
6 Exploiting Out-of-Order-Execution; or,
Processor Side Channels to Enable Cross VM Code Execution

by Sophia D’Antoine

In which Sophia uses the MFENCE instruction on virtual machines,
just as Joshua used trumpets on the walls of Jericho. —PML

At REcon 2015, I demonstrated a new hard-
ware side channel that targeted co-located virtual
machines in the cloud. This attack exploited the
CPU’s pipeline as opposed to cache tiers, which are
often used in side channel attacks. When design-
ing or looking for hardware-based side channels—
specifically in the cloud, I analyzed a few universal
properties that define the “right” kind of vulnerable
system as well as unique ones tailored to the hard-
ware medium.

The relevance of these types of attacks will only
increase—especially attacks that target the vulnera-
bilities inherent to systems that share hardware re-
sources, such as in cloud platforms.

VM VM VM VM VM VM

VMM: XEN (hypervisor does allocation)

Core 1

L1 Cache

L2 Cache

Core 2

L1 Cache

L2 Cache

Core 3

L1 Cache

L2 Cache

L3 Cache

Main Memory

Figure 1: Virtualization of physical resources

6.1 What is a Side Channel Attack?
Basically a side channel is a way for any meaning-
ful information to be leaked from the environment
running the target application, or in this case the
victim virtual machine (as in Figure 6). In this case,
a process (the attacker) must be able to repeatedly
record this environment “artifact” from inside one
virtual machine.

In the cloud, this environment is the shared
physical resources on the service used by the vir-
tual machines. The hypervisor dynamically parti-
tions each physical resource—which is then seen by
a single virtual machine as its own private resource.
The side channel model in Figure 6.1 illustrates this.

Knowing this, the attacker can affect that re-
source partition in a recordable way, such as by
flushing a line in the cache tier, waiting until the vic-
tim process uses it for an operation, then requesting
that address again—recording what values are now
there.

victim:

leaves

artifacts

adversary:

records

artifacts

Shared Hardware

Figure 2: Side channel model

6.2 What Good is a Side Channel At-
tack?

Great! So we can record things from our victim’s
environment—but now what? Of course, some kinds
of information are better than others; here is an
overview of the different kinds of attacks people have
considered, depending on what the victim’s process
is doing.

Crypto key theft. Crypto keys are great, pri-
vate crypto keys are even better. Using this hard-
ware side channel, it’s possible to leak the bytes of
the private key used by a co-located process. In
one scenario, two virtual machines are allocated the
same space in the L3 cache at different times. The
attacker flushes a certain cache address, waits for the

21

victim to use that address, then queries it again—
recording the new values that are there.[1]

Process monitoring. What applications is the
victim running? It will be possible for find out when
you record enough of the target’s behavior, i.e., its
CPU or pipeline usage or values stored in memory.
Then a mapping between the recording to a spe-
cific running process could be constructed—up to
some varied degree of certainty. Warning, this does
rely on at least a rudimentary knowledge of machine
learning.

Environment keying. This attack is handy for
proving co-location. Using the environment record-
ings taken off of a specific hardware resource, you
can also uniquely identify one server from another
in the cloud. This is useful to prove that two virtual
machines you control are co-resident on the same
physical server. Alternatively, if you know the be-
havior signature of a server your target is on, you
can repeatedly create virtual machines in the tar-
geted cloud, recording the behavior on each system
until you find a match.[2]

Broadcast signal. This attack is a nifty way
of receiving messages without access to the Internet.
If a colluding process is purposefully generating be-
havior on a pre-arranged hardware resource, such
as purposefully filling a cache line with 0’s and 1’s,
the attacker (your process) can record this behav-
ior in the same way it would record a victim’s be-
havior. You then can translate the recorded values
into pre-agreed messages. Recording from different
hardware mediums results in a channel with differ-
ent bandwidths.[3]

6.3 The Cache is Easy;
the Pipeline is Harder

Now all of the above examples used the cache to
record the environment shared by both victim and
attacker processes. It is the most widely used re-
source in both literature and practice for construct-
ing side channels, as well as the easiest one to record
artifacts from. Basically, everyone loves cache.

However, the cache isn’t the only shared re-
source. Co-located virtual machines also share the
CPU execution pipeline, as illustrated in Figure 3.
In order to use the CPU pipeline, we must be able
to record a value from it. Unfortunately, there is no
easy way for any process to query the state of the
pipeline over time—it is like a virtual black-box.

The only thing a process can know is the instruc-

tion set order it gives to be executed on the pipeline
and the result the pipeline returns. This is the infor-
mation source we will mine for a number of effects
and artifacts, as follows.

Out of order execution: a pipeline’s arti-
fact. We can exploit this pipeline optimization as
a means to record the state of the pipeline. The
known input instruction order will result in two dif-
ferent return values—one is the expected result(s),
the other is the result if the pipeline executes them
out-of-order.

VM

Processor01

VM

Processor02

VM

Processor03

VM

Processor04

Core01 Core02

Processor

SMT

Allows

Threads to

Share Cores

Figure 3: Foreign processes can share the same
pipeline

Strong memory ordering. Our target,
cloud processors, can be assumed to be x86/64
architecture—implying a usually strongly-ordered
memory model.[4] This is important, because the
pipeline will optimize the execution of instructions,
but will attempt to maintain the right order of stores
to memory and loads from memory.

However, the stores and loads from different
threads may be reordered by out-of-order-execution.
Now, this reordering is observable if we’re clever
enough.

Recording instruction reorder (or, how to
be clever). In order for the attacker to record
these reordering artifacts from the pipeline, we must
record two things for each of our two threads: input
instruction order and return value.

Additionally, the instructions in each thread
must contain a STORE to memory and a LOAD from
memory. The LOAD from memory must reference the
location stored to by the opposite thread. This setup
ensures the possibility for the four cases illustrated
in Figure 4. The last is the artifact we record; do-
ing so several thousand times gives us averages over
time.

22

THREAD 2THREAD 1

Synched

ASynched

Out of

Order

Execution

r1 = r2 = 1

r1 = 0 r2 = 1

r1 = r2 = 0

store [X], 1

load r1, [Y]

store [Y], 1

load r2, [X]

store [X], 1

load r1, [Y] store [Y], 1

load r2, [X]

load r1, [Y]

store [X], 1

load r2, [X]

store [Y], 1

Figure 4: The attacker can record when its instruc-
tions are reordered

Sending a message. To make our attacks more
interesting, we want to be able to force the amount
of recorded out-of-order-executions. This ability is
useful for other attacks, such as constructing covert
communication channels.

In order to do this, we need to alter how the
pipeline optimization works—by increasing the prob-
ability that it either will or will not reorder our two
threads. The easiest is to enforce a strong memory
order and guarantee that the attacker will receive
fewer out-of-order-executions. This is where mem-
ory barriers come in.

Memory barriers. In the x86 instruction set,

there are specific barrier instructions that stop the
processor from reordering the four possible combina-
tions of STORE’s and LOAD’s. What we’re interested
in is forcing a strong order when the processor en-
counters an instruction set with a STORE followed by
a LOAD. The MFENCE instruction does exactly this.

By getting the colluding process to inject these
memory barriers into the pipeline, the attacker en-
sures that the instructions will not be reordered,
forcing a noticeable decrease in the recorded aver-
ages. Doing this in distinct time frames allows us to
send a binary message, as shown in Figure 5. More
details are available in my thesis.19

THE PIPELINE

NOP Store [X], 1 mfence Load r1, [X] NOP

Figure 5: MFENCE ensures the strong memory order
on pipeline

The takeaway is that—even with virtualization
separating your virtual machine from the hundreds
of other alien virtual machines!—the pipeline can’t
distinguish your process’s instructions from all the
other ones, and we can use that to our advantage.

References
[1] FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache Side-Channel Attack, Yuval Yarom,

Katrina Falkner, USENIX Security 2014

[2] Cross-Tenant Side-Channel Attacks in PaaS Clouds Yinqian Zhang, Ari Juels, Michael K. Reiter,
Thomas Ristenpart ACM CCS 2014

[3] Whispers in the Hyper-space: High-speed Covert Channel Attacks in the Cloud, Zhenyu Wu, Zhang Xu,
Haining Wang USENIX Security 2012

[4] Weak vs. Strong Memory Models, Preshing on Programming,
http://preshing.com/20120930/weak-vs-strong-memory-models/

1 ’ ’ ’

3 TRANSMITTER
sophia . re

5 07/06/15

7 ’ ’ ’

9 from time import time , s l e e p
import os

11
takes a b inary s t r i n g as input

19unzip pocorgtfo09.pdf crossvm.pdf

23

13 def send (Message , roundLength) :
for x in Message :

15 # Run a s i n g l e busy loop to repre sen t a 0
i f (x == ’ 0 ’) :

17 print (’ sending ’ , x)
change the time of t h i s busy loop to match r e c e i v e r round l eng t h

19 start_time = time ()
end_time = time () + roundLength #t h i s number i s loop time in seconds

21 while (start_time < end_time) :
start_time = time () #do nothing

23 else :
send a ’ h i ’ b i t in a g iven time frame

25 # by reducing the rece i v ed out o f order execu t ions
t h i s i s done us ing the sender exe

27 print (’ sending ’ , x)
start_time = time ()

29 end_time = time () + roundLength
while (start_time < end_time) :

31 os . system ("C:\\CPUSender . exe ")
do nothing u n t i l sending c process terminates

33 start_time = time ()

35
def main () :

37 # measured r e c e i v e r time frame l eng t h in seconds − (f o r one b i t)
roundLength = 1.08

39 message = ’ ’

41 # enter b inary s t r i n g
while (message != ’ e x i t ’) :

43 message = raw_input (’ Enter Binary St r ing : ’)
s tar t_t = time ()

45 i f (message != ’ e x i t ’) :
send (message , roundLength)

47 print "\nTotal execut ion time : "
print time () − s tar t_t

49
i f __name__ == "__main__" :

51 main ()

1 ’ ’ ’

3 RECEIVER
sophia . re

5 07/06/15

7 ’ ’ ’

9 from time import time , s l e e p
import os

11 import sys , subproces s
import msvcrt as m

13 import matp lo t l i b
import matp lo t l i b . pyplot as p l t

15
def main () :

17
while True :

19 start_time = time ()
end_time = time () + 12

21 print "Rece iv ing Bi t s in Words (8 b i t b locks) \ n"

23 # records out o f order execu t i ons and wr i t e s averages to f i l e

24

p = subproces s . Popen ("C:/ Rece iver . exe "+"1 " ∗8)
25 while start_time < end_time :

start_time = time ()
27 print time ()

29 # wait because o f system la t ency
p = subproces s . Popen ("C:/ nop . exe ")

31 p = subproces s . Popen ("C:/ nop . exe ")

33 # read a l l recorded out o f order execu t i ons from f i l e
f = open ("C: / Python27/BackupCheck . txt ")

35 txt = f . r e a d l i n e s ()
f . c l o s e ()

37 txt = txt [0]
print "Received Bi t s \n"

39 print txt

41 # t r i g g e r a p i c t u r e to appear
b i t s = txt . s p l i t (" : ")

43 i f "11" in b i t s [0] :
print "\n [+] t r i g g e r detec ted "

45 exe = "C:/ Users / root /Downloads/JPEGView_1_0_29/JPEGView . exe "
args = ’ "C: / p i c s " ’

47 p = subproces s . c a l l ([exe , a rgs])
sys . e x i t (0)

49 qu i t ()
else :

51 print "\n [+] t r i g g e r not detec ted "

53
p l o t r e ce i v ed out o f order execu t ions to view s t ep s i g n a l

55 print "\n\nEnter to Plot "

57 p . k i l l ()
m. getch ()

59
p l o t recorded OoOE s tep s i g n a l to png f i l e

61 with open ("BackupCheck2 . txt ") as f :
data = f . read ()

63 data = data . s p l i t ("\n")

65 y = [f l o a t (x) for x in data [0] . s p l i t (’ ’) [: − 1]]
x = l i s t (xrange (l en (y)))

67 print "There are " , l en (y) , " e lements to p l o t . "

69 f i g = p l t . f i g u r e ()
ax1 = f i g . add_subplot (111)

71 ax1 . s e t_ t i t l e ("Plot Received OoOE")
ax1 . s e t_x labe l (" i t e r a t i o n s ")

73 ax1 . s e t_y labe l ("out−of−order−execut ion averages ")
ax1 . f i l l_be tween (x , y , c o l o r=’ ye l low ’)

75 ax1 . p l o t (x , y , marker=’ . ’ , lw=1, l a b e l=’ the data ’ , alpha =0.3)
l e g = ax1 . l egend ()

77
p l t . s a v e f i g (’ p l o t . png ’ , bbox_inches=’ t i g h t ’)

79
repeat

81 print "\n\nEnter to Continue "
m. getch ()

83
i f __name__ == "__main__" :

85 main ()

25

