
10 Tales of Python’s Encoding
by Frederik Braun

Many beginners of Python have suffered at the hand of the almighty SyntaxError. One of the less
frequently seen, yet still not uncommon instances is something like the following, which appears when
Unicode or other non-ASCII characters are used in a Python script.

SyntaxError: Non-ASCII character ... in ..., but no encoding declared;
see http://www.python.org/peps/pep-0263.html for details

The common solution to this error is to place this magic comment as the first or second line of your
Python script. This tells the interpreter that the script is written in UTF8, so that it can properly parse the
file.

encoding: utf-8

I have stumbled upon the following hack many times, but I have yet to see a complete write-up in our
circles. It saddens me that I can’t correctly attribute this trick to a specific neighbor, as I have forgotten
who originally introduced me to this hackery. But hackery it is.

10.1 The background
Each October, the neighborly FluxFingers team hosts hack.lu’s CTF competition in Luxembourg. Just last
year, I created a tiny challenge for this CTF that consists of a single file called “packed” which was supposed
to contain some juicy data. As with every decent CTF task, it has been written up on a few blogs. To my
distress, none of those summaries contains the full solution.

The challenge was in identifying the hidden content of the file, of which there were three. Using the liberal
interpretation of the PDF format,9 one could place a document at the end of a Python script, enclosed in
multi-line string quotes.10

The Python script itself was surrounded by weird unprintable characters that make rendering in command
line tools like less or cat rather unenjoyable. What most people identified was an encoding hint.

00000a0: 0c0c 0c0c 0c0c 0c0c 2364 6973 6162 6c65#disable
00000b0: 642d 656e 636f 6469 6e67 3a09 5f72 6f74 d-encoding:._rot
...
0000180: 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f 5f5f ________________
0000190: 3133 037c 1716 0803 2010 1403 1e1b 1511 13.|....

Despite the unprintables, the long range of underscores didn’t really fend off any serious adventurer. The
following content therefore had to be rot13 decoded. The rest of the challenge made up a typical crackme.
Hoping that the reader is entertained by a puzzle like this, the remaining parts of that crackme will be left
as an exercise.

The real trick was sadly never discovered by any participant of the CTF. The file itself was not a PDF that
contained a Python script, but a python script that contained a PDF. The whole file is actually executable
with your python interpreter!

Due to this hideous encoding hint, which is better known as a magic comment,11 the python interpreter
will fetch the codec’s name using a quite liberal regex to accept typical editor settings, such as “vim: set
fileencoding=foo” or “-*- coding: foo”. With this codec name, the interpreter will now import a python file
with the matching name12 and use it to modify the existing code on the fly.

9As seems to be mentioned in every PoC‖GTFO issue, the header doesn’t need to appear exactly at the file’s beginning, but
within the first 1,024 bytes.

10"""This is a multiline Python string.
It has three quotes."""

11See Python PEP 0263, Defining Python Source Code Encodings
12See /usr/lib/python2.7/encoding/__init__.py near line 99.

35

10.2 The PoC
Recognizing that cevag is the Rot13 encoding of Python’s print command, it’s easy to test this strange
behavior.

% cat poc.py
#! /usr/bin/python
#encoding: rot13
cevag ’Hello World’
% ./poc.py
Hello World
%

10.3 Caveats
Sadly, this only works in Python versions 2.X, starting with 2.5. My current test with Python 3.3 yields first
an unknown encoding error (the “rot13” alias has sadly been removed, so that only “rot-13” and “rot_13”
could work). But Python 3 also distinguishes strings from bytearrays, which leads to type errors when
trying this PoC in general. Perhaps rot_13.py in the python distribution might itself be broken?

There are numerous other formats to be found in the encodings directory, such as ZIP, BZip2 and Base64,
but I’ve been unable to make them work. Most lead to padding and similar errors, but perhaps a clever
reader can make them work.

And with this, I close the chapter of Python encoding stories. TGSB!

36

