb l e to a r r i v e
22 BB86 LDA $C08C ,X

BB89 BPL $BB86
24 ; watch f o r #$E7

BB8B CMP #$E7
26 BB8D BNE $BBBB

; wait f o r n ibb l e to a r r i v e
28 BB8F LDA $C08C ,X

BB92 BPL $BB8F
30 ; watch f o r #$E7

BB94 CMP #$E7
32 BB96 BNE $BBBB

52

Here is the switch:

; t r i g g e r desync
2 BB98 LDA $C08D ,X

BB9B LDY #$10
4 ; de lay to ensure > 4 cy c l e s w i l l e l ap s e

; b e f o r e the next read occurs
6 BB9D BIT $6

; wait f o r n ibb l e to a r r i v e
8 BB9F LDA $C08C ,X

BBA2 BPL $BB9F
10 BBA4 DEY

; r e t r y up to 16 t imes
12 BBA5 BEQ $BBBB

; watch f o r #$EE
14 BBA7 CMP #$EE

BBA9 BNE $BB9F
16 BBAB LDY #7

; wait f o r n ibb l e to a r r i v e
18 BBAD LDA $C08C ,X

BBB0 BPL $BBAD
20 ; compare backwards aga in s t the l i s t at $BBC1

; E7 FC EE E7 FC EE EE FC
22 BBB2 CMP ($48) ,Y

BBB4 BNE $BBBB
24 BBB6 DEY

BBB7 BPL $BBAD
26 ; pass

BBB9 CLC
28 BBBA RTS

BBBB DEC $50
30 ; r e t r y i f count remains

BBBD BNE $BB57
32 ; f a i l

BBBF SEC
34 BBC0 RTS

BBC1 .BYTE $FC, $EE , $EE , $FC, $E7 , $EE , $FC,
$E7

But wait, there’s more! To see the bitstream
on disk, it looks like D5 E7 E7 E7 E7 E7 E7 E7 E7
E7 E7 E7 with some harmless zero-bits in between.
So from where do the other values come? Since the
magic is in the timing of the reads, we must count
cycles:

1 BB8F LDA $C08C ,X
BB92 BPL $BB8F ;2 c y c l e s

3 BB94 CMP #$E7 ; 2 c y c l e s
BB96 BNE $BBBB ;2 c y c l e s

5 BB98 LDA $C08D ,X ;4 c y c l e s
BB9B LDY #$10 ; 2 c y c l e s

7 BB9D BIT $6 ; 3 c y c l e s
; t o t a l : 15 c y c l e s

Time passes. . .

One bit is shifted in every four CPU cycles, so a
delay of 15 CPU cycles is enough for three bits to
be shifted in. Those bits are discarded. Back to our
stream. In binary, it looks like the following, with
the seemingly redundant zero-bits in bold.
11100111 0 11100111 00 11100111 11100111 0
11100111 00 11100111 11100111 0 11100111 0
11100111 11100111
However, by skipping the first three bits, the stream
looks like this:
00 11101110 0 11100111 00 11111100 11101110
0 11100111 00 11111100 11101110 0 11101110 0
11111100 111. . .

The old zero-bits are still in bold, and the newly
exposed zero-bits are in italics. We can see that the
old zero-bits form part of the new stream. This de-
codes to E7 FC EE E7 FC EE EE FC, and we have
our magic values

Programs from Epyx that use this protection do
not compare the values in the pattern. Instead, the
values are used as a key to decode the rest of the
data that are loaded. This hides the expected val-
ues, and causes the program to crash if they are
altered.

The Thunder Mountain version of Dig Dug uses
a slight variation on the technique, including a dif-
ferent preamble and switch. The company seems
to have kept the variation to themselves. (Bop’N
Wrestle from 1986 uses the same altered version,
and comes from Mindscape, but Mindscape owned
the Thunder Mountain label, so the connection is
clear.)48 That version looks like this:

0224 LDY #$00
2 ; wait f o r n ibb l e to a r r i v e

0226 LDA $C08C ,X
4 0229 BPL $2226

022B DEY
6 ; r e t r y up to 256 t imes

022C BEQ $2275
8 022E CMP #$AD

0230 BNE $2226

A different prologue value is checked, allowing
the bitstream to begin like a regular sector: D5 AA
AD. . .

Here is the switch:

1 ; t r i g g e r desync
0252 LDA $C08D ,X

48Interestingly, one title from Thunder Mountain and released in the same year is known to use the regular version. It is
entirely possible that the alternative version was developed in-house to avoid paying royalties to protect other products.

53

3 0255 LDY #$10
; no de lay i n s t r u c t i o n in t h i s v e r s i on

5 ; wait f o r n ibb l e to a r r i v e
0257 LDA $C08C ,X

7 025A BPL $2257
025C DEY

9 ; r e t r y up to 16 t imes
025D BEQ $2275

11 ; watch f o r #$E7 instead , but i t ’ s not a ‘ ‘
true ’ ’ E7

025F CMP #$E7
13 0261 BNE $2257

; and double the s i z e o f the pattern to match
15 0263 LDY #$0F

The bitstream on disk looks like D5 AA AD
[many 96s] E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7
with some harmless zero-bits in between. The
desync timing is only 12 cycles, but the required
pattern is not found right away, so the delay is
not as interesting. In binary, the stream looks
like 11100111 11100111 11100111 00 11100111 0
11100111 0 11100111 0 11100111 00 11100111 00
11100111 0 11100111 00 11100111 0 11100111 0
11100111 0 11100111 00 11100111 0 11100111 00
11100111 0 11100111 0 11100111 with the seemingly
redundant zero-bits in bold. However, by skipping
the first three bits, the stream looks like this:
00 11111100 11111100 11100111 (← E7, but not
aligned) 00 11101110 0 11101110 0 11101110 0
11100111 00 11100111 00 11101110 0 11100111
00 11101110 0 11101110 0 11101110 0 11100111
00 11101110 0 11100111 00 11101110 0 11101110
0 111. . .

The old zero-bits are still in bold, and the newly
exposed zero-bits are in italics. We can see that
the old zero-bits form part of the new stream. This
decodes to FC (ignored) FC (ignored) E7 EE EE EE
E7 E7 EE E7 EE EE EE E7 EE E7 EE EE, a very
smooth sequence indeed. Put simply, each single
bold zero-bit sequence results EE being seen, and ev-
ery double bold zero-bit sequence results in E7 being
seen, allowing easy control over exactly how smooth
the sequence is.

1-2-3 Sequence Me uses the same technique but
with different values:

1 ; wait f o r n ibb l e to a r r i v e
BA5B LDA $C08C ,X

3 BA5E BPL $BA5B
; watch f o r #$AA

5 BA60 CMP #$AA
BA62 BEQ $BA7A

7 . . .
BA7A LDY #$02

9 ; t r i g g e r desync
BA7C LDA $C08D ,X

11 ; de lay whi l e s t a tu s i s loaded
BA7F PHA

13 ; ba lance s tack
BA80 PLA

15 ; wait f o r n ibb l e to a r r i v e
BA81 LDA $C08C ,X

17 BA84 BPL $BA81
; watch f o r #$BB

19 BA86 CMP #$BB
BA88 BEQ $BA8F

21 BA8A DEY
; r e t r y i f count remains

23 BA8B BPL $BA81
; f a i l

25 BA8D BMI $BA77
; wait f o r n ibb l e to a r r i v e

27 BA8F LDA $C08C ,X
BA92 BPL $BA8F

29 ; watch f o r #$F9
BA94 CMP #$F9

31 BA96 BNE $BA77

That stream looks like AA EB 97 DF FF with
some harmless zero-bits in between. Now let’s count
the cycles:

1 BA5B LDA $C08C ,X
BA5E BPL $BA5B ;2 c y c l e s

3 BA60 CMP #$AA ;2 c y c l e s
BA62 BEQ $BA7A ;3 c y c l e s

5 . . .
BA7A LDY #$02 ; 2 c y c l e s

7 BA7C LDA $C08D ,X ;4 c y c l e s
BA7F PHA ;3 c y c l e s

9 ; t o t a l : 16 c y c l e s

One bit is shifted in every four CPU cycles, so
a delay of 16 CPU cycles is enough for four bits to
be shifted in. Those bits are discarded. Back to our
stream. In binary, it would look like this:
11101011 0 10010111 0 11011111 00 11111111
with the seemingly redundant zero-bits in bold.
However, by skipping the first four bits, the stream
looks like this:
10110100 10111011 0 11111001 111111. . .

The old zero-bits are still in bold, and the newly
exposed zero-bit is in italics. We can see that the
old zero-bits form part of the new stream. This de-
codes to B4 (ignored) BB F9 Fx, and we have our
magic values.

The 4th R: Reasoning uses another variation of
this technique. Instead of matching the values ex-
plicitly, it watches for the data field on a particular
sector, waits for three nibbles and three bits to pass,

54

and then reads and stores the next 16 nibbles in an
array. Then it calculates a checksum of those 16
nibbles, and uses the checksum as an index into the
table of those 16 nibbles, to fetch two 8-bit keys in a
row. The table is treated as a circular list, so if the
index were 15, then the two keys would be formed
by fetching the last entry in the array and the first
entry in the array. The keys are used to decipher
the other nibbles that are read from all of the other
sectors on the disk. It looks like this:

1 ; wait f o r n ibb l e to a r r i v e
BB63 LDA $C08C ,X

3 BB66 BPL $BB63
; wait f o r n ibb l e to l eave

5 ; i f zero−b i t i s present ,
; then read value l a s t s l onge r

7 BB68 LDA $C08C ,X
BB6B BMI $BB68

9 ; wait f o r n ibb l e to a r r i v e
BB6D LDA $C08C ,X

11 BB70 BPL $BB6D
; t r i g g e r desync

13 BB72 STA $C08D ,X
; de lay to reduce number o f t imes

15 ; that branch w i l l be taken
BB75 NOP

17 ; wait f o r s t a tu s va lue to l eave
; i f zero−b i t i s present ,

19 ; then read value l a s t s l onge r
BB76 LDA $C08C ,X

21 BB79 BMI $BB76
; wait f o r next n ibb l e to a r r i v e

23 BB7B LDA $C08C ,X
BB7E BPL $BB7B

That stream looks like CF CF 9E FD ED BB E6
B6 ED FB FC EB DF DE D3 D9 FF D9 DD D7 with
some harmless zero-bits in between. Now let’s count
those cycles:
BB63 LDA $C08C ,X

2 BB66 BPL $BB63
BB68 LDA $C08C ,X

4 BB6B BMI $BB68
BB6D LDA $C08C ,X

6 BB70 BPL $BB6D ;2 c y c l e s
BB72 STA $C08D ,X ;5 c y c l e s

8 BB75 NOP ;2 c y c l e s
BB76 LDA $C08C ,X ;4 c y c l e s

10 ; but +4 cy c l e s f o r each time reached
; because o f zero−b i t

12 BB79 BMI $BB76 ; 2 c y c l e s
; but +3 cy c l e s f o r each time

14 ;BMI i s taken because o f zero−b i t
; t o t a l 15 (or 22 or even 29) c y c l e s

One bit is shifted in every four CPU cycles, so
a delay of 15 CPU cycles is enough for three bits

to be shifted in. A delay of 22 CPU cycles would
normally be enough for five bits to be shifted in.
However, if the delay is caused by the presence of a
zero-bit, then it behaves as though the delay were
only 18 CPU cycles, which is enough for four bits to
be shifted in. A delay of 29 CPU cycles is enough
for seven bits to be shifted in. However, if the delay
is caused by the presence of a second zero-bit, then
it behaves as though the delay were only 21 CPU
cycles, which is enough for five bits to be shifted in.
In any case, the routine is written to discard a fixed
number of regular bits, along with any zero-bits that
are also present. Back to our stream, in binary, it
would look like this:
11001111 11001111 0 10011110 11111101 0 11101101
10111011 11100110 10110110 11101101 11111011 0
11111100 11101011 11011111 11011110 11010011
11011001 11111111 11011001 11011101 0 11010111
with the seemingly redundant zero-bits in bold.
However, by skipping the first three bits, the stream
looks like this:
0 11110100 11110111 11101011 10110110 11101111
10011010 11011011 10110111 11101101 11111001
11010111 10111111 10111101 10100111 10110011
11111111 10110011 10111010 11010111

The old zero-bits are still in bold, and the newly
exposed zero-bit is in italics. We can see that the
old zero-bits form part of the new stream. This
decodes to F4 F7 (both ignored) EB B6 EF 9A DB
B7 ED F9 D7 BF BD A7 B3 FF B3 BA. The trailing
values are stored backwards, and the checksum is
#$67. The low four bits (7) are the index into the
table, and the values at offset 7 and 8 are #$D7 and
#$F9.

A bit-copier that misses any of these zero-bits
will write a track whose length and contents do not
match the original

7.10.16 Race conditions

Page 4 of the Software Control of the Disk][or IWM
Controller document states that “The Disk][con-
troller hardware will keep the ENABLE/ signal to
its active low state for approximately one second af-
ter the execution of the motor off instruction, there-
fore read/write can be performed reliably within this
period.” So, a program can issue the motor off in-
struction, and then read sector data successfully for
up to one second afterwards.

This behavior functions as a very nice anti-
debugging mechanism, since single-stepping through
the disk access code, after the motor-off instruction

55

has been issued, will cause the time period to be
exceeded. Thus, the disk won’t be readable at that
time. Sherwood Forest uses this technique.

Page 4 of the Software Control of the Disk][or
IWM Controller document also states that “. . . the
program should verify that the motor is spinning by
monitoring the change in data pattern read from the
drive.” That is to say, while the drive is spinning,
the value will change. Once the drive stops spinning,
the value will not change anymore.

Lady Tut uses this technique. It issues the
motor-off instruction, and then reads continually
from the drive until it sees two consecutive bytes of
the same value. The program assumes at that point
that the drive is no longer spinning. Periodically
thereafter, the program reads from the QA switch
of the Data Register, and compares the newly read
value with the initially read value. If a different
value is seen, then the program triggers a reboot.

In section 9-14 of Understanding the Apple][,
Jim Sather says, “any even address could be used
to load data from the data register to the MPU, al-
though $C088 . . . would be inappropriate.” It might
be considered inappropriate because of the one-
second window noted previously, but that’s exactly
how the program Mr. Do! uses it. By reading from
$C088, the program is able to issue the motor off
instruction, and fetch the data at the same time. It
is compact and useful for anti-debugging.

Faster pussycat

Another kind of race condition revolves around how
quickly the data can be read from the disk. Bor-
rowed Time, for example, reads an entire track in
one revolution. In an interview for the Open Ap-
ple podcast, Rebecca Heineman says that she per-
forms the decoding while the seek is in progress.
While this is certainly possible, it would incur the
significant overhead of having to store all 16 of the
two-bit arrays—a total of 1.3kB! — before any de-
coding could occur. Of course, this is not what was
done. Instead, each sector is read individually, but
the denibbilisation is interleaved with the read. It
means that the sector is decoded directly into mem-
ory, with only 86 bytes of overhead for a single two-
bit array, and the use of two tables of 106 bytes and
256 bytes respectively. It is obviously fast enough
to catch the next sector that arrives

The code looks like this, after validating the data
field prologue:

1 0946 LDY #$AA
; zero r o l l i n g checksum

3 0948 LDA #0
094A STA $26

5 ; wait f o r n ibb l e to a r r i v e
094C LDX $C0EC

7 094F BPL $94C
; index in to t ab l e o f o f f s e t s o f s t r u c t u r e s

9 0951 LDA $A00 ,X
; s t o r e o f f s e t

11 0954 STA $200 ,Y
; update r o l l i n g checksum

13 0957 EOR $26
; f e t ch 86 t imes

15 0959 INY
095A BNE $94A

17 095C LDY #$AA
095E BNE $963

19 ; s t o r e decoded value
0960 STA $9F55 ,Y

21 ; wait f o r n ibb l e to a r r i v e
0963 LDX $C0EC

23 0966 BPL $963
; update r o l l i n g checksum

25 0968 EOR $A00 ,X
; f e t ch s t r u c tu r e o f f s e t , b i t s 0−1

27 096B LDX $200 ,Y
; merge f i r s t member o f two−b i t s t r u c tu r e

29 ; with s ix−b i t va lue to r e cove r e ight−b i t
va lue

096E EOR $B00 ,X
31 ; loop 86 t imes

0971 INY
33 0972 BNE $960

; save 85 th decoded value f o r l a s t
35 0974 PHA

; c l e a r low two b i t s
37 0975 AND #$FC

0977 LDY #$AA
39 ; wait f o r n ibb l e to a r r i v e

0979 LDX $C0EC
41 097C BPL $979

; update r o l l i n g checksum
43 097E EOR $A00 ,X

; f e t ch s t r u c tu r e o f f s e t , b i t s 2−3
45 0981 LDX $200 ,Y

; merge second member o f two−b i t s t r u c tu r e
47 ; with s ix−b i t va lue to r e cove r e ight−b i t

va lue
0984 EOR $B01 ,X

49 ; s t o r e decoded value
0987 STA $9FAC,Y

51 ; loop 86 t imes
098A INY

53 098B BNE $979
; wait f o r n ibb l e to a r r i v e

55 098D LDX $C0EC
0990 BPL $98D

57 ; c l e a r low two b i t s
0992 AND #$FC

59 0994 LDY #$AC
; update r o l l i n g checksum

61 0996 EOR $A00 ,X
; f e t ch s t r u c tu r e o f f s e t , b i t s 4−5

56

63 ; o f f s e t −2 to account f o r Y+2
0999 LDX $1FE ,Y

65 ; merge th i rd member o f two−b i t s t r u c tu r e
; with s ix−b i t va lue to r e cove r e ight−b i t

va lue
67 099C EOR $B02 ,X

; s t o r e decoded value
69 099F STA $A000 ,Y

; wait f o r n ibb l e to a r r i v e
71 09A2 LDX $C0EC

09A5 BPL $9A2
73 ; loop 84 t imes

09A7 INY
75 09A8 BNE $996

; c l e a r low two b i t s
77 09AA AND #$FC

; update r o l l i n g checksum
79 09AC EOR $A00 ,X

; r e s t o r e s l o t to X
81 09AF LDX $2B

; r e t r y i f checksum mismatch
83 09B1 TAY

09B2 BNE $9BD
85 ; wait f o r n ibb l e to a r r i v e

09B4 LDA $C0EC
87 09B7 BPL $9B4

; check only f i r s t ep i l o gue byte
89 09B9 CMP #$DE

09BB BEQ $9BF
91 09BD SEC

09BE .BYTE $24
93 09BF CLC

; s t o r e 85 th decoded value
95 09C0 PLA

09C1 LDY #$55
97 09C3 STA ($44) ,Y

09C5 RTS

The exact way in which the technique works is as
follows. First, each of the two-bit values is read into
memory, but instead of storing them directly, the
values are used as an index into the 106-bytes table.
The 106-bytes table serves two purposes. The first,
in the context of the two-bit values, is as an array
of offsets within the 256-bytes table. The second, in
the context of the six-bit values, is as an array of
pre-shifted values for the six-bit nibbles. The 256-
bytes table is composed of groups of two-bit values
in all possible combinations for each of the three po-
sitions in a nibble. To produce the eight-bit value,
each of the pre-shifted six-bit values is ORed with
the corresponding two-bit value. It is unknown why
the 85th value is treated separately from the rest in
that code; it could certainly be decoded at the same

time, saving five lines.
With the benefit of determination to improve it,

and the ability to do so, I rewrote this loader to de-
code all of the bytes directly, reduced the size of the
code, and made it even faster. I call it “0boot.”49
Then I reduced the overhead to just two bytes, if
page $BF is not the destination. I call that one “q-
boot.”50 The two tables are still 106 bytes and 256
bytes respectively. It might appear that the second
table can be reduced to 192 bytes, since the other 64
bytes are unused. However, it is not possible for this
algorithm, because the alignment is required to sup-
ply the pre-shifted values. If the table were reduced
in size, then additional operations would be required
to reproduce the effect of the shift, and which would
take longer to execute than the time available before
the next nibble arrived.

Interestingly, Heineman claims to have created
and released the technique in 1980,51 but it was
apparently not until 1984 that she used it in a re-
lease herself. It certainly existed in 1980, though.
Automated Simulations (which later became Epyx)
included the technique with the programs Hellfire
Warrior and Rescue At Rigel. In 1983, Free Fall As-
sociates (founded by the co-founder of Automated
Simulations, whose last name begins with “Free”,
and a programmer whose last name ends with “Fall”)
included the technique with the programs Murder on
the Zinderneuf and Archon. (Apparently they took
it with them, as Epyx did not use it again.) Also in
1983, Apple included the technique in ProDOS. In
1985, Brøderbund included the technique with the
program Captain Goodnight. According to Roland
Gustafsson, Apple supplied that code.52

49http://pferrie.host22.com/misc/0boot.zip
50http://pferrie.host22.com/misc/qboot.zip
51Personal communication
52Personal communication

57

Also interestingly, whoever included it in the
Free Fall Associates programs either did not under-
stand it, or just did not want to touch it—there,
the loader has been patched to require page-aligned
reads, but the code still performs the initialisation
for arbitrary addressing. Twelve lines of code could
have been removed from that version. The Inter-
play programs that use the technique also require
page-aligned reads, but do not have the unnecessary
initialisation code.

Quote of the day by Olivier Guinart, “It’s ironic
that the race condition would be used by a program
called Borrowed Time.”

7.11 Track-level protections
7.11.1 Track length

The length of a track might not be constant across
all of the tracks on a disk. The speed of the drive is
the primary reason: the faster the drive, the shorter
the track (that is, fewer nibbles can be written) be-
cause of the larger gaps between the nibbles.

Wizardry determines the length of the track, by
measuring the time between succeeding arrivals of
sector zero, and then calculates the deviation from
the expected value. This deviation value is applied
to the length of several other tracks, and the result
is compared against the expected lengths. If the
length of the track is not within the range that is
expected, then the program hangs. This protection
cannot be reproduced by a sector-copier or track-
copier, because they will discard the original data
between the sectors, thus altering the length of the
track. A bit-copier can usually reproduce this pro-
tection because it writes the entire track mostly as
it appeared originally, so the track length is at least
similar to the original.

7.11.2 Track positioning

The stepper motor in the Disk][system is composed
of four magnets. To advance a whole track requires
activating and deactivating two phases in the proper
order, and with a sufficient delay, for each track to
step. To step to a later track, the next phase must be
activated while the other phases are deactivated. To
step to an earlier track, the previous phase must be
activated while the other phases are deactivated. As
might be expected, activating and then deactivating
only one of the phases will cause the stepper to stop
half-way between two tracks. This is a half-track po-
sition. It is even possible to produce quarter-track
stepping reliably, by performing the half-track step-
ping method, but with a smaller delay. Depending
on the hardware, it can also be done by activating
two of the phases, and then deactivating only one
of them. This last technique is used by Spiradisc.
(§7.11.9.)

The issue with half-track and quarter-track posi-
tioning is that data written to these partial track po-
sitions will cause signal interference with data writ-
ten to the neighbouring half-track or quarter-track
at the same relative position. To avoid unintentional
cross-talk, data can be written to only part of the
track such that there is no overlap, or placed at least
three-quarters of a track apart. (The reliability of
three-quarter tracks is questionable.)

The maximum amount of data that can be
placed at partial-track intervals is proportional to
the stepping—a quarter of a track for each of four
consecutive quarter-tracks, half of a track for each of
two consecutive half-tracks, or a full track for con-
secutive three-quarter-tracks. There can be a sig-
nificant performance hit to access the data, too—it
requires an almost complete rotation to reach the
start of the data on subsequent tracks if the maxi-
mum density is used, because the seek time is long
enough that the start will be missed on the first time
around. As a result, the most common amount that
is used is only a quarter of the track, and placed far
enough around the track that the read can be per-
formed almost continuously. Programs that make
use of partial tracks usually include a standard for-
mat of individual sectors, so the only trick to the
protection is the location of the data on the disk.

Agent USA uses the half-track technique with
five sectors per track.

58

Championship Lode Runner uses an alternating
quarter-track technique with just two sectors per
track but of twice the size. While loading, the access
alternates between the neighbouring quarter-tracks,
resulting in the drive “chattering”, but allowing the
sectors to be spaced only half of a rotation apart. In
both cases of the programs here, it results in an ex-
tremely fast load time because of the reduced head
movement.

In this case, the protection is the use of partial
tracks. Copy programs which do not copy the par-
tial tracks (and copying partial tracks is not the de-
fault behavior) will fail to reproduce the protection.

7.11.3 Synchronised tracks

If the approximate rotation speed of the drive is
known, then it becomes possible to place sectors at
specific locations on tracks, such that they have a
special position relative to sectors on other tracks.
This technique is identical to synchronized sectors,
except that it spans tracks, making it even more
difficult to reproduce, because it is difficult to de-
termine the relative position of sectors across tracks.
Unlike “spiral tracking” (§7.11.4), this technique lim-
its itself to checking for the existence of particular
sectors, rather than actually reading them.

Blazing Paddles uses this technique. Once it
finds sector zero on track zero, as a known starting
point, it seeks to track one, reads the address field of
the next sector to arrive, and then compares it to an
expected value. If the proper sector is found, then
the program seeks to track two, reads the address
field of the next sector to arrive, and compares it
to an expected value. If the proper sector is found,
then the program seeks to track three. This is re-
peated over eight tracks in total. It means that the
original disk has one sector placed at a specific lo-
cation on each of eight consecutive tracks, relative
to sector zero of track zero, such that it factors in
how much the disk rotates during the time that the
controller takes to move the head from track zero.
It also supports slight variations in rotation speed,
such that the read can begin anywhere after the ad-
dress field for the previous sector, without failing
the protection.

7.11.4 Track spiralling
spiral track

4

quarter-track
layout

1 2

4

5

76

8 3

1

2

3

5

6

7

8

“Track spiralling” or “spiral tracking” is a tech-
nique whereby the data is placed in partial-track
intervals, but treated as a complete track. By mea-
suring the time to move the head to a partial-track,
the position on the track can be known, such that
the next sector to be read will have a predictable
number, and therefore can be read without valida-
tion, once the start of the sector is found. A copy of
the disk will not place the data at the same relative
position, causing the protection to fail. The step-
ping in spiral tracking goes in only one direction.
A visualisation of the data access would look like a
broken spiral, hence the name.

One major problem with spiral tracking is that
variations in rotation speed can result in the read
missing its queue and not finding the expected sec-
tor. For 30 years, I believed a claim53 that the
program Captain Goodnight uses this technique. It
doesn’t. The Observatory uses a spiral pattern for
faster loading, but still verifies the sector number
first. However, the program LifeSaver uses true spi-
ral tracking.

7.11.5 Track arcing

“Track arcing” uses the same principle as spiral
tracking, but instead of stepping in only one direc-
tion, it reaches a threshold and then reverses direc-
tion.

7.11.6 Track mirroring

Track mirroring should be placed conceptually be-
tween synchronized tracks and spiral tracking. As

53From a cracker whose crack-screens were displayed only by pressing a particular key-sequence during the boot. They were
known as “Hidden Pages” (Imagine that—a cracker who didn’t want to brag openly!) Both of the programs Captain Goodnight
and Where In The World Is Carmen Sandiego (first release) use alternating quarter-tracks—the same technique as in the pro-
gram Championship Lode Runner. (The former two were released within a year of the latter one.) The sectors are placed in
a N/S/E/W orientation on the first two tracks, a NW/SE/NE/SW orientation on the next two tracks, and then back to the
N/S/E/W orientation on the next two tracks, and so on. The loader will allow an entire revolution to pass, if necessary, in
order to find the requested sector. The tracks are synchronized, however, because they must be to avoid cross-talk. (§7.11.7.)

59

with synchronized tracks, it expects a particular sec-
tor to be found after stepping across multiple tracks.
As with spiral tracking, it reads the sector data.
However, unlike spiral tracking, it verifies that the
contents of that sector match exactly the contents
of all of the other sectors that are synchronized sim-
ilarly across the tracks.

The Toy Shop uses this technique. It reads three
consecutive quarter-tracks in RWTS18 format, and
verifies that they all fully readable and have a valid
checksum. This is possible only because they are
identical in their content and position. The con-
tents of the last quarter-track are used to boot the
program. A funny thing occurs when the program is
converted to a NIB image: the protection is defeated
transparently, because NIB images do not support
partial tracks, so the attempt to read consecutive
quarter-tracks will always return identical data, ex-
actly as the protection requires.

Pinball Construction Set uses this technique. It
reads a sector then activates a phase to advance the
head, and then proceeds to read a sector while the
head is moving. The head continues to drift over the
track while the sector is being read. After reading
the sector, the program deactivates the phase, reads
another sector, and then completes the move to the
next track. Once there, it reads a sector. It activates
a phase to retreat the head, and then performs the
same trick in reverse, until the start of the track is
reached again. It performs this sequence four times
across those two tracks, which makes the drive hiss.
The program is able to read the sector as continuous
data because the disk has consecutive quarter-tracks
that are identical in their content and position.

7.11.7 Cross-talk

While cross-talk is normally something to be
avoided, it can serve as a copy-protection mecha-
nism, by intentionally allowing it to occur. It mani-
fests itself in a manner similar to the effect of having
excessive consecutive zero-bits being present in the
stream, where reading the same stream repeatedly
will yield different values. The lack of such an effect
indicates the presence of a copy.

7.11.8 More tracks

Many disk drives had the ability to seek beyond
track 34, and many disks also carried more than
35 tracks. However, since DOS could not rely on
the presence of either of these things, it did not

offer support for them. Some copy programs did
not support the copying of additional tracks for the
same reason. Of course, programmers who did not
use DOS had no such limitation. While the actual
number of available tracks could vary up to 40 or
even 42, it was fairly safe to assume that at least
one track existed, and could be read by direct use
of the disk drive.

Faial uses this technique to place data on track
35.

7.11.9 SpiraDisc

No description of copy-protection techniques could
be complete without including SpiraDisc. This pro-
gram was a protection technology that introduced
the idea of spiral tracking, though the implementa-
tion is not spiral tracking as we would describe it
today. It is, in fact, a precise placement of multi-
ple sectors on quarter-tracks, such that there is no
cross-talk while reading them, but without a specific
order. The major deviation from the current idea of
spiral tracking is that there is no synchronization
of the sectors beyond avoiding cross-talk. The pro-
gram will allow a complete rotation of the disk to
occur, if necessary, while searching for the required
sector.

The first-stage boot loader is a single sector that
is “4-and-4” encoded, and 768 bytes long. The sec-
ond stage loader is composed of ten regular sectors
that are “6-and-2” encoded. They are read one by
one—there is no read-scattering here to speed up the
process. Thereafter, reads use an alternative nibble
table—all of the values from #$A9-FF from our first
table. These values might have been chosen because
they provide the least sparse array when used as in-
dexes.

The encoding is not “6-and-2”, either, it is “6-
and-0” encoding. This requires 344 bytes per sector,
instead of the regular 342 bytes. The decoder over-
writes the addresses $xxAA and $xxAB (the program
supports only page-aligned reads) twice in order to
compensate for the additional bytes. The decoding
is interleaved, so there is no denibbilisation pass.

The “6-and-0” encoding works by using the six-
bit nibble as an alternating index into one of the
arrays of six-bit or two-bit values. The code is both
much faster (no fetching of the two-bit array) and
much smaller (two-thirds of the size) than the one
described in Race Conditions,(§7.10.16) but the de-
coding tables occupy 1.5kb of memory. The mem-
ory layout might have been chosen to avoid a timing

60

penalty due to page-crossing accesses. However, the
penalty has no effect on the performance of the rou-
tine because the code must still spend time waiting
for the bytes to arrive from disk. Therefore, the
tables could have been combined into a 512-byte re-
gion instead, which is a closer match to the memory
usage of the routine described in Race Conditions.

A Spiradisc-protected disk uses four sectors per
track, but since the track stepping is quartered, the
data density is equivalent to a single 16-sector track.
Each sector has a unique prologue value to identify
itself. When a read is requested, if a sector can-
not be found on the current track, then the pro-
gram advances the drive head by one quarter-track,
and then attempts the read again. If the read fails
again, then the program retreats the drive head by
one quarter-track, and then attempts the read again.
If the read still fails, then the program retreats the
drive head by another quarter-track, and then at-
tempts the read again. If the read fails at this point,
then the disk is considered to be corrupted.

Given the behaviour of the read request, the
data might not be stored on consecutive quarter-
tracks. Instead, they might zig-zag across a span of
up to three quarter-tracks. This is another deviation
from the idea of spiral tracking. By coincidence, the
movement is very similar to the one in the program
Captain Goodnight and other Brøderbund titles.

Copying a SpiraDisc-protected disk is difficult
because of the potential for cross-talk which would
corrupt the sectors when they are read back. How-
ever, images produced by an E.D.Dċard will work in
emulators, if the copy parameters are set correctly.

When run, the program decodes selected pages
of itself, based on an array of flags, and also re-
encodes those pages after use, to prevent dumping
from memory. The decoding is simply an exclusive-
OR of each byte with the value #$AC, exclusive-
ORed with the index within the page.

At start-up, the program profiles the system:
scanning the slot device space, and records the loca-
tion of devices for which the first 17 bytes are con-
stant (that is, they return the same value when read
more than once), and which do not have eight bytes
that match the first one within those 17 bytes. For
example, Mockingboard has memory-mapped I/O
space in that region, which are mostly zeroes. The
program calculates and stores a checksum for slot
devices which pass this check. The store was sup-
posed to happen only if the checksum did not match
certain values, but the comparison is made against

a copyright string instead of an array of checksums.
The first time around, all values are accepted. Dur-
ing subsequent profiling, the value must match ex-
actly.

The program checks if bank one is writable, af-
ter attempting to write-enable it, and sets a flag
based on the result. The program checksums the
F8 and F0 ROM BIOS codes, watches for particu-
lar checksums, and sets flags based on the result.
The original version of the program (as seen in
1981, used on the program Jawbreaker) actually re-
quired that the ROM BIOS code match particular
checksums—either the original Apple][or the Ap-
ple][+—otherwise the program simply wiped mem-
ory and rebooted. (This prevented protected pro-
grams from running on the Apple][e or the Ap-
ple][c.) The no-doubt numerous compatibility prob-
lems that resulted from this decision led to the final
check being discarded (as seen in 1983, used on the
program Maze Craze Construction Set, but quite
possibly even earlier), though the rest of the profil-
ing remains. However, having even one popular ti-
tle that didn’t work on more modern machines was
probably sufficient to turn publishers entirely off the
use of the program.

The program probes all of memory by writing a
zero to every second byte. However, it skips pages
#0, #2, #4-7, and #$A8-C0, meaning that it writes
data to all slot devices, with unpredictable results.
The program also re-profiles the system upon receiv-
ing each request to read tracks. This re-profiling is
intended to defeat memory dumps that are produced
by NMI cards, and which are then transferred to
another machine, as the second machine might have
different hardware options.

The program also checksums the boot PROM
prior to disk reads, and requires that it matches one
particular checksum—that of the Disk][system—
otherwise the program wipes memory and reboots.
(This prevents protected programs from running on
the Apple][GS.)

Interestingly, despite all of the checks of the envi-
ronment, the program does not protect itself against
tampering, other than using encoded pages. The
memory layout is data on pages #$A8-B1, and code
on pages #$B2-BF. The data pages are very sparse,
leaving plenty of room for a boot tracer to intercept
execution and disable protections.

The program uses a quarter-track stepping al-
gorithm that activates two phases, and then de-
activates only one of them. According to Roland

61

Gustafsson, this stepping technique allows for more
precise positioning of the drive head, but it does not
work on Rana drives. It was for this reason that he
used the reduced-delay technique instead. (§7.11.2.)
The reduced-delay technique is apparently the only
one which works on an Apple][c, as well. Spiradisc
predated the Apple][c by about two years, so it was
just bad luck that an incompatible technique was
chosen.

7.12 Illegal opcodes

The 6502 CPU has 151 documented instructions.
There are quite a few additional instruction encod-
ings for which the results could be considered useful,
if the side-effects (e.g. memory and/or register cor-
ruption, or long execution time) were also accept-
able. In some cases, the instructions were used to
obfuscate the meaning of the code, since they would
not be disassembled correctly. Some of these un-
documented instructions were replaced in the 65C02
CPU with documented instructions with different
behaviors, and without the unfortunate side-effects.
In some cases, the code that used the undocumented
instructions was not affected because the results of
the undocumented instructions were discarded, and
the documented replacement did not introduce es-
pecially unwanted behavior. Note that the instruc-
tions that were not replaced will cause the 65C02
CPU to hang.

The Datasoft version of the program Dig Dug
uses this technique. It begins with an instruction
which used to behave as a two-byte NOP, but which
is now a zero-page STZ instruction. Since the pro-
gram does not make use of the zero-page at that
time, the store has no side-effects. It looks like this
in 6502 mode:

0801 74 ???
2 0802 4C B0 58 JMP $58B0

In 65C02 mode, the same machine code interpreted
differently.

0801 74 4C STZ $4C
2 0803 B0 58 BCS $85D

Beer Run uses this technique, but was unfortu-
nate enough to choose an instruction which was not
defined on the 65C02 CPU, so the program does not
work on a modern machine. The code is run with
the carry set much earlier in the flow, as a side-effect
of executing a routine in the ROM BIOS. It is pos-
sible that the authors were not even aware of the
fact.

051B LDX #$00
2 . . .

051F LDA #$00
4 0521 STA $00

. . .
6 ;FF 00 00

0525 ISC $0000 ,X

which, when executed, does this:

1 INC $0000 ,X
SBC $0000 ,X

X is zero, so $00 is first incremented to #$01, and
then subtracted from A. A is zero before the subtrac-
tion, so it becomes #$FF. The resulting #$FF is used
as a key to decipher some values later.

7.13 CPU bugs(!)
The original 6502 CPU had a bug where an indi-
rect JMP (xxFF) could be directed to an unexpected
location because the MSB will be fetched from ad-
dress xx00 instead of page xx+1. Randamn relies on
this behavior to perform a misdirection, by placing
a dummy value at offset zero in page xx+1, and the
real value at address xx00.

While not a bug, but perhaps an undocumented
feature—the breakpoint bit is always set in the sta-
tus register image that is placed on the stack by the
PHP instruction. Lady Tut relies on this behavior to
derive a decryption key.

There is also a class of alternative behaviours be-
tween the 6502 and the 65C02 CPUs, particularly
regarding the Decimal flag. For example, the fol-
lowing sequence will yield different values between

62

the two CPUs: $1B on a 6502, and $0B on a 65C02.
These days, it would be used as an emulator detec-
tion method. Try it in your favorite emulator to see
what happens.

SED
2 SEC

LDA #$20
4 SBC #$0F

7.14 Magic stack values

One way to obfuscate the code flow is through the
use of indirect transfers of control. Rescue At Rigel
fills the stack entirely with the sequence #$12 #$11
#$10, and then performs an RTI without setting the
stack pointer to a constant value. Of course, it works
reliably.

Since there are only three values in the sequence,
there should be only three cases to consider. If the
stack pointer were #$F6 at the time of executing the
RTI instruction, then this causes the value #$12 and
$1011 to be fetched from $1F7. If the stack pointer
were #$F7 at the time of executing the RTI instruc-
tion, then this causes the value #$11 and $1210 to be
fetched from $1F8. If the stack pointer were #$F8
at the time of executing the RTI instruction, then
this causes the value #$10 and $1112 to be fetched
from $1F9. The program has an RTS instruction at
the first and last of those locations. That yields two
more cases to consider. The RTS at $1011 transfers
control to $1112+1. The RTS at $1112 transfers
control to $1210+1. That leaves one more case to
consider. The program has an RTS instruction at
$1113. The RTS at $1113 transfers control to $1211.
So, both $1210 and $1211 are reachable this way.
Both addresses contain a NOP instruction, to allow
the code to fall through to the real entrypoint

Note the phase “there should be.” There is one
special case. The remainder of 256 divided by three
is one. What is in that one byte? It’s the value #$10.
So the first and last byte of the stack page is #$10,

introducing an additional case. If the stack pointer
were #$FD at the time of executing the RTI instruc-
tion, then this causes the value #$11 and $1010 to be
fetched from $1FE. The program has an RTS instruc-
tion at $1010. The RTS at $1010 transfers control
to $1112+1. The RTS at $1113 transfers control to
$1211.

That’s not all! We can construct an even longer
chain. If the stack pointer were #$F9 at the time
of executing the RTI instruction, then this causes
the value #$12 and $1011 to be fetched from $1FA.
The RTS at $1011 transfers control to $1112+1, but
the RTS at $1113 causes the stack pointer to wrap
around. The CPU fetches both #$10 values, so the
RTS at $1113 transfers control to $1010+1. The RTS
at $1011 transfers control again to $1112+1. The
RTS at $1113 finally transfers control to $1211.

Championship Lode Runner has a smaller chain.
It uses only two values on the stack: $3FF and $400.
An RTS transfers control to $3FF+1. The program
has an RTS at $400. The RTS at $400 transfers con-
trol to $400+1, the real entrypoint.

7.15 Obfuscation

7.15.1 Anti-disassembly (aka WTF?

This technique is intended to prevent casual read-
ing of the code—that is, static analysis, and specif-
ically targeting linear-sweep disassemblers—by in-
serting dummy opcodes into the stream, and using
branch instructions to pass over them. At the time,
recursive-descent disassembly was not common, so
the technique was extremely effective.

Wings of Fury uses this technique, even for its
system detection. The initial disassembly follows,
with undocumented instructions such as RLA.

9600 ORA (0 ,X)
2 9602 LDY #$10

9604 BPL $9616
4 9606 RLA ($10 ,X)

9608 NOP
6 960A BEQ $95AC

960C NOP
8 960E STY $84

9610 STY $18
10 9612 CLC

9613 CLC

63

12 9614 BNE $961C
9616 CLC

14 9617 CLC
9618 BNE $960B

16 961A SRE ($51) ,Y
961C STY $C009

18 961F STX $20 ,Y
9621 ORA ($10) ,Y

20 9623 CPX $84
9625 STA $C008

22 9628 BEQ $9672
962A LDA $C088 ,X

24 962D ORA ($18) ,Y
962F ORA ($10) ,Y

26 9631 ASL
9632 LDX #$27

28 9634 ASL
9635 ASL

30 9636 LDY #$10
9638 BPL $9630

32 963A BRK
963B JMP $93BD

34 963E TYA
963F STA $400 ,X

36 9642 BNE $964C
9644 BRK

Upon closer examination, we see the branch in-
struction at $9604 is unconditional, because the
value in the Y register is positive. That leads to the
branch at $9618. This branch is also unconditional,
because the value in the Y register is not zero. That
takes us into the middle of an instruction at $960B,
and requires a second round disassembly:

1 ; s t o r e #$64 at $84
960B LDY #$64

3 960D STY $84
; f our dummy i n s t r u c t i o n s

5 960F STY $84
9611 CLC

7 9612 CLC
9613 CLC

9 ; uncond i t i ona l branch
; because Y i s not ze ro

11 9614 BNE $961C
. . .

13 ; switch to a ux i l i a r y memory bank , i f
a v a i l a b l e

961C STY $C009
15 ; s t o r e a l t e r n a t i v e va lue at $84 ($20+#$64=

$84)
961F STX $20 ,Y

17 ;dummy i n s t r u c t i o n
9621 ORA ($10) ,Y

19 ; compare the two va lue s
; w i l l d i f f e r in 64kb environment

21 9623 CPX $84
; switch to main memory bank

23 9625 STA $C008
; branch i f 128kb memory e x i s t s

25 9628 BEQ $9672

; turn o f f the d r i v e
27 962A LDA $C088 ,X

;dummy i n s t r u c t i o n
29 962D ORA ($18) ,Y

;dummy i n s t r u c t i o n masks r e a l i n s t r u c t i o n
31 962F ORA ($10) ,Y

;dummy i n s t r u c t i o n in f i r s t pass
33 ; opcode parameter in second pass

9631 ASL
35 ; l ength o f e r r o r message

9632 LDX #$27
37 ; two dummy i n s t r u c t i o n s

9634 ASL
39 9635 ASL

9636 LDY #$10
41 ; uncond i t i ona l branch

; because Y i s p o s i t i v e
43 9638 BPL $9630

963A BRK
45 963B JMP $93BD

963E TYA
47 963F STA $400 ,X

9642 BNE $964C
49 9644 BRK

A third round disassembly:

1 ; uncond i t i ona l branch
; because Y i s p o s i t i v e

3 9630 BPL $963C
. . .

5 ; message text
963C LDA $9893 ,X

7 ; wr i t e to the s c r e en
963F STA $400 ,X

9 ; uncond i t i ona l branch
; because A i s not zero

11 9642 BNE $964C

The obfuscated code only gets worse from there,
but the intention is clear already

7.15.2 Self-modifying code

As the name implies, this technique relies on the
ability of code to modify itself at runtime, and to
have the modified version executed. A common use
of the technique is to improve performance by up-
dating an address with a loop during a memory copy,
for example. However, from the point of view of
copy-protection, the most common use is to change
the code flow, or to act as a light encoding layer.
Self-modifying code can be used to interfere with de-
buggers, because a breakpoint that is placed on the
modified instruction might be overwritten directly,
thus removing it, and resulting in uncontrolled ex-
ecution; or turned into an entirely unrelated (and

64

possibly meaningless or even harmful) instruction,
with unpredictable results

Aquatron hides its protection check this way.
The initial disassembly looks like this, complete with
undocumented instructions such as ISB:

1 9600 DEC $9603
9603 ISB $9603

3 9606 LDA $9628
9609 EOR #$C9

5 960B BNE $960E
960D JSR $288D

7 9610 STX $18 ,Y
9612 BNE $9615

9 9614 JMP $29A0
9617 TYA

11 9618 BCC $961B
961A JSR $59

13 961D STX $99 ,Y
961F BRK

15 9620 STX $C8 ,Y
9622 BNE $9617

17 9624 TYA
9625 BPL $9628

19 9627 JMP $2960

65

Upon closer examination, we see references to
instructions at “hidden” offsets, and of course, the
direct modification of the instruction at $9603.

Second round disassembly:

1 9600 DEC $9603
;−> INC $9603

3 ; undo s e l f −mod i f i c a t i on and cont inue
9603 ISB $9603

5 9606 LDA $9628
9609 EOR #$C9

7 ; uncond i t i ona l branch
; because A i s not ze ro

9 960B BNE $960E
960D .BYTE $20

11 ; r ep l a c e i n s t r u c t i o n below
960E STA $9628

13 9611 CLC
; uncond i t i ona l branch

15 ; because A i s not zero
9612 BNE $9615

17 9614 .BYTE $4C
9615 LDY #$29

19 9617 TYA
9618 BCC $961B

21 961A .BYTE $20
; decode and s t o r e

23 961B EOR $9600 ,Y
961E STA $9600 ,Y

25 9621 INY
9622 BNE $9617

27 9624 TYA
; uncond i t i ona l branch

29 ; because Y i s p o s i t i v e
9625 BPL $9628

31 9627 .BYTE $4C
; s e l f −modi f i ed by $960E to $A9 on f i r s t pass

33 ; r e s t o r ed to $60 on second pass
9628 RTS

35 ; decoded by $961B−9620 on f i r s t pass
; re−encoded on second pass

37 9629 .BYTE $29

Now we can see the decryption routine. It de-
codes the bytes at $9629-96FF, which contained a
check for a sector with special format. If the checked
passes, then the routine at $9600 is run again, which
reverses the changes that had been made — the bytes
at $9629-96FF are encoded again, and the routine
exits via the RTS instruction at $9628.

7.15.3 Self-overwriting code

When self-modification is taken to the extreme, the
result is self-overwriting code. There, the RWTS
routine reads sector data over itself, in order to
change the execution behavior, and potentially re-
move user-defined modifications such as breakpoints
or detours. LifeSaver uses this technique. The

loader enters a loop which has no apparent exit con-
dition. Instead, the last sector to be read from disk
contains an identical copy of the loader code, except
for the last instruction which branches to a new lo-
cation upon completion. When combined with a
critically timing-dependent technique, such as read-
ing a sector while the head is moving, it becomes
extremely difficult to defeat.

7.15.4 Encryption and compression

Encryption (or, more correctly, enciphering) of code
was a popular technique, but the keys were always
very weak. The enciphering usually consisted of an
exclusive-OR of the byte with a fixed key. In some
cases, the key was a rolling value taken from the
byte just deciphered. In some rarer cases, multiple
keys were used

Goonies uses a rotate operation. However,
since the 6502 CPU does not have a plain rotate
instruction—only rotate with carry — the program
must set the carry bit correctly prior to the opera-
tion. The program does it this way:

1 ; save value
0405 PHA

3 ; ex t r a c t car ry b i t
0406 LSR

5 ; r e s t o r e va lue
0407 PLA

7 ; r o t a t e with car ry
0408 ROR

Compression of graphics was necessary to re-
duce the size of the data on disk, and to decrease
load times, since the reduced disk access more than
made up for the time spent to decompress the graph-
ics. The most common compression technique was
Run-Length Encoding (RLE), using a stream de-
rived from every second horizontal byte, or verti-
cal columns. More advanced compression, such as
something based on Lempel-Ziv, was generally con-
sidered to be too slow to use.

Perhaps based on the assumption that LZ-based
compression was too slow, compression of code
seems to have been entirely absent until recently—all

66

of my releases use my decompressor for aPLib54, for
an almost exact or even slightly reduced load time,
which shows that the previous assumption was quite
wrong. Others have had success with my decompres-
sor for LZ455 when used for graphics. A more recent
LZ4-based project is also showing promise.56

7.16 Virtual machines

One of the most powerful forms of obfuscation is
the virtual machine. Instead of readable assembly
language that we can recognise, the virtual machine
code replaces instructions with bytes whose meaning
might depend on the parameters that follow them.
Electronic Arts were famous for their use of pseudo-
code (p-code) to hide the protection routines in pro-
grams such as Archon and Last Gladiator. That vir-
tual machine was even ported to the Commodore 64
platform.

Last Gladiator uses a top-level virtual machine
that has 17 instructions. The instructions look like
this:

00 JMP
2 01 CALL NATIVE

02 BEQ
4 03 LDA IMM

04 LDA ABSOLUTE
6 05 JSR

06 STA ABSOLUTE
8 07 SBC IMM

08 JMP NATIVE
10 09 RTS

0A LDA ABSOLUTE, A ; p−code A r e g i s t e r
12 0B ASL

0C INC ABSOLUTE
14 0D ADC ABSOLUTE

0E XOR ABSOLUTE
16 0F BNE

10 SBC ABSOLUTE
18 11 MOVS

It has the ability to transfer control into 6502
routines, via the instructions that I named “call na-
tive” and “jmp native.” The parameters to the in-
structions were XORed with different values to make
the disassembly even more difficult. Since the vir-
tual machine could read arbitrary memory, it was
used to access the soft-switches, in order to turn the
drive on and off. Once past the first virtual ma-
chine, the program ran a second one. The second

virtual machine is interesting for one particular rea-
son. While it looks identical to the first one, it’s not
exactly the same. For one thing, there are only 13 in-
structions. For another, two of them have swapped
places:
0A INC ABSOLUTE

2 0B nothing
0C LDA ABSOLUTE, A ; p−code A r e g i s t e r

These two engines were not the only ones that
Electronic Arts used, either. Hard Hat Mack uses a
version that had twelve instructions.

1 00 JMP
01 CALL NATIVE

3 02 BEQ
03 LDA IMM

5 04 LDA ABSOLUTE
05 JSR

7 06 STA ABSOLUTE
07 SBC IMM

9 08 JMP NATIVE
09 RTS

11 0A LDA ABSOLUTE, A ; p−code A r e g i s t e r
0B ASL

Following that virtual machine was yet another
variation. This one has only eleven instructions.
Nine of the instructions are identical in value to
the previous virtual machine. The differences are
that “ASL” is missing, and the “LDA ABSOLUTE, A”
instruction is now “INC ABSOLUTE.”

However, in between those two virtual machines
was an entirely different virtual machine. It is a
stack-based engine that uses function pointers in-
stead of byte-code. It looks like this, if you’ll forgive
handler address in place of names I wasn’t able to
identify.
9DF2 .WORD xsave_retpc

2 9DF4 .WORD xpush_imm
9DF6 .WORD $95FF

4 9DF8 .WORD xpush_imm
9DFA .WORD $A600

6 9DFC .WORD xchkstk_vars
9DFE .WORD xbeq_rel

8 9E00 .WORD 4
9E02 .WORD xdo_copy_prot

10 9E04 .WORD xjmp_retpc

54http://pferrie.host22.com/misc/aplibunp.zip
55http://pferrie.host22.com/misc/lz4unp.zip
56https://github.com/fadden/fhpack

67

This virtual machine is Forth. Amnesia, includ-
ing its copy-protection (What You Know style), was
written entirely in Forth. The Toy Shop used an-
other virtual machine, which combined byte-code
and function pointers, depending on which function
was called, and all mixed freely with native code.
Its identity is not known.

Of course, the most famous of all virtual ma-
chines is the one inside Pascal, an ancestor of Del-
phi that was very widely used in the eighties. Wiz-
ardry is perhaps the most well-known Pascal pro-
gram on the Apple][system, and the Pascal virtual
machine made it a simple task to port the program
to other platforms. The advantage of a virtual ma-
chine is that only the interpreter must be ported,
rather than the entire system. Since the language
is much higher-level than assembly language, it also
allows for a faster development time. It also makes
de-protecting a program much harder

7.17 ROM regions
The Apple][ROM BIOS is full of little routines
whose intention is clear, but whose meaning can be
changed depending on the context. That leads into
an interesting area of obfuscation and indirection.
For our first example, there is a routine to save the
register contents. It is used by the ROM BIOS code
when a breakpoint occurs. It has the side-effect of
returning the status register in the A register. That
allows a program to replace the instruction pair PHP;
PLA with the instruction JSR $FF4A for the same pri-
mary effect (it has the side-effect of altering several
memory locations), but one byte larger.

For our second example, there is a routine to
clear the primary text screen. Since the Apple][
has a text and graphics mode that share the same
memory region, there is one routine for clearing the
screen while in text mode, and another for clear-
ing the screen while in graphics mode. However, it
is possible to use the graphics routine to clear the
screen even while in text mode. That allows a pro-
gram to replace JSR $FC58 with JSR $F832 for the
same major effect. (It has the side-effect of altering
several memory locations.)

For our third example, there is a routine to com-
pare two regions of memory. It is used primarily to
ensure that memory is functioning correctly. How-
ever, it can also be used to detect alterations that as
those produced by a user attempting to patch a pro-
gram. All that is required is to set the parameters
correctly, like this:

LDA #>beghi
2 STA $3D

LDA #<beglo
4 STA $3C

LDA #>endhi
6 STA $3F

LDA #<endlo
8 STA $3E

LDA #>cmphi
10 STA $43

LDA #<cmplo
12 STA $42

JSR $FE36

For our fourth example, there is an RTS instruc-
tion at a known location. A jump to this instruc-
tion will simply return. It is usually used to deter-
mine the value of the Program Counter. However,
it can just as easily be used to hide a transfer of
control, taking into account that the destination ad-
dress must be one less than the true value, like this
to jump to $200:

1 LDA #$01
PHA

3 LDA #$FF
PHA

5 JMP $FF58

And so on. The first three examples are taken
from Lady Tut, though in the third example, the
parameters are also set in an obfuscated way, us-
ing shifts, increments, and constants. The fourth is
taken from Mr. Do!.

7.18 Sensitive memory locations
There are certain regions in memory, in which
modifications can be made which will cause inten-
tional side-effects. The side-effects include code-
destruction when viewed, or automatic execution in
response to any typed input, among other things.
The zero-page is a rich source of targets, because it
is shared by so many things.

The most commonly altered regions follow.

7.18.1 Scroll window

When the monitor is active, the scrollable region
of the screen can be adjusted to allow “fixed” rows
and/or columns. The four locations, left ($20),
width ($21), top ($22), and bottom ($23) can also
be adjusted. A program can protect itself from de-
bugging attempts by altering these values to make a

68

very small window, or even to cause overlapping re-
gions that will cause memory corruption if scrolling
occurs.

7.18.2 I/O vectors

There are two I/O vectors in the Apple][, one
for output—CSW ($36-37), and one for input—KSW
($38-39). CSW is invoked whenever the ROM
BIOS routine COUT is called to display text. KSW
is invoked whenever the ROM BIOS routine RD-
KEY is called to wait for user input. Both of these
vectors are hooked by DOS in order to intercept
commands that are typed at the prompt. Both of
these vectors are often forcibly restored to their de-
fault values to unhook debuggers. They are some-
times altered to point to disk access routines, to pre-
vent user interaction. Championship Lode Runner
uses the hooks for disk access routines in order to
load the level data from the disk.

7.18.3 Monitor

The monitor prompt allows a user to view and al-
ter memory, and execute subroutines. It uses sev-
eral zero-page addresses in order to do this. Any-
thing that is stored in those locations ($31, $34-35,
$3A-43, $45-49) will be lost when the monitor be-
comes active. In addition, the monitor uses the
ROM BIOS routine RDKEY. RDKEY provides a
pseudo-random number generator, by measuring the
time between keypresses. It stores that time in
$4E-4F.

Falcons uses address $31 to hold the rolling
checksum, and checks if $47 is constant after ini-
tialising it.

Classmate uses addresses $31 and $4E to hold
two of the data field prologue bytes.

7.18.4 The “LOCK” mystery

There is a special memory location in Applesoft
($D6) which is named the “AppleSoft Mystery Pa-

69

rameter” in What’s Where In The Apple. It is also
named “LOCK” in the Applesoft Internals disassem-
bly, which gives a better idea of its purpose. When
set to #$80, all Applesoft commands are interpreted
as meaning “RUN.” This prevents any user inter-
action at the Applesoft prompt. Tycoon uses this
technique.

7.18.5 Stack

The stack is a single 256-bytes page ($100-1FF) in
the Apple][. Since the standard Apple][environ-
ment does not have any source of interrupts, the
stack can be considered to be a well-defined mem-
ory region. This means that code and data can be
placed on the stack, and run from there, without re-
gard to the value of the stack pointer, and modifica-
tions will not occur unexpectedly. (The effect on the
stack of subroutine calling is an expected modifica-
tion.) If an interrupt occurred, then the CPU would
save the program counter and status register on the
stack, thus corrupting the code or data that existed
below the current stack pointer. (The corruption
can even be above the stack pointer, if the stack
pointer value is low enough that it wraps around!)
Correspondingly, any user interaction that occurs,
such as breaking to the prompt, will cause corrup-
tion of the code or data that exist below the current
stack pointer. Choplifter uses this technique.

7.18.6 Stack pointer

Since the standard Apple][environment does not
have any source of interrupts, the stack pointer
can be considered to be a register with well-defined
value. This means that its value remains under pro-
gram control at all times and that it can even be
used as a general-purpose register, provided that
the effect on the stack pointer of subroutine call-
ing is expected by the program. Beer Run uses this
technique.

LifeSaver also uses this technique for the pur-
pose of obfuscating a transfer of control—the pro-
gram checksums the pages of memory that were read
in, and then uses the result as the new stack pointer,
just prior to executing a “return from subroutine” in-
struction. Any alteration to the data, such as the
insertion of breakpoints or detours, results in a dif-
ferent checksum and unpredictable behavior.

7.18.7 Input buffer

The input buffer is a single 256-bytes page
($200-2FF) in the Apple][. Code and data can be
placed in the input buffer, and run from there. How-
ever, anything that the user types at the prompt,
and which is routed through the ROM BIOS routine
GETLN ($FD6A), will be written to the input buffer.
Any user interaction that occurs, such as breaking
to the prompt, will cause corruption of the code in
the input buffer. Karateka uses this technique.

7.18.8 Primary text screen

The primary text screen is a set of four 256-bytes
pages ($400-7FF) in the Apple][. Code and data
can be placed in the text screen memory, and run
from there. The visible screen was usually switched
to a blank graphics screen prior to that occurring, to
avoid visibly displaying garbage, and perhaps caus-
ing the user to think that the program was malfunc-
tioning. Obviously, any user interaction that occurs
through the ROM BIOS routines, such as break-
ing to the prompt and typing commands, will cause
corruption of the code in the text screen. Joust uses
this technique to hold essential data.

7.18.9 Non-maskable interrupt vector

When a non-maskable interrupt (NMI) occurs,
the Apple][saves the status register and pro-
gram counter onto the stack, reads the vector at
$FFFA-FFFB, and then starts executing from the
specified address. The ROM BIOS handler imme-
diately transfers control to the code at $3FB-3FD,
which is usually a jump instruction to the complete
NMI handler. For programs that were very heav-
ily protected, such that inserting breakpoints was
difficult because of hooked CSW and KSW vectors,
for example, one alternative was to “glitch” the sys-
tem by using a NMI card to force a NMI to occur.
However, that technique required direct access to
memory in order to install the jump instruction at
$3FB-3FD, since the standard ROM BIOS does not
place one there

On a 64kb Apple][, the ROM BIOS could be
copied into banked memory and made writable. The
BIOS NMI vector could then be changed directly,
potentially bypassing the user-defined NMI vector
completely.

70

7.18.10 Reset vector

On a cold start, and whenever the user presses Ctrl-
Reset, the Apple][reads the vector at $FFFC-FFFD,
and then starts executing from the specified address.
If the Apple][is configured with an Autostart ROM,
then the warm-start vector at $3F2-3F3 is used, if
the “power-up” byte at $3F4 matched the exclusive-
OR of #$A5 with the value at $3F357. The values at
$3F2-3F4 are always writable, allowing a program
to protect itself against a user pressing Ctrl-Reset in
order to gain access to the monitor prompt, and then
saving the contents of memory. The typical pro-
tected program response to Ctrl-Reset was to erase
all of memory and then reboot.

On a 64kb Apple][, the ROM can be copied into
banked memory and made writable. When the user
presses Ctrl-Reset on an Apple][+, the ROM BIOS
is not banked in first, meaning that the cold-start re-
set vector can be changed directly, and will be used,
potentially bypassing the warm-start reset vector
completely. On an Apple][e or later, the ROM BIOS
is banked in first, meaning that the modified BIOS
cold-start reset vector will never be executed, and so
the warm-start reset vector cannot be overridden.

7.18.11 Interrupt request vector

Despite not having a source of interrupts in the de-
fault configuration, the Apple][did offer support for
handling them. When an interrupt request (IRQ)
occurs, the Apple][saves the status register and
program counter onto the stack, reads the vector
at $FFFE-FFFF, and then starts executing from the
specified address. However, there is also a special
case IRQ, which is triggered by the BRK instruction.
This instruction is a single-byte breakpoint instruc-
tion, and is intended for debugging purposes. The
ROM BIOS handler checks the source of the inter-
rupt, and transfers control to the vector at $3FE-3FF
if the source was an external interrupt. On the Au-
tostart ROM, the ROM BIOS handler transfers con-
trol to the vector at $3F0-3F1 if the source was a
breakpoint. (Pre-Autostart ROMs simply dumped
the register values to the screen, and then dropped
to the monitor prompt instead.) The values at
$3F0-3F1, and $3FE-3FF are always writable, allow-
ing a program to protect itself against a user insert-
ing breakpoints in order to break when execution

reaches the specified address. The typical protected
program response to breakpoints was to erase all
of memory and then reboot. An alternative protec-
tion is to point $3F0-3F1 to another BRK instruction,
to produce an infinite loop and hang the machine.
Bank Street Writer III uses this technique.

On a 64kb Apple][, the ROM BIOS can be
copied into banked memory and made writable. The
BIOS IRQ vector can then be changed directly, po-
tentially bypassing the user-defined IRQ vector com-
pletely.

7.19 Catalog tricks

7.19.1 Control-“Break”

On a regular DOS disk, there is a sector called the
Volume Table Of Contents (VTOC), which describes
the starting location (track and sector) of the cata-
log, among other things. The catalog sectors contain
the list on the disk of files which are accessible by
DOS. For a file-based program, apart from the DOS
and the catalog-related structures, all other content
is accessible through the files listed in the catalog.
DOS “knows” the track which holds the VTOC, since
the track number (usually #$11) is hard-coded in
DOS itself, and sector zero is assumed to be the one
that holds the VTOC.

Since the files are listable, they can also be
loaded from the original disk, and then saved to a
copy of the disk. One way to prevent that is to insert
control-characters in the filenames. Since control-
characters are not visible from the DOS prompt, any
attempt to load a file, using the name exactly as it
appears, will fail.

Classmate uses this technique. It is also possi-
ble to embed backspace characters into the filename.
Filenames with backspace characters in them cannot
be loaded from the prompt. Instead, a Basic pro-
gram must be written with printable characters as
placeholders, and then the memory image must be
altered to replace them with backspace characters

7.19.2 Now you see it

Since the VTOC also carries the sector of the cat-
alog, it can be altered to point to another location
within the track that holds the VTOC. That causes

57This is true only when the full warm-start vector is not #$00 #$E0 #$45 ($E000 and #$45). If the vector is $E000 and #$45,
then the cold-start handler will change it to $E003, and resume execution from $E000. This behavior could have been used as
an indirect transfer of control on the Apple][+, by jumping back to the cold-start handler, which would look like an infinite
loop, but it would actually resume execution from $E003.

71

the disk to display a “fake” catalog, while allowing a
program to access the real catalog sectors directly.

The Toy Shop uses this technique to show the
program title, copyright, and author credits.

7.19.3 Now you don’t

Since DOS carries a hard-coded track number for the
VTOC, it is easy to patch DOS to look at a different
track entirely. The original default track can then
be used for data. Any attempt to show the catalog
from a regular DOS disk will display garbage.

Ali Baba uses this technique, by moving the en-
tire catalog track to track five.

7.20 Basic tricks

7.20.1 Line linking

Circularly

In Basic on the Apple][, each line contains a refer-
ence to the next line to list. As such, several inter-
esting effects are possible. For example, the listing
can be made circular, by pointing to a previous line,
causing an infinite loop of listing. The simplest ex-
ample of that looks like this:
801:01 08 00 00 3A 00 00 00

This program contains one line whose line num-
ber is zero, and whose content is a single “:”. An
attempt to list this program will show an infinite
number of “0 :” lines. However it can be executed
without issue.

Missing

The listing can be forced to skip lines, by pointing
to a line that appears after the next line, like this:
801:10 08 00 00 3A 00 10 08 01 00 BA 22
80D:31 22 00 16 08 02 00 3A 00 00 00

Listing the program will show two lines:

1 0 :
2 :

However, there is a second line (numbered “one”)
which contains a PRINT statement. Running the
program will display the text in line one.

Out-of-order

The listing can list lines in an order that does not
match the execution, for example, backwards:

801:13 08 03 00 BA 22 30 22 00 1C 08 01 00 BA
22
810:31 22 00 0A 08 03 00 BA 22 32 22 00 00 00

This program contains three lines, numbered
from zero to two. The list will show the second
and third lines in reverse order. The illusion is com-
pleted by altering the line number of the first line
to a value larger than the other lines. However, the
execution of the first line first cannot be altered in
this way.

Out-of-bounds

The listing can even be forced to fetch from arbi-
trary memory, such as the graphics screen or the
memory-mapped I/O space:
801:55 C0 00 00 3A 00 00 00

This program contains a single line whose line
number is zero, and whose content is a single “:”. An
attempt to list this program will cause the second
text screen to be displayed instead, and the machine
will appear to crash. Further misdirection is possi-
ble by placing an entirely different program at an
alternative location, which will be listed instead

Imagine the feeling when the drive light turns
itself on while the program is being listed!

It might even be possible to create a program
with lines that touch the memory-mapped I/O
space, and activate or deactivate a stepper-motor
phase. If those lines were listed in a specific order,
then the drive could be enticed to move to a differ-
ent track. That track could lie about its position on
the disk, but carry alternative content to the proper
track, resulting in perhaps subtly different behavior.
Are we having fun yet?

7.20.2 Start address

The first line of code to execute can be altered
dynamically at runtime, by a “POKE 103, <low
addr>” and/or “POKE 104, <high addr>”, followed
by a “RUN” command. Math Blaster uses this tech-
nique.

7.20.3 Line address

Normally, the execution will generally proceed lin-
early through the program (excluding instructions
that legally transfer control, such as subroutine calls
and loops), regardless of the references to individual
lines. However, the next line (technically, the next

72

token) to execute can be altered dynamically at run-
time, by a “POKE 184, <low addr>”. The first value
at the new location must be a ’:’ character. For
example, this program:

0 POKE 184 ,14 : END : PRINT " !"

will skip the “END” token and print the ’ !’ instead. It
is also possible to alter the high address by a “POKE
185, <high address>” as well, but it requires that
the second POKE is placed at the new location,
which is determined by the new value of the high
address and the old value of the low address. It
cannot be placed immediately after the address of
the first POKE, because that location will not be
accessed anymore.

7.20.4 “REM crash”

801:0E 08 00 00 B2 0D 04 50 52 23 36 0D 00 00
00

This program contains one line, which looks like
the following, where the “^” character stands for the
Control key.

1 0 REM̂ M̂ DPR#6 M̂

When listed with DOS active, it will trigger a
reboot. It works because the same I/O routine is
used for displaying the text as for typing commands
from the keyboard. Zardax uses this technique.

7.20.5 Self-modification

A program can even modify itself dynamically at
runtime. For example, this program will display
“2” instead of “1”. The address of the POKE cor-
responds to the location of the text in memory.

1 0 POKE 2064 ,50 : PRINT "1"

A program can also extend its code dynamically
at runtime:

1 0 DATA 130 ,58
1 FOR I=0 TO 1 : READ X : POKE 2086+I ,X :

A “FOR” loop must be terminated by a “NEXT”
token, in order to be legal code. Notice that the
program does not contain a “NEXT” token, as ex-
pected. Instead, the values in the DATA line supply
the “NEXT” token and a subsequent “:”. The inclu-
sion of a “:” allows extending the line further, simply
by adding more values to the “DATA” line and al-
tering the corresponding address of the “POKE”.

By using this technique, even entirely new lines
can be created.

7.21 Rastan

Rastan is mentioned here only because it is a title
for an Apple][system (okay, the IIGS) that carried
the means to bypass its own copy-protection! The
program contained two copy-protection techniques.
One was a disk verification check, which executed
shortly after inserting the second disk. The other
was a checksum routine which performed part of
the calculation between each graphics frame, until
it formed the complete value. If the match failed,
only then would it display a message. It means that
the game would run for a little while before failing,
making it extremely difficult to determine where the
check was performed.

7.21.1 The Rastan backdoor

In order to avoid waiting for the protection check
every time a new version of the code was built, the
author58 inserted a “backdoor” routine which exe-
cuted before the first protection check could run.
The backdoor routine had the ability to disable both
protection checks in memory, as well as to add new
functionality, such as invincibility and level warp-
ing. And where was this backdoor routine located?
Inside the highscore file!

Yes. The highscore file had a special format,
whereby code could be placed beginning at the third
byte of the file. As long as the checksum of the file
was valid (an exclusive-OR of every byte of the file
yielded a zero), the code would be executed.

Here is the dispatcher code in Rastan:

. A16
2 ; checksum data

2000D JSR $21216
4 ; note t h i s address

20010 JSR $2D1C2

58https://twitter.com/JBrooksBSI

73

Here is the checksum routine:
1 . A16

; source address
3 21216 TXA

; taken i f no h ighsco r e f i l e
5 21217 BEQ $21240

; l ength o f data
7 21219 LDA $0 ,X

2121D TAY
9 2121E SEP #$20

.A8
11 21220 PHX

; checksum seed
13 21221 LDA #0

; checksum data
15 21223 EOR $0 ,X

21227 INX
17 21228 DEY

21229 BNE $21223
19 2122B PLX

2122C REP #$30
21 . A16

2122E AND #$FF
23 ; taken i f bad checksum , no copy

21231 BNE $21240
25 ; l ength o f data

21233 LDA $0 ,X
27 21237 DEC

21238 LDY #$D1C0
29 ; copy to $2D1C0

2123B MVN #2, #0
31 2123E PHK

2123F PLB
33 21240 RTS

We can see that the data are copied to $2D1C0,
the first word is the length of the data, and the first
byte after the length (so $2D1C2) is executed directly
in 16-bit mode. By default, the file carried an im-
mediate return instruction, but it could have been
anything, including this:

1 ; always pass p r o t e c t i on
; (BRA $+$0F)

3 2D1C2 LDA #$0D80
2D1C5 STA $22004

5 ; always pass checksum
; (BRA $+$19)

7 2D1C8 LDA #$1780
2D1CB STA $3CAD0

9 2D1CE RTS

7.22 Conclusion
There were many tricks used to protect programs on
the Apple][, and what is listed here is not even all
of them. Copy-protection and cracking were part
of a never-ending cycle of invention and advances

on both sides. As the protectors came to under-
stand the hardware more and more, they were able
to develop techniques like delayed fetch, or consec-
utive quarter-tracks. The crackers came up with
NMI cards, and the mighty E.D.D. In response, the
protectors hooked the NMI vector and exploited a
vulnerability in E.D.D.’s read routine. (This is my
absolute favorite technique.) The crackers just boot-
traced the whole thing.

We can only stand and admire the ingenuity and
inventiveness of the protectors like Roland Gustafs-
son or John Brooks. They were helped by the
openness of the Apple][platform and especially
its disk system. Even today, we see some of the
same styles of protections—anti-disassembly, self-
modifying code, compression, and, of course, anti-
debugging.

The cycle really is never-ending.

7.23 Acknowledgements

Thanks to William F. Luebbert for What’s Where
In The Apple, and Don Worth and Pieter Lechner
for Beneath Apple DOS. Both books have been on
my bookshelf since 1983, and were consulted very
often while writing this paper.

Thanks to reviewers 4am, Olivier Guinart, and
John Brooks, for their invaluable input

74

