Peeks,Pokes and Pirates

Disk Layout Common Code Obfuscation

A 5.25-inch floppy disk has 35 tracks, numbered $00 to $22 (hex). Apples have a built-in “monitor” and naive disassembler.
The format of each track is disk-specific. Most disks split each track Confusing this disassembler is not hard!

into 16 “sectors,” but older disks use 13 sectors per track. Some

games use 12, 11, or 10. Newer games can squeeze up to 18 Self-modlfylng code

sectors in a single track! Just figuring out how data is stored on disk

can be a challenge. BB03- 4E06 BB LSR $BB06 ~—modifies the next instruction

BBO6- 71 6E ADC ($6E),Y
BBO08- 0A ASL

DiSk c0ntr0| BB09- BB 2772

By the time $BB06 is executed...

Disk control is through “soft-switches,” not function calls:

$C080-7,X move drive arm (phase 0 off/on, phase 1 off/on... until 3) BB03- 4E06 BB LSR $BB06
$C088,X turn off dr!Ve motor BB06- 38 SEC ~—the code has changed!
$C089,X turn on drive motor BB07- 6E OABB ROR $BB0OA

$C08C,X read raw nibble from disk
$C08D,X reset data latch (used in desync nibble checks)

(X = boot slot x $10) Branches into the middle of an instruction
AEB5- A0 02 LDY #$02
- AEB7- 8CECB7 STY $B7EC
Disk Boot AEBA- 85 DEY
AEBB- 8C F4B7 STY $B7F4
A disk is booted in stages, starting from ROM: AEBE- 88 DEY

$C600 ROM finds track 0 and reads sector 0 into $800

$0801 RAM re-uses part of $C600 code to read more sectors
(usually into $B8600+)

$B700 RAM uses RWTS at $B800+ to read rest of disk

— AEBF- FO 01 BEQ $AEC2 <Y =0 here, so this branches...
-~ AEC1- 6C8CFO JMP ($F08C)

AEC4- B7 77?7

AEC5- 8CEBB7 STY $B7EB

tip: $C600 is read-only. But the code there is surprisingly flexible;
It will run at $9600, $8600, even $1600. If you copy it to RAM,
you can insert your own code before jumping to $0801.

AEBF- FO0 01 BEQ $AEC2

AEC1- 6C

AEC2- 8CFOB7 STY $B7F0 <—..to here (JMP is never executed)
AEC5- 8CEBB7 STY $B7EB

Prologue And Epilogue Manual stack manipulation
Many protected disks start with DOS 3.3 and change prologue/ 0800- A9 51 LDA #$OF < push address 1o stack ($OFFF)
epilogue values. Here's where to look: 0802- 48 PHA
Ox read write Ox read write 0803- A9 8E LDA #$FF
_ _ 0805- 48 PHA
D5 $B955 $BC7A D5 $B8BE7 $B853 0806- 205D 6A JSR $080C = call subroutine (also pushes to stack)
prologue AA $B95F $BC7F prologue AA $B8F1 $B858 0809- 4C0008 JMP $0800
/ 96 $B96A $BC84 / AD $B8FC $B85D 080C- 68 PLA ~<— remove address pushed by JSR
ADDRESS —M8Mm ™ DATA 080D- 68 PLA
\ DE $B991 $BCAE \ DE $B935 $B89E 080E- 60 RTS ~—"return” to $OFFF+1 = $1000
epilogue AA $B99B $BCB3 epilogue AA $B93F $BBA3
EB - $BCB8 EB - $B8A8 JMP at $0809 is never executed! Execution continues at $1000.
Know Your Tools Undocumented opcodes
: 0801- 74 222 <~ huh?
Every pirate needs: 0802- 4CB01C JMP $1CBO
- a NIBBLE EDITOR for inspecting raw nibbles and determining disk
structure (Copy Il Plus, Nibbles Away, Locksmith) $74 is an undocumented 6502 opcode that does nothing, but takes a
-a SECTOR EDITOR for searching, disassembling, patching one-byte operand. Here is what actually executes:
sector-based disks (Disk Fixer, Block Warden, Copy Il Plus)
- a DEMUFFIN TOOL for converting disks to a standard format 0801- 74 4C DOP $4C,X
(Advanced Demuffin, Super Demuffin) 0803- BO1C BCS $0821 <—actually a branch-on-carry (not a JMP)
-a FAST DISK COPIER for backing up your work-in-progress!
(Locksmith Fast Disk Backup, FASTDSK, Disk Muncher) JMP at $0802 is never executed!

to deprotect
and preserve

38

7 A Brief Description of Some Popular Copy-Protection Techniques

on the Apple |[Platform

i’qpple IL

page
7.9 Write-protection 44
7.10 Sector-level protections 44
7.11 Track-level protections 58
7.12 Illegal opcodes 62
7.13 CPU bugs 62
7.14 Magic stack values 63
7.15 Obfuscation 63
7.16 Virtual machines 67
7.17 ROM regions 68
7.18 Sensitive memory locations 68
7.19 Catalog tricks 71
7.20 Basic tricks 72
7.21 Rastan 73

7.1 Ancient history

I've been...let’s call it “preserving” software since
about 1983, albeit under a different name. However,
the most interesting efforts have been recent, requir-
ing skills that I definitely didn’t have until now: I
am the author of the only two-side 16-sector con-
version of Prince of Persia®!, the six-side 16-sector
conversion of The Toy Shop3?, the single file con-
version of Joust, Moon Patrol, and Mr. Do!, as
well as the DOS and ProDOS file-based conversions
of Aquatron, Conan33, The Goonies, Jungle Hunt,
Karateka, Lady Tut (including the long-lost ending
from side B), Mr. Do!, Plasmania, and Swashbuck-
ler, to name a few. I am also the only one to crack
Rastan cleanly on the IIGS, just 25 years late.3*
Yes, I do 16-bit, too.

I’ve spent 13 years writing articles for the Virus
Bulletin® journal. My faithful readers will recog-
nise the style.

3lnttp://pferrie.host22.com/misc/lowlevell4.htm
32nttp://pferrie.host22.com/misc/lowlevells.htm
33nttp://pferrie.host22.com/misc/lowlevell6.htm
34nttp: //www.hackzapple . com/phpBB2/viewtopic.php?t=952
35http://www.virusbtn. com
36nttps://archive.org/details/apple_ii_library_4am

39

by Peter Ferrie (gkumba, san inc)

7.2 Isn’t it ironic

4am3® declined to write this document himself, but
his work and approval inspired me to do it instead.
Since his collection is so varied, and his write-ups
so detailed, they served as a rich source of informa-
tion, which I coupled with my own analyses, to fill
in the gaps for titles that I don’t have. Everyone
knows already that he’s funny, but he’s also quite
friendly and very generous. Together, we corrected
a few mistakes in the write-ups, so I gave something
back. I even consider us friends now, so I think that
I got the better deal.

While I don’t regret writing this paper, I do have
to say that, considering the time and effort that it
required, he probably made a wise decision. . . ;-)

I have tried to associate at least one example of a
real program for each technique, but in Section 7.20
you’ll find some nifty new protection techniques that
I’'ve developed just for this paper.

7.3 Why why why?

Why the Apple |[? It’s because I grew up with the
Apple |[, I learned to code on the Apple |[, I know
the Apple |[.

Why now? Because the disks that were fresh
when the Apple || was current are failing, and if we
do not work to preserve them now, some of the titles
will be lost forever.

This paper is dedicated to anyone who has an in-
terest in helping to preserve what’s left, I sincerely
hope it may help to recognise and defeat the copy-
protection that they have come across.

7.4 Okay, let’s split

We can separate copy protection into two categories;
they are either What You Have or What You Know.
What You Have protections are generally protected
disks, while What You Know protections are gener-

ally off-disk, such as requests to type in a word from
the manual.

What You Know protections come in several
forms. One is an explicit challenge with immedi-
ate effect; you must answer now to continue. An-
other is an explicit challenge with delayed effect; if
you answer incorrectly now, the game becomes un-
playable later. Yet another is an implicit challenge;
in order to proceed, you should perform an action as
described in the manual, but the game will appear
to be playable without it.

Infocom were infamous for their use of all three:

Starcross issued a direct challenge with immedi-
ate effect, and you could not even leave the second
room without typing the correct co-ordinates from
the star chart.3”

Spellbreaker®® issued a direct challenge with de-
layed effect, along the lines of “name the wizard
who...” Any name from their word list is accepted,
but an incorrect answer results in the player receiv-
ing the wrong key. This key cannot unlock a critical
door much later in the game, causing the character
to be killed instead.

Border Zone made use of an implicit challenge.
It required reading the manual in order to know the
correct words to excuse yourself — Oopzi Dazi!3%—
after bumping into someone, in order to establish
contact with the friendly spy. Failure to make con-
tact within the allotted time ended the game.

RINCESPERS]Y

Brgderbund’s Prince of Persia had a variety of
delayed effects, depending on which of the several
copy protection checks failed. One of them included
crashing immediately before showing the closing
scene upon winning the game. That is, after com-
pleting fourteen levels!

However, the What You Have is perhaps the
more interesting, given the vast number of possi-
bilities.

7.5 Accept your limitations

The first important component that we will con-
sider in the Apple |[is the MOS 6502 or 65C02
CPU. These CPUs have no separation of code and
data. That is, they are a Von Neumann, not Har-
vard architecture. All memory and I/O addresses
are executable, and everything that is not in ROM
is writable, including the stack.

Since the stack is writable directly, it introduces
the possibility of tricks relating to transfer of con-
trol. (§7.14.) Since the stack is executable, it intro-
duces the possibility of hosting code. (§7.18.5.)

The CPU has no prefetch queue, only a sin-
gle prefetched byte of the next instruction (which
is why the minimum instruction execution time is
two cycles—one for the instruction, and one for the
prefetch), as the last stage in the execution of the
current instruction. This introduces the possibility
of self-modifying code, including the next instruc-
tion to execute, because any memory write will have
completed before the prefetch occurs. (§7.15.2.)

7.6 Lay it out for me

The second important component that we will con-
sider in the Apple || is the Disk |[controller. The
Disk][controller is a peripheral which is placed in
a slot. It exposes an interface through memory-
mapped I/O, so the various soft-switches can be read
and written, just like regular RAM. The interface
looks like accesses to $COsX, where s is #$80 plus
the slot times 16, and X is the switch to access.
The Disk || controller runs independently of the
CPU. Once the drive is turned on and spinning the
disk, the drive will continue to spin the disk until the
drive is turned off again. The drive rotates the disk
at a fixed speed—approximately 300 RPM, and five
rotations per second, which works out to be 200ms
per rotation. However, the speed varies somewhat
from drive to drive. For 5.25" disks, the data den-
sity is equal across all tracks. At 300 RPM, each

3Thttp://infocom.elsewhere.org/gallery/starcross/starcross-map.gif
38nttp://gallery.guetech.org/spellbreaker/spellbreaker.html
39mttp://infodoc.plover.net/manuals/temp/borderzo.pdf pl9

40

track holds 50000 bits, which is equal to 6250 8-bit
nibbles.

The data on a disk is simply a stream of bits
to be read. For a 5.25" disk, those bits are usually
gathered into 16 sectors of 256 bytes each, spread
across 35 tracks—256 x 16 x 35 = 143, 360 bytes, or
140kb. When reading from a disk, the Disk || con-
troller shifts in bits at a rate equivalent to one bit
every four CPU cycles, once the first one-bit is seen.
Thus, a full nibble takes the equivalent of 32 CPU
cycles to shift in. After the full nibble is shifted in,
the controller holds it in the QA switch of the Data
Register for the equivalent of another four CPU cy-
cles, to allow it to be fetched reliably. After those
four CPU cycles elapse, and once a one-bit is seen,
the QA switch of the Data Register will be zeroed,
and then the controller will begin to shift in more
bits. As a result, programmers must count CPU cy-
cles carefully to avoid missing nibbles fetched by the
controller.

The Disk || controller cannot tell you on which
track the head resides. It also cannot tell you on
which sector the head resides. (The Shugart SA400
on which the Disk |[controller is based does have
this capability via index detector circuits, but that
feature was removed from the Disk |[controller to
reduce the cost to manufacture it.) As a result, sec-
tors are usually prepended with a structure known
as the “address field”, which holds the sector’s track
and sector number. The controller does not need or
use this information. Only the boot PROM makes
use of it when requested to read a sector. Beyond
that, the information exists solely for the purpose of
the program which interprets it.

v gap1 | ... 1 gap2, addressfield }sw3| datafield .
L o@oos) | ey o :
' ! ! ' D5 AA 96 ! ' DS AAAD !
! ! ! ! volume ! ! data (342b) !
! ' ' 1 track ' 1 checksum |
. . H 1 sector H 1 DE AA H
! ' ' ! checksum | ' .
: ' : i DEAA R '

disk data

Following the address field that defines a sec-
tor’s location on the disk, there is another structure
known as the “data field”, which holds the sector
body. One reason for the separate address and data
fields is to allow the sector body to be skipped, as

opposed to stored and then decoded, in the event
that the sector address is not the desired one. An-
other reason is that it allows a sector to be updated
in-place, by overwriting the data field only, instead
of rewriting the entire track to update all of the sec-
tors.

(If the sector were a single structure, the CPU
time required to verify that the desired sector has
been found is so long that the write would begin af-
ter the start of the sector body and extend beyond
the original end of the sector, overwriting part of
the following sector.)

Between the sectors are dead space, which can
be filled with a sequence of self-synchronizing val-
ues, timing bits, and protection-specific bytes.

The two structures that define a sector are each
bounded by a prologue and an epilogue. The pro-
logues for the address and data fields are composed
of three values. Two of those values are never used
in the sector body, to distinguish the structures from
the sector body, and the third value is different be-
tween the two structures, to distinguish them from
each other. The epilogues for the address and data
fields are composed of two values. One of those val-
ues is common to both epilogues but never used in
the sector body, to distinguish it from the sector
data.

The Disk |[controller cannot even tell you where
it is within the bitstream. The problem is that
the stream does not have an explicit start and end.
Instead, a specific sequence must be laid on the
track, to form an implicit start. That way, the
hardware can find the start of the stream reliably.
These values are the “self-synchronizing values.” For
DOS 3.3, and systems with a compatible sector for-
mat, the self-synchronising values are composed of
a minimum of five ten-bit “FF’s. A ten-bit “FF” is
eight bits of one followed by two bits of zero. Self-
synchronising values are usually placed before both
structures that define a sector, to allow synchroni-
sation to occur at any point on the disk. However,
this is not a requirement if read-performance is not
a consideration.? That is, the fewer the number of
self-synchronizing values that are present, the more
data that can be placed on a track. However, the
fewer the number of self-synchronizing values that
are present, the more the controller must read be-
fore it can enter a synchronized state, and then start

407t is a requirement if the data field can be written independently of its address field. Since the write is not guaranteed to
begin on a byte boundary, the self-synchronizing values are required for the controller to synchronize itself when reading the

data again.

to return meaningful data.

Finally, the Disk][controller can write—but not
read reliably—arbitrary eight-bit values. Instead, for
reading each eight-bit value, only seven of the bits
can be used—the top bit must always be set, in order
for the hardware to know when all eight bits have
been read, without the overhead of having to count
them. (See §7.10.15 for a deeper discussion about an
effect made possible by the lack of a counter.) In ad-
dition to requiring the top bit to be set, there should
not be more than two consecutive zero-bits in a row
for the modern drive. (The original disk system did
not allow even that. See §7.10.13 for a deeper dis-
cussion about the effect of excessive zeroess)

)
O AND | ! LDA
| BIT ORA [N LDX
on EOR | | LDY
S v . N,
Y O N, i, . v _l--_—_-—_-::-;l-"RMW
o1 CcMP Ipec NG P Hfrax Txa
E ! ADC 11H15Ex Tnx | 1] Ast LsR TAY TYA
£ ggi((SBC | [oev Tnvfali| RO ROR | plvsx Txs
R e o
: stack
o P B [O STA
+ | SED CLD | vi('| pya prp | STX
v |sercir| : STY
g * [Bvr el JsR BRK| !
= | Beo Bue |+ i |RTS RTI|
£+ |BCS BeC | e
flags NOP

7.7 Copy me, I want to travel

Now that we understand the format of data on the
disk, we consider the ways in which that data can
be copied.

First is the sector-copier. It relies on sectors be-
ing well-defined, and requires knowing only the val-
ues for the prologues and epilogues. The sectors are
copied one at a time in sequential order, for each of
the tracks on the disk, discarding the data between
the sectors, and writing new self-synchronizing val-
ues instead. Some sector-copiers rely on DOS to
perform the writing. In order for that to work, the
disk must be formatted first, because that kind of

sector-copier will not write new address fields to the
disk. Instead, it will reuse the existing ones, since
only the data field needs to be updated to place
a sector on a track. In any case, the sector-copier
cannot deal easily with deviations from the standard
format, and requires a lot of interaction to copy sec-
tors for which the prologue and/or epilogue values
are not constant. Some sector-copiers can be di-
rected to ignore the sectors that they cannot read,
but obviously this can lead to important data being
missed.

Second is the track-copier. It also relies on sec-
tors being well-defined, with known the values for
the prologues and epilogues. However, it reads the
sectors in the order in which they arrive, and then
writes the entire track in one pass®!, by itself. It
shares the same limitations as the sector-copier re-
garding reading sectors and discarding the data be-
tween them, but it keeps the sectors in the same
order as they were originally, which can be impor-
tant. (§7.10.9.)

Third is the bit-copier. Unlike the previous two,
it makes as few assumptions as possible about the
data on the disk. Instead, it treats tracks as the
bitstream that they are, and attempts to measure
the length of the track while reading.*? It intends
to write the track exactly as it appears on the disk,
including the data between the sectors, in one pass.
Some bit-copiers can be directed to copy the addi-
tional zero-bits in the stream, but there is a limit
to how reliably these bits can be detected, and the
method to detect them can be exploited. Some bit-
copiers can be directed to attempt to reproduce the
layout of the disk across track boundaries. See sec-
tions 7.10.12 and 7.11.3.

The most important point about copiers in gen-
eral is that there is simply no way to read data off of
a disk with 100% accuracy, unless you can capture
the complete bitstream on the disk itself, which can
be done only with specialised hardware. There is no
way for software alone to read all of the bits explic-
itly and understand how the controller will behave
while parsing theme

41 As opposed to reading the sectors in sequential order, and then writing the entire track—that would only make it a sector-

copier with a faster write routine.

42 A sector-copier can use the collection of sectors as a basic track length; the bit-copier has no such luxury. Instead, it is left
to “guess”, and might be forced to discard or insert additional data to reconstruct a track of the same length. The difference
occurs when the rotation speed of the drive that is being used to make the copy is not the same as that of the drive that was

used to make the original.

7.8 Super-super decoder ring

Despite the quite strict requirements regarding the
format of data on the disk, DOS introduced two ad-
ditional requirements regarding the format of data
within a sector. The first requirement is that there
must not be more than one pair of zero-bits in the
value. The second requirement is that there be at
least one pair of consecutive one-bits, excluding the
sign bit.

If we ignore the DOS requirements for the mo-
ment, and consider instead all possible values which
comply with the hardware requirement to have no
more than two consecutive zero-bits, then there are

81 legal values.

10010010 (92) 10101101 (AD) 11001110 (CE) 11101011 (EB)
10010011 (93) 10101110 (AE) 11001111 (CF) 11101100 (EC)
10010100 (94) 10101111 (AF) 11010010 (D2) 11101101 (ED)
10010101 (95) 10110010 (B2) 11010011 (D3) 11101110 (EE)
10010110 (96) 10110011 (B3) 11010100 (D4) 11101111 (EF)
10010111 (97) 10110100 (B4) 11010101 (D5) 11110010 (F2)
10011001 (99) 10110101 (B5) 11010110 (D6) 11110011 (F3)
10011010 (9A) 10110110 (B6) 11010111 (D7) 11110100 (F4)
10011011 (9B) 10110111 (B7) 11011001 (D9) 11110101 (F5)
10011100 (9C) 10111001 (B9) 11011010 (DA) 11110110 (F6)
10011101 (9D) 10111010 (BA) 11011011 (DB) 11110111 (FT7)
10011110 (9E) 10111011 (BB) 11011100 (DC) 11111001 (F9)
10011111 (9F) 10111100 (BC) 11011101 (DD) 11111010 (FA)
10100100 (A4) 10111101 (BD) 11011110 (DE) 11111011 (FB)
10100101 (A5) 10111110 (BE) 11011111 (DF) 11111100 (FC)
10100110 (A6) 10111111 (BF) 11100100 (E4) 11111101 (FD)
10100111 (A7) 11001001 (C9) 11100101 (E5) 11111110 (FE)
10101001 (A9) 11001010 (CA) 11100110 (E6) 11111111 (FF)
10101010 (AA) 11001011 (CB) 11100111 (ET7)

10101011 (AB) 11001100 (CC) 11101001 (E9)

10101100 (AC) 11001101 (CD) 11101010 (EA)

If we introduce the first of the DOS requirements
that there not be more than one pair of zero-bits,
then there are only 72 compliant values, as we see
here:

10010101 (95) 10110010 (B2) 11010010 (D2) 11101011 (EB)
10010110 (96) 10110011 (B3) 11010011 (D3) 11101100 (EC)
10010111 (97) 10110100 (B4) 11010100 (D4) 11101101 (ED)
10011010 (9A) 10110101 (B5) 11010101 (D5) 11101110 (EE)
10011011 (9B) 10110110 (B6) 11010110 (D6) 11101111 (EF)
10011101 (9D) 10110111 (B7) 11010111 (D7) 11110010 (F2)
10011110 (9E) 10111001 (B9) 11011001 (D9) 11110011 (F3)
10011111 (9F) 10111010 (BA) 11011010 (DA) 11110100 (F4)
10100101 (A5) 10111011 (BB) 11011011 (DB) 11110101 (F5)
10100110 (A6) 10111100 (BC) 11011100 (DC) 11110110 (F6)
10100111 (A7) 10111101 (BD) 11011101 (DD) 11110111 (F7)
10101001 (A9) 10111110 (BE) 11011110 (DE) 11111001 (F9)
10101010 (AA) 10111111 (BF) 11011111 (DF) 11111010 (FA)
10101011 (AB) 11001010 (CA) 11100101 (E5) 11111011 (FB)
10101100 (AC) 11001011 (CB) 11100110 (E6) 11111100 (FC)
10101101 (AD) 11001101 (CD) 11100111 (E7) 11111101 (FD)
10101110 (AE) 11001110 (CE) 11101001 (E9) 11111110 (FE)
10101111 (AF) 11001111 (CF) 11101010 (EA) 11111111 (FF)

If we introduce the second of the DOS require-
ments that there be at least one pair of consecutive
one-bits, excluding the sign bit, then there are only
64 compliant values:

43

10010110
10010111
10011010
10011011
10011101
10011110
10011111
10100110
10100111
10101011
10101100
10101101
10101110
10101111
10110010
10110011

(96)
7N
(94)
(9B)
(9D)
(9E)
(9F)
(A6)
(A7)
(AB)
(AC)
(AD)
(AE)
(AF)
(B2)
(B3)

10110100
10110101
10110110
10110111
10111001
10111010
10111011
10111100
10111101
10111110
10111111
11001011
11001101
11001110
11001111
11010011

(B4)
(B5)
(B6)
(B7)
(B9)
(BA)
(BB)
(BC)
(BD)
(BE)
(BF)
(CB)
(CD)
(CE)
(CF)
(D3)

11010110
11010111
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100101
11100110
11100111
11101001
11101010
11101011
11101100

(D6)
(07
(D9)
(DA)
(DB)
(DC)
(DD)
(DE)
(DF)
(E5)
(E6)
(E7)
(E9)
(EA)
(EB)
(EC)

11101101
11101110
11101111
11110010
11110011
11110100
11110101
11110110
11110111
11111001
11111010
11111011
11111100
11111101
11111110
11111111

(ED)
(EE)
(EF)
(F2)
(F3)
(F4)
(F5)
(F6)
(F7)
(F9)
(FA)
(FB)
(FC)
(FD)
(FE)
(FF)

That leaves us with eight values for which there
is not more than one pair of zero-bits, but also not
one pair of consecutive one-bits, excluding the sign
bit. DOS reserves some of these value for a separate
purpose.

10010101
11010010
11010100
11010101
10100101
10101001
10101010
11001010

(95)
(D2)
(D4)
(D5)
(A5)
(A9)
(AA)
(cA)

That leaves us with 17 values for which there
are not more than two consecutive zero-bits, which
seems like a missed opportunity for a better encod-

ing:
10010010 (92) 10101001 (A9) 11100100 (E4)
10010011 (93) 10101010 (AA)
10010100 (94) 11001001 (C9)
10010101 (95) 11001010 (CA)
10011001 (99) 11001100 (CC)
10011100 (9C) 11010010 (D2)
10100100 (A4) 11010100 (D4)
10100101 (A5) 11010101 (D5)

Having exactly 64 entries in the table allows us
to represent all of the values using six bits. That
leads us to an encoding method known as “6-and-2
Group Code Recording (GCR)” or more commonly
“6-and-2” encoding.

In “6-and-2” encoding, an eight-bit value is split
into two parts, where the high six bits are separated
from the low two bits. (The disk system for which
DOS 3.2 was first written had an additional restric-
tion that did not allow consecutive zero-bits, and
so used “5-and-3” encoding for the same purpose.)
To encode an entire sector, each of the two-bit val-
ues are gathered together, such that three of them
form another six-bit value in reverse order, and are
stored first, followed by each of the regular six-bit
values. Prior to storing any of the values, they must
be transformed into the values in our table of 64
nibbles. This is done by using the original value as
an index into the nibble table, and writing the value
from the table instead.

When we place the original value beside the nib-
ble value, the table looks like this:

00 = 96 10 = B4 20 = D6 30 = ED
01 = 97 11 = B5 21 = D7 31 = EE
02 = 9A 12 = B6 22 = D9 32 = EF
03 = 9B 13 = B7 23 = DA 33 = F2
04 = 9D 14 = B9 24 = DB 34 = F3
05 = 9E 15 = BA 25 = DC 35 = F4
06 = 9F 16 = BB 26 = DD 36 = F5
07 = A6 17 = BC 27 = DE 37 = F6
08 = A7 18 = BD 28 = DF 38 = F7
09 = AB 19 = BE 29 = Eb 39 = F9
0A = AC 1A = BF 2A = E6 3A = FA
0B = AD 1B = CB 2B = E7 3B = FB
0C = AE 1C = CD 2C = E9 3C = FC
OD = AF 1D = CE 2D = EA 3D = FD
OE = B2 1E = CF 2E = EB 3E = FE
OF = B3 1F = D3 2F = EC 3F = FF

DOS reserved two values from our fourth table—
#$AA and #$D5—for the prologue signatures. These
values are good candidates for the purpose of iden-
tifying the headers, because they do not conform to
the “at least one pair of consecutive one-bits” cri-
terion, and thus do not conflict with the entries in
the “nibbilisation” table. It is not a coincidence that
they have alternating bit values; #$D5 is #$55 with-
out the sign bit. By reserving these values, it en-
sures that the bitstream generated by arbitrary sec-
tor data cannot contain a long string of ones (pre-
vented by reserving #$FF), or alternating zeroes and
ones (prevented by reserving #$AA and #$D5), re-
gardless of the user’s data.

The third value of the prologue signature (#$96
or #$AD) need be unique only between the headers,
in order to distinguish between the two. The combi-
nation of unique values and non-unique values still
produces a unique sequence.

DOS reserved one value from our fourth table—
#$AA—for the second byte of the epilogue signatures,
for the same reason as for the prologue. The first
byte of the epilogue signature need not be unique
with respect to sector data (because the combina-
tion of unique values and non-unique values still pro-
duces a unique sequence), but obviously it must not
match the first byte of the prologue, because the
third byte of the epilogue (intended to be #$EB) is
written sometimes with only limited success (and it
is never verified for this reason), and so could poten-
tially be read as the third byte of a prologue instead,
with unpredictable results.

The decoding process requires a reverse transfor-
mation, via a table which is typically filled with all
of the values in a six-bit number. (See the sections
on Race Conditions and SpiraDisc for two counter-
examples.) The layout of the table is the special
thing, though—the nibbles that are read from disk
are used as an index into the table, in order to re-
cover the original six-bit value. So the table has
gaps between some of the values, because the legal
values of the nibbles are not consecutive.

Note that convention is a powerful force. There
is no reason for the table to have the nibbilisation
entries in that order, or to exclude #$AA or #$D5 (or
any of the other 15 entries from the last table) from
the set. Further, according to John Brooks, it is pos-
sible to use all 81 values from our first table, com-
bined with a special encoding method, which would
increase the data density by 105.5%, and potentially
even more.*3

7.9 Write-protection

The absolute simplest possible protection against a
copy is to check if the disk is write-protected. The
vast majority of owners of duplicated software won’t
bother to write-protect the disk. If the disk is not
write-protected, then the image is considered to be
a copy, rather than the original.

Alien Addition uses this technique.

;assumes slot 6

7975 LDA $COED ;request status

7978 LDA $COEE ;read status

797B BPL $7985 ;taken if write—
enabled

A more generic version of the technique is
slightly longer:

0000 LDX $2B ;fetch slot (x16)

0002 LDA $C08D, X ;request status

0005 LDA $CO8E, X ;read status

0008 BPL $0008 ;hang if write—
enabled

7.10 Sector-level protections
7.10.1 Altered prologue/epilogue

This is one of the simpler techniques available, and
was used by many titles. Standard DOS 3.3 uses

43http://wuw.bigmessowires.com/2015/08/27/apple-ii-copy-protection/#comment-227325

44

the sequence #$D5 #$AA #$96 to identify the ad-
dress field prologue, #$D5 #$AA #3$AD to identify the
data field prologue, and #$DE #$AA to identify both
of the epilogues. Of course, it is possible to choose
from the 17 values from our fifth table, for either the
first two bytes of the prologue values, or the second
byte of the epilogue. It is also possible to choose
from among the 81 values from our first table, for
either the third byte of the prologue, or the first byte
of the epilogue.

Most commonly, only one value is changed in the
prologue or epilogue, and that same value is used for
every sector on every track of the disk.

Lucifer’s Realm uses this technique; the epilogue
was changed from #$DE #$AA to #$DF #$AA.

The Tracer Sanction extended the technique by
carrying a table of values, and using a different value
for each track.

Masquerade extended the technique to the sec-
tor level, by requiring that each even sector has one
value, and each odd sector has another value. The
routine extracts bit zero of the sector number, and
then inverts it, to create the key which is applied to
the identification byte. Thus, even sectors use #$D5
(the standard value), and odd sectors use #$D4. This
is necessary because sector zero of track zero must
have the regular value in order to be readable by the
boot PROM.

The Coveted Mirror used exactly the same
technique—and almost the exact same code-at only
the track level.

Due to size limitations, the boot PROM does
not verify the epilogue bytes** allowing all sectors
on all tracks—including the boot sector itself—to be
protected. The most common technique involved al-
tering the epilogue values to something other than
the default value. This protection cannot be repro-
duced by a sector-copier or track-copier, which re-
quires the default values to be seen, because they
will fail to copy the sector. Operation Apocalypse
uses this technique.

Given that the boot PROM does not verify the
epilogue bytes, a very light protection technique is
to change the epilogue values to something other
than the default values for sector zero of track zero
only, leaving all other sectors readable. This pro-
tection cannot be reproduced by a sector-copier or
track-copier which requires the default values to be
seen, because they will fail to copy the boot-sector,
leaving the disk unusable. Alien Addition makes use

of this technique.

A common technique to defeat this protection is
to ignore read errors for all sectors, in the hope that
it is caused by the non-default epilogue values alone.
However, given the degrading state of floppy disks
these days, ignoring read errors can hide the fact
that the disk is truly failing.

The address field contains more than just the
track and sector numbers. It also contains a vol-
ume number. This value can be used as a quick
method to determine which disk from a set is cur-
rently inserted into the drive. However, support for
it—even in DOS—is poor. So many programs, in-
cluding DOS itself, assume that the volume number
is the default value. When it is changed, the read
fails. By hard-coding the new value in DOS, the
disk will be readable only by itself. Algebra Arcade
uses this technique.

This technique can also be used in a slightly dif-
ferent way. Since each sector can have its own vol-
ume number, any value can be put there, as long as
the program is aware of that fact.

Randamn sets the volume number to a check-
sum calculated from the current track and sector,
and hangs if the values do not match.

Both the address field and data field contain
a checksum of the data that precede it, prior to
the epilogue. The checksum algorithm is usually
a rolling exclusive-OR. of each of the bytes, with a
zero seed. However, there is no requirement that
either of these things is used, for sectors other than
sector zero of track zero. For other sectors, the seed
can be set to any value, and the algorithm can be a
cumulative ADD or anything else at all. This pro-
tection cannot be reproduced by a sector-copier or
track-copier which relies on the regular algorithm,
because the disk will appear to be corrupted.

Hellfire Warrior uses a slight variation on this
technique. It maintains a counter at address $40,
which coincides with the track number which is
stored by the boot PROM. In order to break out
of the loop that reads sectors into memory, the pro-
gram requests the boot PROM to read a sector with
an intentionally bad checksum. This causes the boot
PROM to rewrite the value at address $40. The
new value is exactly what the program requires as
the exit condition. This protection cannot be re-
produced by a sector-copier or track-copier, because
they will fail to copy this sector, resulting in a disk
that has only sectors with good checksums. The disk

441t also ignores the address field checksum and volume number.

45

will not boot because it will never exit the loop.

The volume number is normally an eight-bit
value. For efficiency of encoding it, DOS uses a “4-
and-4” encoding, where the four odd bits are sepa-
rated from the low even bits, and converted to nib-
bles. To recombine them, it is a simple matter to
shift the nibble holding the odd bits (“abcd”) one
to the left, resulting in an encoding that looks like
“alblcldl”, and then to AND the result with the nib-
ble holding the even bits (“efgh”), whose encoding
that looks like “lelflglh”. This method requires 16
bytes to describe the address field. Since the track,
sector, and checksum, are known to fit into six bits
each, it is easy to see that if the volume number is
disregarded, a “6-and-0" encoding can be used in-
stead. This method requires only four nibbles to
describe the address field. Algernon uses this tech-
nique.

The entries in the address field have a defined
order because the boot PROM needs to read them
to identify sector zero of track zero, and any other
sector which the PROM is asked to read. However,
it is possible to change the order of the entries for
other sectors on the disk, and then to read the sec-
tors manually.

7.10.2 Fewer sectors

The major reason for using 16 sectors per track is
because that is the maximum number that can fit
within the standard format created by DOS 3.3.
DOS 3.2 supported only 13 sectors per track, be-
cause of the limitation of the hardware regarding
consecutive zeroes. Copy protection techniques are
free to use fewer sectors than either of those values.

Wavy Navy uses ten sectors per track, while
Olympic Decathlon uses eleven and Karateka uses
a dozen. The sectors in these examples are all the
regular size, but encoded in a wasteful manner. (Pri-
marily the “4-and-4” encoding was used because the
decoder is very small, but sometimes “5-and-3” be-
cause the decoder looks weird when compared with
the more familiar “6-and-2” encoding.) The wasteful
encoding is the reason for the reduced sector count;
there really isn’t more room for more sectors.

46

Karateka

7.10.3 More sectors

The standard DOS 3.3 format disk uses 16 individ-
ual sectors per track, with relatively large gaps be-
tween the sectors. Consider how much space would
be available if those sectors were combined into a
single large sector, with a single field that combines
both address (specifically, only the track number)
and data fields. Yes, it would require reading the
entire track in order to find the field again once the
track had been verified, but for some applications,
performance is not that critical. This is what Info-
com did, on programs such as A Mind Forever Voy-
aging. Once the track had been found, and the data
field found again, then the program read (and dis-
carded) sectors sequentially until the required one
was found. Again, if the performance is not that
critical, the fact that the routine can fetch only one
sector at a time is not an issue. In fact, the imple-
mentation works well enough for the text-adventure
scenario in which it was used. Since the user will
be reading the text while additional text is loading,
the time required for that loading goes mostly un-
noticed.

Consider how much space would be available if
those gaps were reduced to the minimum of five self-
synchronizing values before the address field pro-
logue, with just a few bytes of gap between the
address and data headers. Then reducing the pro-
logue byte count from three to two, and the epilogue
byte count from two to one. Consider how much
space would be available by merging groups of sec-
tors. If you converted the track into six sectors of
three times the size, you would have RWTS18. This
is a good compromise between speed and density.
On one side, having fewer sectors means less pro-
cessing; and on the other side, having more sectors
means less latency to find a sector. The RWTS18
routine also supports ‘read scattering” by assign-
ing a dummy write address to the pages that aren’t
needed.

This second technique was used very heavily by
Brgderbund, on programs such as Airheart (and
even three years later, on Prince of Persia), but other
companies made use of it, too, such as Infogrames
in Hold-Up. Interestingly, in the case of Airheart,
after compressing the title screen to reduce its size

on the disk, the rest of the game fit on a regular
16-sector disk.

7.10.4 Big sectors

There is no requirement to define multiple sectors
per track. It is possible to define a single sector that
spans the entire track.*> However, there can be a
significant time penalty while reading such a track,
because it requires up to one complete rotation in
order to find the start of the sector.

Lady Tut uses a single sector per track, at a size
equivalent to eleven 256-bytes sectors.

7.10.5 Encoded sectors

As noted previously, there is no reason for a disk
to use our sixth table—there is no reason to have
the nibbilisation entries in that order, nor even to
use those values at all. Any alteration to the ta-
ble results in a disk that can be copied freely, but
whose contents cannot be read from the outside.
Further, the DOS on such a disk cannot write files
from the inside to the outside. The reason why the
read would fail is because the standard table would
be applied to data that requires the alternative ta-
ble to decode, resulting in the wrong decoding. The
reason why the write would fail is because the alter-
native table would be applied to data that requires
the standard table to encode, resulting in the wrong
encoding.

Maze Craze Construction Set uses an alternative
nibble table—all of the values from #$A9-FF from
our first table. These values might have been cho-
sen because they provide the least sparse array when
used as indexes.

Bop’N Wrestle uses the regular nibble table (and
a standard DOS 3.3), but in reverse order.

7.10.6 Dwuplicated sectors

The address field carries the sector number, but the
controller does not need or use this information, ex-
cept when the boot PROM is requested to read a
sector. Therefore, it is possible to have multiple
sectors with the same number.*® There are numer-
ous ways in which they could be distinguished, such

as by the volume number. A protection technique
could set every sector number to the same value in
the addr