
5 Second Underhanded Crypto Contest
by Taylor Hornby

Defcon 23’s Crypto and Privacy Village mini-
contest is over. Despite the tight deadline, we re-
ceived five high-quality submissions in two cate-
gories. The first was to patch GnuPG to leak the
private key in a message. The second was to back-
door a password authentication system, so that a
secret value known to an attacker could be used in
place of the correct password.

5.1 GnuPG Backdoor
We had three submissions to the GnuPG category.
The winner is Joseph Birr-Pixton. The submission
takes advantage of how GnuPG 1.4 generates DSA
nonces.

The randomness of the DSA nonce is crucial.
If the nonce is not chosen randomly, or has low
entropy, then it is possible to recover the private
key from digital signatures. GnuPG 1.4 generates
nonces by first generating a random integer, set-
ting the most-significant bit, and then checking if
the value is less than a number Q (a requirement of
DSA). If it is not, then the most-significant 32 bits
are randomly generated again, leaving the rest the
same.

This shortcut enables the backdoor. The patch
looks like an improvement to GnuPG, to make it
zero the nonce after it is no longer needed. Unfor-
tunately for GnuPG, but fortunately for this con-
test, there’s an extra call to memset() that zeroes
the nonce in the “greater than Q” case, meaning the
nonce that actually gets used will only have 32 bits
of entropy. The attacker can fire up some EC2 in-
stances to brute force it and recover the private key.

1 d i f f −−g i t a/ c iphe r /dsa . c b/ c iphe r /dsa . c
index e23 f05c . . e496d69 100644

3 −−− a/ c iphe r /dsa . c
+++ b/ c iphe r /dsa . c

5 @@ −93,6 +93 ,7 @@ gen_k(MPI q)
i f (! rndbuf | | nb i t s < 32) {

7 + i f (rndbuf) memset (rndbuf , 0 , nbytes) ;
x f r e e (rndbuf) ;

9 rndbuf = get_random_bits (nbit s , 1 , 1) ;
}

11 @@ −115 ,15 +116 ,18 @@ gen_k(MPI q)
i f (! (mpi_cmp(k , q) < 0)) { //k<q

13 i f (DBG_CIPHER)

prog r e s s (’+ ’) ;
15 + memset (rndbuf , 0 , nbytes) ;

continue ; /∗ no ∗/
17 }

i f (! (mpi_cmp_ui(k , 0) > 0)) { //k>0
19 i f (DBG_CIPHER)

prog r e s s (’− ’) ;
21 + memset (rndbuf , 0 , nbytes) ;

continue ; //no
23 }

break ; //okay
25 }

+ memset (rndbuf , 0 , nbytes) ;
27 x f r e e (rndbuf) ;

i f (DBG_CIPHER)
29 prog r e s s (’ \n ’) ;

5.2 Backdoored Password Authenti-
cation

There were two entries to the password authenti-
cation category. The winner is Scott Arciszewski.
This submission pretends to be a solution to a user
enumeration side channel in a web login form. The
problem is that if the username doesn’t exist, the lo-
gin will fail fast. If the username does exist, but the
password is wrong, the password check will take a
long time, and the login will fail slow. This way, an
attacker can check if a username exists by measuring
the response time.

The fix is to, in the username-does-not-exist
case, check the password against the hash of a ran-
dom garbage value. The garbage value is gener-
ated using rand(), a random number generator that
is not cryptographically secure. Some rand() out-
put is also exposed to the attacker through cache-
busting URLs and CSRF tokens. With that output,
the attacker can recover the internal rand() state,
predict the garbage value, and use it in place of the
password.

– — — – — — — — – — –
An archive with all of the entries is included

within this PDF.18 The judge for this competition
was Jean-Philippe Aumasson, to whom we extend
our sincerest thanks.

18unzip pocorgtfo09.pdf uhc-subs.tar.xz

19

